
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:5703–5720 
https://doi.org/10.1007/s12652-020-02110-y

ORIGINAL RESEARCH

Accurate classification of ECG arrhythmia using MOWPT enhanced fast 
compression deep learning networks

Jing‑Shan Huang1 · Bin‑Qiang Chen1 · Nian‑Yin Zeng1 · Xin‑Cheng Cao1 · Yang Li1

Received: 19 January 2020 / Accepted: 9 May 2020 / Published online: 19 May 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Accurate classification of electrocardiogram (ECG) signals is of significant importance for automatic diagnosis of heart 
diseases. In order to enable intelligent classification of arrhythmias with high accuracy, an accurate classification method 
based intelligent ECG classifier using the fast compression residual convolutional neural networks (FCResNet) is proposed. 
In the proposed method, the maximal overlap wavelet packet transform (MOWPT), which provides a comprehensive time-
scale paving pattern and possesses the time-invariance property, was utilized for decomposing the original ECG signals into 
sub-signal samples of different scales. Subsequently, the samples of the five arrhythmia types were utilized as input to the 
FCResNet such that the ECG arrhythmia types were identified and classified. In the proposed FCResNet model, a fast down-
sampling module and several residual block structural units were incorporated. The proposed deep learning classifier can 
substantially alleviate the problems of low computational efficiency, difficult convergence and model degradation. Parameter 
optimizations of the FCResNet were investigated via single-factor experiments. The datasets from MIT-BIH arrhythmia 
database were employed to test the performance of the proposed deep learning classifier. An averaged accuracy of 98.79% 
was achieved when the number of the wide-stride convolution in fast down-sampling module was set as 2, the batch size 
parameter was set as 20 and wavelet subspaces of low frequency bands in MOWPT were selected as input of the classifier. 
These analysis results were compared with those generated by some comparison methods to validate the superiorities and 
enhancements of the proposed method.

Keywords Electrocardiogram (ECG) · Arrhythmia classification · Maximal overlap wavelet packets transform (MOWPT) · 
Fast compression · Convolutional neural networks · Model parameter optimization

1 Introduction

Cardiovascular disease (CVD) is a major contributor to the 
growing public health epidemic in chronic diseases. The 
past decades have witnessed a continuous increase of the 
incidence of CVD. A high mortality rate is also reported 
among the patients with CVD (World Health Organiza-
tion 2017). Symptoms of arrhythmia in early onset of CVD 
have been widely reported in the clinical practices as well 
as the pathological researches. Arrhythmia is an important 
group of diseases in cardiovascular disease. Arrhythmia can 
occur on its own or with the other cardiovascular diseases. 
Therefore, an early detection of arrhythmias is essential for 

diagnosis early interventional treatment of this disease. The 
diagnosis of arrhythmia mainly depends on the ECG signal. 
Automatic detection of irregular heart rhythms from ECG 
signals is a significant task for the automatic diagnosis of 
cardiovascular disease.

An electrocardiogram (ECG) is related to a potential 
waveform that traces the weak electrical response formed 
on the body surface by bioelectrical changes that occur to 
cardiac activation. The tissues and body fluids surrounding 
the human heart have electrical conductivity. The human 
body is likened to a three-dimensional volume conductor 
with length, width and thickness. The heart is like a power 
source, and the sum of countless changes in action potentials 
of myocardial cells can be transmitted and reflected to the 
body surface. There are potential differences between some 
body surface points. Some body surface points are isoelec-
tric. The electrophysiological phenomenon of heart cells is 
the basis of heart movement. The heart conduction system 
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generates and conducts about 100,000 electrical impulses 
per day under normal circumstances. It excites the muscle 
cells of the atrium and ventricle, causing them to contract 
and relax regularly and thereby realizing the function of 
“blood pump” (Ji 2006). A complete ECG is composed of 
multiple sets of ECG waveforms. A complete ECG data 
period contains the main wave groups such as P wave, QRS 
wave group and T wave. Each waveform information and 
characteristic wavelet have certain energy and physiological 
significance. QRS wave group generally has more energy 
with higher amplitude than P wave and T wave. As shown 
in Fig. 1.

ECG has been widely used in clinical practices due to 
the characteristics of reliable diagnosis, simple realization, 
non-invasive and harmless to patients. The performance 
of traditional intelligent fault diagnosis methods depends 
on feature extraction of dynamic signals, which requires 
expert knowledge and human labor (Cao et al. 2019a, b). 
The early diagnosis of arrhythmia mainly relies on expe-
rienced doctors to interpret the characteristics of ECG sig-
nals. It requires high professional knowledge of doctors. The 
accuracy of diagnosis is greatly affected by environmental 
factors and mental states. In addition, a large amount of ECG 
data will be generated when the patient is monitored for a 
long time, and therefore it cannot meet the current medical 
demands by merely relying on artificial interpretation and 
analysis. Automatic ECG signal diagnosis technology has 
become a research hotspot with the continuous development 
of computer science recently. It is providing doctors with 
increasingly efficient and reliable evidence for diagnosis.

Traditionally, the classification of ECG signals usually 
needs to be divided into three steps, i.e., signal preprocess-
ing, feature extraction and pattern classification. The signal 
preprocessing aims at eliminating various types of noise in 
the ECG signal, including artifacts and baseline drift in the 
signal. A large number of methods have been reported in the 
literature for denoising of ECG signals. This includes the 
traditional filtering operations such as the use of low-pass 

