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Abstract
In order to improve the contrast of image fusion and highlight the unique characteristics of medical images, a multi-modal 
medical image fusion algorithm in the framework of non-subsampled contourlet transform (NSCT) is proposed in this paper. 
Firstly, the computed tomography images and magnetic resonance image are decomposed into low- and high-frequency 
sub-bands through the NSCT of multi-scale geometric transformation; secondly, for the low-frequency sub-band, the local 
area standard deviation method is selected or the fusion, while for the high-frequency sub-band, an adaptive pulse coupling 
neural network model is constructed and the fusion rules are set by the cumulative ignition times of iterative operation in the 
network; finally, the fusion image is obtained through image reconstruction. Experimental results show that the fusion results 
of the algorithm in this paper can improve the image fusion quality significantly and it has certain advantages in both visual 
effects and objective evaluation indexes, which provides a more reliable basis for clinical diagnosis and treatment of diseases.

Keywords NSCT · Medical image fusion · PCNN · Computed tomography

1 Introduction

Along with the development of the imaging technology, a 
large number of imaging systems with different functions 
emerge in the medical field and the resulting images pro-
vide a reliable basis for clinical diagnosis. Based on differ-
ent imaging principles and the difference of the instruments 
used, medical imaging is divided into anatomical and func-
tional imaging in general. An important feature of anatomi-
cal imaging is that it can reveal the features of the lesions 
that are easily overlooked; while the main application of 
functional imaging is to show the metabolic effects of vari-
ous tissues and organs in the human body, which, however, 
is unable to provide a more detailed imaging environment 
for the detailed features of tissues and organs due to its low 
resolution. Image fusion is to filter and organically integrate 
the target information, that is, effective feature points, in two 

or more images based on certain rules, on the basis of which, 
an image with complete information in higher resolution 
is obtained, making it easier for observers to accept image 
information.

With the fusion method determined, image fusion meth-
ods can be divided into two kinds of methods based on 
their modes: the Spatial Domain Based and the Transform 
Domain Based image fusion methods. Although image 
fusion can be realized through both the spatial domain based 
and the transform domain based algorithms, by comparison, 
the former is less robust and susceptible to noises; while 
the later can also apply different fusion rules purposely to 
improve the fusion effect besides overcoming the above dis-
advantages (Du et al. 2016).

The so-called medical image fusion is that a variety of 
single-modal medical images are integrated comprehen-
sively to describe the morphological structure and metabolic 
status of lesions in full perspective and provide a more reli-
able basis for the diagnosis and treatment of diseases. A 
common medical image fusion is the fusion of single-mode 
computed tomography (CT) images and magnetic resonance 
images (MRIs). CT imaging is based on the differences of 
human bodies in absorbing X-rays. It has a high resolution 
and can capture the human bone structure. MRI imaging 
is based on the nuclear magnetic resonance technology. It 
can capture the soft tissue information of human body but 
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with a lower resolution. The complementarity of CT and MR 
images makes the fusion of the two possible (Li et al. 2018).

2  Related works

So far, many scholars have conducted in-depth researches in 
the field of medical image fusion.

Zhou et al. (2017) proposed a DTCWT-based lung can-
cer CT/PET image adaptive fusion algorithm in the Pilella 
framework. The reconstructed fusion image can better high-
light the edge and texture information of the lesion. Fei et al. 
(2017) proposed a multi-modal medical image fusion mech-
anism based on sparse representation and decision mapping 
which not only increased the speed of the algorithm, but 
also improved the quality of the fusion results. Shen et al. 
(2013) introduced a new medical image fusion algorithm. It 
had a great improvement in reducing noise interferences and 
increasing information acquisition.

Huang et al. (2017) proposed a new medical image fusion 
method combined with the non-subsampling shear wave 
transform (NSST) and the spiked cortical model (SCM) 
which better suppressed the pixel distortion and preserved 
the information of the source image. Qiu et al. (2017) built 
a sparse representation model for the image based on the 
traditional KSVD dictionary learning algorithm in order to 
solve the unsatisfactory image expression ability and poor 
fusion effect of dictionary learning. Benjamin and Jayasree 
(2018) proposed an image fusion method based on cascaded 
PCA and translation invariant wavelet transform. Experi-
mental results show that the fusion framework has better 
performance in visual and quantitative evaluations.

