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Abstract
Although some statistical tools, such as mean and median, used for modelling a problem containing parameters or alterna-
tives with multiple intuitionistic fuzzy values because these values are obtained in a specific period, decrease uncertainty, 
they lead to data loss. However, interval-valued intuitionistic fuzzy values can overcome such a concern. For this reason, the 
present study proposes the concept of interval-valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy 
soft sets (d-sets) and presents several of its basic properties. Moreover, by using d-sets, we suggest a new soft decision-making 
method and apply it to a problem concerning the eligibility of candidates for two vacant positions in an online job advertise-
ment. Since it is the first method proposed in relation to this structure (d-sets), it is impossible to compare this method with 
another in this sense. To deal with this difficulty, we introduce four new concepts, i.e. mean reduction, mean bireduction, 
mean bireduction-reduction, and mean reduction-bireduction. By using these concepts, we apply four state-of-the-art soft 
decision-making methods to the problem. We then compare the ranking performances of the proposed method with those 
of the four methods. Besides, we apply five methods to a real problem concerning performance-based value assignment to 
some filters used in image denoising and compare the ranking performances of these methods. Finally, we discuss d-sets 
and the proposed method for further research.
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1  Introduction

The standard mathematical tools are incompetent at over-
coming some problems containing uncertainties in many 
areas, such as engineering, physics, computer science, 
economics, social sciences, and medical sciences. To over-
come this drawback, many new mathematical tools, such as 
fuzzy sets (Zadeh 1965), intuitionistic fuzzy sets (Atanassov 
1986), interval-valued fuzzy sets (Gorzałczany 1987; Zadeh 
1975), and soft sets (Molodtsov 1999), have been proposed. 
Moreover, some hybrid versions of these concepts, such as 
fuzzy soft sets (Maji et al. 2001), fuzzy parameterized soft 

sets (Çağman et al. 2011a), fuzzy parameterized fuzzy soft 
sets (fpfs-sets) (Çağman et al. 2010), fuzzy parameterized 
interval-valued fuzzy soft sets (Alkhazaleh et al. 2011), intu-
itionistic fuzzy parameterized soft sets (Deli and Çağman 
2015), intuitionistic fuzzy parameterized intuitionistic fuzzy 
soft sets (ifpifs-sets) (Karaaslan 2016), fuzzy parameterized 
intuitionistic fuzzy soft sets (fpifs-sets) (Sulukan et al. 2019), 
and interval-valued fuzzy parameterized intuitionistic fuzzy 
soft sets (ivfpifs-sets) (Kamacı 2019) have been introduced. 
So far, the studies have been conducted on these concepts 
in many fields, such as decision-making (Çağman and 
Enginoğlu 2010a, b, 2012; Çağman et al. 2011b; Enginoğlu 
2012; Enginoğlu and Çağman n.d.; Enginoğlu and Memiş 
2018; Enginoğlu et al. 2018; Hao et al. 2018; Joshi 2020; 
Maji et al. 2002; Razak and Mohamad 2011, 2013; Sel-
vachandran et al. 2017), algebra (Çıtak and Çağman 2015, 
2017; Sezgin 2016; Sezgin et al. 2019; Ullah et al. 2018), 
topology (Atmaca 2017; Enginoğlu et  al. 2015; Riaz 
and Hashmi 2017; Şenel 2016; Thomas and John 2016; 
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Zorlutuna and Atmaca 2016), analysis (Riaz et al. 2018; 
Şenel 2018), and the other (Garg and Arora 2020; Iqbal and 
Rizwan 2019; Maji et al. 2003; Niewiadomski 2013).

However, without losing data, the concepts mentioned 
above cannot directly model a problem in which values are 
assigned to a parameter or an alternative with multiple meas-
urement results. Suppose that there are twenty speedom-
eters which send ten signals in an hour in the Dardanelles 
Strait and every ten signals are stored as a measurement 
result. Furthermore, assume that a signal is accepted as a 
positive signal if the instant flow is sufficient to turn the 
impeller of a turbine or as a negative signal if insufficient. 
Let ax

n
 and bx

n
 denote the numbers of positive and negative 

signals transmitted by a speedometer x for nth measurement, 
respectively. Here, ax

n
+ bx

n
= 10 , for all unsigned integer 

number n. Then, for (ax
n
) = (5, 3, 6, 8, 1) which shows the 

results of five measurements and the membership function 
defined by �(x) ∶= 1

10n

∑n

i=1
ax
i
 , the membership degree of 

the speedometer x to the fuzzy set � can be computed as 
0.46. Therefore, the nonmembership degree of the speed-
ometer x is computed as �(x) = 1 − �(x) = 0.54 . However, 
considering multi-values as a single value refers to data loss. 
On the other hand, for

(ax
n
) = (5, 3, 6, 8, 1) , and (bx

n
) = (5, 7, 4, 2, 9) , the member-

ship/nonmembership degree of the speedometer x can be 
computed as [0.06,0.47]

[0.12,0.53]
 via the concept of interval-valued intui-

tionistic fuzzy sets (ivif-sets) provided in Atanassov (2020) 
and Atanassov and Gargov (1989) and which is being “data-
friendly”. As a result, the values 0.46 and 0.54 denote that 
the positive and negative signal numbers for one hundred 
signals of speedometer x are 46 and 54, respectively. On the 
other hand, the value [0.06, 0.47] signifies that the positive 
signal numbers for one hundred signals of speedometer x 
range from 6 to 47. Similarly, the value [0.12, 0.53] sug-
gests that the negative signal numbers for one hundred sig-
nals of speedometer x occur between 12 and 53. Therefore, 
since an interval-valued intuitionistic fuzzy value contains 
more information than fuzzy values, it is more convenient 
to model such a problem.

Recently, many researchers have focused on both theo-
retical and applied studies concerning the concept of ivif-
sets. For example, Sotirov et al. (2018) have propounded an 
approach combining intuitionistic fuzzy logic via the inter-
criteria analysis method. Thereafter, Atanassov et al. (2019) 
have described a new intercriteria analysis method based on 
interval-valued intuitionistic fuzzy assessment. Moreover, 

�(x) ∶=

[
min
n

ax
n

max
n

ax
n
+max

n
bx
n

,

max
n

ax
n

max
n

ax
n
+max

n
bx
n

]

�(x) ∶=

[
min
n

bx
n

max
n

ax
n
+max

n
bx
n

,

max
n

bx
n

max
n

ax
n
+max

n
bx
n

]

Kim et al. (2018) have proposed a method by using ivif-sets 
for the assessment and evaluation of all the classes in ques-
tion. Besides, Luo and Liang (2018) have suggested a novel 
similarity measure based on ivif-sets. They then have applied 
it to pattern recognition and medical diagnosis. Furthermore, 
Liu and Jiang (2020) have defined a new distance measure 
of ivif-sets and applied it in consideration of the well known 
ideal house selection.

The concept of ivif-sets has been used to overcome uncer-
tainties, especially in multi-criteria decision-making prob-
lems. For example, Mishra and Rani (2018) have extended 
the scope of this concept to attend to a method called as a 
weighted aggregated sum product assessment and applied 
it to a decision-making problem. Moreover, Priyadharsini 
and Balasubramaniam (2019) have suggested a multi-cri-
teria decision-making method using accuracy function and 
applied it to an investment company’s selection problem. In 
addition to the aforementioned studies, the concept of ivif-
sets has also been used in a wide range of fields, including 
topology and algebra (Hemavathi et al. 2018; Park 2016, 
2017; Senapati and Shum 2019).

However, more general forms are needed for mathemati-
cal modelling of some problems in the event that the param-
eters or alternatives (objects) have more serious uncertain-
ties. Therefore, in this paper, we define the concept of the 
interval-valued intuitionistic fuzzy parameterized interval-
valued intuitionistic fuzzy soft sets (d-sets) by combining the 
concepts of interval-valued intuitionistic fuzzy parameter-
ized soft sets (Deli and Karataş 2016) and interval-valued 
intuitionistic fuzzy soft sets (Jiang et al. 2010; Min 2008). 
Since this concept has a great modelling ability and provides 
new fields of study for researchers, it is worth conducting 
the study.

In Sect. 2 of this study, we present some of the basic 
definitions and properties required in the next sections of 
the paper. In Sect. 3, we define the concept of d-sets and 
investigate some of its basic properties. In Sect. 4, we sug-
gest a new soft decision-making method by using d-sets. 
This method provides selecting optimal elements from the 
alternatives. In Sect. 5, we apply this method to a problem 
of the determination of eligible candidates for the positions. 
In Sect. 6, we define four new concepts, i.e. mean reduc-
tion, mean bireduction, mean bireduction-reduction, and 
mean reduction-bireduction. By using these concepts, we 
apply four soft decision-making methods constructed via 
ifpifs-sets, ivfpifs-sets, fpifs-sets, and fpfs-sets to the problem 
mentioned above. We then compare the ranking performance 
of the proposed method with those of the four methods. In 
Sect. 7, we apply five methods to a real problem concerning 
performance-based value assignment to some filters used 
in image denoising, so that we can order them in terms of 
performance. Moreover, we compare the ranking perfor-
mances of these methods. Finally, we discuss d-sets and the 
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proposed method for further research. This study is a part of 
the first author’s PhD dissertation.

2 � Preliminaries

In this section, we first provide several well-known defini-
tions. Throughout this paper, let Int([0, 1]) be the set of all 
closed classical subintervals of [0, 1].

Definition 1  Let �1, �2 ∈ Int([0, 1]) . For �1 ∶= [�−
1
, �+

1
] and 

�2 ∶= [�−
2
, �+

2
] , if �−

1
≤ �−

2
 and �+

1
≤ �+

2
 , then �1 is called a 

subinterval of �2 and is denoted by 𝛾1⊆̃𝛾2.

Definition 2  Let �1, �2 ∈ Int([0, 1]) . Then, 𝛾1≤̃𝛾2 ⇔ 𝛾1⊆̃𝛾2.

D e f i n i t i o n  3   L e t  � , �1, �2 ∈ Int([0, 1])  ,  c ∈ ℝ
+  , 

� ∶= [�−, �+] ,  �1 ∶= [�−
1
, �+

1
] ,  a n d  �2 ∶= [�−

2
, �+

2
] . 

T h e n ,  �1 + �2 ∶= [�−
1
+ �−

2
, �+

1
+ �+

2
]   , 

�1 − �2 ∶= [�−
1
− �+

2
, �+

1
− �−

2
] , �1 ⋅ �2 ∶= [�−

1
⋅ �−

2
, �+

1
⋅ �+

2
] , 

and c ⋅ � ∶= [c ⋅ �−, c ⋅ �+].

Secondly, we present the concept of interval-valued intui-
tionistic fuzzy sets (Atanassov and Gargov 1989) and some 
of its basic properties (Atanassov 1994; Atanassov and Gar-
gov 1989).

Definition 4  (Atanassov and Gargov 1989) Let E be a uni-
versal  set  and �  be  a  funct ion from E  to 
Int([0, 1]) × Int([0, 1]) . Then, the set 

{
�(x)

�(x)
x ∶ x ∈ E

}
 being 

the graphic of � is called an interval-valued intuitionistic 
fuzzy set (ivif-set) over E.

Here,  for  al l  x ∈ E  ,  �(x) ∶= [�−(x), �+(x)] and 
�(x) ∶= [�−(x), �+(x)] such that �+(x) + �+(x) ≤ 1 . Moreo-
ver, � and � are called membership function and nonmem-
bership function in an ivif-set, respectively.

Note 1  Since [�(x), �(x)] ∶= �(x) , for all x ∈ E , we use �(x)
�(x)

x 
instead of [�(x),�(x)]

[�(x),�(x)]
x . Moreover, we do not display the ele-

ments 0
1
x in an ivif-set.

In the present paper, the set of all ivif-sets over E is 
denoted by IVIF(E). In IVIF(E), since the graph(�) and � 
generate each other uniquely, the notations are interchange-
able. Therefore, as long as it does not cause any confusion, 
we denote an ivif-set graph(�) by �.

Example 1  Let E = {x1, x2, x3, x4} be a universal set. Then,

is an ivif-set over E.

� =

{
[0.2,0.4]

[0.4,0.6]
x1,

[0,0.2]

[0.5,0.7]
x2,

[0.3,0.5]

[0.1,0.2]
x4

}

In the present paper, for �, � ∈ Int([0, 1]) , let �
�
E denote 

an ivif-set � over E such that �(x) = � and �(x) = � , for all 
x ∈ E.