filters (Slonim et al. 1993), Weiner filters (Chang and Liu 
2011), adaptive filters (Thakor and Zhu 1991) and filter-
banks (Afonso 2011). In addition, methods like the recursive 
least square (RLS) (Muhsin 2011), least mean square (LMS) 
(Islam et al. 2012), as well as the extended Kalman filters 
(Sayadi and Shamsollahi 2008), adaptive wavelet-Wiener 
filters (Smital et al. 2012) and adaptive filtering with neu-
ral networks (Poungponsri and Yu 2013) have also been 
explored. In a recently reported work, Pratik Singh et al. 
(2018) presented an ECG denoising method based on an 
effective combination of non-local means (NLM) estimation 
and empirical mode decomposition (EMD). Rashmi et al. 
(2017) proposed an efficient denoising method using wave-
let transform, and the results showed that signal noise ratio 
(SNR) of ‘sym8’ wavelet transform is greater than that of the 
digital filter using the blackman window. A hybrid technique 
including the combination of Median filter, Savitzky–Golay 
filter, the extended Kalman filter and the discrete wavelet 
transform has been focused for separation of noise from 
ECG signal (Kaur and Rajni 2017). Zhang et al. (2017) pro-
posed an ECG signals denoising method based on improved 
wavelet threshold algorithm which combines the soft and 
hard threshold. The experimental results indicate that the 
proposed algorithm can effectively filter out the noise of 
ECG signals. It can better retain the characteristic informa-
tion of the ECG signal, has a higher signal-to-noise ratio and 
achieve a better denoising effect.

After the step of signal preprocessing, a series of feature 
indicators are extracted from the ECG waveforms. Feature 
selection algorithms such as principal component analysis 
and whale optimization algorithm (Zhang et al. 2018) can 
be employed to generate a more efficient and compact fea-
ture vectors. Other methods were also employed for extract-
ing features from ECG signals. Elhaj extracted the linear 
and nonlinear features from the signals for automatic ECG 
beat recognition (Elhaj et al. 2016). Alickovic and Subasi 
(2015) proposed an autoregressive (AR) model in the fea-
ture extraction module for diagnosing heart diseases. Kumar 
et al. (2017) utilized a flexible analytic wavelet transform 
framework to decompose the raw ECG into different fre-
quency bands and extracted the sample entropy of the sub-
signals as features to diagnosis myocardial infarction. Cao 
et al. (2019a, b) applied the derived wavelet frames (DWFs) 
decomposition to decompose and reconstitute the segmented 
short samples of ECG signal. Özbay et al. (2011) computed 
detail and approximation wavelet coefficients of the ECG 
features to generate feature vectors. A dual tree complex 
wavelet transform (DTCWT) based feature extraction tech-
nique for automatic classification of cardiac arrhythmias 
was proposed by Thomas et al. (2015), and the feature set 
comprises of complex wavelet coefficients extracted from 
the fourth and fifth scale DTCWT decomposition of a QRS 
complex signal in conjunction with four other features (AC 
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Fig. 1  The waveform of a typical ECG Signal in the time domain
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power, kurtosis, skewness and timing information) extracted 
from the QRS complex signal.

After the step of feature extraction, classification is tra-
ditionally conducted using state-of-the-art classifiers such 
as support vector machines (SVM), neural networks (NN), 
cluster analysis (CA), random forests (RF), optimum-path 
forest (OPF) and some other classification tools (Yildirim 
2018). Martis et al. (2013) automatically classified five types 
of ECG beats using HOS features (higher order cumulants) 
and three layer feed-forward Neural Networks (NN). Least 
Square-Support Vector Machine (LS-SVM) classifiers. 
Varatharajan et al. (2018) presented a big data classification 
approach using LDA with an enhanced SVM method for 
ECG signals in cloud computing. Diker et al. (2019) pro-
posed a new technique for ECG signal classification using 
genetic algorithm wavelet kernel extreme learning machine. 
The threshold algorithm of Kolmogorov–Smirnov test was 
implemented to the detection of the transition between Atrial 
Fibrillation and Sinus Rhythm by Huang et al. (2010). Yeh 
et al. (2012) proposed a method of analyzing ECG signal 
to diagnose cardiac arrhythmias utilizing the cluster analy-
sis (CA) method. Raman and Ghosh (2016) proposed an 
approach for classification of Heart Diseases based on ECG 
analysis using type2-fuzzy c-means (FCM) and SVM Meth-
ods. Li and Min (2016) proposed a method to classify ECG 
signals using wavelet packet entropy (WPE) and random 
forests (RF) following the Association for the Advancement 
of Medical Instrumentation (AAMI) recommendations and 
the inter-patient scheme. De Albuquerque et al (2016) intro-
duced the Optimum-Path Forest (OPF) classifier to auto-
matic arrhythmia detection in ECG patterns.

Most of the above methods for classifying ECG signals 
rely entirely on extracting manual features from ECG sig-
nals. This can be done by using traditional feature extraction 
algorithms or using human expert knowledge. The quality 
of the extracted features has a significant impact on the 
reliability and performance of the classification/prediction 
strategy (Lv 2018). Therefore, it is always desirable to be 
able to extract the most essential disease risk factor-related 
features. However, the waveform information and energy of 
ECG at different times are hugely different, and the informa-
tion characteristic parameters range of ECG waveforms for 
different diseases is also uncertain. Manual features may not 
represent the fundamental differences between categories. It 
can’t represent the physiological and pathological potential 
risk factors of heart rhythm in ECG data, thus limiting the 
performance of classification recognition models.

Due to the ability to process large datasets and extract 
hidden patterns, Machine learning techniques have been 
widely used in medical diagnosis and health informatics, 
including cerebral micro-bleeding identification (Hong et al. 
2019; Wang et al. 2019a, b, c, 2020), lung tumor identifica-
tion (Wang et al. 2017), gingivitis identification (Li et al. 

