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Abstract
The Flexible AC Transmission System (FACTS) devices are being commissioned in electrical power systems across the 
globe owing to the vast array of benefits they offer. The optimal performance of the FACTS devices can be harnessed only if 
they are installed at a strategic location. In this paper, the authors suggest the merit of multiobjective cuckoo search (MOCS) 
algorithm in mitigation of transmission losses by strategically installing unified power flower controller (UPFC) at an optimal 
location. Active power loss and reactive power loss reduction is the multiobjective optimization considered for the study. The 
Pareto-optimal technique is employed to extract the Pareto-optimal solution for the multiobjective problem considered. The 
Fuzzy logic method is utilized to yield the best-compromise solution from the pool of Pareto-optimal solution. The proposed 
approach is tested on a standard IEEE 30 bus test system. Furthermore, the efficacy of the MOCS algorithm is demonstrated 
by comparing the results with that of multiobjective particle swarm optimization (MOPSO).

Keywords  Optimal location · Pareto-optimal technique · Multiobjective cuckoo search algorithm · Multiobjective particle 
swarm optimization · Unified power flow controller · FACTS

1  Introduction

To keep pace with the ever increasing demand for electrical 
energy, it has become inevitable for the utilities to increase 
the generation by adding new generating sources to the 
existing grid but on the flip-side addition of new genera-
tors to the grid involves high capital cost and environmental 
concerns. Efficient utilization of the existing transmission 
infrastructure by reducing line losses is an attractive alterna-
tive to relieve the grid from the burden of increasing energy 
demand. Line losses can be reduced by placing FACTS 
devices (Hingorani Gyugyi 2000) at appropriate locations 
in the system. Fortunately, the advent of FACTS coincided 
with deregulation of the electric power sector and many 

new opportunities unfolded for enhancing the capacity of 
the existing electrical network (Galiana FD et al. 1996; Mani  
and Seksena 2017; Nartu et al. 2019). Because of the capital 
cost involved with the fitting of FACTS devices, it is para-
mount to trace the optimal location at which the maximum 
benefits of the installed device can be yielded without violat-
ing the system constraints.

UPFC is a versatile member of the FACTS devices fam-
ily. Its major advantage lies in its potential to simultaneously 
control active and reactive power. To realize the full capacity 
of UPFC, it is unequivocally vital to position it at an optimal 
location. Copious optimization techniques have been pro-
posed for finding the appropriate location to install UPFC 
for achieving different objectives. The concept of system 
loading sensitivity is suggested in (Singh and Erlich 2005) 
to optimally place UPFC in the system. In (Venkatesh and 
Gooi 2006) the optimal location of UPFC is traced by fuzzy 
evolutionary programming. In (Shaheen et al. 2008) genetic 
algorithm (GA) and Particle swarm optimization (PSO) 
techniques were proposed to screen the optimal position for 
installation of UPFC. In (Taher and Amooshahi 2012) an 
approach utilizing a hybrid immune algorithm (HIA) for 
optimal UPFC placement is developed to achieve optimal 
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power flow. To determine the optimal position of UPFC a 
gravitational search algorithm (GSA) technique is intro-
duced in (Sarker et al. 2013). The superiority of the hybrid 
chemical reaction algorithm (HCRO) over its peers PSO and 
GA in tracing the best position of UPFC is established in 
(Dutta et al. 2015). A power loss sensitivity index (PLSI) 
is used in (Shrawane Kapse et al. 2018) to find the optimal 
location of UPFC. Moth flame optimization (MFO) in its 
natural form as well as in hybrid form called JAYA blended 
MFO (JMFO) is applied for finding the optimal location of 
FACTS devices in (Dash et al. 2019). Although the algo-
rithms used are most recent ones, only single objective is 
considered in this study. To enhance the dynamic stability 
of the power system in a recent study reported in (Vijay and 
Ramaiah 2019) UPFC is optimally located by using modified 
slap swarm algorithm.