Aishwarya and Thangammal (2018) proposed an adap-
tive dictionary learning algorithm for multi-modal medical 
image fusion. By discarding zero information blocks and 
estimating the remaining image patches with MSF, useful 
information blocks were separated for dictionary learning. 
In this way, not only the amount of computation is small, but 
the fused image was in high quality as well. Lin et al. (2013) 
extracted the geometric flow and bandelet coefficients of a 
single-modal image through bandelet transform, fused and 
optimized the geometric flow with pulse coupling neural 
network (PCNN) and sparse similarity and fused the updated 
bandelet coefficients following the absolute maximum rule. 
The fusion image after the inverse transformation has excel-
lent visual effects with good objective indicators.

In addition to the traditional fusion methods mentioned 
above, deep learning has achieved good results in the image 
processing field with its powerful feature extraction and 
data expression capabilities and has also been widely used 
in multimodal medical image fusion in recent years. For 
example, Liu et al. (2017) proposed a deep learning strategy 
for medical image fusion. The strategy uses the Laplacian 

Pyramid to reconstruct the image in the fusion process after 
generating a weighted map of the source image using the 
deep network; Luo et al. (2018) used an improved CNN 
model to perform multi-view fusion on MR images to esti-
mate the volume of ventriculus sinister; Liang et al. (2019) 
designed a multi-layer cascaded fusion network (MCFNet) 
to perform feature extraction, feature fusion and image 
reconstruction through a CNN and DECN based end-to-end 
network. Chen et al. (2019) proposed a multimodal deep 
learning fusion network, MultiFuseNet, which establishes 
auxiliary diagnosis of cervical dysplasia using the multi-
modal data from cervical screening results. Singh and Anand 
(2020) proposed a multimodal medical neural image fusion 
model based on CNN and PCA clustering. It can capture the 
spatial information of the images of various modes effec-
tively, maintain their spatial consistency and suppress noises 
and artifacts.

Nevertheless current medical image fusion algorithms 
still have many problems, such as low contrast and low res-
olution of fused images, unclearness of small features, and 
the impact of image registration errors on the fusion results 
are also ignorable. In view of the above situations, a medical 
image fusion algorithm in the NSCT transform framework 
is proposed in this paper.

3  Framework

Firstly, the NSCT transformation is performed on the CT 
and MRI source images respectively to get the decomposed 
low-frequency sub-band coefficients and the high-frequency 
sub-band coefficients in all directions. Secondly, the local 
area standard deviation method is chosen for the fusion of 
low-frequency sub-band components and the processing 
method for the high-frequency subband is to establish an 
adaptive pulse coupled neural network model and input it 
into the pulse coupled neural network for multiple itera-
tive calculations. The high-frequency subband coefficients 
are selected based on the ignition times of neuron with the 
maximum ignition times as a reference. Thirdly, the final 
fused image is achieved through inverse NSCT transform 
from the fused low-frequency and high-frequency subband 
components. The flowchart for the new algorithm proposed 
in the paper shown in Fig. 1.

4  NSCT theory

Although contourlet transform (Do and Vetterli 2002) is bet-
ter than wavelet transform in multi-scale and multi-direc-
tionality, the up-sampling and down-sampling operations 
used in its processing procedure make it prone to spectral 
aliasing, which will be a more obvious Gibbs phenomenon if 
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it is displayed in the fused image. The non-subsampled con-
tourlet transform (NSCT) (Da Cunha et al. 2006) growing 
up on the basis of contourlet transform has avoided similar 
operations during processing so that it not only inherits the 
excellent characteristics of contourlet transform, but also got 
the translation invariant characteristics. Translation invari-
ance is applicable for image fusion processing, which not 
only reduces the influence of image registration errors on 
the fused image, but also eliminates the Gibbs phenomenon 
in the fusion result in the fusion process.

Non-subsampled Pyramid Filter Banks (NSPFB) and 
Non-subsampled Directional Filter Banks (NSDFB) are 
the key components of NSCT, which realize the multi-
scale and multi-direction decompositions of input source 
images. Thus, multi-scale decomposition is in two steps: 
the first step is scale decomposition, which is implemented 
using NSFPB—after the source image is input into NSFPB, 
low-frequency and high-frequency subband components 
are obtained respectively; the second step is directional 
decomposition, which is implemented using NSDFB—the 
high-frequency subband obtained in the first step is further 
decomposed to obtain the subband components in each 
direction of the high-frequency subband. See the decompo-
sition process and the frequency domain division of NSCT 
in Fig. 2. 