Definition 5  (Atanassov 1994) Let � ∈ IVIF(E) . For all 
x ∈ E , if �(x) = 0 and �(x) = 1 , then � is called empty ivif-
set and is denoted by 0

1
E or 0E.

Definition 6  (Atanassov 1994) Let � ∈ IVIF(E) . For all 
x ∈ E , if �(x) = 1 and �(x) = 0 , then � is called universal 
ivif-set and is denoted by 1

0
E or 1E.

Definition 7  (Atanassov and Gargov 1989) Let 
�1, �2 ∈ IVIF(E) . For all x ∈ E  , if 𝛼1(x)≤̃𝛼2(x) and 
𝛽2(x)≤̃𝛽1(x) , then �1 is called a subset of �2 and is denoted 
by 𝜅1⊆̃𝜅2.

Proposition 1  Let �, �1, �2, �3 ∈ IVIF(E) . Then, 𝜅⊆̃1E , 
0E⊆̃𝜅 , 𝜅⊆̃𝜅 , and [𝜅1⊆̃𝜅2 ∧ 𝜅2⊆̃𝜅3] ⇒ 𝜅1⊆̃𝜅3.

Definition 8  Let �1, �2 ∈ IVIF(E) . Then, 𝜅1≤̃𝜅2 ⇔ 𝜅1⊆̃𝜅2.

Definition 9  (Atanassov and Gargov 1989) Let 
�1, �2 ∈ IVIF(E) . If 𝜅1≤̃𝜅2 and 𝜅2≤̃𝜅1 , then �1 and �2 are 
called equal ivif-sets and is denoted by �1 = �2.

P r o p o s i t i o n  2   L e t  �1, �2, �3 ∈ IVIF(E)  .  T h e n , 
[�1 = �2 ∧ �2 = �3] ⇒ �1 = �3.

Definition 10  Let �1, �2 ∈ IVIF(E) . If 𝜅1⊆̃𝜅2 and �1 ≠ �2 , 
then �1 is called a proper subset of �2 and is denoted by 
𝜅1⊊̃𝜅2.

Definition 11   (Atanassov  and  Gargov  1989) 
L e t  �1, �2, �3 ∈ IVIF(E)  .  F o r  a l l  x ∈ E  ,  i f 
�3(x) = sup{�1(x), �2(x)} and �3(x) = inf{�1(x), �2(x)} , then 
�3 is called union of �1 and �2 and is denoted by 𝜅1∪̃𝜅2.

Proposition 3  (Atanassov 1994) Let �, �1, �2, �3 ∈ IVIF(E) . 
T h e n ,  𝜅∪̃𝜅 = 𝜅   ,  𝜅1∪̃𝜅2 = 𝜅2∪̃𝜅1   ,  a n d 
(𝜅1∪̃𝜅2)∪̃𝜅3 = 𝜅1∪̃(𝜅2∪̃𝜅3).

Proposition 4  Let �, �1, �2 ∈ IVIF(E) . Then, 𝜅∪̃0E = 𝜅 , 
𝜅∪̃1E = 1E , and [𝜅1⊆̃𝜅2 ⇒ 𝜅1∪̃𝜅2 = 𝜅2].

Definition 12   (Atanassov  and  Gargov  1989) 
L e t  �1, �2, �3 ∈ IVIF(E)  .  F o r  a l l  x ∈ E  ,  i f 
�3(x) = inf{�1(x), �2(x)} and �3(x) = sup{�1(x), �2(x)} , then 
�3 is called intersection of �1 and �2 and is denoted by 𝜅1∩̃𝜅2.
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Proposition 5  (Atanassov 1994) Let �, �1, �2, �3 ∈ IVIF(E) . 
T h e n ,  𝜅∩̃𝜅 = 𝜅   ,  𝜅1∩̃𝜅2 = 𝜅2∩̃𝜅1   ,  a n d 
(𝜅1∩̃𝜅2)∩̃𝜅3 = 𝜅1∩̃(𝜅2∩̃𝜅3).

Proposition 6  Let �, �1, �2 ∈ IVIF(E) . Then, 𝜅∩̃0E = 0E , 
𝜅∩̃1E = 𝜅 , and [𝜅1⊆̃𝜅2 ⇒ 𝜅1∩̃𝜅2 = 𝜅1].

Proposition 7  (Atanassov 1994) Let �1, �2, �3 ∈ IVIF(E) . 
T h e n ,  𝜅1∪̃(𝜅2∩̃𝜅3) = (𝜅1∪̃𝜅2)∩̃(𝜅1∪̃𝜅3)  a n d 
𝜅1∩̃(𝜅2∪̃𝜅3) = (𝜅1∩̃𝜅2)∪̃(𝜅1∩̃𝜅3).

Definition 13  Let �1, �2, �3 ∈ IVIF(E) . For all x ∈ E , if 
�3(x) = inf{�1(x), �2(x)} and �3(x) = sup{�1(x), �2(x)} , then 
�3 is called difference between �1 and �2 and is denoted by 
𝜅1⧵̃𝜅2.

Proposition 8  Let � ∈ IVIF(E) . Then, 𝜅⧵̃0E = 𝜅 and 
𝜅⧵̃1E = 0E.

Note 2  It must be noted that the difference is non-commu-
tative and non-associative. For example, let E = {x} , 
�1 =

{
[0.1,0.3]

[0.2,0.4]
x
}

 , �2 =
{

[0.4,0.5]

[0,0.1]
x
}

 , and �3 =
{

[0.5,0.7]

[0.1,0.2]
x
}

 . Since 

𝜅1⧵̃𝜅2 =
{

[0,0.1]

[0.4,0.5]
x
}

 a n d  𝜅2⧵̃𝜅1 =
{

[0.2,0.4]

[0.1,0.3]
x
}

 ,  t h e n 

𝜅1⧵̃𝜅2 ≠ 𝜅2⧵̃𝜅1 . Similarly, since 𝜅1⧵̃(𝜅2⧵̃𝜅3) =
{

[0.1,0.3]

[0.2,0.4]
x
}

 and 

(𝜅1⧵̃𝜅2)⧵̃𝜅3 =
{

[0,0.1]

[0.5,0.7]
x
}

 , then 𝜅1⧵̃(𝜅2⧵̃𝜅3) ≠ (𝜅1⧵̃𝜅2)⧵̃𝜅3.

Definition 14  (Atanassov and Gargov 1989) Let 
�1, �2 ∈ IVIF(E) . For all x ∈ E  , if �2(x) = �1(x) and 
�2(x) = �1(x) , then �2 is called complement of �1 and is 
denoted by 𝜅 c̃

1
 . It is clear that, 𝜅 c̃

1
= 1E⧵̃𝜅1.

Proposition 9  Let �, �1, �2 ∈ IVIF(E) . Then, (𝜅 c̃)c̃ = 𝜅 , 
0c̃
E
= 1E , 𝜅1⧵̃𝜅2 = 𝜅1∩̃𝜅

c̃
2
 , and [𝜅1⊆̃𝜅2 ⇒ 𝜅 c̃

2
⊆̃𝜅 c̃

1
].

Proposition 10  (Atanassov and Gargov 1989) Let 
�1, �2 ∈ IVIF(E) . Then, De Morgan’s laws are valid, i.e. 
(𝜅1∪̃𝜅2)

c̃ = 𝜅 c̃
1
∩̃𝜅 c̃

2
 and (𝜅1∩̃𝜅2)c̃ = 𝜅 c̃

1
∪̃𝜅 c̃

2
.

Definition 15  Let �1, �2, �3 ∈ IVIF(E) . For all x ∈ E , if

and

then �3 is called symmetric difference between �1 and �2 and 
is denoted by 𝜅1△̃𝜅2.

Proposition 11  Let �, �1, �2 ∈ IVIF(E) . Then, 𝜅△̃0E = 𝜅 , 
𝜅△̃1E = 𝜅 c̃ , and 𝜅1△̃𝜅2 = 𝜅2△̃𝜅1.

�3(x) = sup{inf{�1(x), �2(x)}, inf{�2(x), �1(x)}}

�3(x) = inf{sup{�1(x), �2(x)}, sup{�2(x), �1(x)}}

Note 3  It must be noted that the symmetric difference is 
non-associative. For example, let E = {x} , �1 =

{
[0.2,0.3]

[0.4,0.7]
x
}

 , 

�2 =
{

[0.2,0.4]

[0.5,0.6]
x
}

 ,  a n d  �3 =
{

[0.1,0.4]

[0,0.5]
x
}

 .  S i n c e 

𝜅1△̃(𝜅2△̃𝜅3) =
{

[0.2,0.4]

[0.2,0.5]
x
}

 and (𝜅1△̃𝜅2)△̃𝜅3 =
{

[0.1,0.4]

[0.2,0.5]
x
}

 , 
then 𝜅1△̃(𝜅2△̃𝜅3) ≠ (𝜅1△̃𝜅2)△̃𝜅3.

Definition 16  Let �1, �2 ∈ IVIF(E) . If 𝜅1∩̃𝜅2 = 0E , then �1 
and �2 are called disjoint.

Definition 17  (Atanassov 1994) Let �1, �2, �3 ∈ IVIF(E) . 
For all x ∈ E , if �3(x) = [�−

1
(x) + �−

2
(x) − �−

1
(x)�−

2
(x), �+

1
(x)

+�+

2
(x) − �+

1
(x)�+

2
(x)] and �3(x) = [�−

1
(x)�−

2
(x), �+

1
(x)�+

2
(x)] , 

then �3 is called sum of �1 and �2 and is denoted by 𝜅1+̃𝜅2.

Proposition 12  (Atanassov 1994) Let �1, �2, �3 ∈ IVIF(E) . 
Then, 𝜅1+̃𝜅2 = 𝜅2+̃𝜅1 and (𝜅1+̃𝜅2)+̃𝜅3 = 𝜅1+̃(𝜅2+̃𝜅3).

Proposition 13  Let � ∈ IVIF(E) . Then, 𝜅+̃0E = 𝜅 and 
𝜅+̃1E = 1E.

Definition 18  (Atanassov 1994) Let �1, �2, �3 ∈ IVIF(E) . 
For all x ∈ E  , if �3(x) = [�−

1
(x)�−

2
(x), �+

1
(x)�+

2
(x)] and 

�3(x) = [�−
1
(x) + �−

2
(x) − �−

1
(x)�−

2
(x), �+

1
(x) + �+

2
(x) − �+

1
(x)�+

2
(x)] , 

then �3 is called product of �1 and �2 and is denoted by 𝜅1 ⋅̃𝜅2.

Proposition 14  (Atanassov 1994) Let �1, �2, �3 ∈ IVIF(E) . 
Then, 𝜅1 ⋅̃𝜅2 = 𝜅2 ⋅̃𝜅1 and (𝜅1 ⋅̃𝜅2)⋅̃𝜅3 = 𝜅1 ⋅̃(𝜅2 ⋅̃𝜅3).

Proposition 15  Let � ∈ IVIF(E) . Then, 𝜅 ⋅̃ 0E = 0E and 
𝜅 ⋅̃ 1E = 𝜅.

Proposition 16  (Atanassov 1994) Let �1, �2 ∈ IVIF(E) . 
Then, (𝜅1+̃𝜅2)c̃ = 𝜅 c̃

1
⋅̃ 𝜅 c̃

2
 and (𝜅1 ⋅̃𝜅2)c̃ = 𝜅 c̃

1
+̃𝜅 c̃

2
.

3 � Interval‑valued intuitionistic fuzzy 
parameterized interval‑valued 
intuitionistic fuzzy soft sets

In this section, we first define the concept of interval-valued 
intuitionistic fuzzy parameterized interval-valued intuition-
istic fuzzy soft sets and introduce some of its basic proper-
ties. The primary purpose of the present section is to make 
a theoretical contribution to the conceptualization of soft 
sets (Molodtsov 1999) and ivif-sets (Atanassov and Gargov 
1989).

Definition 19  Let U be a universal set, E be a parameter set, 
� ∈ IVIF(E) , and f be a function from � to IVIF(U). Then, 
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the set 
{(

�(x)

�(x)
x, f (

�(x)

�(x)
x)
)
∶ x ∈ E

}
 being the graphic of f is 

called an interval-valued intuitionistic fuzzy parameterized 
interval-valued intuitionistic fuzzy soft set (d-set) parameter-
ized via E over U (or briefly over U).