The existing studies on power loss minimization by opti-
mally locating FACTS device are inclined mostly towards 
single objective optimization. Multiobjective optimization 
catering to the simultaneous reduction of active and reactive 
power loss reduction is seldom explored in the available lit-
erature. In this paper, a novel attempt is made by the authors 
by choosing active and reactive power loss reduction as a 
multiobjective optimization problem. Multiobjective cuckoo 
search algorithm (MOCS) presented in (Yang and Deb 2011) 
as an upgrade to the standard CS algorithm (Yang and Deb 
2010, 2011) is incorporated for this purpose. The results 
obtained are compared with that of MOPSO, to the best 
knowledge of the authors of this article; no such comparison 
has been reported in the literature so far. The results indi-
cate the superiority of the MOCS algorithm over MOPSO 
in solving multiobjective optimization problems. In addition 
to MOPSO, multiobjective firefly algorithm (MOFA) is also 
implemented to solve the multiobjective optimization prob-
lem and compared with MOCS.

The rest portion of this paper is sectioned as follows. 
Section 2 is about UPFC and its modeling equations. The 
multiobjective optimization algorithms employed are dis-
cussed in Sect. 3. The multiobjective function and the lim-
iting constraints are discussed in Sect. 4. Section 5 deals 
with the Pareto-optimal method and fuzzy logic method. 
The numerical results generated are illustrated in Sect. 6. 
Section 7 outlines the conclusion of the article.

2 � Unified power flow controller

UPFC is a multifaceted device under FACTS family which 
exhibits the capabilities of series compensation, voltage 
regulation and phase shifting (Gyugyi et al. 1995; Mathur 
and Varma 2002). The basic model of UPFC is depicted in 
Fig. 1. It comprises of two voltage source converters (VSC), 
one interfaced in series with the line and the other connected 

in shunt with the line through two different interface trans-
formers. A common capacitor bank provides the necessary dc 
voltage for the converters. The series-connected VSC injects 
an ac voltage of desired magnitude and phase angle. As a con-
sequence, the series-connected converter trades both active 
and reactive power with the line. The shunted connected VSC 
affords the real power demand of the series-connected VSC.

2.1 � Steady‑state modeling of UPFC

UPFC, as mentioned above, has two converters. The UPFC 
model used in this study is described below. This model is 
considered to study the influence of UPFC on the power 
system under steady-state condition.

2.2 � Series connected VSC model

The series VSC can be modeled as a controllable series 
voltage source Vse connected in-between bus-i and bus- j in 
series with a line of reactance Xs (Noroozian et al. 1997; 
Mithu  2013). Figure 2 shows the series-connected voltage 
source converter model and the effect of Vse on the system 
response is

Here, Vse is controllable in both magnitude and phase

where

(1)V �
i
= Vse + Vi

(2)Vse = rVie
j�

Shunt 
VSC

Series
VSC

iiV δ∠ δ∠ jjV

Fig. 1   Basic model of UPFC

- +
ijI
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seV

iiV δ∠ δ∠ jjV
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Fig. 2   Series connected VSC model
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The injection model as shown in Fig. 3 can be obtained 
by replacing the voltage source Vse with a current source 
Is = −jbsVse in parallel with the line (Noroozian and 
Andersson 1993)

The injecting powers Sis and Sjs.corresponding to Is are 
given by

Substituting Is in Eq. (5) and (6),

where �ij represents the phase shift between bus-i and bus-
j respectively.

2.3 � Shunt‑connected VSC model

The shunt converter in UPFC maintains constant voltage 
profile within tolerable limits. It also supplies active power 
which is fed into the system through a voltage source con-
nected in series. If we neglect the losses then

The apparent power supplied by the series voltage 
source converter is

(3)0 ≤ r ≤ rmax and 0 ≤ � ≤ 360◦

(4)where bs =
1

Xs

(5)Sis = Vi

(
−Is

)∗

(6)Sjs = Vj

(
Is
)∗

(7)
Sis = Vi

(
jbs

(
rVie

j�
))∗

= Pis + jQis

= −bsrV
2
i
sin � − jbsrV

2
i
cos �

(8)
Sjs = Vj

(
−jbs

(
rVie

j�
))∗

= Pjs + jQjs

= bsrViVj sin
(
�ij + �

)
+ jbsrViVj cos

(
�ij + �

)

(9)Pconv1 = Pconv2

After simplification,

At last, the overall model of UPFC can be obtained by 
combining both shunt and series voltage source converter 
models as shown below. The overall UPFC model is depicted 
in Fig. 4.

