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Abstract
Efficient extraction of feature parameters is the key to evaluating weapon damage performance. At present, many classical 
feature extraction algorithms have the problem that the extraction cannot meet the actual needs. A precise feature extrac-
tion method based on improved complementary ensemble empirical mode decomposition (CEEMD) with Hilbert-Huang 
Transform (HHT) was proposed in this paper to solve problems such as large noise and difficulties in extracting features 
of shockwave overpressure signals in complex test environment. We introduced CEEMD to decompose original explosion 
shockwave signals and adopted wavelet packet threshold de-noising to extract useful information from noisy high-frequency 
intrinsic mode functions (IMFs). The correlation coefficient algorithm is introduced to remove unrelated IMFs. In addition, 
we performed reconstruction of original signals to extract true time-course feature and utilized Hilbert-Huang Transform 
(HHT) to achieve precise extraction of instantaneous feature and energy spectrum of the various IMFs. The improved 
CEEMD-HHT is a precise method for shock wave signal analysis. It not only effectively removes noise, but also retains 
effective high-frequency information without losing useful information. Additionally, it overcomes the problems of mode 
mixing in empirical mode decomposition (EMD), and has the advantages of feature extraction with high accuracy and self-
adaptation. The effectiveness of the proposed method is demonstrated by 2 groups of experimental data, and it precisely 
extracts instantaneous feature and energy spectrum of shockwave overpressure signal, which provide new theoretical basis 
for the evaluation of weapon damage.
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1  Introduction

In order to more accurately evaluate weapon damage perfor-
mance, the extraction of characteristic parameters is actually 
a very important link. The extraction of feature parameters is 
directly related to the accuracy of damage performance eval-
uation (Alonso et al. 2006; Wang et al. 2010). The explosion 
shockwave overpressure test usually takes place in complex 
environments and the test data often contains lots of noise 
due to the complex electromagnetic interference, fragment 
impact and ground vibration caused by explosion. Therefore, 
it is of great significance to select a reasonable de-noising 
and feature extraction method to extract effective shockwave 

overpressure feature parameters from the measured noise-
containing signals (Li et al. 2017). Considering the impor-
tance of noise reduction and feature extraction of shockwave 
overpressure signals, many scholars have carried out related 
researches and made some achievements. Currently, com-
monly used de-noising methods for shockwave overpres-
sure signals include low-pass filtering, wavelet transform 
de-noising and EMD noise reduction.

Xu et al. (2003) comparatively studied the de-noising 
effects wavelet transform and some other de-noising meth-
ods for shockwave overpressure signals. Daubechies and 
Symlets wavelet families are compared in threshold treat-
ing of shock wave data, and they proposed some instructive 
suggestions on noise reduction of shockwave overpressure 
signals. Yao et al. (2017) combined EMD with adaptive least 
squares (ALS) to improve the dynamic calibration accuracy 
of pressure sensors. By identifying and excluding those 
components involved in noises, the noise-free output could 
be reconstructed with the useful frequency modulations. 
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Experimental results show that the proposed method works 
well in reducing the influence of noise and yields an appro-
priate mathematical model. Du et al. (2010) applied a low-
pass filter, a wavelet transform and other methods to de-
noise the measured shock wave signal. They compared the 
advantages and disadvantages of these methods and sug-
gested some various methods in which to reduce the noise 
from shock wave signal. Related feature extraction meth-
ods (Ma et al. 2020; Al-Ayyoub et al. 2017; Birajdar et al. 
2019; Li et al. 2018) are used in multiple fields. After feature 
extraction, various machine learning algorithms(Qian et al. 
2015, 2016, 2017; Xia et al. 2019a, b; Qian et al. 2018a, b; 
Xue et al. 2017, 2018a, b) are needed to achieve final recog-
nition and inspection.

Currently, there are many researches on the time domain 
or frequency domain of shockwave overpressure signals and 
few researches on their instantaneous features (instantane-
ous frequency and instantaneous amplitude) and energy 
spectrum (Li et al. 2017). Feature parameters used to evalu-
ate shockwave overpressure damage performance mainly 
include peak overpressure, positive pressure duration and 
specific impulse. Conventional feature extraction methods 
for time domain and frequency domain include short-time 
Fourier transform (STFT) and wavelet transform. Li et al. 
(2009) analyzed the non-linear and non-stationary shock sig-
nal with HHT, and gave the marginal spectrum compared 
to the Fourier frequency spectrum. After filtering and de-
noising the original signals with wavelet packet transform, 
Li et al. (2017) adopted EMD to adaptively decompose the 
filtered signals and extract effective IMFs. Warhead damage 
performance was evaluated from the perspective of energy 
spectrum.