Note 4  We do not display the elements (0
1
x, 0U) in a d-set. 

Here, 0U is the empty ivif-set over U.

In the present paper, the set of all d-sets over U is 
denoted by DE(U) . In DE(U) , since the graph(f) and f gen-
erate each other uniquely, the notations are interchange-
able. Therefore, as long as it does not cause any confusion, 
we denote a d-set graph(f) by f.

Example 2  Let E = {x1, x2, x3, x4} be a parameter set, 
U = {u1, u2, u3, u4, u5}  b e  a  u n i v e r s a l  s e t , 
� =

{
[0.2,0.5]

[0.3,0.4]
x1,

[0.3,0.4]

[0.1,0.3]
x2,

1
0
x4

}
  , 

f
(
[0.2,0.5]

[0.3,0.4]
x1

)
=

{
[0.1,0.3]

[0.2,0.6]
u2,

[0.8,0.9]

[0,0.1]
u3

}
 ,  f

(
[0.3,0.4]

[0.1,0.3]
x2

)
= 0U  , 

f (0
1
x3) = 0U , and f (1

0
x4) =

{
0.7
0.2
u5
}
 . Then, the d-set f over U 

is as follows:

Since ignoring a portion of the values of parameters or 
alternatives of a d-set may be a necessary or facilitating 
way to the solution in some decision-making problems, the 
definition of the restriction of a d-set, unlike the simple 
restriction, should be as follows. Thus, the restriction of 
a d-set again belongs to the DE(U) . For more detail, see 
(Enginoğlu 2012; Enginoğlu and Çağman n.d.).

Definition 20  Let f , f1 ∈ DE(U) and A ⊆ E . Then, Af1
-restriction of f, denoted by fAf1 , is defined by

and

Example 3  Let us consider the d-set f provided in Example 
2, A = {x1, x3} , and f1 ∈ DE(U) such that

f =
{(

[0.2,0.5]

[0.3,0.4]
x1,

{
[0.1,0.3]

[0.2,0.6]
u2,

[0.8,0.9]

[0,0.1]
u3

})
,

(
[0.3,0.4]

[0.1,0.3]
x2, 0U

)
,
(
1
0
x4,

{
0.7
0.2
u5
})}

�A�1 (x) ∶=

{
�(x), x ∈ A

�1(x), x ∈ E⧵A

�A�1 (x) ∶=

{
�(x), x ∈ A

�1(x), x ∈ E⧵A

fAf1

(
�A�1 (x)

�A�1 (x)
x
)
∶=

{
f (

�(x)

�(x)
x), x ∈ A

f1(
�1(x)

�1(x)
x), x ∈ E⧵A

Then,

Definition 21  Let f ∈ DE(U) . If � = 0E and for all x ∈ E , 
f (0

1
x) = 0U , then f is called empty d-set and is denoted by 0̃.

Definition 22  Let f ∈ DE(U) . If � = 1E and for all x ∈ E , 
f (1

0
x) = 1U , then f is called universal d-set and is denoted 

by 1̃.

Definition 23  Let f1, f2 ∈ DE(U) . If 𝜅1⊆̃𝜅2 and for all x ∈ E , 
f1(

𝛼1(x)

𝛽1(x)
x)⊆̃f2(

𝛼2(x)

𝛽2(x)
x) , then f1 is called a subset of f2 and is 

denoted by f1⊆̃f2.

Proposition 17  Let f , f1, f2, f3 ∈ DE(U) . Then, 

	 (i)	 f ⊆̃1̃

	 (ii)	 0̃⊆̃f

	 (iii)	 f ⊆̃f

	 (iv)	 [f1⊆̃f2 ∧ f2⊆̃f3] ⇒ f1⊆̃f3

Remark 1  f1⊆̃f2 does not imply that every element of f1 is an 
element of f2 . For example, let E = {x1, x2, x3} be a param-
eter set, U = {u1, u2, u3} be a universal set,

and

Since 𝜅1⊆̃𝜅2 and f1(
𝛼1(x)

𝛽1(x)
x)⊆̃f2(

𝛼2(x)

𝛽2(x)
x) , for all x ∈ E , then f1⊆̃f2

.On the other hand, f1 ⊈ f2 because

f1 =
{(

[0.1,0.6]

[0.2,0.3]
x2,

{
[0.7,0.8]

[0,0.1]
u3,

[0.5,0.7]

[0,0.1]
u4

})
,

(
[0.1,0.3]

[0.2,0.4]
x3, 1U

)
,

(
1
0
x4,

{
[0.3,0.8]

[0.1,0.2]
u1,

[0.1,0.2]

[0,0.4]
u2

})}

fAf1 =
{(

[0.2,0.5]

[0.3,0.4]
x1,

{
[0.1,0.3]

[0.2,0.6]
u2,

[0.8,0.9]

[0,0.1]
u3

})
,

(
[0.1,0.6]

[0.2,0.3]
x2,

{
[0.7,0.8]

[0,0.1]
u3,

[0.5,0.7]

[0,0.1]
u4

})
,

(
1
0
x4,

{
[0.3,0.8]

[0.1,0.2]
u1,

[0.1,0.2]

[0,0.4]
u2

})}

f1 =
{(

[0.1,0.7]

[0.2,0.3]
x1,

{
[0.3,0.4]

[0.2,0.5]
u1,

[0.3,0.4]

[0,0.1]
u2,

[0,0.2]

[0.5,0.6]
u3

})
,

(
[0.2,0.3]

[0.4,0.5]
x2,

{
[0.1,0.3]

[0.4,0.5]
u1,

[0,0.1]

[0.3,0.9]
u2,

[0.3,0.4]

[0.4,0.6]
u3

})
,

(
[0.5,0.8]

[0.1,0.2]
x3,

{
[0.2,0.3]

[0.2,0.6]
u1,

[0.3,0.4]

[0.4,0.6]
u2,

[0.2,0.3]

[0.4,0.7]
u3

})}
,

f2 =
{(

[0.2,0.8]

[0.1,0.2]
x1,

{
[0.4,0.5]

[0,0.3]
u1,

[0.5,0.8]

[0,0.1]
u2,

[0.2,0.4]

[0.3,0.5]
u3

})
,

(
[0.3,0.4]

[0.2,0.5]
x2,

{
[0.2,0.4]

[0.2,0.5]
u1,

[0,0.1]

[0,0.9]
u2,

[0.4,0.5]

[0.3,0.4]
u3

})
,

(
[0.7,0.8]

[0,0.1]
x3,

{
[0.3,0.4]

[0.1,0.5]
u1,

[0.6,0.8]

[0,0.1]
u2,

[0.4,0.5]

[0.1,0.3]
u3

})}
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although it belong to f1.

Definition 24  Let f1, f2 ∈ DE(U) . If �1 = �2 and for all 
x ∈ E , f1(

�1(x)

�1(x)
x) = f2(

�2(x)

�2(x)
x) , then f1 and f2 are called equal 

d-sets and is denoted by f1 = f2.

Proposition 18  Let f1, f2, f3 ∈ DE(U) . Then, 

	 (i)	 [f1 = f2 ∧ f2 = f3] ⇒ f1 = f3
	 (ii)	 [f1⊆̃f2 ∧ f2⊆̃f1] ⇔ f1 = f2

Definition 25  Let f1, f2 ∈ DE(U) . If f1⊆̃f2 and f1 ≠ f2 , then 
f1 is called a proper subset of f2 and is denoted by f1⊊̃f2.

Definition 26  Let f1, f2, f3 ∈ DE(U) . If 𝜅3 = 𝜅1∪̃𝜅2 and for 
all x ∈ E , f3(

𝛼3(x)

𝛽3(x)
x) = f1(

𝛼1(x)

𝛽1(x)
x)∪̃f2(

𝛼2(x)

𝛽2(x)
x) , then f3 is called 

union of f1 and f2 and is denoted by f1∪̃f2.

Definition 27  Let f1, f2, f3 ∈ DE(U) . If 𝜅3 = 𝜅1∩̃𝜅2 and for 
all x ∈ E , f3(

𝛼3(x)

𝛽3(x)
x) = f1(

𝛼1(x)

𝛽1(x)
x)∩̃f2(

𝛼2(x)

𝛽2(x)
x) , then f3 is called 

intersection of f1 and f2 and is denoted by f1∩̃f2.

Proposition 19  Let f , f1, f2, f3 ∈ DE(U) . Then, 

	 (i)	 f ∪̃f = f  and f ∩̃f = f

	 (ii)	 f ∪̃0̃ = f  and f ∩̃0̃ = 0̃

	 (iii)	 f ∪̃1̃ = 1̃ and f ∩̃1̃ = f

	 (iv)	 f1∪̃f2 = f2∪̃f1 and f1∩̃f2 = f2∩̃f1
	 (v)	 (f1∪̃f2)∪̃f3 = f1∪̃(f2∪̃f3)

		    (f1∩̃f2)∩̃f3 = f1∩̃(f2∩̃f3)

	 (vi)	 f1∪̃(f2∩̃f3) = (f1∪̃f2)∩̃(f1∪̃f3)

		    f1∩̃(f2∪̃f3) = (f1∩̃f2)∪̃(f1∩̃f3)

	(vii)	 [f1⊆̃f2 ⇒ f1∪̃f2 = f2]

		    [f1⊆̃f2 ⇒ f1∩̃f2 = f1]

Definition 28  Let f1, f2, f3 ∈ DE(U) . If 𝜅3 = 𝜅1⧵̃𝜅2 and for 
all x ∈ E , f3(

𝛼3(x)

𝛽3(x)
x) = f1(

𝛼1(x)

𝛽1(x)
x)⧵̃f2(

𝛼2(x)

𝛽2(x)
x) , then f3 is called dif-

ference between f1 and f2 and is denoted by f1⧵̃f2.

Proposition 20  Let f ∈ DE(U) . Then, 

	 (i)	 f ⧵̃0̃ = f

	 (ii)	 f ⧵̃1̃ = 0̃

Note 5  It must be noted that the difference is non-commu-
tative and non-associative.

(
[0.1,0.7]

[0.2,0.3]
x1,

{
[0.3,0.4]

[0.2,0.5]
u1,

[0.3,0.4]

[0,0.1]
u2,

[0,0.2]

[0.5,0.6]
u3

})
∉ f2

Definition 29  Let f1, f2 ∈ DE(U) . If 𝜅2 = 𝜅 c̃
1
 and for all 

x ∈ E , f2(
𝛽1(x)

𝛼1(x)
x) = (f1(

𝛼1(x)

𝛽1(x)
x))c̃ , then f2 is called complement 

of f1 and is denoted by f c̃
1
 . That is, for all x ∈ E , 

f c̃
1
(
𝛽1(x)

𝛼1(x)
x) = (f1(

𝛼1(x)

𝛽1(x)
x))c̃ . It is clear that, f c̃

1
= 1̃⧵̃f1.

Proposition 21  Let f , f1, f2 ∈ DE(U) . Then, 

	 (i)	 (f c̃)c̃ = f

	 (ii)	 0̃c̃ = 1̃

	 (iii)	 f1⧵̃f2 = f1∩̃f
c̃
2

	 (iv)	 f1⊆̃f2 ⇒ f c̃
2
⊆̃f c̃

1

Proposition 22  Let f1, f2 ∈ DE(U) . Then, the following De 
Morgan’s laws are valid. 

	 (i)	 (f1∪̃f2)
c̃ = f c̃

1
∩̃f c̃

2

	 (ii)	 (f1∩̃f2)
c̃ = f c̃

1
∪̃f c̃

2

Definition 30  Let f1, f2, f3 ∈ DE(U) . If 𝜅3 = 𝜅1△̃𝜅2 and for 
all x ∈ E , f3(

𝛼3(x)

𝛽3(x)
x) = f1(

𝛼1(x)

𝛽1(x)
x)△̃f2(

𝛼2(x)

𝛽2(x)
x) , then f3 is called 

symmetric difference between f1 and f2 and is denoted by 
f1△̃f2.

Proposition 23  Let f , f1, f2 ∈ DE(U) . Then, 

	 (i)	 f△̃0̃ = f

	 (ii)	 f△̃1̃ = f c̃

	 (iii)	 f1△̃f2 = f2△̃f1

Note 6  It must be noted that the symmetric difference opera-
tion is non-associative.

Definition 31  Let f1, f2 ∈ DE(U) . If f1∩̃f2 = 0̃ , then f1 and 
f2 are called disjoint.