(1) Nonsubsampled Pyramid Filter Banks (NSPFB)

The 2D two-channel filter bank is used to solve the non-
subsampled pyramid decomposition. For multi-scale 
decomposition, the low-frequency components obtained 
from the previous scale decomposition are input into a 
low-pass filter after upsampling and the high-frequency 
components obtained from the previous scale decompo-
sition are inputted into a high-pass filter after upsam-
pling for corresponding low-pass and high-pass filtering 
to obtain the low frequency and high frequency subband 
components after pyramid decomposition. In the process, 
the filter of the subsequent state is achieved after an inter-
polation operation is performed on the filter of the previ-
ous stage. A low-pass subband and a high-pass subband 
are obtained after the source image pass the first-level 
decomposition. Hence, if one subband can be achieved 
after the image passes a stage decomposition, what is more 
important is that all subband images are consistent with 
the source image in size and scale. See the structure of 
NSPFB in Fig 3, where H0(z),H1(z) and G0(z),G1(z) meet 
the Bezout identity:

 

(2) Nonsubsampled Directional Filter Banks (NSDFB)

(1)H0(Z)G0(Z) + H1(Z)G1(Z) = 1.

Fig. 1  The framework for the 
algorithm proposed in this paper
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A filter bank with a fan-shaped support interval in the fre-
quency domain is a component that implements nonsubsam-
pled direction filtering. Similar to the operation of the above-
mentioned NSPFB, the previous-stage filter is interpolated 
with different sampling matrices to obtain the next-stage 
filter, and then this filter is used to decompose the sub-band 
components after the previous-stage direction decomposi-
tion to obtain the next Level subband component. Therefore, 
the direction decomposition of the high-pass subband com-
ponents on each scale can be obtained through NSDFB, and 
the directional subband components can be obtained, and the 
size of all directional subband images is consistent with the 
size of the source image. The structure of NSPFB is shown 
in Fig. 4, where U0(z),U1(z) and V0(z),V1(z) also meet the 
Bezout identity:

5  Fusion rules

5.1  Low‑frequency subband fusion rules

At present, the fusion method selected for most low-fre-
quency subband coefficients is a simple averaging method 

(2)U0(Z)V0(Z) + U1(Z)V1(Z) = 1.

generally. This method has a great impact on the contrast 
of fused images. Sometimes the target information in the 
source image cannot be completely extracted into the fused 
image. The local area standard deviation could represent 
the image gray intensity changes in local areas, while the 
parts with obvious gray level changes usually reflect image 
characteristics. So the important characteristics in images 
can be extracted according to the feature. This algorithm 
uses the local area standard deviation method as the fusion 
rule for low frequency subband components.

Firstly, calculate the local area standard deviation 
EC
j
(m, n) and EM

j
(m, n) of the low-frequency subband com-

ponent LC
j
(m, n) and LM

j
(m, n) , where N1 ×M1 represents the 

size of the neighborhood, and 3 × 3 or 5 × 5 are selected. The 
details are as follows:

Then, Formulas (3) and (4) are applied to select the low fre-
quency subband coefficients after fusion. The specific pro-
cedures are to compare the difference between the standard 
deviation of the local areas of the two input medical images 
and the threshold. When the difference is larger, the coef-
ficient of the image with a large value is taken; when the 
threshold is larger, the average value of the low-frequency 
subband coefficients of the two images are taken. The thresh-
old is valued between 0.1 and 0.3:

If EC
j
− EM

j
> th , then LCM

j
= LC

j
(m, n) ; if ||

|
EC
j
− EM

j

||
|
> th , 

t h e n  LCM
j

= LC
j
(m, n) × 0.5 + LM

j
(m, n) × 0.5  ;  i f 

EC
j
− EM

j
< th , then LCM

j
= LM

j
(m, n) . Through the above 

computation, the low frequency coefficient after fusion is 
obtained.

5.2  High‑frequency subband fusion rules

To better extract the linear features such as contours, edges 
and textures contained in the original high-frequency sub-
bands during the fusion of high-frequency subband coef-
ficients, the fusion rules is designed based on the improved 
pulse coupled neural network (PCNN) in this paper. The spe-
cific method is that the ignition times of neurons is selected 
to determine the high-frequency subband coefficient after 
fusion.