3 � Optimization methods

3.1 � Multiobjective cuckoo search algorithm

Cuckoo search (CS) algorithm was initially presented by 
Xin-She Yang and Suash Deb, inspired by the interesting 
breeding strategy of some cuckoo species (Yang and Deb 
2009). Guria and Ani species of cuckoo family exhibit a 
peculiar behaviour concerning procreation. They identify 
a nest of any ill-fated host bird to dump their eggs. Such 
a breeding strategy alleviates the cuckoos from egg hatch-
ing, nurturing chicks, and protecting them from potential 
predators.

(10)

Sconv2 = VsI
∗
ij
= Pconv2 + jQconv2

= rVie
j�

(
V

�

i
− Vj

jXs

)∗

(11)Pconv2 = bsrViVj sin
(
�ij + �

)
− bsrV

2
i
sin �

(12)
Qconv2 = −bsrViVj cos

(
�ij + �

)
+ bsrV

2
i
cos � + bsr

2V2
i

PUPFC
i

= bsrV
2
i
sin � − bsrViVj sin

(
�ij + �

)

(13)PUPFC
j

= bsrViVj sin
(
�ij + �

)

QUPFC
i

= −bsrV
2
i
cos �

(14)QUPFC
j

= bsrViVj cos
(
�ij + �

)

Fig. 3   Injection model of series-connected VSC

Fig. 4   Overall model of UPFC



1072	 N. T. Rao et al.

1 3

The CS algorithm makes use of levy flights for its global 
search. Steps of a Levy flight are defined by step-lengths hav-
ing probability distribution (Yang and Deb 2009). Levy flight 
is credited to be the optimal strategy for pursuing a target in an 
unknown environment as the probability of visiting the previ-
ously visited site is low. Levy flights application to optimiza-
tion problems resulted in positive outcomes (Yang and Deb 
2011).

The standard version of the CS algorithm consists of the 
following rules.

•	 Each cuckoo dumps one egg in any arbitrarily chosen nest
•	 The nests having best quality eggs will be made available 

for the next generations
•	 The number of available host nests being fixed, any fortu-

nate host bird may identify the cuckoo eggs with a prob-
ability pa ϵ (0, 1). In such a situation, the host bird either 
abandons the nest or discards the eggs.

	   The modified first and last rules for the MOCS algorithm 
with n objectives are:

•	 Every cuckoo dumps n eggs in an arbitrarily chosen nest
•	 Fortunate host bird abandons each nest with probability pa 

and a fresh nest will be created with n eggs based on the 
similarities/differences of the eggs. Random mixing can be 
employed to create diversity.

For every cuckoo i , a fresh solution x(k+1) can be produced 
from the old one x(k+1) by levy flight

where � is the step size which is related to the scales of 
the specific problem, ⊕ is the Hadamard product operator. To 
provide room for the diversity in the quality of solution,� is 
produced as per the following equation.

where αo is a constant and 
(
x
(k)

j
− x

(k)

i

)
 is the difference of 

two arbitrary solutions which is adopted to represent the fact 
that similar eggs are less probable to detection by the host bird. 
Hence new solutions are produced by the proportionality of 
their difference. The step size, s, is defined as

where U and V are obtained from normal distributions. That 
is

with

(15)x
(k+1)

i
= x(k) + 𝛼 ⊕ Lėvy(𝜆)

(16)� = �0

(
x
(k)

j
− x

(k)

i

)

(17)

S = 𝛼0

(
x
(k)

j
− x

(k)

i

)
⊕ Lėvy(𝜆) ∼ 0.01

U

|V|1∕𝜆
(
x
(k)

j
− x

(k)

i

)

(18)U ∼ N
(
0, �2

U

)
,V ∼ N

(
0, �2

V

)

where Γ is the standard Gamma function.

3.2 � Multiobjective PSO:

Particle swarm optimization algorithm is introduced first by 
Kennedy and Eberhart (1995). PSO algorithm draws its inspi-
ration from food foraging patterns of fish and bird swarms. 
The merits of PSO over its peers include reduced parameter 
requirements and shorter computation time. PSO algorithm 
consists of particles that are represented by their position and 
velocity. The location of a particle in search space is governed 
based on its own experience and from experience gained by its 
neighbor particles. Position and velocity are updated according 
to the following equations.

where Xi is the position of the ith particle and velocity of 
the ith particle is Vi. k represents the current iteration, k + 1 
represents the next iteration values of the algorithm. pbesti is 
the best particle value of ith particle and gbest is the global 
best value among all particles. The overall flowchart for the 
optimization algorithms used is shown in Fig. 5.