Example 4  Let E = {x1, x2, x3} be a parameter set, 
U = {u1, u2, u3, u4} be a universal set,

and

f1 =
{(

[0.1,0.5]

[0.2,0.3]
x1,

{
1
0
u2,

[0,0.1]

[0.5,0.6]
u3,

[0,0.1]

[0.5,0.7]
u4

})
,

(
1
0
x2,

{
[0.2,0.4]

[0.2,0.5]
u1,

[0,0.1]

[0,0.5]
u2,

[0.4,0.5]

[0.3,0.4]
u3,

[0.5,0.6]

[0.1,0.3]
u4

})
,

(
[0.3,0.4]

[0,0.1]
x3,

{
[0.3,0.4]

[0.1,0.5]
u1,

[0,0.7]

[0.1,0.2]
u3

})}
,

f2 =
{(

[0.2,0.3]

[0,0.5]
x2,

{
[0.1,0.2]

[0.4,0.5]
u1,

[0.3,0.7]

[0.1,0.2]
u2,

[0.3,0.4]

[0.4,0.6]
u3

})
,

(
[0.3,0.8]

[0,0.1]
x3,

{
1
0
u1,

[0.2,0.3]

[0,0.4]
u3,

[0.1,0.4]

[0.5,0.6]
u4

})}
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Then,

and

Definition 32  Let f1, f2, f3 ∈ DE(U) . If 𝜅3 = 𝜅1+̃𝜅2 and for 
all x ∈ E , f3(

𝛼3(x)

𝛽3(x)
x) = f1(

𝛼1(x)

𝛽1(x)
x)+̃f2(

𝛼2(x)

𝛽2(x)
x) , then f3 is called 

sum of f1 and f2 and is denoted by f1+̃f2.

Definition 33  Let f1, f2, f3 ∈ DE(U) . If 𝜅3 = 𝜅1 ⋅̃𝜅2 and for all 
x ∈ E , f3(

𝛼3(x)

𝛽3(x)
x) = f1(

𝛼1(x)

𝛽1(x)
x)⋅̃f2(

𝛼2(x)

𝛽2(x)
x) , then f3 is called product 

of f1 and f2 and is denoted by f1 ⋅̃f2.

Proposition 24  Let f , f1, f2, f3 ∈ DE(U) . Then, 

(i)	 f +̃0̃ = f  and f ⋅̃ 0̃ = 0̃

(ii)	 f +̃1̃ = 1̃ and f ⋅̃ 1̃ = f

(iii)	 f1+̃f2 = f2+̃f1 and f1 ⋅̃f2 = f2 ⋅̃f1
(iv)	 (f1+̃f2)+̃f3 = f1+̃(f2+̃f3)

	   (f1 ⋅̃f2)⋅̃f3 = f1 ⋅̃(f2 ⋅̃f3)

(v)	 (f1+̃f2)
c̃ = f c̃

1
⋅̃f c̃
2
 and (f1 ⋅̃f2)c̃ = f c̃

1
+̃f c̃

2

Definition 34  Let  f1 ∈ DE1
(U) ,  f2 ∈ DE2

(U) ,  and 
f3 ∈ DE1×E2

(U) . For all (x, y) ∈ E1 × E2 , if �3(x, y) = 
inf{�1(x), �2(y)}  ,  �3(x, y) = sup{�1(x), �2(y)}  ,  a n d 
f3(

𝛼3(x,y)

𝛽3(x,y)
(x, y)) = f1(

𝛼1(x)

𝛽1(x)
x)∩̃f2(

𝛼2(y)

𝛽2(y)
y) , then f3 is called and-

product of f1 and f2 and is denoted by f1 ∧ f2.

f1∪̃f2 =
{(

[0.1,0.5]

[0.2,0.3]
x1,

{
1
0
u2,

[0,0.1]

[0.5,0.6]
u3,

[0,0.1]

[0.5,0.7]
u4

})
,

(
1
0
x2,

{
[0.2,0.4]

[0.2,0.5]
u1,

[0.3,0.7]

[0,0.2]
u2,

[0.4,0.5]

[0.3,0.4]
u3,

[0.5,0.6]

[0.1,0.3]
u4

})
,

(
[0.3,0.8]

[0,0.1]
x3,

{
1
0
u1,

[0.2,0.7]

[0,0.2]
u3,

[0.1,0.4]

[0.5,0.6]
u4

})}
,

f1∩̃f2 =
{(

[0.2,0.3]

[0,0.5]
x2,

{
[0.1,0.2]

[0.4,0.5]
u1,

[0,0.1]

[0.1,0.5]
u2,

[0.3,0.4]

[0.4,0.6]
u3

})
,

(
[0.3,0.4]

[0,0.1]
x3,

{
[0.3,0.4]

[0.1,0.5]
u1,

[0,0.3]

[0.1,0.4]
u3,

})}
,

f1⧵̃f2 =
{(

[0.1,0.5]

[0.2,0.3]
x1,

{
1
0
u2,

[0,0.1]

[0.5,0.6]
u3,

[0,0.1]

[0.5,0.7]
u4

})
,

(
[0,0.5]

[0.2,0.3]
x2,

{
[0.2,0.4]

[0.2,0.5]
u1,

[0,0.1]

[0.3,0.7]
u2,

[0.4,0.5]

[0.3,0.4]
u3,

[0.5,0.6]

[0.1,0.3]
u4

})
,

(
[0,0.1]

[0.3,0.8]
x3,

{
[0,0.4]

[0.2,0.3]
u3

})}
,

f c̃
1
=

{(
[0.2,0.3]

[0.1,0.5]
x1,

{
1
0
u1,

[0.5,0.6]

[0,0.1]
u3,

[0.5,0.7]

[0,0.1]
u4

})
,

(
0
1
x2,

{
[0.2,0.5]

[0.2,0.4]
u1,

[0,0.5]

[0,0.1]
u2,

[0.3,0.4]

[0.4,0.5]
u3,

[0.1,0.3]

[0.5,0.6]
u4

})
,

(
[0,0.1]

[0.3,0.4]
x3,

{
[0.1,0.5]

[0.3,0.4]
u1,

1
0
u2,

[0.1,0.2]

[0,0.7]
u3,

1
0
u4

})}
,

f1△̃f2 =
{(

[0.1,0.5]

[0.2,0.3]
x1,

{
1
0
u2,

[0,0.1]

[0.5,0.6]
u3,

[0,0.1]

[0.5,0.7]
u4

})
,

(
[0,0.5]

[0.2,0.3]
x2,

{
[0.2,0.4]

[0.2,0.5]
u1,

[0,0.5]

[0.1,0.2]
u2,

[0.4,0.5]

[0.3,0.4]
u3,

[0.5,0.6]

[0.1,0.3]
u4

})
,

(
[0,0.1]

[0.3,0.4]
x3,

{
[0.1,0.5]

[0.3,0.4]
u1,

[0.1,0.4]

[0,0.3]
u3,

[0.1,0.4]

[0.5,0.6]
u4

})}

Definition 35  Let  f1 ∈ DE1
(U) ,  f2 ∈ DE2

(U) ,  and 
f3 ∈ DE1×E2

(U)  .  F o r  a l l  (x, y) ∈ E1 × E2  ,  i f 
�3(x, y) = sup{�1(x), �2(y)} , �3(x, y) = inf{�1(x), �2(y)} , and 
f3(

𝛼3(x,y)

𝛽3(x,y)
(x, y)) = f1(

𝛼1(x)

𝛽1(x)
x)∪̃f2(

𝛼2(y)

𝛽2(y)
y) , then f3 is called or-prod-

uct of f1 and f2 and is denoted by f1 ∨ f2.

Definition 36  Let  f1 ∈ DE1
(U) ,  f2 ∈ DE2

(U) ,  and 
f3 ∈ DE1×E2

(U)  .  F o r  a l l  (x, y) ∈ E1 × E2  ,  i f 
�3(x, y) = inf{�1(x), �2(y)} , �3(x, y) = sup{�1(x), �2(y)} , and 
f3(

𝛼3(x,y)

𝛽3(x,y)
(x, y)) = f1(

𝛼1(x)

𝛽1(x)
x)∩̃f c̃

2
(
𝛽2(y)

𝛼2(y)
y) , then f3 is called andnot-

product of f1 and f2 and is denoted by f1∧f2.

Definition 37  Let  f1 ∈ DE1
(U) ,  f2 ∈ DE2

(U) ,  and 
f3 ∈ DE1×E2

(U)  .  F o r  a l l  (x, y) ∈ E1 × E2  ,  i f 
�3(x, y) = sup{�1(x), �2(y)} , �3(x, y) = inf{�1(x), �2(y)} , and 
f3(

𝛼3(x,y)

𝛽3(x,y)
(x, y)) = f1(

𝛼1(x)

𝛽1(x)
x)∪̃f c̃

2
(
𝛽2(y)

𝛼2(y)
y) , then f3 is called ornot-

product of f1 and f2 and is denoted by f1∨f2.

Proposition 25  Let f1 ∈ DE1
(U) ,  f2 ∈ DE2

(U) ,  and 
f3 ∈ DE3

(U) . Then, 

	 (i)	 (f1 ∨ f2) ∨ f3 = f1 ∨ (f2 ∨ f3)

	 (ii)	 (f1 ∧ f2) ∧ f3 = f1 ∧ (f2 ∧ f3)

Proof  Let E123 = E1 × E2 × E3 . Then, the proof of (i) is as 
follows:

	�  ◻

Proposition 26  Let f1 ∈ DE1
(U) and f2 ∈ DE2

(U) . Then, the 
following De Morgan’s laws are valid. 

	 (i)	 (f1 ∨ f2)
c̃ = f c̃

1
∧ f c̃

2

	 (ii)	 (f1 ∧ f2)
c̃ = f c̃

1
∨ f c̃

2

(f1 ∨ f2) ∨ f3

=

{(
sup{𝛼1(x),𝛼2(y)}

inf{𝛽1(x),𝛽2(y)}
(x, y), f1(

𝛼1(x)

𝛽1(x)
x)∪̃f2(

𝛼2(y)

𝛽2(y)
y)
)
∶ (x, y) ∈ E12

}

∨

{(
𝛼3(z)

𝛽3(z)
z, f3(

𝛼3(z)

𝛽3(z)
z)
)
∶ z ∈ E3

}

=

{(
sup{sup{𝛼1(x),𝛼2(y)},𝛼3(z)}

inf{inf{𝛽1(x),𝛽2(y)},𝛽3(z)}
(x, y, z),

(
f1(

𝛼1(x)

𝛽1(x)
x)∪̃f2(

𝛼2(y)

𝛽2(y)
y)
)
∪̃f3(

𝛼3(z)

𝛽3(z)
z)
)
∶ (x, y, z) ∈ E123

}

=

{(
sup{𝛼1(x),sup{𝛼2(y),𝛼3(z)}}

inf{𝛽1(x),inf{𝛽2(y),𝛽3(z)}}
(x, y, z), f1(

𝛼1(x)

𝛽1(x)
x)

∪̃

(
f2(

𝛼2(y)

𝛽2(y)
y)∪̃f3(

𝛼3(z)

𝛽3(z)
z)
))

∶ (x, y, z) ∈ E123

}

=

{(
𝛼1(x)

𝛽1(x)
x, f1(

𝛼1(x)

𝛽1(x)
x)
)
∶ x ∈ E1

}

∨

{(
sup{𝛼2(y),𝛼3(z)}

inf{𝛽2(y),𝛽3(z)}
(y, z), f2(

𝛼2(y)

𝛽2(y)
y)∪̃f3(

𝛼3(z)

𝛽3(z)
z)
)
∶ (y, z) ∈ E23

}

= f1 ∨ (f2 ∨ f3)



1548	 T. Aydın, S. Enginoğlu 

1 3

	 (iii)	 (f1∨f2)
c̃ = f c̃

1
∧f c̃

2

	 (iv)	 (f1∧f2)
c̃ = f c̃

1
∨f c̃

2

Note 7  It must be noted that the products mentioned above 
of d-sets are non-commutative and non-distributive. Moreo-
ver, andnot-product and ornot-product are non-associative.

4 � The proposed soft decision‑making 
method

In this section, we first define an aggregate ivif-set of a d-set.

