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Abstract
As most real-world networks evolve over time, link prediction over such dynamic networks has become a challenging issue. 
Recent researches focus towards network embedding to improve the performance of link prediction task. Most of the network 
embedding methods are only applicable to static networks and therefore cannot capture the temporal variations of dynamic 
networks. In this work, we propose a time-aware network embedding method which generates node embeddings by captur-
ing the temporal dynamics of evolving networks. Unlike existing works which use deep architectures, we design an evolving 
skip-gram architecture to create dynamic node embeddings. We use the node embedding similarities between consecutive 
snapshots to construct a univariate time series of node similarities. Further, we use times series forecasting using auto regres-
sive integrated moving average (ARIMA) model to predict the future links. We conduct experiments using dynamic network 
snapshot datasets from various domains and demonstrate the advantages of our system compared to other state-of-the-art 
methods. We show that, combining network embedding with time series forecasting methods can be an efficient solution to 
improve the quality of link prediction in dynamic networks.
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1 Introduction

Network mining has gained a lot of attraction recently due 
to its importance in diverse areas which includes both scien-
tific and business domains. Link prediction (Liben-Nowell 
and Kleinberg 2007; Lü and Zhou 2011) is one interesting 
problem in network mining which aims to predict future 
interaction between entities in a network that can model the 
evolution of networks. Friend recommendation in social 
networks, interaction prediction between proteins, disease 
outbreak prediction, etc. are some typical applications of 
link prediction. Many supervised and unsupervised learning 
methods (Al Hasan and Zaki 2011; Martínez et al. 2017) 
were applied to perform link prediction in networks. Recent 
studies show that embedding the network in a latent vector 

space, and using vector-based similarity measures for link 
prediction is more efficient compared to traditional meth-
ods. Various network embedding methods (Cai et al. 2018) 
are developed in recent years, and most of these methods 
deal with learning embeddings from static networks. These 
methods not only improve the prediction accuracy but also 
makes the task scalable for networks with millions of nodes 
and edges.

The main aim of network embedding is to map a complex 
network to a low dimensional latent space by preserving the 
structural properties of the network. Developments in the 
field of network embedding (Goyal and Ferrara 2017) can 
be classified into mainly three which include methods based 
on matrix factorization, work2vec architecture and deep neu-
ral networks. Initially, non-linear dimensionality reduction 
techniques were used for network embedding followed by 
specialized graph factorization based methods like locally 
linear embedding (LLE) (Roweis and Saul 2000), Laplacian 
Eigenmaps (Belkin and Niyogi 2002), Grarep (Cao et al. 
2015), and Hope (Ou et al. 2016). Even if these methods 
can capture the structural properties of the network, they are 
computationally expensive. With the recent advancements 
in the field of neural networks and deep learning, researches 
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moved towards using representation learning methods for 
network embedding. These methods are highly scalable and 
can handle the complex non-linear structure, which is an 
inherent property of networked data. Deepwalk (Perozzi 
et al. 2014), Node2vec (Grover and Leskovec 2016), SDNE 
(Wang et al. 2016), etc are some popular works which uses 
representation learning for generating network embeddings.

Most of the real-world networks like social networks 
and citation networks evolve with time. Social network 
evolves by adding new people and relationships, whereas 
new papers and citations lead to the growth of citation 
network. Such networks can be mathematically modelled 
either as a dynamic graph, which is represented as a series 
of snapshots, or as temporal network with the duration of 
interaction or interval timestamped on the edges. Even if 
some researches (Casteigts et al. 2012; Blonder et al. 2012) 
focused on learning the network dynamics, identifying the 
mechanism that leads to its evolution is a challenging issue. 
In this work, we investigate the way to incorporate the evolu-
tion mechanism into network embedding which can generate 
node embeddings that are evolved over time. Further, we 
create similarity based time series using the node embed-
dings generated from dynamic network snapshots and uses 
time series forecasting for predicting future links in the suc-
cessive snapshots.

Generating embedding from a dynamic network is not 
straight forward. Embedding snapshots independently and 
aligning them across consecutive time steps is computation-
ally expensive. Nodes and edges may vary across consecu-
tive time steps which demand new techniques to be incorpo-
rated with static embedding methods. Successive snapshots 
may not differ much and the embeddings generated must 
be stable across various snapshots. The size of many real-
world networks may grow exponentially over a period of 
time which demands the embedding method to be highly 
scalable. Some researchers have already attempted to gen-
erate node embedding from dynamic networks. All these 
works either used matrix factorization based models (Zhu 
et al. 2016) or deep neural architectures (Goyal et al. 2018) 
which are computationally complex.