Although these signal de-noising and feature extraction 
methods realize noise reduction and feature extraction of 
shockwave overpressure signals in different ways, there are 
still some problems with them in complex test environments. 
For instance, although EMD adaptively and successively 
decomposes signals from high frequency to low frequency 
and preserves signal features in the decomposition process, 
it is not suitable for instantaneous non-stationary signals. 
Furthermore, EMD itself has a serious drawback, namely, 
the mode mixing problem (Wu et al. 2009; Yeh et al. 2010).

CEEMD is a significant improvement of ensemble 
empirical mode decomposition (EEMD). It not only retains 
advantages of EMD in processing non-stationary signals, 
but also effectively avoids mode mixing of EMD (Li et al. 
2015). However, de-noising and feature extraction methods 
directly discarding high-frequency IMFs which obtained via 
CEEMD may lose effective information of high-frequency 
element. Therefore, a more effective method is needed to 
de-noising and extract clean feature information of signals.

To address the above shortcomings, we propose an adap-
tive de-noising and precise feature extraction method based 

on improved CEEMD-HHT. This feature extraction method 
combines the ideas of CEEMD and HHT algorithms. Com-
pared with traditional EMD, the algorithm can not only 
effectively remove noise but also retain high-frequency 
overpressure data. Compared with HHT alone, the proposed 
algorithm can more accurately evaluate the warhead dam-
age. The main contributions of this paper can be outlined 
as follows:

1.	 We proposed an adaptive de-noising method for shock-
wave overpressure signals based on improved CEEMD. 
This algorithm solves the problems of mode mixing 
in EMD and retains high-frequency overpressure data 
while effectively eliminating noise, thereby exhibiting 
the advantages of multi-resolution and self-adaptation.

2.	 We proposed an HHT-based precise extraction method 
for instantaneous features and energy spectrum of shock-
wave overpressure signals, thereby providing new theo-
retical basis for the precise evaluation of warhead dam-
age performance.

The paper is structured as follows: Chapter 2 describes 
relevant theoretical basis of the algorithm. Chapter 3 intro-
duces the precise extraction method for instantaneous feature 
and energy spectrum of shockwave overpressure signals. 
Chapter 4 demonstrates test verification and data analysis. 
Chapter 5 is the conclusion part.

2 � Theoretical analysis of the algorithm

2.1 � CEEMD

EEMD (Xue et al. 2015) can separate the high-frequency 
noise from the original signal via adding the white noise, 
but the low-frequency noise cannot be reduced. CEEMD 
is an improved algorithm based on EMD (He et al. 2019).

Suppose that x(n) is the original signal of the discrete 
number n, Ej(⋅) is the jth intrinsic mode function (IMF) of 
the signal after EMD decomposition, �i(n)(i = 1,⋯ , I ) is the 
white Gaussian noise with the unit variance of zero and �k 
is ratio of the signal to noise in each order. Decomposition 
steps of improved CEEMD are as follows:

Step 1: add white noise to the signal, decompose the sig-
nal by EMD for i times ( i = 1, 2⋯ , I ) and take the average 
of the first-order IMFi

1
 , thereby obtaining the first intrinsic 

mode function:

Step 2: calculate the remainder r1(n) , when k = 1

(1)IMF1(n) =
1

I

I∑
i=1

IMFi
1
(n)
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Step 3: add white noise to the first-order remainder r1(n) 
to constitute a new signal:r1(n) + �1E1

(
�i(n)

)
 , perform 

EMD decomposition on the new signal and take the aver-
age, thereby obtaining the second intrinsic mode function:

Step 4: calculate the Kth-order remainder rk(n):

Step 5: add white noise to the kth-order remainder rk(n) 
to constitute a new signal rk(n) + �kEk

(
�i(n)

)
 , perform 

EMD decomposition on the new signal and take the aver-
age, thereby obtaining the (k + 1)th intrinsic mode function:

Step 6: end the decomposition when there is only one 
extreme point in the remainder. Otherwise, return to Step 4 
to continue the iteration until the termination conditions are 
met, thereby obtaining the final remainder R(n).