Definition 38  (Huang et  al. 2013) Let � ∈ IVIF(E) and 
|E| = n . Then, the average cardinality of � , denoted by |�|a , 
is defined by

Definition 39  A function A ∶ DE(U) → IVIF(U) defined by 
A(f ) = f ∗ is called an aggregation operator over U and f ∗ is 
called aggregate ivif-set of f. Here, f ∗ =

{
�∗(u)

�∗(u)
u ∶ u ∈ U

}
 

s u c h  t h a t  �∗(u) =
1

���a
∑
x∈E

�(x)�x(u)  ,  a n d 

�∗(u) =
1

���a
∑
x∈E

�(x)�x(u)   ,  f o r 

f =
{(

�(x)

�(x)
x,
{

�x(u)

�x(u)
u ∶ u ∈ U

})
∶ x ∈ E

}
.

Secondly, we suggest a soft decision-making method that 
assigns a performance-based value to the alternatives via 
this aggregate ivif-set. Thus, we can choose the optimal ele-
ments among the alternatives.

Algorithm Steps of the Proposed Method

Step 1.	� Construct a d-set f over U
Step 2.	� Obtain the aggregate ivif-set f ∗ of f
Step 3.	� Obtain the values s(u) = �∗(u) − �∗(u) , for all 

u ∈ U

Step 4.	� Obtain the decision set {d(uk)uk|uk ∈ U} such that 

Step 5.	� Select the optimal elements among the alterna-
tives via linear ordering relation provided in Xu 
and Yager (2006) 

 Here, s(u) ∶= [s−(u), s+(u)] , for all u ∈ U.

|�|a ∶= 1

2

n∑
i=1

(
1 +

�−(xi) + �+(xi)

2
−

�−(xi) + �+(xi)

2

)

d(uk) =

[
s−(uk) + |min

i
s−(ui)|

max
i

s+(ui) + |min
i

s−(ui)| ,
s+(uk) + |min

i
s−(ui)|

max
i

s+(ui) + |min
i

s−(ui)|

]

[
𝛾−
1
, 𝛾+

1

]
≤

XY

[
𝛾−
2
, 𝛾+

2

]
⇔

[(
𝛾−
1
+ 𝛾+

1
< 𝛾−

2
+ 𝛾+

2

)

∨
(
𝛾−
1
+ 𝛾+

1
= 𝛾−

2
+ 𝛾+

2
∧ 𝛾+

1
− 𝛾−

1
≤ 𝛾+

2
− 𝛾−

2

)]

5 � An illustrative example for the proposed 
method

In this section, we apply the proposed method to a prob-
lem concerning the eligibility of candidates for two vacant 
positions in a job advertisement. Assume that six candi-
dates, denoted by U = {u1, u2, u3, u4, u5, u6} , have applied 
for two vacant positions announced by a company. Then, 
the human resources department (HR) of the company 
has firstly determined a parameter set E = {x1, x2, x3, x4} 
such that x1 = “knowledge of software”, x2 = “knowledge 
of foreign language”, x3 = “age”, and x4 = “experience”.

Secondly, HR has obtained the ivif-value of the param-
eters by the membership and the nonmembership functions 
defined by

and

s u c h  t h a t  I =
{
k ∶ max

n
�x
n
= �x

k

}
 a n d 

J =

{
t ∶ max

n
�x
n
= �x

t

}
 . Here, ( �x

n
) , (�x

n
) , and (�x

n
) are ordered 

s-tuples which indicate the degrees of membership, non-
membership, and indeterminacy obtained according to the 
criteria determined by HR, for parameters.

For example, HR determines five software programs 
and, for the nth software programs, �x1

n  , �x1n  , and �x1
n  denote 

the numbers of employees who have a valid certificate, 
who do not know how to use the software, and who 
hold the knowledge of the software but have no valid 
certificate, respectively. If (�x1

n ) = (18, 10, 15, 16,  12), 
(�

x1
n ) = (1, 5, 3, 1, 7) , and (�x1

n ) = (1, 5, 2,  3,  1), then the 
membership degree and the nonmembership degree of the 
parameter x1 are [0.38, 0.69] and [0.04, 0.27], respectively. 
Similarly, the ivif-values of the other parameters can be 
constructed by HR. Thus, an ivif-set � over E can be given 
as follows:

�(x) ∶=

⎡
⎢⎢⎢⎣

min
n

�x
n

max
n

�x
n
+max

n
�x
n
+min

�
min
k∈I

�x
k
, min
t∈J

�x
t

� ,

max
n

�x
n

max
n

�x
n
+max

n
�x
n
+min

�
min
k∈I

�x
k
, min
t∈J

�x
t

�
⎤
⎥⎥⎥⎦

�(x) ∶=

⎡
⎢⎢⎢⎣

min
n

�x
n

max
n

�x
n
+max

n
�x
n
+min

�
min
k∈I

�x
k
, min
t∈J

�x
t

� ,

max
n

�x
n

max
n

�x
n
+max

n
�x
n
+min

�
min
k∈I

�x
k
, min
t∈J

�x
t

�
⎤
⎥⎥⎥⎦
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Here, [0.38, 0.69] means that the positive effect of “knowl-
edge of software” on success occurs between 38 and 69%. 
Moreover, [0.04, 0.27] means that the negative effect of 
“knowledge of software” on success ranges from 4 to 27%.

The application of the soft decision-making method pro-
posed in Sect. 4 is as follows: 

Step 1.	� The d-set f modelling the decision-making problem 
mentioned above is as follows: 

 The ivif-value of the candidates for each parameter has been 
obtained by the membership function �x(u) and the nonmem-
bership function �x(u) defined by

and

respectively, such that I =
{
k ∶ max

n
(�x

u
)
n
= (�x

u
)
k

}
 and 

J =

{
t ∶ max

n
(�x

u
)
n
= (�x

u
)
t

}
 . Here, ((�x

u
)
n
) , ((�x

u
)
n
) , and 

� =

{
[0.38,0.69]

[0.04,0.27]
x1,

[0.53,0.6]

[0.34,0.37]
x2,

[0.05,0.25]

[0.32,0.45]
x3,

[0.4,0.52]

[0.26,0.38]
x4

}

f =
{(

[0.38,0.69]

[0.04,0.27]
x1,

{
[0.36,0.46]

[0.11,0.28]
u1,

[0,0.16]

[0.38,0.53]
u2,

[0.15,0.22]

[0,0.75]
u3,

[0.2,0.62]

[0.15,0.24]
u4

})
,

(
[0.53,0.6]

[0.34,0.37]
x2,

{
[0.24,0.32]

[0.34,0.65]
u1,

[0.28,0.35]

[0,0.62]
u2,

[0.25,0.32]

[0.1,0.64]
u3,

[0.12,0.44]

[0.45,0.54]
u4,

1
0
u5,

[0,0.34]

[0,0.2]
u6

})
,

(
[0.05,0.25]

[0.32,0.45]
x3,

{
[0.35,0.55]

[0.15,0.29]
u1,

[0.26,0.35]

[0.43,0.55]
u3,

[0.38,0.52]

[0.19,0.25]
u4,

[0.15,0.24]

[0.29,0.72]
u6

})
,

(
[0.4,0.52]

[0.26,0.38]
x4,

{
0
[0.52,0.58]

u1,
1
0
u2,

[0.18,0.28]

[0.27,0.7]
u3,

0
[0.1,1]

u4,
[0.35,0.4]

[0,0.1]
u5,

[0.28,0.48]

[0.33,0.34]
u6

})}

⎡⎢⎢⎢⎣

min
n

(�x
u
)
n

max
n

(�x
u
)
n
+max

n
(�x

u
)
n
+min

�
min
k∈I

(�x
u
)
k
, min
t∈J

(�x
u
)
t

� ,

max
n

(�x
u
)
n

max
n

(�x
u
)
n
+max

n
(�x

u
)
n
+min

�
min
k∈I

(�x
u
)
k
, min
t∈J

(�x
u
)
t

�
⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

min
n

(�x
u
)
n

max
n

(�x
u
)
n
+max

n
(�x

u
)
n
+min

�
min
k∈I

(�x
u
)
k
, min
t∈J

(�x
u
)
t

� ,

max
n

(�x
u
)
n

max
n

(�x
u
)
n
+max

n
(�x

u
)
n
+min

�
min
k∈I

(�x
u
)
k
, min
t∈J

(�x
u
)
t

�
⎤⎥⎥⎥⎦

((�x
u
)
n
) are ordered s-tuples which indicate the degrees of 

membership, nonmembership, and indeterminacy according 
to the parameters of the candidates.

For example, ten questions are asked to the candidates 
regarding each software program and they are asked to 
answer these questions using a three-level Likert scale, 
i.e. positive, negative, and indeterminant. Here, (�x1

u5
)
n
 , 

(�
x1
u5
)
n
 , and (�x1

u5
)
n
 denote the number of positive, negative, 

and indeterminant answers according to the x1 parameter 
of the candidate u5 , respectively. If ((�x1

u5
)
n
) = (0, 0, 0, 0, 0) , 

((�
x1
u5
)
n
) = (10, 10, 10, 10, 10) , and ((�x1

u5
)
n
) = (0, 0, 0, 0, 0) , 

then the membership degree and the nonmembership 
degree of the candidate u5 according to the parameter x1 are 
[0, 0] = 0 and [1, 1] = 1 , respectively. Similarly, the ivif-val-
ues of the other candidates can be constructed. 

Step 2.	� f ∗ is as follows: 

 where 

 and 

Step 3.	� For all u ∈ U , the values s(u) are as follows: 

Step 4.	� The decision set is as follows: 

 where d(u1) is calculated as follows: 

Step 5.	� According to the linear ordering relation (≤
XY
) , the 

ranking order u6 ≺ u3 ≺ u1 ≺ u4 ≺ u2 ≺ u5 is valid. 

{
[0.1253,0.2878]

[0.1349,0.2968]
u1,

[0.2440,0.3739]

[0.1491,0.3660]
u2,

[0.1221,0.2567]

[0.1076,0.4239]
u3,

[0.0706,0.3657]

[0.1094,0.3369]
u4,

[0.2981,0.3595]

[0.1602,0.3373]
u5,

[0.0532,0.2285]

[0.0973,0.3547]
u6

}

�∗(u1) =
[0.38, 0.69] ⋅ [0.36, 0.46] + [0.53, 0.6] ⋅ [0.24, 0.32]

2.2475

+
[0.05, 0.25] ⋅ [0.35, 0.55] + [0.4, 0.52] ⋅ [0, 0]

2.2475

= [0.1253, 0.2878]

�∗(u1) =
[0.04, 0.27] ⋅ [0.11, 0.28] + [0.34, 0.37] ⋅ [0.34, 0.65]

2.2475

+
[0.32, 0.45] ⋅ [0.15, 0.29] + [0.26, 0.38] ⋅ [0.52, 0.58]

2.2475

= [0.1349, 0.2968]

s(u1) =[−0.1715, 0.1529], s(u2) = [−0.1220, 0.2248],

s(u3) =[−0.3018, 0.1491], s(u4) = [−0.2663, 0.2563],

s(u5) =[−0.0392, 0.1993], s(u6) = [−0.3015, 0.1313]

{
[0.2334,0.8148]u1,

[0.3223,0.9436] u2,
[0,0.8079] u3,

[0.0636,1]u4,
[0.4706,0.8980] u5,

[0.0005,0.7760] u6
}

d(u1) =

[
−0.1715 + | − 0.3018|
0.2563 + | − 0.3018| ,

0.1529 + | − 0.3018|
0.2563 + | − 0.3018|

]
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The results show that u5 and u2 are more eligible 
for the vacant positions than the others. Thus, the 
candidates u5 and u2 are selected for the positions 
announced by the company.

6 � Comparison results

In this section, we first provide the definitions of fuzzy sets 
(Zadeh 1965), intuitionistic fuzzy sets (Atanassov 1986), 
fuzzy parameterized fuzzy soft sets (Çağman et al. 2010), 
fuzzy parameterized intuitionistic fuzzy soft sets (Sulukan 
et al. 2019), and intuitionistic fuzzy parameterized intui-
tionistic fuzzy soft sets (Karaaslan 2016) by taking into 
account the notations used throughout this paper.

Definition 40  (Zadeh 1965) Let E be a universal set and � 
be a function from E to [0, 1]. Then, the set 

{
�(x)x ∶ x ∈ E

}
 

being the graphic of � is called a fuzzy set (f-set) over E. 
Besides, the set of all f-sets over E is denoted by F(E).