4 � Fitness function for minimization of losses

In general, an optimization problem with multi objectives 
comprises of multiple functions as a set of control variables 
that are to be minimized or maximized without violating the 
constraint limits.

Such that, g(X, �) = 0 and h(X, �) = 0.

where fj is the jth fitness function, kobj is the number of fitness 
functions, g(X, �) is the equality constraints of the function and  
h(X, �) is inequality constraints of the function.

4.1 � Formulation of objective functions

This study considers the following minimization functions for 
the estimation of power loss.

(19)�U =

{
Γ(1 + �) sin (��∕2)

�Γ
[
(1 + �)∕2

]
2(�−1)∕2

}1∕�

, �V = 1,

(20)

Vi(k + 1) = w × Vi(k) + c1 × r1 ×
(
pbesti(k) − Xi(k)

)
+ c2 × r2 ×

(
gbest(k) − Xi

)

(21)Xi(k + 1) = Xi(k) + Vi(k + 1)

(22)Minize fj(X, �) = 0, j = 1, 2,…… ..kobj
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(23)Min(PLoss) =

NL∑
m=1

Pm

(24)Min
(
QLoss

)
=

NL∑
m=1

Qm

where NL is the number of lines, Pm is the active power 
loss in the line m,  Qm is the reactive power loss in the same 
line m

Fig. 5   Flowchart of MOCS and 
MOPSO algorithm Start

Read the system data

Initialize population of ‘n’
host nest

Evaluate the objective
function values

Get randomly a cuckoo (say
m) by Levy flights

Evaluate the fitness value
fm and check if it is pareto

optimal or not

Discard a fraction (pa) of
worse nests and generate the

fresh solution via Levy
flights

Retain the nests with non-
dominated sets

If fm > fp

Stop

Replace nest ‘m’ by
the new solution set

of nests ‘p’Yes

No

Sort and trace the present
Pareto optimal solution

If iteration >
maximum iteration

Yes

No

Select the optimization
method

MPSO

MOCS

Initialize particles

Evaluate the fitness function

Find the local and global best particles

Evaluate the particle
velocity and position at

current iteration

Evaluate the fitness function
using current iteration

particles

Find the present Pareto-
optimal solution

Sort out the non-dominate
particles

Find the local and global
best particles

Iteration = iteration + 1

If iteration >
maximum iteration

Stop
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Where,
Vi is the voltage magnitude at bus-i.
Vj is the voltage magnitude at bus- j.
Gij is the conductance of the line admittance between 

bus-i and bus-j.
Bij is the susceptance of the line admittance between 

bus-j and bus-j.
�ij  is the phase shift between bus-i  and bus-j 

respectively.
The variable constraints are given as follows:

(a)	 a. Equality constraints

where  Nb is the number of buses, Pgi and Qgi are the 
real and reactive power generation at bus-i , Pdi and Qdi are 
the real and reactive power demand at bus-i.

(b)	  Inequality constraints

Where:
VLi is the value of voltage at ith load bus.
VGi is the value of voltage at ith generator bus.

(25)Pm =
(
V2
i
+ V2

j
− 2ViVj cos �ij

)(
Gij

)

(26)Qm =
(
V2
i
+ V2

j
− 2ViVj cos �ij

)(
Bij

)

(27)Pgi − Pdi = Vi

Nb∑
j=1

Vj

(
Gij cos �ij + Bij sin �ij

)

(28)Qgi − Qdi = Vi

Nb∑
j=1

Vj

(
Gijsn�ij − Bij cos �ij

)

(29)Vmin
Li

≤ VLi ≤ Vmax
Li

(30)Vmin
Gi

≤ VGi ≤ Vmax
Gi

(31)Qmin
Gi

≤ QGi ≤ Qmax
Gi

(32)Qmin
c

≤ Qc ≤ Qmax
c

(33)Tmin
s

≤ Ts ≤ Tmax
s

(34)Vmin
um

≤ Vum ≤ Vmax
um

(35)�min
um

≤ �um ≤ �max
um

QGi is the reactive power generation at ith  generator 
bus.