The original signals after de-noising and reconstruction 
can be expressed as:

K represents the total number of IMFs obtained. Formula 
(7) shows that CEEMD is a complete decomposition method 
that can precisely reconstruct original signals with IMFs and 
the residual function.

2.2 � Selection principles of effective IMFs

Not all IMFs obtained through CEEMD decomposition cor-
rectly represent feature information of original signals. The 
extraction of effective IMFs is an important part of noise 
reduction, reconstruction and feature extraction. Theoreti-
cally, higher correlation between original signal and IMFs 
corresponds to a larger number of effective signal compo-
nents. Therefore, we introduce the correlation coefficient 
criteria to extract effective IMFs.

Suppose that the correlation coefficient (Yang et al. 2017) 
between the ith IMF Ci and the original signal x is ri. The 

(2)r1(n) = x(n) − IMF1(n)

(3)IMF2(n) =
1

I

I∑
i=1

E1

(
r1(n) + �1E1

(
�i(n)

))

(4)rk(n) = rk−1(n) − IMFk(n)

(5)IMFk+1(n) =
1

I

I∑
i=1

E1

(
rk(n) + �kEk

(
�k(n)

))

(6)R(n) = x(n) −

K∑
k=1

IMFk

(7)x(n) =

K∑
k=1

IMFk + R(n)

following conclusion can be drawn on the basis of the defini-
tion of correlation coefficient (Li et al. 2017):

In this paper, IMFs are selected in accordance with the fol-
lowing principles: eliminate ineffective high-frequency IMFs 
that contain lots of noise; de-noise high-frequency IMFs that 
contain a small amount of noise by wavelet packet transform, 
thereby reconstructing new IMFs; directly extract features of 
highly correlated low-frequency IMFs.

2.3 � Wavelet packet threshold de‑noising

The wavelet packet algorithm is a further and detailed decom-
position of high-frequency information obtained through 
wavelet transform (Shucong et al. 2016). Wavelet packet 
decomposition decomposes the signal x(t) into the linear 
superposition of spatial basis function systems 

{
b�(t)

}
 . The 

following conclusion can be drawn when the signal is pro-
jected onto different spaces:

It is feasible to de-noise the original signal by processing 
coefficient c� and obtain the feature information. Suppose that 
x(t) is the space function on L2(R) . When the discrete sampling 
sequence {x(p)}p=1,2,⋯,N is decomposed, the wavelet packet 
decomposition algorithm can be expressed as:

According to formula (10), wavelet packet decomposition 
decomposes signal into different frequency bands through the 
linear combination of high-pass and low-pass conjugate quad-
rature filters h and g, thereby eliminating invalid frequency 
bands and realizing the purpose of de-noising. Wavelet packet 
threshold de-noising is mainly influenced by wavelet basis and 
threshold selection. Wherein, the threshold consists of hard 
threshold and soft threshold. Soft threshold de-noising(Guo 
et al. 2018), which achieves optimal threshold estimation and 
guarantees smoothness of the reconstructed signals after de-
noising, is expressed as:

(8)ri =

∑�
ci − ci

��
x − x

�
�∑�

ci − ci
�2 ∑�

x − x
�2

(9)x(t) =
∑
�∈Λ

c�b�(t)

(10)

⎧⎪⎨⎪⎩

Cj,2n
p

=
�
k

h(k − 2p)C
j+1,n

k

Cj,2n+1
p

=
�
k

g(k − 2p)C
j+1,n

k

(11)d�
j
=

⎧
⎪⎨⎪⎩

0
���dj

��� < 𝜆j

sign
�
dj
� ����dj

��� − 𝜆j

� ���dj
��� ≥ 𝜆j
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 where d′
j
 is the soft threshold signal of the signal dj , and �j 

is the threshold value, respectively.

2.4 � CEEMD‑wavelet packet threshold de‑noising

The noisy explosion shockwave signal x(t) after adaptive 
decomposition by CEEMD can be expressed as:

 where IMFi(t) is the intrinsic mode function,Rn(t) is the 
remainder, and n is the number of intrinsic mode functions 
when Rn(t) is sufficiently small or has only one extreme 
value.

We used correlation coefficient to determine the correla-
tion between IMFs and original signal. For effective IMFs 
that contain noise, wavelet packet transform de-noising was 
employed to extract useful information from IMFs, thereby 
reconstructing new IMFs. Finally, the shockwave signal can 
be reconstructed by summing effective low-frequency IMFs 
without noise and effective high-frequency IMFs recon-
structed through wavelet packet transform.