2019), alcoholism identification (Wang et al. 2019a, b, c), 
multiple sclerosis classification (Zhang et al. 2019), senso-
rineural hearing loss identification(Wang et al. 2019a, b, c), 
sign language recognition (Jiang and Zhang 2019), biosensor 
analysis (Zeng et al. 2019) and ECG classification (Huang 
et al. 2019). Owing to the outstanding performances of deep 
learning methodologies in pattern recognition problems, 
ECG classification using deep learning related techniques 
has become research hotspots. Various new algorithms 
and technologies are integrated into the ECG classification 
method, which is of great significance to achieve graded 
diagnosis and treatment and rational allocation of medical 
resources (Zhu 2013). Salloum and Kuo (2017) proposed the 
recurrent neural networks (RNNs) to develop an effective 
solution to identification and authentication in electrocar-
diogram (ECG)-based biometrics. Mostayed et al. (2018) 
proposed a recurrent neural network which consists of two 
bi-directional long-short-term-memory layers to detect 
pathologies in 12-lead ECG signals. Kiranyaz et al. (2015) 
proposed a real-time patient-specific ECG classification 
approach based on the 1D convolutional neural networks, 
which can be solely used to classify long ECG records of 
patients. Yin et al. (2016) proposed an ECG monitoring 
system integrated with the Impulse Radio Ultra Wideband 
(IR-UWB) radar based on CNN. Salem et al. (2018) pro-
posed an ECG arrhythmia classification method using trans-
fer learning from 2D deep CNN features, and the method 
was applied in the identification and classification of four 
ECG patterns. Huang et al. (2019) transformed five types of 
heart beats’ signals into time–frequency spectrograms and 
then trained a 2D-CNN for classifying arrhythmia types. 
Andersen et al. (2019) employed the RR intervals for train-
ing deep CNNs to identify Atrial Fibrillation. Sellami and 
Hwang (2019) proposed a deep convolutional neural net-
work (DCNN) enhanced with batch-weighted loss func-
tion for accurate heartbeat classification Faust et al. (2018) 
utilized the heart rate sequence as the analysis object, and 
applied deep bidirectional long-short term memory networks 
to identify whether the sample had AF phenomenon. Erden-
ebayar et al. (2019) designed a DCNN with an intermediate 
fully connected layer to identify atrial fibrillation.

Through a comparative analysis of existing domestic 
and foreign arrhythmia classification algorithms, it is found 
that most of the research is still based on statistical pattern 
recognition classification algorithms. However, this kind of 
algorithm relies too much on the construction of the classi-
fication pattern space, resulting in the limitation of artificial 
construction. Moreover, this kind of algorithm includes two 
independent tasks of feature extraction and classification, 
There is a complexity of data reconstruction between the 
two tasks. The automatic arrhythmia classification algorithm 
based on deep neural network can learn the implicit features 
of heartbeat by neural network with multiple hidden layers. 
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These implicit features are conducive to improving the rec-
ognition effect of heartbeats, and can avoid the complexity 
and limitations of artificially constructing the heartbeat pat-
tern space.

However, the existing classification algorithms based on 
deep neural networks still have deficiencies.

1. In order to meet the input data size requirements of exist-
ing convolutional neural network models, encoding or 
resampling operations are usually used in the data pre-
processing stage to unify the data size. However, it will 
destroy some useful information of the original data, 
which will adversely affect the recognition ability of the 
model.

2. ECG data is a signal on the one-dimensional time series, 
so that the local perception field in the one-dimensional 
convolutional neural network model is divided in the 
time dimension. As a result, it fails to establish a dis-
tributed heart beat feature expression in multiple dimen-
sions and results in an unsatisfactory recognition effect.

3. Due to too many network parameters, the time cost of 
training the model is large and the real-time perfor-
mance is poor in the deep network model with multiple 
hidden layers.

In view of the shortcomings of the existing automatic 
classification algorithm of arrhythmia based on deep neu-
ral network, we aim to design an efficient automatic ECG 
arrhythmia classification method according to the data size 
of the authoritative ECG database and the characteristics of 
ECG signals.

In this paper, we propose an accurate ECG arrhythmia 
classification method using the fast compression residual 
convolutional neural networks (FCResNet), where wavelet 
packets decomposition (WPD) is used for preprocessing. 
The time domain signals of ECG, belonging to five heart 
beat types including normal beat (NOR), left bundle branch 
block beat (LBB), right bundle branch block beat (RBB), 
premature ventricular contraction beat (PVC), and atrial 
premature contraction beat (APC), were decomposed and 
reconstituted into sub-signal samples of different scales. 
Subsequently, the samples of the five arrhythmia types 
were utilized as input of the FCResNet such that the ECG 
arrhythmia types were identified and classified finally. Using 
ECG recordings from the MIT-BIH arrhythmia database as 
the training and testing data, the classification results show 
that the proposed FCResNet model can reach an averaged 
accuracy of 98.79%.

The rest of this paper is organized as below. In Sect. 2, 
we explain the dataset and methodologies used for the ECG 
arrhythmia classification, including method overview, data-
base and segmentation, signal decomposition via MOWPT 
and the proposed FCResNet model. In Sect. 3, numerical 

evaluation and experimental results of ECG arrhythmia clas-
sification are shown, including performance evaluation of 
different sub-band reconstructed dataset in FCResNet, per-
formance evaluation of different batch sizes in FCResNet. 
In Sect. 4, we show the model parameter optimization with 
results, and discuss the comparison with other existing 
approaches. Finally, we give the conclusion in Sect. 5.

2  Datasets and methods

2.1  Method overview

The overall procedures of the proposed ECG arrhythmia 
classification model are shown in Fig. 2. The original ECG 
signals were shared by the MIT-BIH arrhythmia database 
(Moody and Mark 2001). There are five ECG types includ-
ing normal beat (NOR), left bundle branch block beat 
(LBB), right bundle branch block beat (RBB), premature 
ventricular contraction beat (PVC), atrial premature contrac-
tion beat (APC). Each ECG record annotation was made by 
two or more cardiologists independently so that disagree-
ments were resolved. First of all, the input ECG signals were 
divided into data recordings with an identical duration of 
10 s. Afterward, each ECG signal record is decomposed and 
reconstituted into sub-signal samples of different scales by 
using the wavelet packet decomposition. The ECG recon-
structed sub recordings are fed into the proposed FCResNet. 
Finally, classification of the five ECG types is performed 
in the FCResNet classifier automatically and intelligently.