Qc is the shunt capacitor reactive power generation at 
ith  bus.

Ts is the transformer tap setting ratio.
Vum is the voltage magnitude of UPFC at line-m , �um is 

the angle of UPFC at line-m.

5 � Solution of the multiobjective problem

5.1 � Pareto‑optimal method

To solve the multiobjective optimization problem the Pareto-
optimal method is exploited here in this work to produce a 
set of solutions. This method has the concept of dominance 
as its underlying principle. Vector V1 keeps dominating vec-
tor V2 given the below conditions are satisfied.

where p denotes the number of control variables.

5.2 � Best‑compromise solution

The best-compromise solution from the given set of Pareto-
optimal solution is decided by the fuzzy logic method 
(Solmaz et al.2015). For this sake, a fuzzy membership 
function is devised for every objective function which is 
given as follows.

where f min
k

 and f max
k

 corresponds to a totally permissible 
value and clearly impermissible value respectively, for the 
kth objective function. The membership function is given 
as follows.

where, for the rth non-dominated solution, NO and ND 
and are the number of objective functions and the num-
ber of Pareto-optimal solutions respectively. The solution 
that yields maximum membership is the best compromise 
solution.

(36)∀k =
{
1, 2,…… p}, fk(V1) ≤ fk(V2)

(37)∃l ∈
{
1, 2,… .p}fl(V1) < fl(V2)

(38)𝜇k(x) =

⎧⎪⎨⎪⎩

fmax
k

− fk(x) if fmin
k

< fk < fmax
k

1, if fk < fmin
k

0, if fk < fmax
k

(39)�r =

∑NO

k=1
�r
k∑ND

k=1

∑NO

k=1
�r
k
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6 � Simulation results

To test the efficacy of the proposed MOCS algorithm for 
solving the multiobjective optimization problem under 
consideration, simulation is carried out in MATLAB on a 
standard IEEE 30 bus whose structure is shown in Fig. 6. 
The power losses are first calculated by MOCS algorithm 
without installing UPFC. Later, MOCS applied is applied to 
estimate power losses by installing UPFC a strategic posi-
tion to show the effectiveness of UPFC in the reduction of 
power loss.

6.1 � Power losses reduction without UPFC

Initially, a regular system without installing UPFC is 
considered and losses are computed. The share of active 
power loss is found to be 5.5933 MW, and the share of 
reactive power loss is 21.0658 MVar. Now to the test 
system is subjected to MOCS, MOPSO and MOFA tech-
niques to compute the power loss. Table 1 presents the 
Pareto-optimal solution obtained after the application of 
MOCS, MOPSO and MOFA. The fuzzy logic method is 
employed to select the best-compromise solution from 
the pool of Pareto-optimal solution. The best-compromise 
solution generated by MOPSO for active power loss is 
5.3046 MW and for reactive power loss is 20.4657 MVar 

while it is 5.2831 MW and 20.4437 MVar by MOCS for 
active power loss and reactive power loss respectively. 
The best-compromise solution obtained by MOFA for 
active power loss is 5.292 MW and for reactive power 
loss is 20.4561 MVar. It is evident from the results that 
the three algorithms are quite effective in the reduc-
tion of system power loss. The best-compromise solu-
tion obtained from MOFA is better that of MOPSO. It 
can also be noted that MOCS outperforms both MOPSO 
and MOFA as the obtained best-compromise solution 
for power loss reduction from MOCS is better than that 
of MOPSO and MOFA. Figure 7 comparatively depicts 
the results obtained from MOCS, MOPSO and MOFA 
algorithms.

The individual CPU time taken to run all the algorithms 
is shown in Table 2. It is observed that MOPSO is taking 
relatively less time when compared to MOCS and MOFA. 
Although MOCS gave a better result, its run time is rela-
tively high.