In this paper, we present a word2vec based model for 
generating time aware embeddings from dynamic networks. 
Word2vec (Mikolov et al. 2013a, b) is a very successful 
model for generating word representations which showed 
tremendous improvements in solving many tasks related 
to natural language processing and text mining. Word2vec 
defines a shallow three layer neural network architecture 
whose objective is to maximize the probability of words 
that tend to co-occur to be close in a low dimensional vector 
space. Later, Word2vec provided inspirations for many net-
work embedding researches (Perozzi et al. 2014; Grover and 
Leskovec 2016) which used neural network architectures to 
generate node embeddings. These works perform a random 
walk over the network to generate a sentence analogy in 
word2vec and use a skip-gram architecture to maximize the 
probability that the nodes that tend to co-occur on truncated 
walk lay closer in the embedding space. A general architec-
ture of skip-gram based procedure for network embedding 
is shown in Fig. 1.

In all existing works, the embeddings generated after 
training the complete snapshots are used to predict the future 
links. But, non-linear fluctuations in connectivity patterns 
may occur within a series of consecutive snapshots which 
may reduce the efficiency of such predictions. To avoid such 
problems, we construct a time series based on node embed-
ding similarities between consecutive snapshots and further 
uses time series forecasting using ARIMA model (Brockwell 
and Davis 2016) to perform link prediction.

The main contributions of our work are as follows. 

i) We propose a representation learning architecture, which 
is modification over the skip-gram architecture, that can 
generate embeddings from dynamic networks. The pro-
posed method can learn time-aware embeddings from 
network snapshots that are captured over a period of 
time.

ii) We utilize the time-aware embeddings to construct a 
univariate time series based on the node embedding 
similarities and performs time series forecasting using 
ARIMA model to predict future links.

Fig. 1  Skip-gram based procedure for network embedding
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iii) To the best of our knowledge, this is the first attempt 
which combines both dynamic network embedding and 
time series prediction based approaches for link predic-
tion in dynamic networks.

iv) We conduct experiments on real-world dynamic net-
works and proves that the proposed method can provide 
better link prediction accuracy compared to state-of-the 
art methods.

2  Background

In this section, we define the terminologies used in this work 
and the problem definition.

Definition 1 A network is a graph G = (V ,E) , where 
V = {v1, v2...vn} , is the set of vertices and e ∈ E is an edge 
between any two vertices. An adjacency matrix A defines 
the connectivity of G, Aij = 1 if vi and vj are connected, else 
Aij = 0.

Definition 2 A dynamic network can be modeled as con-
tact sequences, snapshots, or interval graphs. In this work, 
we model a dynamic network as a series of snapshots 
G = {G1,G2, ...Gn} where Gi = (Vi,Ei) and n is the num-
ber of snapshots. New nodes and edges may be added and 
removed from the network over time, and we consider that 
the network snapshots at different time steps can capture 
this information.

Problem  1. Network embedding: Given a network 
G = (V ,E) , the task is to learn a transformation function 
f ∶ Vi → Ki ∈ Rd , where d << |V| , such that f preserves the 
proximity information of the network. d defines the number 
of dimensions of the real-valued vector. Informally, if two 
nodes are connected or share similar neighborhoods in the 
network, their corresponding vector representations will 
occupy nearer positions in the vector space.

Problem 2. Time-aware network embedding (TANE): It is 
an extension to network embedding which can better repre-
sent dynamic networks in vector space. Given a as a series of 
network snapshots at n time steps, G = {G1,G2...Gn} , Time-
Aware Network Embedding tries to learn a mapping function 
f ∶ Vi → Ki ∈ Rd , where d << |V| , from the network snap-
shots which captures both network proximities and temporal 
dynamics of the network. In the embedding space thus gen-
erated, two vectors, that correspond to two nodes are closer 
implies that the nodes preserve similar neighborhoods, and 
their interactions have constantly evolved.

Problem 3. Link prediction in dynamic network: Given 
a as a series of network snapshots at t discrete time steps, 
G = {G1,G2...Gn} , the task is to the predict the future graph 
at time t + 1 , i.e Gt+1.

3  Related works

Apart from using graph algorithms, machine learning on 
graphs is one interesting direction towards network mining 
research. Network embedding is one such domain which 
gained attention in recent years. The basic purpose of net-
work embedding is to encode the network structure to a 
low dimensional vector space by preserving the topologi-
cal properties and thereby aims to perform the downstream 
mining tasks like node classification and link prediction with 
improved accuracy. The network embedding research started 
by applying non-linear dimensionality methods to generate 
node embeddings followed by specialized graph factoriza-
tion based methods. As representation learning emerged 
as a successful method to solve many problems related to 
computer vision and text mining, the domain of network 
embedding is also influenced by these methods. Among 
these methods, word2vec (Mikolov et al. 2013a, b) is one 
popular architecture which uses a skip-gram model to gener-
ate word representations by training a neural network on a 
text corpus. Many network embedding methods like Deep-
Walk (Perozzi et al. 2014), Node2vec (Grover and Lesko-
vec 2016) and Struc2vec (Ribeiro et al. 2017) are inspired 
from Word2vec. Another approach includes methods based 
on deep architectures like deep belief networks, Deep CNN 
and GAN. Nodes and edges of real-world networks may be 
attributed and heterogeneous. TADW (Yang et al. 2015), 
TriDNR (Pan et al. 2016) and DeepGL (Rossi et al. 2017) 
are some works on attributed network embedding and Meta-
path2vec (Dong et al. 2017) ,HNE (Chang et al. 2015) and 
Hin2vec (Fu et al. 2017) are some works on heterogeneous 
network embedding. All these methods are applicable only 
to static networks.