(3)

EC
j
=

����
�

∑i=(N1−1)∕2

i=−(N1−1)∕2

∑i=(M1−1)∕2

i=−(M1−1)∕2

�
LC
j
(m + i, n + j) − LC

j
(m, n)

�2

N1 ×M1

(4)

EM
j
=

����
�

∑i=(N1−1)∕2

i=−(N1−1)∕2

∑i=(M1−1)∕2

i=−(M1−1)∕2

�
LM
j
(m + i, n + j) − LM

j
(m, n)

�2

N1 ×M1

(5)LCM
j

= LC
j
(m, n) × 0.5 + LM

j
(m, n) × 0.5.
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Fig. 3  Nonsubsampled Pyramid Filter Banks (NSPFB)
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PCNN is a network model established by simulating the 
mechanism of the animal cerebral cortex system. It has the 
characteristics of global coupling, spatial proximity and 
synchronous excitation. It is widely used in image denois-
ing, pattern recognition and image segmentation and fusion 
fields. The PCNN model at the normal scale is highly com-
plicated with a large number of parameters, moreover, the 
correlation between the results used for medical image pro-
cessing and each parameter is ambiguous, therefore using 
the simplified PCNN model, not only the original charac-
teristics of the model can be kept, the parameters of the 
model can be reduced effectively as well (Tan 2018), see the 
simplified PCNN model in Fig. 5.

The basic units of PCNN are neuron. Each neuron is 
composed of three components: a receiving domain, a 
modulation domain and a pulse generating domain. Multiple 
neurons are interconnected to form feedback. The receiv-
ing domain receives the external input signal, and then the 
obtained signal is multiplied in the modulation domain 
and the final output pulse is achieved in the pulse genera-
tion domain. The basic process is as follows: the receiv-
ing domain receives signals from the feedback domain and 
the link domain; these signals enter the modulation domain 
through Channel L and F. The Lij in Channel L is multiplied 
with the Fij in Channel F after being multiplied with the link 
strength and pluses the offset to obtain the Uij, and enters the 
generation domain; the pulse generation domain includes a 
pulse generator and a comparator, which determines whether 

a high-level pulse (i.e., ignition) is generated by setting a 
threshold. The mathematical expression for the simplified 
PCNN is as follows:

If Uij[n] ≥ �ij[n] , then Yij[n] = 1 ; if Uij[n] < 𝜃ij[n] , then 
Yij[n] = 0 , so

where Fij represents feedback input, Lij is link input, Iij rep-
resents external stimulus, W represents weight coefficient, 
Uij represents internal activity term, �ij represents dynamic 
threshold, Yij is pulse output; �L , �� are attenuation coef-
ficients; VL , V� are the link input magnification factor and 
the threshold magnification factor respectively; � represents 
the internal active link strength factor; and ij is the neuron 
position.

When a pulse coupled neural network (PCNN) is operat-
ing on an image, one neuron corresponds to one pixel. The 
external stimulus of the neuron Iij is the gray value of the 
pixel. The output signals of the coupling and feedback inputs 
of two subsystems are modulated and multiplied to obtain 
the internal activity item Uij , which is then compared with 
the dynamic threshold �ij : if Uij > 𝜃ij , the neuron triggers 
ignition, Yij = 1 ; otherwise, Yij = 0 , then, a 2D matrix is out-
put by the number of ignitions. The value of each element in 
the matrix represents the number of ignitions of the neurons 
in the PCNN network at the pixel. The Lena image is input 
into the above network model. The ignition maps output 
after 50 and 100 iterations are shown in Fig. 6 respectively.

The original high-frequency subband coefficients are 
HC

j,l,k
(m, n) and HM

j,l,k
(m, n) respectively. The fusion rule for 

designing high-frequency subbands based on the intensity 
of neuron ignition is as follows:

(6)Fij[n] = Iij[n]

(7)Lij[n] = e−�LLij[n − 1] + VL

∑

pq

Wij,pqYij[n − 1]

(8)Uij[n] = Fij[n](1 + �Lij[n]).

(9)�ij[n] = e−�� �ij[n − 1] + V�Yij[n]
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If 𝜁C
j
(m, n) > 𝜁M

j
(m, n) , then HCM

j,l,k
(m, n) = HC

j,l,k
(m, n) ; if 

𝜁C
j
(m, n) < 𝜁M

j
(m, n) , then HCM

j,l,k
(m, n) = HM

j,l,k
(m, n) , where 

�C
j
(m, n) and �M

j
(m, n) are the ignition matrices of the origi-

nal high-frequency subbands respectively, and HCM
j,l,k

(m, n) is 
the fused high-frequency subband coefficient.