2.2  Introduction of typical arrhythmia types

Arrhythmia refers to the abnormality of the heart’s starting 
position, conduction velocity, activation sequence, heartbeat 
frequency and rhythm. The reliability and stability of cardiac 
electrical activity mainly depend on the frequency and type 
of arrhythmia. Arrhythmia usually affects the pumping effi-
ciency of the heart and the timing of contractions. Therefore, 
the timely and accurate identification of arrhythmia plays an 
irreplaceable role in the treatment of heart disease patients 
(Zhao 2015).The following are several common types of 
arrhythmia:

1. Left bundle branch block beat (LBB)
  LBB refers to conduction block under the His bundle 

and atrioventricular bundle. The probability of LBB is 
lower than that of RBB. The characteristics of LBB on 
ECG are as follows.

  (1) The QRS wave period is usually greater than 
0.12 s.

  (2) The QRS wave is deformed. For example, the R 
wave will be distorted, notched, too wide, etc.
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  (3) The directions of QRS complex and ST-T segment 
are different.

2. Right bundle branch block beat (RBB)
  The characteristics of LBB on ECG are as follows.
  (1) The QRS time limit is usually greater than 0.12 s.
  (2) The S wave time limit is usually greater than 

0.04 s, the wave width increases significantly, but the 
amplitude is not large.

  (3) The directions of ST-T and QRS waves are differ-
ent.

3. Premature ventricular contraction beat (PVC)
  The most common type of arrhythmia is PVC. When 

sinus arousal has not been transmitted to the ventricle, 
the heart will beat in advance. The characteristics of 
PVC on ECG are as follows.

  (1) The QRS wave group is generated in advance, but 
no P wave is generated.

  (2) The direction of T wave is inconsistent with QRS 
complex.

  (3) The QRS complex waveform is too wide and dis-
torted.

  (4) There is a complete compensation interval. The 
early part of the premature beat is made up by the part 
after the premature beat.

4. Atrial premature contraction beat (APC).

Early atrial ectopic heart beats can cause AVC. The char-
acteristics of atrial premature beats on the electrocardiogram 
are as follows.

1. The P wave is generated in advance (the P wave is super-
imposed on the T wave of the previous sinus beat).

2. The shape of sinus P wave is different from P wave.
3. The PR interval is normal or slightly longer.
4. The QRS complex after P is abnormal, distorted and 

deformed.
5. Incomplete compensation intervals usually occur.

Waveforms of the ECG signals are shown in Fig. 3.

2.3  Database and segmentation

All ECG recordings are obtained from the MIT-BIH (Massa-
chusetts Institute of Technology-Beth Israel Hospital, MIT-
BIH) arrhythmia database to evaluate the performance of the 
proposed technique. MIT-BIH ECG database is jointly con-
structed by Massachusetts Institute of Technology and Beth 
Israel Hospital. The MIT-BIH ECG database was published 
on the Internet in 1999 with the support of the National 
Research Resource Center and the National Institutes of 
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Health, and all ECG records of the database can be down-
loaded and used by researchers for free. The MIT-BIH ECG 
database includes many sub-databases in which specific 
types of ECG fragments are recorded. Among the sub-data-
bases, the MIT-BIT arrhythmia database is widely used in 
the design and analysis of various arrhythmia methods. The 
MIT-BIH arrhythmia database is the first experimental data 
database to be widely used to evaluate arrhythmia detec-
tion standards, and many researches about ECG at home and 
abroad are based on this database. For example, Kiranyaz 
et al. (2015) and Zhai and Tin (2018) used the database as 
an experimental data source to carry out research work on 
a variety of arrhythmia self-classification algorithms. Since 
1980, it has been used in arrhythmia detection and cardiac 
dynamics basic research at about 500 locations worldwide 
(Labati et al. 2018). In order to facilitate the comparative 
analysis with the existing algorithms, this article selects 
the MIT-BIT arrhythmia database as the experimental data 
source in the subsequent chapters.

The database contains normal beat and a few common 
types of life threatening arrhythmias. The database was cre-
ated in 1980 as a reference standard for arrhythmia detectors. 
The database comprises of 48 recordings, each containing 
30 min of ECG segment selected from 24 h recordings of 48 
different patients. The first 23 recordings correspond to the 
routine clinical recordings while the remaining recordings 

contain the complex ventricular, junctional, and supraven-
tricular arrhythmias (Moody and Mark 2001). These ECG 
records were sampled at 360 Hz and band pass filtered at 
0.1–100 Hz. Comparisons of the dataset used in this work 
are summarized in Table 1.

The signals were divided into 2520 samples for ECG clas-
sification, and each sample was re-segmented of 10 s. The 
related information of the employed data from the MIT-BIH 
arrhythmia database is listed in Table 1. As Table 1 shows, 
samples of NOR were obtained from records 100, 105 and 
215. Samples of LBB were derived from records 109, 111 
and 214. Samples of RBB were obtained from records 118, 
124 and 212. Samples of APC were obtained from records 
207, 209 and 232. For the above four types, Each type of 
ECG signals has 450 samples for the training set and 90 
samples for the testing set. Samples of PVC were obtained 
from records 106 and 233. The type of PVC has 300 samples 
for the training set and 60 samples for the testing set.

2.4  Signal decomposition via MOWPT

The ECG signal is a non-stationary signal with strong impact 
characteristics (Shen and Shen 2010). The amplitude of the 
ECG is a few millivolts. As a result, ECG is extremely sus-
ceptible to environmental noise and other factors. Noise is 
generated due to interferences such as medical equipment 
and human activities in the process of collecting ECG sig-
nals. Studies have shown that ECG signals usually have the 
following three sources of interference (Yao 2012):

(1) Power frequency interference
  Power frequency interference is caused by the 

capacitance and electrodes distributed in the human 
body. The interference amplitude of ECG signals col-
lected under different external environments can reach 
0–50% of the peak value of the R wave. Moreover, the 
frequency of power frequency interference fluctuates 
randomly within a certain range centering on 50 Hz as 
the power grid load changes.