6.2 � Power losses reduction with UPFC:

In this study, the line losses are calculated after installing 
UPFC. For tracing the optimal position of UPFC installa-
tion, the total system losses are estimated by fitting UPFC at 
all the lines of the test system considering one line at a time. 
Table 3 shows the total losses with UPFC placement. It is 
evident from Table 3 that the lowest magnitude of the system 
losses is 5.2754 MW and 20.0162 MVar which is found at 
position 27–30. Hence the optimal position to install UPFC 
is the line connecting buses 27 and 30. The optimized 
parameters of UPFC are for the Eq. (13) and Eq. (14) are 
r = 0.006 and � = 900 . The parameters are tuned by consid-
ering the range mentioned in (Noroozian et al. 1997).

Now the test system is subjected to MOCS, MOPSO 
and MOFA techniques to compute the power loss by fixing 
UPFC at the optimal position, i.e., at 27–30. Table 4 shows 
the Pareto-optimal solution obtained after the application 
of MOCS, MOPSO and MOFA. The fuzzy logic method 
is employed to extract the best-compromise solution from 
the pool of Pareto-optimal solution. The best-compromise 
solution generated by MOPSO for active power loss is 
5.0631 MW and for reactive power loss is 19.8832 MVar 
while it is 5.0375 MW and 19.8762 MVar by MOCS for 
active power loss and reactive power loss respectively. The 
best-compromise solution generated by MOFA for active 
power loss is 5.0406 MW and for reactive power loss is 
19.8783 MVar It is evident from the results that UPFC 
placement resulted in a reduction of system power loss. It 
can also be noted that MOCS outperforms both MOFA and 
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Fig. 6   Standard IEEE 30 bus system
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Table 1   Comparison of Pareto-optimal solution without UPFC

MOCS MOPSO MOFA

Pareto optimal 
solutions

Active power 
losses(MW)

Reactive power 
losses(MVar)

Active power 
losses(MW)

Reactive power 
losses(MVar)

Active power 
losses(MW)

Reactive power 
losses(MVar)

1 5.2764 20.5992 5.2871 20.6231 5.2849 20.6076
2 5.2764 20.5958 5.2874 20.6223 5.2849 20.6024
3 5.2766 20.5926 5.2878 20.6165 5.2851 20.5971
4 5.2767 20.5893 5.2880 20.6106 5.2852 20.5918
5 5.2768 20.5861 5.2882 20.6049 5.2853 20.5862
6 5.2769 20.5804 5.2886 20.5991 5.2854 20.5811
7 5.2771 20.5747 5.2893 20.5932 5.2856 20.5759
8 5.2774 20.5691 5.2901 20.5876 5.2856 20.5707
9 5.2774 20.5634 5.2906 20.5819 5.2859 20.5654
10 5.2776 20.5574 5.2913 20.5760 5.2861 20.5603
11 5.2779 20.5516 5.2919 20.5702 5.2863 20.5551
12 5.2782 20.5457 5.2924 20.5645 5.2865 20.5499
13 5.2785 20.5396 5.2931 20.5587 5.2867 20.5448
14 5.2789 20.5388 5.2937 20.5528 5.2869 20.5396
15 5.2790 20.5279 5.2943 20.5471 5.2872 20.5343
16 5.2793 20.5221 5.2951 20.5413 5.2875 20.5292
17 5.2796 20.5162 5.2958 20.5357 5.2878 20.5239
18 5.2798 20.5104 5.2964 20.5299 5.2879 20.5187
19 5.2801 20.5046 5.2971 20.5240 5.2882 20.5134
20 5.2804 20.4987 5.2978 20.5183 5.2885 20.5083
21 5.2807 20.4930 5.2985 20.5124 5.2887 20.5031
22 5.2810 20.4872 5.2992 20.5066 5.2890 20.4978
23 5.2813 20.4816 5.2998 20.5010 5.2893 20.4927
24 5.2817 20.4757 5.3006 20.4952 5.2895 20.4874
25 5.2820 20.4698 5.3013 20.4894 5.2898 20.4822
26 5.2822 20.4643 5.3019 20.4837 5.2901 20.4769
27 5.2825 20.4586 5.3031 20.4780 5.2904 20.4717
28 5.2827 20.4526 5.3034 20.4721 5.2907 20.4666
29 5.2828 20.4472 5.3041 20.4692 5.2909 20.4613
30 5.2831 20.4437 5.3046 20.4657 5.2912 20.4561
31 5.2839 20.4434 5.3052 20.4655 5.2918 20.4558
32 5.2846 20.4431 5.3054 20.4653 5.2923 20.4556
33 5.2854 20.4431 5.3056 20.4652 5.2927 20.4556
34 5.2863 20.4431 5.3058 20.4650 5.2931 20.4553
35 5.2868 20.4428 5.3062 20.4650 5.2936 20.4553
36 5.2871 20.4428 5.3065 20.4649 5.2941 20.4552
37 5.2876 20.4428 5.3067 20.4649 5.2944 20.4552
38 5.2879 20.4428 5.3069 20.4649 5.2950 20.4552
39 5.2885 20.4428 5.3076 20.4649 5.2954 20.4552
40 5.2891 20.4428 5.3081 20.4649 5.2960 20.4552
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MOPSO as the obtained best-compromise solution for power 
loss reduction from MOCS is better than that of MOFA and 
MOPSO. Figure 8 comparatively depicts the results obtained 
from MOCS, MOPSO and MOFA algorithms.