A dynamic network provide a more precise way of repre-
senting complex interactions compared to a static network. 
Analysis of dynamic networks has got wide applications in 
various domains. Embedding dynamic networks demand 
developing new techniques or adapting existing methods to 
incooperate dynamic network properties. Authors of (Zhu 
et al. 2016) attempt to incorporate a temporal regularizer 
into the matrix factorization framework so as to generate 
a temporal latent space from snapshot networks. Dyngem 
(Goyal et al. 2018) uses a deep belief network which gener-
ates node embeddings from a series of network snapshots. 
Dynamictriad (Zhou et al. 2018) considers triadic closure 
as a basic mechanism which leads to network evolution 
and uses it to generate node embeddings. DDNE (Li et al. 
2018) is another work which uses a GRU encoder and a deep 
neural network decoder for node embedding generation. To 
capture the network dynamics effectively, the system needs 
to be trained using large number of network snapshots. Such 
a task will be computationally complex if we are using 
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matrix factorization and deep architecture based methods. 
In this paper, we propose a modified skip-gram architecture 
which is a shallow neural network that takes as input, node 
sequences generated using random walk from a sequence of 
network snapshots, and generates node embeddings that are 
constantly evolved over time.

Various approaches (Ma et al. 2017; Ahmed et al. 2018; 
Yasami and Safaei 2018; Wu et al. 2018) exist in literature to 
perform link prediction on dynamic networks. As a dynamic 
network is one which evolve over time, time series modeling 
and prediction is a good approach towards studying link pre-
diction in dynamic networks. Time series forecasting has 
been successfully used in many applications where we aim 
to predict the future values of a variable using the past obser-
vations of the same variable. ARIMA (Brockwell and Davis 
2016) is a successful model to capture the non-linearities in 
time series data. Recent works on time series forecasting use 
soft computing based methods which include fuzzy neural 
networks (Soto et al. 2018), fuzzy aggregation models with 
modular neural networks (Soto et al. 2019), and evolutionary 
computing approaches (Gupta et al. 2018). Many research-
ers approached the problems related to dynamic networks 
from perspective of time series forecasting. (Wu et al. 2018) 
studied the dynamics of a time-varying network as the prob-
lem of tracking a time series of finite dimensional vectors. 
The evolution of a temporal network can be well described 
using a time series of event sequences (Jo and Hiraoka 2019) 
which follow non-linear patterns. A detailed study (Zou 
et al. 2019) of complex network approaches to nonlinear 
time series analysis also exist in the literature. Recent stud-
ies (Güneş et al. 2016; Özcan and Öğüdücü 2016, 2017) 
show that time series forecasting based methods outperform 
other traditional methods for performing link prediction in 
dynamic networks. Most of these methods use node simi-
larities and centrality measures for time series construction, 
and linear models for prediction which fails to capture the 
non-linear temporal variations of connectivity patterns in 
dynamic networks. The proposed system is to generate time 
aware embeddings from a dynamic network, performs time 
series construction using node embedding similarity scores 
and predicts future similarity scores using ARIMA model.

4  System design

4.1  Random walk

A random walk is a discrete-time stochastic process which 
is widely used in graph theory domain, particularly in appli-
cations like graph partitioning (Spielman and Teng 2004), 
community detection (Pons and Latapy 2005) and Pagerank 
(Chung and Zhao 2010). In this work, we consider random 
walk as a sampling technique to capture the local community 

structure of the network. A random walk on a graph G can 
be represented as a sequence of vertices v1, v2, v3, .., vk such 
that the adjacent nodes in the sequence are connected in G. 
A random walk of length k starts from any node, randomly 
select a neighbor, visits the neighbor and the process con-
tinues until k edges are covered. The next vertex is selected 
with uniform probability from the set of neighbors. The 
same can be modeled as a markov chain, where the states of 
the chain are the vertices of the graph.

Given the adjacency matrix Aij and d(i) =
∑

j Aij , the 
degree of node i

The transition probability between two connected vertices 
i to j can be represented as

Tij =
Aij

d(i)

This can be also represented as
T = D−1A , where D is the diagonal degree matrix, 

Dii = d(i) and Dij = 0 if i ≠ j.
Let P0

ij
 represents i 1-hot row vectors with the value of ith 

entry is 1 and all others 0, which indicates that the random 
walk can start at any vertex, and let the stationary transition 
probability between two connected vertices to be Tij . By 
assuming random walk without restart, the transition prob-
ability after a single walk can be computed as

The transition probability after k steps of random walk (walk 
of lenght k) can be computed as

The ith row of the matrix represent the transition probability 
from vertex i to all other vertices after a random walk of 
length k.