(2) Electromyogram interference
  There is a typical skin potential of 30 mV between 

the inside and outside of the human epidermis. This 
electric potential will change with the movement state 

NOR

LBB

RBB

PVC

APC

Fig. 3  Waveforms (V5 lead) of normal beat and that of the other four 
ECG arrhythmia diseases (Huang et al. 2019)

Table 1  The ECG data downloaded from MIT-BIH database

Arrhythmia Type MIT-BIH Training set Testing set

NOR 100,105,215 450 90
LBB 109,111,214 450 90
RBB 118,124,212 450 90
PVC 106,223 300 60
APC 207,209,232 450 90
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of human body limbs. For example, the skin potential 
drops to about 25 mV when the limb is stretched. This 
5 mV skin potential change reflects the noise caused by 
myoelectric contraction. We call it myoelectric inter-
ference. It will also produce EMG noise caused by the 
random contraction of many muscle fibers if the subject 
is nervous or cold. In addition, some diseases such as 
hyperthyroidism can also produce myoelectric noise. 
The frequency range of EMG interference is between 
5 and 2000 Hz. The spectral characteristics are close 
to white noise and usually appear as rapidly changing 
and irregular waveforms.

(3) Baseline drift
  The baseline drift noise is mainly caused by limb 

activity, breathing, ECG acquisition mode and acqui-
sition circuit. It is characterized by a slow change in 
baseline drift. It belongs to a low-frequency signal with 
a frequency range of 0.05 Hz to a few Hz and energy 
mainly around 0.1 Hz. At the same time, the amplitude 
variation range is about 15% of the highest amplitude 
in the ECG signal. The baseline drift noise is very close 
to the spectral distribution of the S-T segment in the 
heartbeat signal. It is easy to cause severe distortion 
of the S-T segment and affect the recognition effect of 
heart beats in the later stage if the filtering method is 
not properly selected.

The features of ECG signal are concentrated on the lower 
frequency band of the frequency domain, and Afonso et al. 
(1995) assert that the effective frequency band does not 
exceed 25 Hz. From the perspective of signal processing, 
wavelet transform algorithm has achieved good results in 
ECG baseline wandering elimination, QRS complex analysis 
and feature extraction (McDarby et al. 1998; Banerjee and 
Mitra 2010; Tripathy and Dandapat 2016). However, the 
traditional wavelet transform has a weak ability to identify 
repeated transient impacts (Wang et al. 2010). In this paper, 
we apply the method of maximal overlap wavelet packet 
transform (MOWPT) to the ECG data pre-processing.

Wavelet packet transform is a further development based 
on wavelet transform, which has higher resolution than 
wavelet transform. It overcomes the shortcomings of poor 
frequency resolution of the wavelet transform in the high 
frequency band. It can divide the high-frequency part more 
finely. It has the characteristic of frequency band adaptive 
selection, which matches the original signal spectrum by 
itself. Therefore, it can improve the time–frequency resolu-
tion and help obtain more detailed information about the 
signal.

In general, the wavelet packet transform (DWT) decom-
poses an input signal into scaling and wavelet coefficients 
by means of convolution with low- and high-pass filters 
respectively, in various sub bands or levels. The discrete 

wavelet packet transform (DWPT) is an orthonormal 
transform, which can be implemented efficiently using a 
very simple modification of the DWT pyramid algorithm 
(Percival and Walden 2000). In contrast to the DWT, the 
decomposition process of the DWPT is performed on both 
the scaling and wavelet coefficients. It promotes uniform 
frequency bands. According to (Mallat 1999), the DWPT 
coefficients at any level j is obtained from the convolution 
of the sampled original signal with the infinite impulse 
response filters g and h, as follows

where S0
0
 is the original signal; z = 2m is the node number, 

where m ⊂ N  and at scale j , m ≤ 2j−1 − 1 ; the node zero 
component S0

j
(k) represents the decomposition packet coef-

ficients of the lowest frequency band at scale j , whereas at 
any other node, i.e., for ( z ≠ 0 ), Sz

j
(k) represents the decom-

position packet coefficients of the higher frequency bands at 
scale j . The scaling and wavelet filters g and h present the 
following properties (Percival and Walden 2000)

According to Eqs. (1) and (2), the DWPT coefficients 
are computed in alternate samplings due the process of the 
down-sampling by a factor of 2 (time-variant property). 
The MOWPT decomposes also an input signal in coeffi-
cients for several levels through low- and high-pass filters, 
presenting uniform frequency output bands. In contrast to 
the DWPT, there is no down-sampling by a factor of two in 
MOWPT (time-invariant transform). In the reconstruction 
or synthesis, the decomposition coefficients are convolved 
to the reverse low- and high-filters in order to reconstruct 
the original signal. The MOWPT algorithm has all the 
advantages of DWPT. It can further decompose the high-
band signal and improve the frequency resolution of the 
signal. Figure 4 depicts the process of decomposition and 
reconstruction of a signal x using a two-level decomposi-
tion tree of the MOWPT.

According to (Mallat 1999), the MOWPT decomposi-
tion and reconstruction coefficients at any level j are given 
by

(1)s2z
j
(k) =

+∞
∑

n=−∞

g(n)sz
j−1

(2k − n)

(2)s2z+1
j

(k) =

+∞
∑

n=−∞

h(n)sz
j−1

(2k − n)

(3)
+∞
�

n=−∞

g(n) =
√

2,

+∞
�

n=−∞

g2(n) = 1,

+∞
�

n=−∞

g(n)h(n) = 0

(4)
+∞
∑

n=−∞

h(n) = 0,

+∞
∑

n=−∞

h2(n) = 1,

+∞
∑

n=−∞

g(n)h(n) = 0
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Referring to the sampling frequency and bandwidth of 
the original record, the number of decomposition layers is 
set to 4. Figure 5 shows samples representing each type.