The individual CPU time taken to run all the algorithms 
after installation of UPFC at the optimal location is shown 
in Table 5. It is observed that MOPSO is taking relatively 
less time when compared to MOCS and MOFA. Although 
MOCS gave a better result, its run time is relatively high. 
It is also evident that the run time of all the algorithms 
increased after installing the UPFC.

A summary of all the results is shown in Table 6. It can be 
noted that before the installation of UPFC the power loss can 
be brought down by optimization. After the installation of 
UPFC, the power losses are further reduced. In both cases, 
MOCS has shown its superiority over MOPSO.

Fig. 7   Comparison of the best-compromise solution without UPFC

Table 2   CPU time without UPFC

Optimization method CPU time in seconds

MOCS 96.991889
MOPSO 24.729699
MOFA 46.944513

Table 3   Total losses with UPFC 
placement

Line number From bus—
To bus

Total power loss Line number From bus—
To bus

Total power loss

P
Loss

(MW)
Q

Loss

(MVar)
P
Loss

(MW)
Q

Loss

(MVar)

1 1–2 5.3932 20.8703 22 15–18 5.5770 21.0185
2 1–3 5.5450 20.9846 23 18–19 5.5753 21.0186
3 2–4 5.5644 21.0296 24 19–20 5.5724 21.0137
4 3–4 5.5491 21.0924 25 10–20 5.5851 21.0379
5 2–5 5.4472 21.1006 26 10–17 5.5821 21.0165
6 2–6 5.5312 20.9557 27 10–21 5.5937 21.0751
7 4–6 5.5234 21.0189 28 10–22 5.5954 21.0584
8 5–7 5.4946 21.0873 29 21–22 5.5204 20.8655
9 6–7 5.5068 21.6947 30 15–23 5.5689 20.9946
10 6–8 5.5598 20.9837 31 22–24 5.5642 21.0030
11 6–9 5.5962 21.0500 32 23–24 5.5674 21.0018
12 6–10 5.5968 21.0554 33 24–25 5.5791 21.0023
13 9–11 5.5918 20.9762 34 25–26 5.5524 20.9718
14 9–10 5.5909 21.0253 35 25–27 5.5704 20.9758
15 4–12 5.5673 20.9147 36 28–27 5.5713 20.9672
16 12–13 5.5634 20.9277 37 27–29 5.3229 20.1004
17 12–14 5.5660 20.9640 38 27–30 5.2754 20.0162
18 12–15 5.5651 20.9901 39 29–30 5.2779 20.0184
19 12–16 5.5810 21.0042 40 8–28 5.5735 20.9949
20 14–15 5.5736 20.9819 41 6–28 5.5892 21.0500
21 16–17 5.5818 21.0173
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Table 4   Comparison of Pareto-optimal solution with UPFC

MOCS MOPSO MOFA

Pareto optimal 
solutions

Active power 
losses(MW)

Reactive power 
losses(MVar)

Active power 
losses(MW)

Reactive power 
losses(MVar)

Active power 
losses(MW)

Reactive power 
losses(MVar)