If the graph is strongly connected, it can be observed 
that the probability distribution reaches a steady state. For 
a random walk to capture the local structure, it should be 
long enough to gather the topological information and also 
should not be too long to avoid stationary distribution. So in 
this work, we are using a truncated random walk where the 
length of the walk is fixed. The k-step transition probability 
between i and j for a random walk with fixed length depends 
on the node degrees d(i) and d(j).

For vertices which are closer in the graph, the value of Pk
ij
 

will be high. Fomally, we can say that two vertices i and j 
are similar if

ie i and j have similar transition probability distribution w.r.t. 
all other nodes. The distance between i and j can be repre-
sented as

P1
ij
= P0

ij
× Tij

Pk
ij
= P0

ij
×

k∏

i=1

Tij

∀n Pk
in
≈ Pk

jn
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The error value dij can be also interpreted as the distance 
between two probability distributions Pk

im
 and Pk

jm
 . When we 

have a truncated random walk of length k, (k << n) , and 
when m is in the local neighborhood of i and j, the error 
value drops to minimum. This shows that the truncated ran-
dom can capture the local community structure of the graph.

4.2  Skip‑gram architecture

A skip-gram model is a shallow neural network architecture 
used by word2vec to generate word embeddings. The skip-
gram for network embedding (Perozzi et al. 2014) deploys 
the same three-layer neural network architecture used by 
word2vec. Here the objective is to maximize the probability 
of neighboring nodes in the random walk, given the repre-
sentation of a node. Skip-gram generates a d dimensional 
representation, �(vi) ∈ Rd for each node vi , by maximizing 
the co-occurrence probability of its neighbors in the walk. 
The optimization function can be represented as,

where vi−w, ..., vi+w denotes the neighbors of vi in the node 
sequence, and w is the context size. The output layer of 
skip-gram neural architecture is a softmax function which 
computes the co-occurence probability of output and input 
words, wo and wi as

where v′
w
 and vw are the vector representations of the con-

text and input word respectively, and N is the size of the 

dij =

√√√√
n∑

m=1

(Pk
im
− Pk

jm
)2

d(m)

(1)max logP(vi−w, ..., vi+w|�(vi))

(2)p(wo�wi) =
exp(v�

wo

⊤
vwi)

∑N

w=1
exp(v�

w
⊤vwi)

vocabulary. Estimating softmax function is computationally 
expensive, and word2vec approximates softmax using two 
strategies, hierarchical softmax (Morin and Bengio 2005), 
and negative sampling(Goldberg and Levy 2014). These 
strategies reduce the time complexity of the skip-gram 
model and speed up the training process.

4.3  Proposed system

The workflow of the proposed system is shown in Fig. 2. 
The input to the TANE algorithm is consecutive network 
snapshots, and the algorithm generates node embeddings 
from each snapshot by capturing the temporal dynamics of 
the evolving network. These embeddings are fed to a time 
series construction phase which generates a univariate time-
series using node embedding similarity between each dis-
connected node pairs. The time series thus constructed is 
passed to the ARIMA model to predict the future similarity 
scores between disconnected vertices and thereby uses it to 
predict the future links.

4.3.1  TANE algorithm

In the case of dynamic networks, the network structure may 
vary at different snapshots and the basic skip-gram architec-
ture cannot capture these changes. Even if we train the skip-
gram model for one snapshot, for the next snapshot we need 
to retrain the entire model even if there is a small change 
in connectivity between two consecutive snapshots. This is 
a tedious task when we have a large number of snapshots. 
Moreover the training the model independently with differ-
ent snapshots may also lead to sub-optimal results. This is 
because the embeddings thus generated for the same node 
with similar connectivity patterns across different snapshots 
may be different as they are not aligned to the same vector 
space. Our proposed architecture (TANE) is designed such 
that the neural network can be trained snapshot by snapshot, 

Fig. 2  Flow diagram of proposed system
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by preserving the weight learned at each snapshot. At each 
time step, TANE aims to expand the neural architecture of 
skip-gram by preserving the input to hidden and hidden to 
output layer weights of the previous time step and thereby 
generating time aware network embeddings. The procedure 
is described in Algorithm 1.The algorithm takes as input 
n network snapshots G = {G1,G2...Gn} , the context win-
dow size w, the embedding dimension d, walk per vertex � 
and walk length t. The algorithm generates an embedding 
matrix v x d as output, where v is the total number of verti-
ces across all network snapshots. The procedure involves a 
two-step process. A random walk on the network snapshots 
to incrementally build the vertex vocabulary and a skip-gram 
objective optimization which incrementally learns the net-
work embeddings from the snapshots. Vocabulary building 

starts from the first snapshot, and the embedding and context 
matrices are initialized as zero. The skip-gram objective is 
optimized by training a three-layer neural network which is 
optimized using stochastic gradient descent (SGD) (Bottou 
2010). For successive snapshots, the skip-gram architecture 
is expanded by initializing the embedding and context vec-
tors from the corresponding matrices of the previous snap-
shot and by initializing the vectors of newly observed ver-
tices to zero. Further, the vocabulary is built incrementally 
by adding the newly observed vertices and by maintaining 
the occurrence count of each vertex. At each snapshot, the 
skip-gram objective is optimized to ensure that the embed-
ding generated over successive snapshots have captured the 
temporal dynamics of the evolving network.