(5)s2z
j
(k) =

1
√

2

+∞
�

n=−∞

g(n)sz
j−1

(k − n)

(6)s2z+1
j

(k) =
1
√

2

+∞
�

n=−∞

h(n)sz
j−1

(k − n)

(7)a2z
j−1

(k) =
1
√

2

+∞
�

n=−∞

g(n)s2z
j
(n − k)

(8)a2z+1
j−1

(k) =
1
√

2

+∞
�

n=−∞

h(n)s2z+1
j

(n − k)

2.5  Residual neural network theory

The residual neural network was produced in 2015. It draws 
on the ideas of Highway networks (Srivastava et al. 2015). 
For traditional convolutional neural networks, the learn-
ing ability of the network will increase as the depth of the 
network increases. However, the convergence speed of the 
network will slow down and the time required for training 
will also become longer. When the network depth reaches a 
certain number of layers, the learning rate will decrease and 
the accuracy rate will not be effectively improved or there is 
a risk of decline. This phenomenon is called “degradation”. 
The emergence of residual neural network is to overcome 
these degradation phenomena.

For the general conventional convolutional neural net-
work, the input of each layer is derived from the output of 
the previous layer (Qin 2019). The network model is shown 
in Fig. 6a, which we call the Plain Network. The data is pro-
cessed by the filter every time it passes through the convolu-
tion/pooling operation of the previous layer. The processing 
result is to make the input vector have a smaller size after the 
pooling operation. The purpose is to reduce the number of 
network parameters and prevent the occurrence of overfit-
ting. If we perform gradient calculations in a network with 
many layers, our network will be easily paralyzed. Therefore, 
we used a new network structure-residual neural network to 
solve the problem of the gradient disappearance or gradient 
explosion in the deep network.

The network structure of the residual network is shown in 
Fig. 6b. It is similar to a "short circuit" structure. The output 
of the previous layers does not go through the processing of 
the middle multiple network layers but directly serves as the 
input part of the network layer behind. The "clear" data in 
the front and the “fuzzy” data after multiple processing are 
passed into the neural layer as the input of the network layer 
(Ji 2019). Compared with the network model without add-
ing the "short circuit" structure, the input data is more clear.

The residual structure ResNet has transformed the learn-
ing objectives. It no longer learns a complete mapping rela-
tionship from input to output, but the difference between the 
optimal solution H(x) and the input congruent mapping x , 
The residual calculation formula is as follows

The processing of each layer in the ordinary structure 
is closely related to the output of the previous layer. In the 
residual network, the input data comes from different com-
binations of the previous network structure and not only 
depends on the output of the previous layer. In this way, rich 
reference information is introduced to extract the features 
of the input data (Liu 2018). As the paths in the network 
are relatively independent and independent of each other, 

(9)F(x) = H(x) − x
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the regularization effect of the overall network structure is 
better.

2.6  Proposed convolutional networks

Convolutional neural network (CNN) is a special deep 
feedforward neural network designed by the inspiration 
of the concept of “receptive field” in the field of biologi-
cal neuroscience (Wang 2008). The general CNN structure 
consists of an input layer, multiple alternating convolu-
tional and pooling layers (down sampling layers), a fully 
connected layer, and an output layer. The non-linear fit-
ting ability of the deep neural networks will increase with 
the increase of the number of layers and the number of 
neurons. At the same time, the problem of gradient disap-
pearance will occur in the simple stacked network layers. 
The network can be converged by means of specification 
initialization and introduction of a median normalization 
layer. However, the accuracy of the model will decrease 
as the depth deepens (He et al. 2016; Yu et al. 2016) when 
the accuracy of the network model reaches saturation. 
Such problems are not caused by overfitting. An implicit 
abstract mapping relationship is learned by adjusting 
parameters in a neural network, but it is difficult to be 
optimized in deeper networks. In the learning process of 
the residual convolutional neural networks algorithm, mul-
tiple consecutively stacked non-linear computing layers 
(such as four-layer convolution) are used to fit the residual 
between the input data and the mapped output data. The 
closer this residual value is to 0, the closer the features 

extracted by this network are to the original input. CNNs 
composed of residual block local deep neural networks 
units can solve problems such as difficulty in convergence 
and tuning of deep networks, and it overcomes the problem 
of CNN degradation as networks layers increase.

In this section, we propose the fast compression residual 
convolutional neural networks (FCResNet). As shown in 
Fig. 7, FCResNet is mainly composed of several modules: a 
fast down-sampling module, 3 residual convolution modules 
and a classification module.

Convolutional layer with a stride of 3 in the fast down-
sampling module is shown in Fig. 8. In neural networks, 
the pooling layer can also be used for data compression, 
reducing overfitting and improving the model’s fault toler-
ance. However, the nonlinearity of the pooling layer is fixed 
and nulearnable. The pooling layer will lose most of the 
original image information, while increasing network depth 
and space–time efficiency. Compared with the pooling layer, 
using convolutional layer with a stride to compress the input 
data can adaptively learn the convolution kernel and achieve 
the purpose of down sampling. Therefore, we use convolu-
tional layer with a stride instead of pooling layer.

In the fast down-sampling module, two convolutional 
layers with a stride of 3 are the principle part, and each 
convolutional layer is followed by a random dropout layer 
and a batch-normalization layer to enhance the generaliza-
tion of the model. The input sample length is 3600. The fast 
down-sampling module effectively reduces the calculation 
of subsequent deep networks. Meanwhile, it reduces data 
redundancy and facilitates model learning.

The residual convolution module consists of convolu-
tional layers in series and residual short circuit follows this. 
Then, the max-pooling layer is added to down-sample the 
feature vectors.

Finally, the classification module consists of 1 flatten 
layer, 2 full connection layers and a softmax classifier. 
Before flatten layer, a convolution layer is used to reduce 
the dimension of the feature vectors. After flatten layer, a 
random dropout layer is used to prevent overfitting.

The explanations for the applied functions in the 
FCResNet model are shown in Table 2.

3  Experimental results

3.1  Evaluation metrics

We used the precision, recall, f1-score, accuracy and loss 
that were used as the performance evaluation criteria in the 
pattern recognition field for the performance analysis of each 
class. The precision, recall, f1-score, and accuracy for each 
class was calculated through Eqs. (10), (11), (12), and (13).