The reconstructed signal after de-noising can be 
expressed as:

 where x̃(t) is the signal reconstructed after de-noising, 
c�
i
(t) represents IMFs reconstructed through wavelet packet 

threshold de-noising, ci(t) represents IMFs without wave-
let packet threshold de-noising, and Rn(t) is the residual 
function.

3 � Feature extraction of explosion 
shockwave signals

Due to the instantaneity and non-stationarity of explosion 
shockwave signal, it is particularly important to research 
time-course features, spectrum characteristics and instanta-
neous features of signals. In addition, it has been previously 
established that the energy spectrum is an effective feature 
by which to characterize a blast wave. The higher the energy 
spectra in a frequency band of a shockwave overpressure, the 
greater the damage to a target in the same frequency band 
shall be, which has been proved in many studies (Li et al. 
2017). To evaluate warhead damage performance more accu-
rately, it is necessary to precisely extract energy spectrum 
of explosion shockwave signals. After extracting effective 
information from the original signals by adaptive de-noising, 

(12)x(t) =

n∑
i=1

IMFi(t) + Rn(t)

(13)x̃(t) =

n∑
i=1

c�
i
(t) +

m∑
i=n+1

ci(t) + Rn(t)

we emphatically explored methods of extracting energy 
spectrum of explosion shockwave overpressure signals.

3.1 � Extraction of time‑course features

The original signals can reproduce real time attenuation 
curves of shockwave overpressure after adaptive de-nois-
ing and reconstruction, thereby precisely extracting feature 
parameters such as peak overpressure, positive pressure 
duration and specific impulse. It provides accurate data for 
the evaluation of weapon damage performance.

3.2 � Extraction of energy spectrum

HHT was applied to IMFs reconstructed by wavelet packet 
threshold de-noising and low-frequency IMFs obtained 
through adaptive decomposition. The instantaneous fre-
quency spectrum of the various IMFs can be obtained 
through HHT (Li et al. 2015). The original signal is decom-
posed into a series of components:c1, c2 …, cn, and the 
remainder rn . The original signal x(n) can be reconstruct as:

The Hilbert transform of x(n) is defined as the convolu-
tion of x(n) and 1

�n
:

Therefore, for an arbitrary signal x(n) , its Hilbert trans-
form (Xu et al. 2020)can be defined as

The amplitude function a(t) , phase function �(t) and 
instantaneous frequency �(t) are expressed as follows, 
respectively:

Therefore, each IMF can be calculated through HHT, and 
the signal x(n) can be expressed as:

Furthermore, the Hilbert spectrum h(�, t) of the original 
can be obtained through integral calculation of x(�, t) , which 
can be expressed as,

(14)x(n) =

n∑
i=1

ci + rn

(15)H[x(n)] = x(n)⊗
1

𝜋n

(16)yi(i) = ci(i) + jH
[
ci(i)

]
= a(i)ej�(i)

(17)

⎧⎪⎪⎨⎪⎪⎩

a(t) =
√
c2(t) + H2[c(t)]

�(t) = arctan
H[c(t)]

c(t)

�(t) =
d�(t)

d(t)

(18)x(t) =

n∑
i=1

ai(t) exp

(
j∫ �i(t)dt

)
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In the end, the energy spectrum can be obtained by cal-
culating time integral of the square of the Hilbert spectrum 
(Li et al. 2016) amplitude of the signal x(t):

The energy spectrum presents energy equations of each 
frequency component, and it also represents the energy 
accumulated by each frequency component over the time t. 
It clearly and specifically demonstrates the distribution of 
energy with frequency.

4 � Experimental analysis

4.1 � Test environment and data acquisition

A set of blast wave experiments was designed to study fea-
ture parameters of explosion shockwave signals. The test 
nodes (1–8) were placed in two fiber links in turn along the 
explosion area including 3.5 m, 4 m, 6 m and 8 m. Theoreti-
cally, the test nodes at the same distance from the blaster 
center in each link have the similar information in static 

(19)h(�) = �
T

0

H(�, t)dt =

n∑
i=1

�
T

0

Re
(
ai(t)e

j ∫ �i(t)dt
)
dt

(20)ES(�) = ∫
T

0

x2(�, t)dt

blast experiment. Therefore, 4 test nodes in one link were 
randomly selected, which were denoted as case 1 to case 
8, respectively. First group, a set of explosion shockwave 
experiments was designed consisting of 4 test nodes, which 
are denoted as cases 1–4, respectively. In these cases, the 
explosion shockwave was generated from the explosion of 
2Kg TNT explosive equivalence. The second group, the test 
nodes were at the same distance with the explosion of 4Kg 
TNT explosive equivalence, which are denoted as cases 5–8, 
respectively. During the test, the warheads were positioned 
on the top of a wooden platform 1.5 m above the ground.