Algorithm 1 TANE Algorithm
Input:Network Snapshots G1, G2, G3,..,Gn where G1 = (V1, E1), G2 =

(V2, E2),...,Gn = (Vn, En), window size w, embedding size d, walks per vertex γ and
walk length t

Output: Embedding Matrix E= R|V |×d

1: for snapshots i from 1 to n do
2: walks(Si) = randomwalk(Si)
3: if i=1 then
4: V oc = BuildV ocabulary(walks(Si))
5: Initialize the embedding and context matrices, Ev(Si) = R|V |×d, Cv(Si) =

Rd×|V |

6: else
7: Load V oc,Ev(Si−1), Cv(Si−1)
8: for u ∈ walks(Si) do
9: if u ∈ V oc then

10: Eu(Si)=Eu(Si−1)
11: Cu(Si) = Cu(Si−1)
12: else
13: Eu(Si) = Cu(Si) = 0
14: V oc = BuildV ocabulary(walks(Si))
15: SkipGram(Ev, walks, w)
16: Save V oc,Ev(Si), Cv(Si)

1: procedure BuildVocabulary(walks)
2: for u ∈ walks do
3: if u ∈ V oc then
4: count(u)++
5: else
6: addvocab(V oc,u)
7: size(V oc)++

1: procedure SkipGram(Ev,walks,w)
2: for vk ∈ walks do
3: for v′ ∈ walks(k − w : k + w) do
4: L(E) = − logP (v′|E(vk))
5: stochasticgradientdescent(L(E))
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Figure 3 shows the skip-gram architecture for TANE cor-
responding to two consecutive network snapshot Si−1 and Si 
at time i − 1 and i respectively. For those vertices in Si which 
are already present in previous snapshot Si−1 , the weight vec-
tors are loaded from the matrices of snapshot Si−1 , and the 
vectors of newly seen vertices are initialized to zero.The 
objective is optimized for each snapshot by preserving the 
embedding generated at each time step. This approximates 
the optimization of a global objective function which will 
learn the parameters of network embedding across all snap-
shots and thereby generates stable and time-aware network 
embedding.

4.3.2  Time series construction and forecasting

Once node embeddings are created for every snapshot, we 
pass the embeddings to a time series construction phase. 
Here, we first define a similarity matrix for every snapshot, 
where the similarity between two nodes x and y is computed 
as the cosine similarity between the node embeddings v(x) 
and v(y). We further align the similarity scores of every node 
pair across the series of snapshots to form a time series. 
Predicting the future association between two nodes can be 
now modeled as a time series forecasting problem. We pass 
the time series of node embedding similarities constructed 
in the previous step to a time series forecasting phase. We 
use the ARIMA model for time series forecasting. The 
ARIMA(p, d, q) model is the combination of autoregressive 
and moving average processes, where p is the number of 
autoregressive terms, q is the number of moving average 
terms and d is the number of non-seasonal difference opera-
tions. The ARIMA model for forecasting the similarity score 
between two nodes x and y at snapshot t can represented as

Where �1sim(x, y, t − 1) + .... + �psim(x, y, t − p) is the 
autoregressive terms which allows to incorporate the past 
similarity scores into the model and �1et−1 + ... + �qet−q is 
the terms representing lagged forecast errors in prediction, 
and u is the average of past similarity scores. Model is tested 
with different values of p,d and q and the parameters which 
provided the minimum value of Akaike information crite-
rion (AIC) is considered for generating similarity scores. 
For conducting link prediction experiments, we consider the 
missing links in the final snapshots with the highest pre-
dicted scores as the future links.

5  Experiments

We conduct experiments with four real-world networks to 
evaluate the quality of embeddings generated by the TANE 
algorithm. MAP and ROC are the measures which are used 
for evaluation. The results are compared with that of the 
baseline methods. All experiments were conducted using a 
machine with Ubuntu 16.04 operating system, 16 GB RAM 
and a hexa-core processor with 3.2 GHz speed. We modi-
fied the C implementation of google word2vec for develop-
ing TANE algorithm and used python packages including 
neworkx and scikit-learn for graph processing, time series 
prediction and link prediciton evaluation.

5.1  Datasets and evaluation measures

ENRON: This dataset (Klimt and Yang 2004) consists of 
emails between the employees in Enron Inc. from January 
1999 to July 2002. Each node in the network represents a 
user, and a link represents email communication between 
them. The network consists of 150 users and 2609 edges.