6  Experimental results and analysis

After the algorithm proposed in this paper is determined as 
a feasible research direction, in order to explore its effec-
tiveness, four sets of CT and MRI gray scale experimental 
images which have received registration check are used for 
fusion operation. The experimental platform adopts an Intel 
Core i7-5500U CPU, a PC with 4GB of memory, a Win 
10 system and a simulation environment of Matlab 2013b. 
Since the algorithm explored in this paper is based on the 
transform domain, the Contralet Transform (CL) algorithm, 
the Continuous Wavelet Transform (CWT) algorithm and the 
algorithm named MSGA in Shen et al. (2013) are the best 
choice for fusion effect comparison. After that, due to the 
diversity of visual senses and medical conditions, the subjec-
tive and objective two-way evaluation methods are chosen to 
verify the superiority of the effects of the fused experimental 
images. In order to verify the above algorithms, four sets of 
CT and MRI gray scale images which have received strict 
registration are selected in the experiment to compare the 
fusion results. The experimental platform adopts an Intel 
Core i7-5500U CPU, a PC with 4GB of memory, a Win 
10 system and a simulation environment of Matlab 2013b. 

Since the Contralet Transform (CL) algorithm, the Continu-
ous Wavelet Transform (CWT) algorithm and MSGA (Shen 
et al. 2013) are all transform domain, and the MSGA (Shen 
et al. 2013) has good effect in medical image fusion. So they 
are chosen to compare the fusion effects and the subjective 
and objective evaluations are used to evaluate the quality of 
the fused image comprehensively.

6.1  Subjective evaluation

The subjective evaluation is to make a qualitative evaluation 
of the quality of each image after fusion based on the visual 
effects of the observer. It is a very intuitive method to judge 
the fusion effect. The results of the algorithm proposed in 
this paper and other fusion methods are shown in Fig. 7. The 
images in each row are a set of images with the same CT/
MR source images with their fusion images for comparison 
and the images in each column are a set of images in the 
same type, where (a) are CT images mainly displaying skel-
etal structure information, (b) are MR images focusing on 
displaying the detailed images of the soft tissues inside the 
organ, (c)–(e) are fusion images of the contrast algorithms 
and (f) are the fusion images of the algorithm proposed in 
this paper.

It can be seen from the comparison in the first set of 
images that the five fusion algorithms can all fuse the images 
properly, but compared with the algorithm proposed in this 
paper, the other images are slightly poorer in the overall 
contrast, especially the parts at the contours of fusion images 
and the peaks on both sides of the fusion images from the CT 
images; while the fusion image obtained by the algorithm 

Fig. 7  Comparisons of four sets 
of images in fusion
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proposed in this paper not only can highlight the contour 
information from the CT, but also can retains the charac-
terization of the detailed information in the cavity. In the 
second set of images, the fusion effect of the CWT method 
is general, while the CL method, MSGA (Shen et al. 2013) 
and the algorithm proposed in this paper are more obvious 
in characterizing the contour information and the algorithm 
proposed in this paper characterizes the intra-cavity tissue 
more closely to the MR source image with a better fusion 
effect. Similar to the second sets of images, in the third set of 
images, all the methods in contrast are unable to reflect the 
part of the contour information from the CT image or display 
the intracranial gray matter perfectly except the algorithm 
proposed in this paper, which can synthesize the salient fea-
tures of the two source images and fully represent the details 
of the images. In the fourth set of images, the fusion effects 
of the CWT method and the method MSGA (Shen et al. 
2013) are poorer. The white contours and eye contours in the 
source images can hardly be reflected completely. Although 
the white contour can be seen in the fusion result of the CL 
method, the contour line in it is intermittent. The fusion 
effect is average. Only the method proposed in this paper 
can characterize the tissue structure information in the cavity 
in detail while highlighting the contour lines properly. The 
fusion is good.