Weight layer

Weight layer

Weight layer

Weight layer

relu

relu

relu

reluH(x)=F(x)+x

xx

F(x)F(x)

(a) (b)

Plaint net Residual net

Fig. 6  Common structure block and residual structure block (He et al. 
2016)
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where TP stands for true positive, meaning the correct 
classification as arrhythmia; TN stands for true negative, 
meaning correct classification as normal; FP stands for false 
positive, meaning incorrect classification as arrhythmia; FN 
represents false negative, meaning incorrect classification as 
normal (Yin et al. 2016).

(10)Precision(%) =
TP

TP + FP
× 100,

(11)Recall(%) =
TP

TP + FN
× 100,

(12)F1Score = 2 ×
Precision × recall

Precision + recall
,

(13)Accuracy(%) =
TP + TN

TP + TN + FP + FN
× 100,
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Fig. 7  The architecture of the proposed FCResNet

…

…

…

…

…

…

…

…

Fig. 8  Convolutional layer with a stride of 3 in the fast down-sam-
pling module



5714 J.-S. Huang et al.

1 3

As for the metric of loss, it is defined as the difference 
between the predicted value of the model and the true value 
for a specific sample. This metric has several distinct types 
of mathematical expressions. In this study, we choose the 
function of categorical cross entropy loss

where n represents the number of samples; m represents 
the number of categories; ŷ represents the predictive output 
value; and y represents the actual value.

3.2  Performance evaluation of different 
down‑sampling module in FCResNet

The down-sampling module mainly undertakes two 
functions:

First, quickly reducing the dimension of the feature vec-
tor and reducing the calculation of the entire model; Sec-
ond, concentrating the waveform features of the electrocar-
diogram to remove redundant details (Cao et al. 2019a, b). 
The results of the sixfold cross-validation of the FCResNet 
using down-sampling modules containing different number 
of wide-stride convolution (WSConv) layer are shown in 
Fig. 9, and the number of the epoch is 100. It is particularly 
noteworthy that large-scale data redundancy is not condu-
cive to the improvement of accuracy if the sample is directly 
processed by the residual convolution module. The over-
fitting problem is exacerbated and the loss value is quickly 
diverged. Regard less of the number of WSConvs, various 
down-sampling modules effectively improve accuracy and 
reduce loss values. It can be seen that the cross-validation 
results of the model are scattered and the model is not stable 
enough when only one WSConv is used or four WSConvs 
are used continuously.

The accuracy is greatly improved and the model is stable 
when two WSConvs or three WSConvs are used. The cross-
validation results using two WSConvs is similar to that using 
three WSConvs. In order to simplify the model structure 

(14)loss = −
1

n

n
∑

i=1

ŷi1 ln yi1 + ŷi2 ln yi2 +⋯ + ŷim ln yim,

and improve the model calculation efficiency, the fast down-
sampling module containing two WSConvs is used herein.

3.3  Performance evaluation of different batch sizes 
in FCResNet

The batch size is a significant parameter for the learning pro-
cess of this proposed FCResNet model. In order to achieve 
the best classification performance of ECG heart rhythm 
abnormalities, the step of model parameter optimization is 
indispensable.

To evaluate the importance of the batch size of the pro-
posed FCResNet model, a series of contrast experiments 
with different parameter sets were conducted. We tested the 
contrast experiments with 5 different batch sizes (10, 20, 
30, 40, 50) when keeping the value of the other parameters 
unchanged.

We set the number of iteration steps as 100. Figure 10 rep-
resents the average test accuracy by five different batch sizes. 

Table 2  The explanations for the applied functions in the proposed FCResNet CNN model

Function Explanations

Conv1D Convolutional layer, sliding window convolution to 1-dimensional input information;
Dropout It is an regularization layer to prevent overfitting;
Batch Normalization A layer accelerating deep networks training by reducing internal covariate shift
MaxPooling1D Maximum pooling layer, imposing a maximum pooling on the spatial domain signal
Flatten The Flatten layer is used to translate the multidimensional input information into one-dimensional information
RELU Rectified Linear Unit, which performs linear rectification activation on the input vector of the upper layer 

neural network and outputs nonlinear results
Softmax It is an activation function for multi-class neural network output
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Increasing batch size within a reasonable range can improve 
memory utilization. The parallelization efficiency of large 
matrix multiplication is improved. The number of iterations 
required to run an epoch (full data set) is reduced. The speed 
of processing the same amount of data has become faster. At 
the same time, the number of epochs required to achieve the 
same accuracy is increasing as the batch size increases. Due 
to the contradiction between the above two factors, the final 
convergence accuracy will fall into different local extreme 
values. Therefore, the final convergence accuracy will be 
optimal when the batch size increases to some value.

From the figures behind, we can find that the model clas-
sification accuracies under these five size parameters have 
all exceeded 95%. This shows that the proposed FCResNet 
model has stability and high classification performance. The 
proposed FCResNet model achieves the average test accu-
racy of 97.74% with the batch size of 10. It achieves the best 
average test accuracy of 98.79% with the batch size of 20. 
The classification accuracy begins to decline when the batch 
size exceeds 20. From the experimental comparisons demon-
strated above, we can conclude that the proposed FCResNet 
model show the best classification performance when the 
batch size parameter is 20.

3.4  Performance evaluation of different sub‑band 
reconstructed datasets in FCResNet

Different frequency bands of the ECG recordings carry dif-
ferent message. The wavelet packet can fidelity decompose 
the information of each frequency band, making the fea-
tures of various ECGs more recognizable in each frequency 
band. In this section, the performance of training CNN with 

reconstructed sub-signals in different frequency bands is 
studied experimentally, and the experiment results are shown 
in Fig. 11.