Definition 41  (Atanassov 1986) Let E be a universal set and 
� be a function from E to [0, 1] × [0, 1] . Then, the set {
�(x)

�(x)
x ∶ x ∈ E

}
 being the graphic of � is called an intuition-

istic fuzzy set (if-set) over E.
Here, for all x ∈ E  , 0 ≤ �(x) + �(x) ≤ 1 . Moreo-

ver, � and � are called the membership function and the 
nonmembership function in an if-set, respectively, and 
�(x) = 1 − �(x) − �(x) is called the degree of indeterminacy 
of the element x ∈ E . Further, the set of all if-sets over E is 
denoted by IF(E).

Moreover, each fuzzy set can be written as {
�(x)

1−�(x)
x ∶ x ∈ E

}
.

Definition 42  (Karaaslan 2016) Let U be a universal set, E 
be a parameter set, � ∈ IF(E) , and g be a function from � to 
IF(U). Then, the set 

{(
�(x)

�(x)
x, g(

�(x)

�(x)
x)
)
∶ x ∈ E

}
 being the 

graphic of g is called an intuitionistic fuzzy parameterized 
intuitionistic fuzzy soft set (ifpifs-set) parameterized via E 
over U (or briefly over U). Besides, the set of all ifpifs-sets 
over U is denoted by IFPIFSE(U).

Definition 43  (Çağman et al. 2010) Let U be a universal set, 
E be a parameter set, � ∈ F(E) , and h be a function from � 
to F(U). Then, the set 

{(
�(x)x, h(�(x)x)

)
∶ x ∈ E

}
 being the 

graphic of h is called an fuzzy parameterized fuzzy soft 
set (fpfs-set) parameterized via E over U (or briefly over 
U). Besides, the set of all fpfs-sets over U is denoted by 
FPFSE(U).

Definition 44  (Sulukan et al. 2019) Let U be a universal set, 
E be a parameter set, � ∈ F(E) , and p be a function from � 
to IF(U). Then, the set 

{(
�(x)x, p(�(x)x)

)
∶ x ∈ E

}
 being the 

graphic of p is called an fuzzy parameterized intuitionis-
tic fuzzy soft set (fpifs-set) parameterized via E over U (or 
briefly over U). Besides, the set of all fpifs-sets over U is 
denoted by FPIFSE(U).

Since the proposed method in Sect. 4 is the first method 
proposed in relation to this structure (d-sets), it is impos-
sible to compare this method with another in this sense. 
However, if the uncertainties in the modelled problem are 
decreased, it is possible to compare the method with the 
others in a substructure, such as ifpifs-sets, fpifs-sets, and 
fpfs-sets. For this reason, secondly, we define four new 
concepts, i.e. mean reduction, mean bireduction, mean 
bireduction-reduction, and mean reduction-bireduction.

Definition 45  Let f ∈ DE(U) , that is f ∶=
{(

�(x)

�(x)
x,

{
�(u)

�(u)
u ∶

u ∈ U

})
∶ x ∈ E

}
 . Then, the ifpifs-set

is called mean reduction of f and is denoted by fmr.

Definition 46  Let f ∈ DE(U) , that is f ∶=
{(

�(x)

�(x)
x,

{
�(u)

�(u)
u ∶

u ∈ U

})
∶ x ∈ E

}
 . Then, the fpfs-set

is called mean bireduction of f and is denoted by fmb.

Definition 47  Let f ∈ DE(U) , that is f ∶=
{(

�(x)

�(x)
x,

{
�(u)

�(u)
u ∶

u ∈ U

})
∶ x ∈ E

}
 . Then, the fpifs-set

is called mean bireduction-reduction of f and is denoted by 
fmbr.

Definition 48  Let f ∈ DE(U) , that is f ∶=
{(

�(x)

�(x)
x,

{
�(u)

�(u)
u ∶

u ∈ U

})
∶ x ∈ E

}
 . Then, the ifpfs-set

{(
�−(x)+�+(x)

2

�−(x)+�+(x)

2

x,

{
�−(u)+�+(u)

2

�−(u)+�+(u)

2

u ∶ u ∈ U

})
∶ x ∈ E

}

{(
�−(x)+�+(x)−�−(x)−�+(x)+2

4 x,
{

�−(u)+�+(u)−�−(u)−�+(u)+2

4 u ∶ u ∈ U
})

∶ x ∈ E
}

{(
�−(x)+�+(x)−�−(x)−�+(x)+2

4 x,

{
�−(u)+�+(u)

2

�−(u)+�+(u)

2

u ∶ u ∈ U

})
∶ x ∈ E

}
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is called mean reduction-bireduction of f and is denoted by 
fmrb.

Example 5  fmr , fmbr , and fmb for the d-set f provided in Sec-
tion 5 are as follows:

and

Thirdly, we present the soft decision-making methods 
in Çağman et al. (2010), Karaaslan (2016), Kamacı (2019), 
and Sulukan et al. (2019) by considering the notations used 
throughout this study. Moreover, to sort all the alternatives 
instead of selecting only one optimum alternative, we rear-
range the last step of the method provided in Karaaslan 
(2016), faithfully to the original. Furthermore, just as the 
concepts of intuitionistic fuzzy sets and interval-valued 
fuzzy sets are equivalent (Atanassov and Gargov 1989), 
so are the concepts of ivfpifs (Kamacı 2019) and ifpifs 
(Karaaslan 2016). Therefore, we express the algorithm of 
the method, provided in Kamacı (2019), by using ifpifs 
instead of ivfpifs.

Algorithm Steps of Method 1 (Karaaslan 2016) 

Step 1.	� Construct an ifpifs-set 

 over U
Step 2.	� Obtain the if-set g∗ =

{
�∗(u)

�∗(u)
u ∶ u ∈ U

}
 such that 

�∗(u) =
1

�E�
∑
x∈E

�(x)�x(u)  a n d 

{(
�−(x)+�+(x)

2

�−(x)+�+(x)

2

x,

{
�−(u)+�+(u)−�−(u)−�+(u)+2

4 u ∶ u ∈ U
})

∶ x ∈ E
}

fmr =
{(

0.53
0.16

x1,
{
0.41
0.2

u1,
0.08
0.46

u2,
0.19
0.38

u3,
0.41
0.2

u4
})

,(
0.57
0.36

x2,
{
0.28
0.5

u1,
0.32
0.31

u2,
0.29
0.37

u3,
0.28
0.5

u4,
1
0
u5,

0.17
0.1

u6
})

,(
0.15
0.39

x3,
{
0.45
0.22

u1,
0.31
0.49

u3,
0.45
0.22

u4,
0.2
0.51

u6
})

,(
0.46
0.32

x4,
{
0
0.55

u1,
1
0
u2,

0.23
0.49

u3,
0
0.55

u4,
0.38
0.05

u5,
0.38
0.34

u6
})}

fmbr =
{(

0.69x1,
{
0.41
0.2

u1,
0.08
0.46

u2,
0.19
0.38

u3,
0.41
0.2

u4
})

,(
0.61x2,

{
0.28
0.5

u1,
0.32
0.31

u2,
0.29
0.37

u3,
0.28
0.5

u4,
1
0
u5,

0.17
0.1

u6
})

,(
0.38x3,

{
0.45
0.22

u1,
0.31
0.49

u3,
0.45
0.22

u4,
0.2
0.51

u6
})

,(
0.57x4,

{
0
0.55

u1,
1
0
u2,

0.23
0.49

u3,
0
0.55

u4,
0.38
0.05

u5,
0.38
0.34

u6
})}

fmb =
{(

0.69x1,
{
0.61u1,

0.31u2,
0.41u3,

0.61u4
})

,(
0.61x2,

{
0.39u1,

0.5u2,
0.46u3,

0.39u4,
1u5,

0.54u6
})

,(
0.38x3,

{
0.62u1,

0.41u3,
0.62u4,

0.35u6
})

,(
0.57x4,

{
0.22u1,

1u2,
0.37u3,

0.22u4,
0.66u5,

0.52u6
})}

g =

{(
�(x)

�(x)
x,
{

�x(u)

�x(u)
u ∶ u ∈ U

})
∶ x ∈ E

}

�∗(u) =
1

�E�
∑
x∈E

�(x)�x(u) . Here, |E| is cardinality of 

E.
Step 3.	� For all u ∈ U , obtain the values 

Step 4.	� Obtain the decision set 
{
d(uk)uk|uk ∈ U

}
 such that 

d(uk) =
�(uk)

max
i

�(ui)

 Algorithm Steps of Method 2 (Kamacı 2019) 

Step 1.	� Construct an ifpifs-set 

 over U
Step 2.	� Obtain the ivif-set �1 =

{
�1(u)

�1(u)
u ∶ u ∈ E

}
 such that 

 and 

Step 3.	� Obtain the ivif-set �2 =
{

�2(u)

�2(u)
u ∶ u ∈ U

}
 such that 

 and 

Step 4.	� Obtain the decision set �3 such that 

Step 5.	� Select the optimal elements among the alternatives 
via the ordering relation (Tan 2011; Xu 2007) 

 such that

�(u) =
�∗(u)

�∗(u) + �∗(u)

g =

{(
�(x)

�(x)
x,
{

�x(u)

�x(u)
u ∶ u ∈ U

})
∶ x ∈ E

}

�1(u) =

[
1 −

∏
x∈E

(1 − �(x)�x(u)), 1

−
∏
x∈E

(1 − (1 − �(x))�x(u))

]

�1(u) =

[∏
x∈E

�(x)�x(u),
∏
x∈E

(1 − �(x))�x(u)

]

�2(u) =

[∏
x∈E

�(x)�x(u),
∏
x∈E

(1 − �(x))�x(u)

]

�2(u) =

[
1 −

∏
x∈E

(1 − �(x)�x(u)), 1

−
∏
x∈E

(1 − (1 − �(x))�x(u))

]

𝜅3 ∶= 𝜅1+̃𝜅2

𝛼
𝛽
⪯ 𝛼̃

𝛽
⇔

[(
s1(

𝛼
𝛽
) < s1(

𝛼̃

𝛽
)

)
∨

(
s1(

𝛼
𝛽
) = s1(

𝛼̃

𝛽
) ∧ s2(

𝛼
𝛽
) ≤ s2(

𝛼̃

𝛽
)

)]
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and

Here, �
�
∶=

[�−,�+]

[�−,�+]
 and 𝛼̃

𝛽
∶=

[𝛼̃−,𝛼̃+]

[𝛽−,𝛽+]
 are ivif-values.

Algorithm Steps of Method 3 (Sulukan et al. 2019) 

Step 1.	� Construct an fpifs-set over U

Step 2.	� Obtain the values 

 for all u ∈ U . Here, |E| is cardinality of E.
Step 3.	� Obtain the decision set 

{
d(uk)uk|uk ∈ U

}
 such that 

d(uk) =
�(uk)+|min

i
�(ui)|

max
i

�(ui)+|min
i

�(ui)|

Algorithm Steps of Method 4 (Çağman et al. 2010) 

Step 1.	� Construct an fpfs-set over U

Step 2.	� Obtain the f-set h∗ =
{
�∗(u)u ∶ u ∈ U

}
 such that 

�∗(u) =
1

�E�
∑
x∈E

�(x)�x(u) . Here, |E| is cardinality of 

E.
Step 3.	� Obtain the decision set 

{
d(uk)uk|uk ∈ U

}
 such that 

d(uk) =
�∗(uk)

max
i

�∗(ui)

	� Fourthly, we apply the proposed method and 
Method 1, 2, 3, and 4 to f, fmr , fmr , fmbr , and fmb 
provided in Example 5, respectively. The decision 
sets and the ranking orders of the methods within 
their own structures are provided in Tables 1 
and 2, respectively. The proposed method, Method 

s1(
�
�
) =

�− − �− + �+ − �+

2

s2(
�
�
) =

�− + �− + �+ + �+

2

p =

{(
�(x)x,

{
�x(u)

�x(u)
u ∶ u ∈ U

})
∶ x ∈ E

}

�(u) =
1

|E|
∑
x∈E

�(x)(�x(u) − �x(u))

h =
{(

�(x)x,
{
�x(u)u ∶ u ∈ U

})
∶ x ∈ E

}

1, and Method 2 decide that the candidates u5 and 
u2 are eligible for the vacant positions. Thus, the 
candidates u5 and u2 are selected for the positions 
announced by the company. On the other hand, 
while Method 3 and 4 suggest the candidate u2 for 
one of the two positions, it fails to decide between 
u1 and u4 for the other position. Moreover, these 
five methods propose that the candidates u6 and 
u3 are ineligible for the vacant positions. Further-
more, although the performances of the candi-
dates u1 and u4 in the application of Method 1, 
2, 3, and 4 are the same, the proposed method is 
capable of sorting them. Therefore, the proposed 
method has been successfully applied to the prob-
lem involving further uncertainties.  