1 5.0312 20.0186 5.0395 20.0297 5.0349 20.0403
2 5.0313 20.0095 5.0398 20.0188 5.0351 20.0333
3 5.0314 19.9983 5.0406 20.0178 5.0352 20.0263
4 5.0316 19.9953 5.0414 20.0175 5.0354 20.0203
5 5.0317 19.9870 5.0421 20.0071 5.0355 20.0143
6 5.0318 19.9839 5.0429 20.0069 5.0357 20.0093
7 5.0320 19.9813 5.0435 20.0068 5.0359 20.0043
8 5.0321 19.9791 5.0437 19.9978 5.0362 19.9993
9 5.0324 19.9761 5.0445 19.9973 5.0364 19.9933
10 5.0327 19.9733 5.0453 19.9867 5.0365 19.9863
11 5.0330 19.9668 5.0460 19.9791 5.0368 19.9803
12 5.0333 19.9636 5.0468 19.9739 5.0370 19.9753
13 5.0336 19.9593 5.0476 19.9736 5.0372 19.9703
14 5.0338 19.9554 5.0484 19.9679 5.0375 19.9643
15 5.0342 19.9518 5.0492 19.9629 5.0376 19.9583
16 5.0346 19.9483 5.0500 19.9581 5.0378 19.9533
17 5.0347 19.9449 5.0507 19.9560 5.0381 19.9473
18 5.0349 19.9416 5.0518 19.9530 5.0383 19.9416
19 5.0351 19.9363 5.0525 19.9480 5.0386 19.9353
20 5.0355 19.9304 5.0533 19.9430 5.0387 19.9283
21 5.0359 19.9236 5.0541 19.9380 5.0389 19.9233
22 5.0364 19.9168 5.0549 19.9302 5.0392 19.9183
23 5.0367 19.9089 5.0557 19.9281 5.0395 19.9123
24 5.0369 19.8912 5.0565 19.9230 5.0392 19.9063
25 5.0372 19.8784 5.0573 19.9180 5.0394 19.9003
26 5.0375 19.8762 5.0581 19.9131 5.0396 19.8943
27 5.0379 19.8762 5.0592 19.9123 5.0398 19.8893
28 5.0381 19.8762 5.0601 19.9107 5.0401 19.8762
29 5.0386 19.8762 5.0613 19.9082 5.0403 19.8833
30 5.0392 19.8762 5.0619 19.9031 5.0406 19.8783
31 5.0397 19.8762 5.0622 19.8981 5.0411 19.8780
32 5.0403 19.8761 5.0625 19.8931 5.0415 19.8780
33 5.0412 19.8761 5.0627 19.8882 5.0420 19.8780
34 5.0421 19.8760 5.0631 19.8832 5.0425 19.8778
35 5.0429 19.8760 5.0636 19.8828 5.0429 19.8778
36 5.0436 19.8760 5.0638 19.8828 5.0432 19.8778
37 5.0441 19.8760 5.0641 19.8826 5.0436 19.8776
38 5.0447 19.8759 5.0645 19.8826 5.0441 19.8776
39 5.0452 19.8759 5.0647 19.8826 5.0445 19.8776
40 5.0458 19.8759 5.0648 19.8826 5.0449 19.8776
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7 � Conclusion and future scope

In this study, a multiobjective problem is presented to 
simultaneously reduce active and reactive power loss by 
fitting UPFC at a strategic position. MOCS a very popu-
lar and effective multiobjective algorithm is incorporated 
for this purpose. To ascertain the merit of UPFC installa-
tion in power loss reduction, the multiobjective function is 
optimized with and without installation of UPFC. Simula-
tion results show that the optimal placement of UPFC can 
minimize the power losses. Reduction of power losses will 
enhance the system capacity without augmenting the gen-
eration capacity. Furthermore, the multiobjective problem 
considered is solved using MOPSO. Obtained results indi-
cate that the MOCS algorithm is relatively more effective in 
optimizing the considered multiobjective problem. In this 
study, the methodology is verified on a standard IEEE 30 
bus test system but the authors are of the opinion that the 
methodology may also be tested on various other standard 
test systems as an extension of this study. Furthermore, the 
robustness of the MOCS algorithm against various standard 
indices may also be checked. Also, various other FACTS 
devices like SVC, TCSC may be incorporated to reduce 
the power losses and comparison can be made among these 
devices to identify the better one.

Fig. 8   Comparison of best-compromise solution with UPFC

Table 5   CPU time with UPFC

Optimization method CPU time in seconds

MOCS 99.620892
MOPSO 26.037716
MOFA 51.959498
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