HAGGLE: This network (Chaintreau et  al. 2007) 
describes human contact informations where contacts 
between people are measured by some wireless devices. 
Nodes represent users and links between them indicates a 
contact. The dataset consists of 274 nodes and 28,244 edges.

HEP-PH: This a collaboration graph (Gehrke et al. 2003) 
of authors of scientific papers from Hep-Ph section of arXiv 
archive. It consists of 28,093 nodes and 4,596,803 edges. 
The data covers papers in the period from January 1993 to 
April 2003.

RADOSLAW: This network (Michalski et al. 2011) rep-
resents the email communication between employees in a 
mid-sized manufacturing company. Nodes in the network 
represent employees and edges between them are individual 

(3)

Sim(x, y, t) = � + �1sim(x, y, t − 1) + .... + �psim(x, y, t − p)

+Θ1et−1 + ... + Θqet−q + et

Fig. 3  Skip-gram architecture for TANE algorithm
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emails. The dataset covers a period from January 2010 to 
October 2010 and consists of 167 vertices and 82,927 edges. 
A summary of various datasets used is shown in Table 1.

Area under curve (AUC): AUC is a widely used evalu-
ation metric for link prediction. This metric can be inter-
preted as probability that a randomly chosen missing link is 
given a higher score than a randomly chosen non-existent 
link, provided the rank of all the non-observed links. The 
value of this metric is bounded between 0 and 1, and higher 
the value implies better the model. Among n independent 
comparisons, if there are n′ times the missing link having a 
higher score and n′′ times they have the same score, AUC 
score (Liu et al. 2011; Lü and Zhou 2011) is calculated as:

Mean average precision (MAP): This metric is an extension 
of average precision (AP) where the average of all APs is 
calculated to get MAP score. It estimates the precision of 
every node and computes the average over all nodes. It is 
calculated as:

The performance of the proposed system is evaluated with 
various state-of-the-art works by considering all the links in 
the network at a future time as well as by taking only the new 
links that occur in the future time. A link (u, v) is said to be 
a new link if it is not present in the last snapshot.

6  Results and analysis

We conducted link prediction experiments with time-aware 
embeddings (TANE) independently and also by combin-
ing time-aware embeddings with time series forecasting 
(TANE-TS). The TANE algorithm takes as input, the net-
work snapshots and generates embeddings that are evolved 
continuously over time. These embeddings can be used to 
perform link prediction. To test the link prediction perfor-
mance in static network, the procedure is as follows. Hide 

(4)AUC =
n� + 0.5n��

n

(5)AP(i) =
ΣjPrecision@j(i).Δi(j)

|{Δi(j) = 1}|
MAP =

Σi�QAP(i)

|Q|

10–15% of the links to form the training set, generate node 
embeddings from the training set, use hammard product of 
the node embedding to form the edge embedding and build 
a classifier based on positive and negative edges. Hidden 
edges are used to test the accuracy of the classifier. To test 
link prediction performance with dynamic networks, we hide 
10–15% of links of each network snapshot from time 1 to 
‘t-1’, generates embeddings and predict the links at time ‘t’. 
To test link prediction performance with TANE-TS, we build 
the time series using similarity of dynamic embeddings from 
snapshot 1 to t-1 and forecast the predicted scores for pos-
sible links in snapshot t. As TANE maps networks to a low 
dimensional space, the dimensionality of nodes is an impor-
tant which affects the performance of link prediction task. 
We conducted experiments using different values of node 
dimensionality w.r.t each dataset and found 128 as the opti-
mum value which is used for performance comparison. Now, 
we present the baseline methods along with the analysis and 
comparison of results obtained from conducting link predic-
tion experiments on four real world networks.

6.1  Baseline methods

We selected baselines from different category of works. 
These include link prediction using static embedding and 
dynamic network embedding methods, and link prediction 
using node similarity based time series forecasting methods. 
A short introduction to specific baselines are listed below.

Node2vec (Grover and Leskovec 2016): Node2vec per-
forms random walk on static network to generate node 
sequences and uses skip-gram with negative sampling to 
generate node representations. Unlike deepwalk, node-
2vec performs a baised random walk which provides more 
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Fig. 4  AUC comparison of TANE-TS with static embedding methods

Table 1  Statistics of various datasets used

Dataset # of nodes # of edges # of 
times-
tamps

Enron 150 2609 26
Haggle 274 28,244 8
Hep-ph 28,093 4,596,803 10
Radoslaw 167 82,927 10
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flexibility in exploring node neighborhoods. The learned 
representations can be used for link prediction using vector 
based similarity measures.

SDNE (Wang et al. 2016): is designed to preserve non-
linear connectivity patterns in networks while generating 
embeddings. SDNE attempts to capture the first order and 
second order proximity between nodes and deploys a deep 
belief network for generating representations.