6.2  Objective evaluation

Due to the diversity of medical conditions, subjective evalu-
ation will also reflect its diversity. Under the joint action 
of the human visual sensitivity and the diversity, subjec-
tive evaluation is incomplete and has a certain error rate. In 
this case, the experimental results of the fused images are 
analyzed by certain objective evaluation criteria. In terms 
of the characteristics of medical image fusion, five indica-
tors including information entropy (IE), mutual information 
(MI), average gradient (AvG), peak signal-to-noise ratio 
(PSNR) and the correlation coefficients (CC) are used to 
identify the quality of the fusion images multi-directionally 
(Du et al. 2016). IE characterizes the amount of information 
contained in the fused image. The larger the IE, the larger 
the amount of information. MI represents the amount of 
information transferred from the source image to the fused 
image. The larger the MI, the better the fusion effect. AvG 
indicates the gradient information of image, which reflects 
specifically the details and textures contained in the image. 
The larger the AvG, the higher the sharpness of the details. 
CC characterizes the linear correlation between fused and 
source images. The larger the CC, the higher the correlation 
between two images and the better the fusion effect. The 
specific index values are shown in Table 1.

It can be seen from the above table that the algorithm 
proposed in this paper has certain advantages on all the five 

indicators such as IE, MI, AvG and CC, especially in IE and 
AvG. The algorithm proposed in this paper has a large lead 
over in the four sets of images, 0.8887 and 4.0640 respec-
tively at the maximum, showing obvious advantages, which 
indicates that the fusion image of the algorithm contains rich 
information and a lot of details. This is more consistent with 
the purpose of medical image fusion of extracting significant 
detailed features for accurate diagnosis and treatment. See-
ing from the correlation coefficient CC and the mutual infor-
mation MI, the linear correlation between the images fused 
using the algorithm proposed in this paper and the source 
images are all about 90%, the mutual information has a slight 
advantage over other methods and the evaluation results are 
generally consistent with the subjective evaluation, indicat-
ing that the fusion effect of the algorithm proposed in this 
paper is more efficient and feasible than other methods.

7  Conclusion

A medical image fusion algorithm based on the NSCT 
framework is presented in this paper. It decomposes the 
CT and MR source images into high-frequency and low-
frequency subband components through the NSCT in multi-
scale geometric transformation. For the low frequency sub-
band component, the corresponding fusion rule is selected 
using the local area standard deviation method; for the high 
frequency subband component, a pulse coupled neural 

Table 1  Objective evaluation indicators for four sets of images

Image sets MI IE AvG CC

The 1st set
 CL 2.4931 6.0236 5.7570 0.8130
 CWT 2.3576 6.0522 5.9721 0.8135
 MSGA (Shen et al. 2013) 2.1259 6.0489 5.8625 0.8126
 New algorithm 2.6112 6.9123 9.7769 0.9197

The 2nd set
 CL 1.3777 4.9918 9.0394 0.8894
 CWT 1.3750 4.9316 7.6113 0.9618
 MSGA (Shen et al. 2013) 1.1800 4.9894 9.7463 0.8883
 New algorithm 1.3862 5.2948 9.5840 0.9122

The 3rd set
 CL 1.2638 4.4412 9.8074 0.9041
 CWT 1.2222 4.4083 6.9423 0.9372
 MSGA (Shen et al. 2013) 1.1972 4.7527 10.3962 0.9122
 New algorithm 1.2481 5.1924 10.9830 0.9369

The 4th set
 CL 0.9141 4.6538 13.6224 0.7539
 CWT 0.9370 4.6740 10.1941 0.8734
 MSGA (Shen et al. 2013) 0.8611 4.9140 12.9502 0.8490
 New algorithm 0.9351 5.1777 14.2581 0.8998
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network is established to choose the high frequency subband 
coefficient taking the maximum ignition times of neurons 
as the rule; after that the fused image is obtained through 
the reconstruction of NSCT image. The experimental results 
show that the fusion results of the algorithm proposed in 
this paper not only highlight the contour information in the 
CT image properly, but also characterizes the tissue struc-
ture information in the MR image in detail and improves 
the contrast of the fused image as well; in addition, it also 
has advantages in comparison with other fusion methods 
in terms of the objective evaluation indicators including 
information entropy (IE), mutual information (MI), average 
gradient (AvG), peak signal-to-noise ratio (PSNR) and the 
correlation coefficients (CC). This algorithm can improve 
the image fusion quality significantly and it has certain 
advantages in both visual effects and objective evaluation 
indexes, which provides a more reliable basis for clinical 
diagnosis and treatment of diseases.
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