7 � An application of the proposed method 
to a performance‑based value assignment 
problem

In this section, we apply the proposed method and four 
state-of-the-art methods mentioned in the previous section 
to the performance-based value assignment problem for 
seven known filters used in image denoising, namely based 
on pixel density filter (BPDF) (Erkan and Gökrem 2018), 
modified decision based unsymmetrical trimmed median fil-
ter (MDBUTMF) (Esakkirajan et al. 2011), decision based 
algorithm (DBA) (Pattnaik et al. 2012), noise adaptive fuzzy 
switching median filter (NAFSMF) (Toh and Isa 2010), 

Table 1   The decision sets of the proposed method and Method 1, 2, 3, and 4

Methods Decision sets

Proposed method
{
[0.2334,0.8148]

u1,
[0.3223,0.9436]

u2,
[0,0.8079]

u3,
[0.0636,1]

u4,
[0.4706,0.8980]

u5,
[0.0005,0.7760]

u6

}
Method 1

{
0.8518

u1,
0.9565

u2,
0.7667

u3,
0.8518

u4,
1
u5,

0.6593
u6

}
Method 2

{
[0.3866,0.6096]

[0.0001,0.0019]
u1,

[0.5772,0.7626]

0
u2,

[0.3600,0.5322]

[0.0004,0.0057]
u3,

[0.3866,0.6096]

[0.0001,0.0019]
u4,

[0.6452,0.7330]

0
u5,

[0.2771,0.4197]

[0.0002,0.0036]
u6

}

Method 3
{
0.7792

u1,
1
u2,

0.5114
u3,

0.7792
u4,

0.6957
u5,

0
u6

}
Method 4

{
0.9365

u1,
1
u2,

0.8543
u3,

0.9365
u4,

0.9057
u5,

0.6969
u6

}

Table 2   The ranking orders of the five methods within their own 
structures

Methods Structures Ranking orders

Proposed method d-sets u6 ≺ u3 ≺ u1 ≺ u4 ≺ u2 ≺ u5

Method 1 ifpifs-sets u6 ≺ u3 ≺ u1 = u4 ≺ u2 ≺ u5

Method 2 ifpifs-sets u6 ≺ u3 ≺ u1 = u4 ≺ u2 ≺ u5

Method 3 fpifs-sets u6 ≺ u3 ≺ u5 ≺ u1 = u4 ≺ u2

Method 4 fpfs-sets u6 ≺ u3 ≺ u5 ≺ u1 = u4 ≺ u2
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different applied median filter (DAMF) (Erkan et al. 2018), 
a new adaptive weighted mean filter (AWMF) (Tang et al. 
2016), and adaptive Riesz mean filter (ARmF) (Enginoğlu 
et al. 2019). Hereinafter, let U = {u1, u2, u3, u4, u5, u6, u7} 
be an alternative set such that u1 = “BPDF”, u2 = 
“MDBUTMF”, u3 = “DBA”, u4 = “NAFSMF”, u5 = 
“DAMF”, u6 = “AWMF”, and u7 = “ARmF”. Moreover, let 
E = {x1, x2, x3, x4, x5, x6, x7, x8, x9} be a parameter set deter-
mined by a decision-maker such that x1 = “noise density 
10%”, x2 = “noise density 20%”, x3 = “noise density 30%”, 
x4 = “noise density 40%”, x5 = “noise density 50%”, x6 = 
“noise density 60%”, x7 = “noise density 70%”, x8 = “noise 
density 80%”, and x9 = “noise density 90%”.

We consider four traditional images, i.e. “Cameraman”, 
“Lena”, “Jet Plane”, and “Baboon”, for the convenience of 

the experts who are asked to produce a suitable ranking order 
of the aforementioned filters. Thus, we can compare the results 
of the methods with the experts’ judgements. To this end, we 
present the results of the filters in Enginoğlu et al. (2019) by 
Structural Similarity (SSIM) (Wang et al. 2004) for the images 
at noise densities ranging from 10 to 90%, in Table 3. Further, 
let bold numbers in a table point out the best scores therein. 
Let ((�x

u
)
n
) be ordered s-tuples such that (�x

u
)
n
 corresponds the 

SSIM results by nth image for filter u and noise density x. 
Moreover, the first, second, third, and fourth image are the 
Cameraman, Lena, Jet Plane, and Baboon, respectively.

Secondly, we construct the d-set f via the membership func-
tion �x(u) and the nonmembership function �x(u) defined by

Table 3   The SSIM results of the filters for the Cameraman, Lena, Jet Plane, and Baboon images

Bold values indicate the best performance

Filters 10% 20% 30% 40% 50% 60% 70% 80% 90%

Cameraman
   BPDF 0.9910 0.9783 0.9588 0.9306 0.8934 0.8406 0.7700 0.6665 0.4990
   MDBUTMF 0.9897 0.9278 0.7945 0.7964 0.8844 0.9158 0.8962 0.8056 0.4451
   DBA 0.9938 0.9847 0.9710 0.9520 0.9222 0.8843 0.8283 0.7584 0.6645
   NAFSMF 0.9798 0.9636 0.9484 0.9329 0.9164 0.8954 0.8696 0.8335 0.7288
   DAMF 0.9960 0.9906 0.9833 0.9749 0.9638 0.9492 0.9293 0.8973 0.8294
   AWMF 0.9872 0.9839 0.9798 0.9748 0.9667 0.9541 0.9345 0.9015 0.8346
   ARmF 0.9969 0.9933 0.9885 0.9824 0.9735 0.9600 0.9395 0.9059 0.8376

Lena
   BPDF 0.9834 0.9647 0.9400 0.9085 0.8649 0.8075 0.7213 0.5441 0.2861
   MDBUTMF 0.9845 0.9341 0.8302 0.8205 0.8734 0.8840 0.8515 0.7515 0.3774
   DBA 0.9867 0.9705 0.9499 0.9219 0.8862 0.8389 0.7748 0.6909 0.5701
   NAFSMF 0.9831 0.9657 0.9473 0.9274 0.9046 0.8791 0.8471 0.8009 0.6900
   DAMF 0.9897 0.9783 0.9645 0.9478 0.9285 0.9055 0.8751 0.8340 0.7611
   AWMF 0.9811 0.9727 0.9622 0.9484 0.9319 0.9108 0.8805 0.8387 0.7675
   ARmF 0.9906 0.9806 0.9690 0.9545 0.9374 0.9155 0.8846 0.8416 0.7693

Jet Plane
   BPDF 0.9883 0.9729 0.9496 0.9205 0.8773 0.8139 0.7216 0.5440 0.1615
   MDBUTMF 0.9868 0.9112 0.7611 0.7644 0.8558 0.8956 0.8717 0.7609 0.3449
   DBA 0.9875 0.9753 0.9581 0.9338 0.8997 0.8564 0.7952 0.7121 0.5915
   NAFSMF 0.9843 0.9677 0.9497 0.9305 0.9109 0.8866 0.8562 0.8159 0.7067
   DAMF 0.9937 0.9856 0.9756 0.9633 0.9493 0.9293 0.9050 0.8669 0.7943
   AWMF 0.9846 0.9785 0.9717 0.9630 0.9517 0.9342 0.9097 0.8715 0.7995
   ARmF 0.9945 0.9882 0.9808 0.9710 0.9590 0.9406 0.9152 0.8758 0.8022

Baboon
   BPDF 0.9794 0.9497 0.9090 0.8538 0.7778 0.6814 0.5584 0.3808 0.1039
   MDBUTMF 0.9700 0.9212 0.8490 0.8140 0.8057 0.7720 0.7128 0.6051 0.3074
   DBA 0.9827 0.9593 0.9265 0.8796 0.8152 0.7341 0.6309 0.4980 0.3521
   NAFSMF 0.9610 0.9192 0.8752 0.8275 0.7736 0.7170 0.6500 0.5660 0.4406
   DAMF 0.9883 0.9738 0.9559 0.9342 0.9058 0.8716 0.8213 0.7424 0.5946
   AWMF 0.9717 0.9599 0.9475 0.9328 0.9110 0.8805 0.8311 0.7508 0.6019
   ARmF 0.9914 0.9811 0.9682 0.9517 0.9277 0.8944 0.8427 0.7594 0.6065
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and

For example, ((�x1
u3
)
n
) denote the SSIM results of four tra-

ditional images by DBA at noise density 10%, namely 
((�

x1
u3
)
n
) = (0.9938, 0.9867, 0.9875, 0.9827) . Since

and

then the membership degree and the nonmembership 
degree of the filter u3 according to the parameter x1 are 
[0.9719, 0.9829] and [0.0061, 0.0171], respectively. Simi-
larly, the ivif-values of the other filters can be constructed. 
Suppose that the noise removal performances of the filters 
are more significant in high noise density, in which noisy 
pixels outnumber uncorrupted pixels, then performance-
based success would be more important in the presence of 
high noise densities than of other densities. For example, let

Therefore, the d-set f, the ifpifs-set fmr , the fpifs-set fmbr , and 
the fpfs-set fmb , respectively are as follows:

[
min
n

(�x
u
)
n

max
n

(�x
u
)
n
+max

n
{1 − (�x

u
)
n
}
,

max
n

(�x
u
)
n

max
n

(�x
u
)
n
+max

n
{1 − (�x

u
)
n
}

]

[
min
n
{1 − (�x

u
)
n
}

max
n

(�x
u
)
n
+max

n
{1 − (�x

u
)
n
}
,

max
n

{1 − (�x
u
)
n
}

max
n

(�x
u
)
n
+max

n
{1 − (�x

u
)
n
}

]

�x1
(u3) =

[
0.9827

0.9938 + 0.0173
,

0.9938

0.9938 + 0.0173

]

=[0.9719, 0.9829]

�x1 (u3) =
[

0.0062

0.9938 + 0.0173
,

0.0173

0.9938 + 0.0173

]

=[0.0061, 0.0171]

� =

{
[0,0.01]

[0.9,0.95]
x1,

[0,0.05]

[0.85,0.9]
x2,

[0,0.1]

[0.8,0.85]
x3,

[0.05,0.35]

[0.25,0.5]
x4,

[0.2,0.45]

[0.2,0.45]
x5,

[0.25,0.5]

[0.05,0.35]
x6,

[0.8,0.85]

[0,0.1]
x7,

[0.85,0.9]

[0,0.05]
x8,

[0.9,0.95]

[0,0.01]
x9

}

{(
[0,0.01]

[0.9,0.95]
x1,

{
[0.9682,0.9796]

[0.0089,0.0204]
u1,

[0.9513,0.9706]

[0.0101,0.0294]
u2,

[0.9719,0.9829]

[0.0061,0.0171]
u3,

[0.9391,0.9619]

[0.0153,0.0381]
u4,

[0.9807,0.9884]

[0.0040,0.0116]
u5,

[0.9569,0.9721]

[0.0126,0.0279]
u6,

[0.9844,0.9907]

[0.0031,0.0093]
u7

})
,
(
[0,0.05]

[0.85,0.9]
x2,

{
[0.9233,0.9511]

[0.0211,0.0489]
u1,

[0.8908,0.9132]

[0.0644,0.0868]
u2,

[0.9355,0.9603]

[0.0149,0.0397]
u3,

[0.8767,0.9229]

[0.0308,0.0771]
u4,

[0.9577,0.9742]

[0.0092,0.0258]
u5,

[0.9374,0.9608]

[0.0157,0.0392]
u6,

[0.9683,0.9808]

[0.0066,0.0192]
u7

})
,

(
[0,0.1]

[0.8,0.85]
x3,

{
[0.8659,0.9133]

[0.0392,0.0867]
u1,

[0.6996,0.7804]

[0.1388,0.2196]
u2,

[0.8870,0.9296]

[0.0278,0.0704]
u3,

[0.8145,0.8839]

[0.0468,0.1161]
u4,

[0.9304,0.9571]

[0.0163,0.0429]
u5,

[0.9179,0.9491]

[0.0196,0.0509]
u6,

[0.9489,0.9688]

[0.0113,0.0312]
u7

})
,
(
[0.05,0.35]