DynGem (Goyal et al. 2018): It is an extension of SDNE 
to dynamic networks. It dynamically expands the deep neu-
ral architecture and learn stable embeddings from a series of 
network snapshots by preserving the embeddings generated 
at each time step. The embeddings generated from complete 
training is used for link prediction.

Time series of node Similarities (TS-Sim) (Güneş et al. 
2016): This work first computes node similarities using com-
mon neighbor, Adamic-Adar and Jaccard Coefficient. A time 
series is constructed using node similarities and the similar-
ity of future links is predicted using ARIMA model.

6.2  Performance

The experiments conducted for evaluating the performance 
of the proposed system are threefold. We first present the 
performance improvement of TANE-TS over static network 
embedding methods followed by dynamic embedding meth-
ods. Further we compare the system with time series predic-
tion based approaches. Links with top 20% highly predicted 
scores are considered as predicted links. We conduct experi-
ments by both considering only the new links in the final 
snapshot and also for all links in the final snapshot. A link 
(u, v) is said to be a new link in the current snapshot if it is 
not present in the previous snapshot.

Figure 4 compares the AUC scores of TANE-TS against 
the static network embedding methods (Node2vec and 
SDNE) w.r.t. four datasets. Results show that the proposed 
method gives an AUC performance improvement of 8.1%, 

10.3%, 14.4% and 18.1% over the baseline methods (SDNE) 
on Enron, Haggle, Hep-ph, and Radoslaw respectively. A 
similar improvement of can be also obtained on the MAP 
score for the given datasets, which is presented in Table 2. 
As the link prediction problem is directly related to evolution 
of the networks, we can observe that embedding the network 
by considering its evolution (proposed system) have good 
advantage over static network embedding methods.

Table 3 plots the AUC and MAP comparison of TANE-
TS with dynamic network embedding method (DynGem). 
The results show that the TANE algorithm when combined 
with time series forecasting can achieve a performance 
improvement of 1.3%, 2.2%, 1.4% and 2.7% on AUC and 
10.4%, 21.8%, 23.8% and 7.1% on MAP compared to dyn-
gem w.r.t. Enron, Haggle, Hep-ph, Radoslaw respectively. 
In DynGem, the final embeddings generated after training 

Table 2  MAP comparison of proposed system with static embedding 
methods

Method Enron Haggle Hep-ph Radoslaw

Node2vec 0.061 0.099 0.069 0.057
SDNE 0.066 0.149 0.054 0.051
TANE-TS 0.095 0.245 0.078 0.075

Table 3  AUC and MAP 
comparison of proposed system 
with dynamic embedding 
method

Method Enron Haggle Hep-ph Radoslaw

AUC MAP AUC MAP AUC MAP AUC MAP

DynGem 0.791 0.086 0.834 0.201 0.780 0.063 0.761 0.070
TANE-TS 0.802 0.095 0.853 0.245 0.791 0.078 0.782 0.075
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Fig. 5  AUC comparison of TANE-TS with time series prediction 
methods

Table 4  MAP comparison of proposed system with time series pre-
diction methods

Method Enron Haggle Hep-ph Radoslaw

TS-CN 0.049 0.121 0.061 0.057
TS-AA 0.073 0.194 0.065 0.064
TANE-TS 0.095 0.245 0.078 0.075
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the deep model with all network snapshots are used in link 
prediction. In the proposed system, we are trying to learn 
the changes in the consecutive network snapshots and uses 
a time series forecasting model which can slightly improve 
the performance of link prediction task.

Figure 5 and Table 4 shows the AUC and MAP com-
parison of TANE-TS with time series forecasting based link 
prediction methods. Results show that TANE-TS outper-
forms TS-AA by 14.2%, 11.8%, 11.2% and 13.04% on AUC 
score and 30.1%, 26.2%, 20% and 17.1% on MAP score w.r.t. 
Enron, Haggle, Hep-ph, Radoslaw respectively. The network 
embedding method (proposed system) can more effectively 
capture the topological properties of the graph when com-
pared to local similarity measures like common neighbors 
and adamic-adar which is used in TS-CN and TS-AA. Hence 
it can provide improved performance over these baselines.

The previously observed results on evaluating the perfor-
mance of the proposed framework in terms of the AUC and 
MAP was computed by considering only the new links in 
the last snapshot. Now we present the AUC and MAP com-
parison of TANE-TS with baseline methods by considering 

Table 5  Comparison of 
proposed system with baseline 
methods by considering all links 
in the final snapshot

Method Enron Haggle Hep-ph Radoslaw

AUC MAP AUC MAP AUC MAP AUC MAP

SDNE 0.735 0.055 0.773 0.149 0.757 0.044 0.743 0.081
TS-AA 0.791 0.077 0.842 0.182 0.801 0.088 0.794 0.183
DynGem 0.842 0.098 0.857 0.274 0.825 0.133 0.832 0.294
TANE-TS 0.881 0.126 0.932 0.471 0.851 0.156 0.869 0.382
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Fig. 6  Node dimensionality vs AUC 
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all links in the final snapshot. Results from Table 5 reports 
the performance improvement of the proposed system over 
baseline methods.