Layout of the shockwave overpressure test system based 
on a distributed optical fiber network is shown in Fig. 1. 
The test system was mainly composed of shockwave over-
pressure test nodes, gateway node, control terminal, and 
distributed optical fibers for communication. All test nodes 
were placed in the electromagnetic shell and then placed in 
the soil. Only the sensitive surface of the pressure sensors 
exposed to the ground to capture the blast wave signal. In 
addition, all nodes in the test system communicated over a 
distributed fiber-optic LAN.

The experiment produced a total of 8 shockwave pres-
sure signals. Time-domain waveforms of the explosion 
shockwave signal in case 7 were used as a random sam-
ple, as shown in Fig. 2a. As the figure shows, explosion 
shockwave signal was characterized by steep rising edge, 
sudden changes and short duration, so that it is a typical 

Fig. 1   The site layout of the test 
system

Fig. 2   The measured shock 
wave and the spectrogram: a 
A typical record of shockwave 
overpressure; b Spectrogram of 
shockwave overpressure
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instantaneous non-stationary signal. As Fig. 2b (frequency 
spectrum of the signal) shows, explosion shockwave signal 
has rich frequency spectrum, which is manifested as multiple 
bands and multiple peaks. Shockwave signals generated by 
warhead explosion, whose frequency is smaller than 30 kHz, 
is significantly influenced by strong noise between 100 and 
150 kHz. The presence of strong noise seriously affects the 
interpretation of overpressure information and the extraction 
of feature parameters. Therefore, there is a need for effective 
de-noising method.

4.2 � Adaptive de‑noising method based 
on improved CEEMD

We employed CEEMD to adaptively decompose the meas-
ured shockwave overpressure signal. The IMFs and remain-
der obtained are shown in Fig. 3.

In Fig. 3, IMF1-IMF3 are high-frequency components 
decomposed from the original signal. As the number of 
decomposition increases, the frequency of the various com-
ponents gradually decreases until the final remainder R13 is 
obtained. With the correlation coefficient algorithm, IMF1-
IMF3 enjoy high frequency and low correlation, which indi-
cates that they are high-frequency noisy IMFs. IMF4-IMF7 
are high-frequency elements that contain a certain amount of 
noise, thereby needing to be de-noised and reconstructed to 
extract effective high-frequency information. IMF8-IMF12 
are dominant frequency sub-bands of the signal, and R13 is 
the remainder. Here, the wavelet packet threshold denois-
ing method is only used for noise reduction of IMF4-IMF7. 
Finally, the reconstructed signal after de-noising is shown 
in Fig. 4.

It can be seen from Fig. 4 that the adaptive de-noising 
algorithm based on improved CEEMD effectively eliminates 
noise and retains high-frequency overpressure information. 
It eliminates noise more thoroughly, thereby being more 
suitable for analyzing and filtering of mutational signal and 
instantaneous non-stationary signal. According to the recon-
structed signal after de-noising, peak overpressure and posi-
tive pressure duration in case 7 are 0.187MP and 12.127 ms 
separately. It offers a good solution to noise reduction and 
information extraction of explosion shockwave signals.

4.3 � Extraction of instantaneous features

After extracting effective IMFs, we adopted HHT to extract 
instantaneous features of IMFs and listed corresponding 
Hilbert-Huang spectrum in Fig. 5. Due to the limited space, 
we merely list the Hilbert-Huang spectrum in case 7. Hil-
bert-Huang spectrum in other cases can be obtained in the 
same way.

It can be seen from Fig. 5 that the instantaneous fea-
tures extraction method based on HHT precisely extracts 

instantaneous features of shockwave overpressure signals, 
which perfectly demonstrates time–frequency-amplitude 
variations of the shockwave overpressure signals.