[0.25,0.5]
x4,{

[0.7929,0.8642]

[0.0645,0.1358]
u1,

[0.7238,0.7769]

[0.1700,0.2231]
u2,

[0.8202,0.8877]

[0.0448,0.1123]
u3,

[0.7486,0.8439]

[0.0607,0.1561]
u4,

[0.8977,0.9368]

[0.0241,0.0632]
u5,

[0.8952,0.9355]

[0.0242,0.0645]
u6,

[0.9234,0.9531]

[0.0171,0.0469]
u7

})
,
(
[0.2,0.45]

[0.2,0.45]
x5,

{
[0.6972,0.8008]

[0.0956,0.1992]
u1,

[0.7469,0.8199]

[0.1072,0.1801]
u2,

[0.7364,0.8331]

[0.0703,0.1669]
u3,

[0.6769,0.8019]

[0.0732,0.1981]
u4,

[0.8561,0.9110]

[0.0342,0.0890]
u5,

[0.8629,0.9157]

[0.0315,0.0843]
u6,

[0.8871,0.9309]

[0.0253,0.0691]
u7

})
,
(
[0.25,0.5]

[0.05,0.35]
x6,

{
[0.5878,0.7252]

[0.1375,0.2748]
u1,

[0.6749,0.8007]

[0.0736,0.1993]
u2,

[0.6382,0.7688]

[0.1006,0.2312]
u3,

[0.6085,0.7598]

[0.0888,0.2402]
u4,

[0.8088,0.8808]

[0.0471,0.1192]
u5,

[0.8201,0.8887]

[0.0428,0.1113]
u6,

[0.8393,0.9009]

[0.0375,0.0991]
u7

})
,
(
[0.8,0.85]

[0,0.1]
x7,{

[0.4609,0.6355]

[0.1898,0.3645]
u1,

[0.6023,0.7573]

[0.0877,0.2427]
u2,

[0.5269,0.6917]

[0.1434,0.3083]
u3,

[0.5330,0.7130]

[0.1069,0.2870]
u4,

[0.7412,0.8387]

[0.0638,0.1613]
u5,

[0.7532,0.8469]

[0.0594,0.1531]
u6,

[0.7683,0.8566]

[0.0552,0.1434]
u7

})
,

(
[0.85,0.9]

[0,0.05]
x8,

{
[0.2962,0.5184]

[0.2594,0.4816]
u1,

[0.5040,0.6711]

[0.1619,0.3289]
u2,

[0.3951,0.6017]

[0.1917,0.3983]
u3,

[0.4465,0.6576]

[0.1314,0.3424]
u4,

[0.6428,0.7770]

[0.0889,0.2230]
u5,

[0.6525,0.7834]

[0.0856,0.2166]
u6,

[0.6624,0.7901]

[0.0821,0.2099]
u7

})
,
(
[0.9,0.95]

[0,0.01]
x9,

{
[0.0745,0.3577]

[0.3591,0.6423]
u1,

[0.2702,0.3912]

[0.4877,0.6088]
u2,

[0.2683,0.5063]

[0.2556,0.4937]
u3,

[0.3420,0.5658]

[0.2105,0.4342]
u4,

[0.4815,0.6717]

[0.1382,0.3283]
u5,

[0.4883,0.6771]

[0.1342,0.3229]
u6,

[0.4926,0.6804]

[0.1319,0.3196]
u7

})}
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{(
0.005
0.925

x1,
{
0.9739
0.0146

u1,
0.9609
0.0198

u2,
0.9774
0.0116

u3,
0.9505
0.0267

u4,

0.9846
0.0078

u5,
0.9645
0.0202

u6,
0.9875
0.0062

u7
})

,(
0.025
0.875

x2,
{
0.9372
0.0350

u1,
0.9020
0.0756

u2,
0.9479
0.0273

u3,

0.8998
0.0539

u4,
0.9660
0.0175

u5,
0.9491
0.0274

u6,
0.9746
0.0129

u7
})

,(
0.05
0.825

x3,
{
0.8896
0.0630

u1,
0.7400
0.1792

u2,
0.9083
0.0491

u3,
0.8492
0.0815

u4,

0.9437
0.0296

u5,
0.9335
0.0352

u6,
0.9589
0.0212

u7
})

,(
0.2
0.375

x4,
{
0.8286
0.1001

u1,
0.7504
0.1965

u2,
0.8540
0.0785

u3,
0.7963
0.1084

u4,

0.9172
0.0437

u5,
0.9154
0.0443

u6,
0.9382
0.0320

u7
})

,(
0.325
0.325

x5,
{
0.7490
0.1474

u1,
0.7834
0.1436

u2,
0.7847
0.1186

u3,

0.7394
0.1356

u4,
0.8836
0.0616

u5,
0.8893
0.0579

u6,
0.9090
0.0472

u7
})

,(
0.375
0.2

x6,
{
0.6565
0.2062

u1,
0.7378
0.1365

u2,
0.7035
0.1659

u3,
0.6841
0.1645

u4,

0.8448
0.0831

u5,
0.8544
0.0770

u6,
0.8701
0.0683

u7
})

,(
0.825
0.05

x7,
{
0.5482
0.2772

u1,
0.6798
0.1652

u2,
0.6093
0.2258

u3,
0.6230
0.1969

u4,

0.7900
0.1125

u5,
0.8001
0.1062

u6,
0.8125
0.0993

u7
})

,(
0.875
0.025

x8,
{
0.4073
0.3705

u1,
0.5875
0.2454

u2,
0.4984
0.2950

u3,

0.5521
0.2369

u4,
0.7099
0.1560

u5,
0.7180
0.1511

u6,
0.7263
0.1460

u7
})

,(
0.925
0.005

x9,
{
0.2161
0.5007

u1,
0.3307
0.5483

u2,
0.3873
0.3747

u3,
0.4539
0.3224

u4,

0.5766
0.2332

u5,
0.5827
0.2286

u6,
0.5865
0.2258

u7
})}

{(
0.04x1,

{
0.9739
0.0146

u1,
0.9609
0.0198

u2,
0.9774
0.0116

u3,
0.9505
0.0267

u4,

0.9846
0.0078

u5,
0.9645
0.0202

u6,
0.9875
0.0062

u7
})

,(
0.075x2,

{
0.9372
0.0350

u1,
0.9020
0.0756

u2,
0.9479
0.0273

u3,

0.8998
0.0539

u4,
0.9660
0.0175

u5,
0.9491
0.0274

u6,
0.9746
0.0129

u7
})

,(
0.1125x3,

{
0.8896
0.0630

u1,
0.7400
0.1792

u2,
0.9083
0.0491

u3,
0.8492
0.0815

u4,

0.9437
0.0296

u5,
0.9335
0.0352

u6,
0.9589
0.0212

u7
})

,(
0.4125x4,

{
0.8286
0.1001

u1,
0.7504
0.1965

u2,
0.8540
0.0785

u3,
0.7963
0.1084

u4,

0.9172
0.0437

u5,
0.9154
0.0443

u6,
0.9382
0.0320

u7
})

,(
0.5x5,

{
0.7490
0.1474

u1,
0.7834
0.1436

u2,
0.7847
0.1186

u3,

0.7394
0.1356

u4,
0.8836
0.0616

u5,
0.8893
0.0579

u6,
0.9090
0.0472

u7
})

,(
0.5875x6,

{
0.6565
0.2062

u1,
0.7378
0.1365

u2,
0.7035
0.1659

u3,
0.6841
0.1645

u4,

0.8448
0.0831

u5,
0.8544
0.0770

u6,
0.8701
0.0683

u7
})

,(
0.8875x7,

{
0.5482
0.2772

u1,
0.6798
0.1652

u2,
0.6093
0.2258

u3,
0.6230
0.1969

u4,

0.7900
0.1125

u5,
0.8001
0.1062

u6,
0.8125
0.0993

u7
})

,(
0.925x8,

{
0.4073
0.3705

u1,
0.5875
0.2454

u2,
0.4984
0.2950

u3,

0.5521
0.2369

u4,
0.7099
0.1560

u5,
0.7180
0.1511

u6,
0.7263
0.1460

u7
})

,(
0.96x9,

{
0.2161
0.5007

u1,
0.3307
0.5483

u2,
0.3873
0.3747

u3,
0.4539
0.3224

u4,

0.5766
0.2332

u5,
0.5827
0.2286

u6,
0.5865
0.2258

u7
})}

Thirdly, we apply the proposed method and Method 1, 2, 
3, and 4 to f, fmr , fmr , fmbr , and fmb provided in this section, 
respectively. In Tables 4 and 5, we present the decision sets 
and the ranking orders of the filters for the five methods 
within their own structures, respectively. Based on the values 
in Table 3, the proposed method, Method 3, and Method 4 
produce the same ranking order as proposed by the experts, 
including the authors herein. In other words, the proposed 
method has been able to produce a valid ranking of the seven 
filters in view of the four images, which suggests that the 
method is also applicable to a larger number of images. On 
the other hand, Method 1 and 2 are generally observed to 
yield a ranking different from the one created by the experts 
although they say, “ARmF outperforms the other filters”. 
The above discussion shows that the proposed method can 
be successfully applied to performance based-value assign-
ment problems so that alternatives can be ordered in terms 
of performance.

{(
0.04x1,

{
0.9796u1,

0.9706u2,
0.9829u3,

0.9619u4,

0.9884u5,
0.9721u6,

0.9907u7
})

,(
0.075x2,

{
0.9511u1,

0.9132u2,
0.9603u3,

0.9229u4,
0.9742u5,

0.9608u6,
0.9808u7

})
,(

0.1125x3,
{
0.9133u1,

0.7804u2,
0.9296u3,

0.8839u4,

0.9571u5,
0.9491u6,

0.9688u7
})

,(
0.4125x4,

{
0.8642u1,

0.7769u2,
0.8877u3,

0.8439u4,

0.9368u5,
0.9355u6,

0.9531u7
})

,(
0.5x5,

{
0.8008u1,

0.8199u2,
0.8331u3,

0.8019u4,
0.9110u5,

0.9157u6,
0.9309u7

})
,(

0.5875x6,
{
0.7252u1,

0.8007u2,
0.7688u3,

0.7598u4,

0.8808u5,
0.8887u6,

0.9009u7
})

,(
08875x7,

{
0.6355u1,

0.7573u2,
0.6917u3,

0.7130u4,

0.8387u5,
0.8469u6,

0.8566u7
})

,(
0.925x8,

{
0.5184u1,

0.6711u2,
0.6017u3,

0.6576u4,
0.7770u5,

0.7834u6,
0.7901u7

})
,(

0.96x9,
{
0.3577u1,

0.3912u2,
0.5063u3,

0.5658u4,

0.6717u5,
0.6771u6,

0.6804u7
})}
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8 � Conclusion

In this paper, we defined the concept of d-sets. We then sug-
gested a new soft decision-making method via the aggrega-
tion operator and gave an application of this method to a 
problem of the determination of eligible candidates in the 
recruitment process of a company. Moreover, we provided 
an real application of this method to evaluate the perfor-
mances of seven filters used in image denoising. To com-
pare this method with another method, we defined four 
new concepts, i.e. mean reduction, mean bireduction, mean 
bireduction-reduction, and mean reduction-bireduction. By 
using these concepts, we applied the proposed method and 
the four state-of-the-art soft decision-making methods to the 
aforesaid problems. The results showed that the proposed 
method was successfully applied to the problems involving 
further uncertainties.

In the future, effective soft decision-making methods 
based on group decision-making can be developed by using 
and/or/andnot/ornot-products of d-sets. Thus, it will be pos-
sible to compare such soft decision-making methods con-
structed by the same structure with the method proposed in 
this paper. By doing so, the decision-making performances 
of the methods can be evaluated in a more consistent and 
down-to-earth manner. Besides, to obtain ivif-values of alter-
natives or parameters with multiple measurement results, 
the different membership/nonmembership functions can 
be defined and compared with the results provided in this 
study. Moreover, it is necessary and worthwhile to conduct 

theoretical and applied studies in various fields, such as 
algebra and topology, and on varied topics, e.g., similar-
ity and distance measurement, by making use of the d-sets. 
Furthermore, to overcome decision-making problems con-
taining a large number of data and multiple measurement 
results, defining the matrix representations of d-sets have 
an enormous significance. Therefore, we have been recently 
studying the concept of d-matrices that we believe will use 
and improve d-sets’ skills in modelling.
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