6.3  Parameter sensitivity

In this section we investigate how the parameter tuning pro-
cess affect the link prediction task. The various parameters 
include the dimensionality of the embeddings,the length of 
the random walk, the number of snapshots, the granularity 
of snapshots and the parameters of the ARIMA model.

We first discuss the effect of embedding dimension on 
the prediction results for various datasets. The AUC and 
MAP scores obtained by considering all new links in the 
final snapshot for different dimensions for different data-
sets are shown in Figs. 6 and 7 respectively. Results show 
that each vertex when represented as a higher dimensional 
vector (either 64 or 128) provides better AUC and MAP 
scores compared to low dimensional vector representations 
(16 and 32). AUC score for Enron, Hep-ph and Radoslaw 
datasets remains relatively close to 0.80 and 0.79 and 0.78 
respectively when d = 64 and d = 128. For Haggle dataset, 

AUC and MAP scores show some variations over various 
node dimensions and give an AUC and MAP score of .85 
and .245 respectively when nodes are represented as 128 
dimensional vectors.

The walk length of the random walk is one among the 
parameter which decides the extent to which the community 
structure of the network is explored. We have varied the 
walk length from 15 to 60 and the results are reported in 
Fig. 8. We can observe that for the smaller datasets (Enron 
and Haggle), a walk length of 45 can produce nearly optimal 
results. For bigger datasets, particulary for Hep-ph, a lengthy 
walk is needed to well capture the community structure and 
to generate optimum result for the proposed system.

We varied the number of snapshots from 5 to 10, con-
ducted experiments on AUC and the results are presented 

Table 6  Effect of granularity of 
snapshots

Time-interval AUC MAP

6 months 0.621 0.051
3 months 0.671 0.066
2 months 0.782 0.081
1 month 0.802 0.095
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Fig. 9  No. of snapshots vs AUC 
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in Fig 9. It was found that for Enron and Hep-ph, the AUC 
increases up to 14 and 8 snapshots respectively and then 
reach an almost steady state. As the number of snapshots 
becomes high, the networks become dense and may lead 
to the saturation of AUC value. For haggle and radoslaw, 
an optimum AUC value of 0.85 and 0.78 respectively is 
obtained when the embeddings are generated by training 8 
and 10 snapshots respectively.

Dynamics of real-world networks may differ in the range 
from small time-scales (fine-grained dynamics) to long time 
periods (coarse-grained dynamics). We conducted experi-
ments on enron dataset by generating snapshots at various 
levels of granularity, and the results are shown in Table 6. 
The results show that the system gives better prediction 
accuracy while taking small time scales for generating net-
work representations.

Finally we preset the influence of ARIMA model parame-
ters on the performance of the proposed system. The param-
eter here we consider are the number of past time periods 
(p), the number of non-seasonal difference operations (d), 
and the number of lagged forecast errors (q). The AUC val-
ues against the different combinations of p,d,q values for 
Hep-ph and Haggle are shown in Fig. 10 a and b respec-
tively. For hep-ph, 2 or 3 past values are required to build a 
robust model, where as for haggle dataset, the system can 
achieve good performance with 1 or 2 past values. We may 
conclude that more powerful time series model is required 
to get accurate predictions when we deal with more complex 
datasets like Hep-ph.

7  Conclusion and future works

Predicting the future links of a network by considering its 
evolving nature is an exciting direction of research in net-
work mining. As network embedding emerged as an impor-
tant technique to improve the performance of many network 
mining tasks, we investigate the effect of network embed-
ding in link prediction on dynamic networks. We propose 
a method which combines time-aware network embedding 
and time series forecasting to perform link prediction on 
dynamic networks. The method uses a modified skip-gram 
architecture to generate time-aware node embeddings, con-
structs a time series of node embedding similarities and 
uses ARIMA model to predict the similarity scores between 
future links. We observe that the dynamic network embed-
ding can well capture the temporal dynamics of the net-
work, and the ARIMA model can predict future links with 
good accuracy. The benefits of the proposed are justified 
by conducting experiments with various real-world network 
datasets.

The current study can provide various directions for 
future work. Network topology will not change much 

between two consecutive snapshots and implementing bet-
ter transfer learning techniques for neural network training 
can improve the scalability of the proposed system. The 
evolution of a network can be modelled as a temporal graph 
with time-stamped edges rather than a series of snapshots, 
and embedding such networks can further address the scal-
ability issues. Combining node embedding similarity fea-
tures with neighbourhood based similarity features to form 
a multivariate time series may further improve the prediction 
accuracy. System performance may be further improved by 
using advanced neural models like long short-term memory 
(LSTM) or gated recurrent units (GRU) for time series fore-
casting. In future, we also plan to perform link prediction in 
dynamic networks using graph neural network models like 
graph convolutional networks and graph attention networks.
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