4.4 � Extraction of energy spectrum

Energy spectrums of shockwave signals in cases 1–8 were 
extracted and analyzed in accordance with the proposed 
method. Percentage distribution of energy spectrum in cases 
1–8 were obtained through the normalization of correspond-
ing explosion shockwaves, as shown in Fig. 6a, b. Shock-
wave energy in the 8 cases and energy distribution of each 
frequency band are shown in Table 1. 

According to the comparative analysis of Fig. 6 and 
Table 1, the following conclusions can be drawn: total 
energy of explosion shockwave signals generated by the 
same kinds of explosives decreases with the distance 
increase from explosion site. In addition, the energy in 
high-frequency bands attenuates rapidly while that in low-
frequency bands attenuates slowly and has a long duration. 
Therefore, shockwave signals have a wider range of damage 
at low frequencies.

Here, we divided the frequency into multiple frequency 
bands to demonstrate the distribution of energy in each fre-
quency band more intuitively and vividly. The distribution 
of energy spectrum was represented with energy histograms 
in each frequency band. Figures 7a–d are energy histograms 
of explosion shockwave signals generated by warheads with 
the explosive weight of 2Kg at 4 different distances (cases 
1 to 4).

Figures 8a–d are energy histograms of explosion shock-
wave signals generated by warheads with the explosive 
weight of 4 Kg at 4 different distances (cases 5–8).

Figures 7, 8 show that shockwave energy is mainly con-
centrated in the low-frequency band of 0–500 Hz. In other 
words, energy in low-frequency bands is significantly larger 
than that in high-frequency bands.

Effectiveness of the HHT-based feature extraction method 
was verified by the analytical results of instantaneous fea-
tures and energy spectrums of explosion shockwave signals. 
In addition, the significant attenuation and distribution laws 
of shockwave overpressure energy spectrums were obtained. 
Under these laws, it is feasible to realize high-frequency and 
low-frequency energy distribution of different explosion 
shockwaves, thereby achieving different damage effects.

5 � Conclusions

An adaptive de-noising and precise feature extraction 
method based on improved CEEMD-HHT was proposed 
in this paper. The adaptive de-noising algorithm based on 
improved CEEMD not only eliminates noise efficiently, 
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but also retains effective high-frequency information 
while solving the problems of energy leakage caused by 
wavelet packet de-noising and mode mixing of EMD, 
thereby exhibiting the advantages of multi-resolution and 

self-adaption. We performed HHT over low-frequency 
IMFs obtained through adaptive de-nosing and high-fre-
quency IMFs reconstructed through wavelet packet trans-
form to precisely extract instantaneous features and energy 
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Fig. 3   The decomposition results via CEEMD: a IMF1 ~ IMF6; b IMF7 ~ IMF12 and the remainder R13
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spectrum of shockwave overpressure signals, thereby fur-
ther improving the weapon damage performance evalu-
ation system. Effectiveness of the proposed method was 
proved by the de-noising effects and the feature extraction 
results of the test data, which provides new theoretical 
basis for the evaluation of weapon damage performance. 
Although the proposed feature extraction method can 
effectively retain high-frequency information and avoid 

the problem of energy leakage. This method increases the 
computational complexity of the algorithm to a certain 
extent and improves the running time of the algorithm. 
This is where the research needs to be further optimized 
in the future.
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Fig. 6   Energy spectrums of shockwave signals: a cases 1–4; b cases 5 to 8

Table 1   Energy distributions 
of the shock wave signals in 
different frequency bands

f/Hz Energy distribution

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

0–100 0.238 0.221 0.515 0.061 0.513 0.291 1.320 0.182
100–200 2.550 3.340 3.040 0.619 12.100 8.350 4.700 2.310
200–300 15.700 17.600 2.499 0.313 64.000 57.400 4.080 0.995
300–500 10.900 10.400 1.500 0.119 36.100 32.800 2.670 0.856
500–1 k 7.190 7.990 1.161 0.118 13.339 13.800 0.644 0.221
1–2 k 6.570 3.270 0.637 0.119 6.330 12.100 0.529 0.115
2–8 k 2.780 2.060 0.202 0.148 7.870 6.830 0.315 0.063
8–10 k 1.260 0.764 0.067 0.112 2.071 2.140 0.229 0.071
10–20 k 0.644 0.312 0.026 0.087 1.370 0.781 0.101 0.062
Total energy(E) 47.832 45.957 9.647 1.696 143.693 134.492 14.588 4.875
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Fig. 7   Energy histograms of shockwave signals: a case 1; b case 2; c case 3; d case 4
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