From the Fig. 11 we can find that the classification test 
accuracy using raw ECG signal as input achieves 92.56%. 
The performance of the reconstructed sub-signal with lower 
frequency is better than the higher frequency. The recon-
structed ECG dataset of wp1

4
 ([0, 11.25 Hz]) achieves the 

best average test accuracy of 98.79%. The reconstructed 
ECG dataset of wp1

3
 ([0, 22.5 Hz]) achieves the best aver-

age test accuracy of 95.33%. While the test accuracy using 
other reconstructed ECG dataset is lower than 93%. It con-
firms that the features of ECG signal are concentrated on the 
lower frequency band of the frequency domain (Afonso et al. 
1995). From the experimental comparisons demonstrated 
above, we can conclude that when the reconstructed ECG 
dataset of wp1

4
 ([0, 11.25 Hz]) as the input, the proposed 

FCResNet model shows the best classification performance.

4  Discussion

4.1  Model parameter optimization with results

From the “PERFORMANCE EVALUATION” part above, 
we know that the proposed FCResNet model achieves the 
best classification performance with the batch size of 20 and 
the reconstructed ECG dataset of wp1

4
 ([0, 11.25 Hz]) being 

the model input.
The optimized model results are shown in Figs. 12, 

13 and 14. Figures 12 and 13 represent the test accu-
racy value curve and the loss value curve of the proposed 
FCResNet respectively. As the number of iteration steps 
increases, the accuracy curve exhibits a convergence trend 
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close to the value of 1, the loss curve exhibits a con-
vergence trend close to the value of 0. The two curves 
maintain a relatively stable state during convergence. The 
optimized ECG arrhythmia classification model achieves 
a good average test accuracy of 98.79% and average loss 
value of 0.0255.

Figure 14 shows the results of the confusion matrix 
for the performance of user recognition using the pro-
posed FCResNet based ECG signals. It can be seen from 
Fig. 11 that the prediction accuracy rates of the model 
for 5 different arrhythmia types of ECG records are close 
to each other. Regardless of any type of ECG signal, this 
method can classifies ECG arrhythmia with high accu-
racy. This proves the stability and effectiveness of the 
proposed method.

4.2  Comparison with DWPT preprocessing method

We compared the performance of DWPT preprocessing 
method with MOWPT preprocessing method under the pro-
posed FCResNet model. In the proposed FCResNet model, 
the learning rate is set as 0.001, the batch size parameter 
is 20 and the reconstructed ECG dataset of ([0, 11.25 Hz]) 
is set as input. From the Table 3, it can be seen that the 
MOWPT preprocessing method presented a better classi-
fication accuracy than that DWPT preprocessing method. 
Using MOWPT preprocessing method and FCResNet model 
in ECG arrhythmia can achieve a precision rate of 99.39%, 
a recall rate of 95.16%, a F1-score of 97.23% and a accu-
racy of 98.79%. Using DWPT preprocessing method and 
FCResNet model in ECG arrhythmia can achieve a precision 
rate of 98.35, a recall rate of 91.31%, a F1-score of 94.70% 
and a accuracy of 97.66%. Compared with the DWPT, the 
details of the MOWPT are related to the zero-phase filter 
(Zhou 2018). Therefore, it is easy to list the features of the 
original time series in the multi-resolution analysis with 
physical meaning. It explains why the MOWPT preprocess-
ing method presented a better classification accuracy than 
that DWPT preprocessing method.

4.3  Comparison with other existing approaches

In the proposed framework, FCResNet is chosen as the clas-
sification network which uses the fully connected layer to do 
the classification task. Therefore, we test whether using dif-
ferent classifiers can optimize the performance of the model 
or not. The experiment runs on a PC with 16 GB of memory 
and 16 GB of GPU memory.
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We compared the performance of the proposed FCResNet 
model with previous ECG arrhythmia classification works, 
including SVM (Support Vector Machine), RNN (Recurrent 
Neural Network), RF (Random Forest), K-NN(K Nearest 
Neighbor).

1. FFNN classifier
  Feed forward neural network ( FFNN) is a classifier 

that feeds information from the front (input) to the back 
(output). The neurons in each layer of the network have 
their inputs from the output signals of the preceding 
layer only. The set of output signals of the neurons in 
the output layer of the network constitutes the overall 
response of the network supplied by the source nodes in 
the input layer.

2. SVM classifier
  Support Vector Machine (SVM) is a binary classifica-

tion model, which constructs a maximum margin hyper-
plane in high dimensional space to separate positive and 
negative samples. Here, linear kernel SVM is used and 
the penalty factor is set to be 1.

3. RNN classifier
  Recurrent Neural Network (RNN) is a type of recur-

sive neural network. It introduces a feedback mechanism 
in the hidden layer to achieve efficient processing of 
sequence data. It takes sequence data as input, performs 
recursion in the evolution direction of the sequence, and 
all nodes (recurring units) are chained connected.

4. RF classifier
  Random forest (RF) is an algorithm that integrates 

multiple decision trees through the idea of ensemble 
learning. It uses the bootsrap resampling method to 
extract multiple samples from the original sample, mod-
els the decision tree for each bootsrap sample, and com-
bines the predictions of multiple decision trees, finally 
the prediction result is obtained by voting.

5. KNN classifier
  K-Nearest Neighbor is a classifier based on instance-

based learning. It uses the distances between samples for 
classification. The strategy is that the label of a sample 
depends on labels of the k existing samples closest to 
it. In this experiment, k is set to 3 and the distances 
between the samples are calculated by the Euclidean 
distance.

  We also compared the classification performance of 
the proposed FCResNet model with multi-scale decom-
position enhanced residual CNN (Cao et al. 2019a, b) 
and 2Dimension CNN (Huang et al. 2019).

  Table  4 presents performance comparison with 
other existing approaches. These comparative experi-
ments have the same number of the test set and types of 
arrhythmia for clearer comparison. The datasets from 
MIT-BIH arrhythmia database were employed to test 
the performance of these experimental classifiers. 2520 
samples of the five arrhythmia types were utilized as 

Table 3  Comparison between 
MOWPT and DWPT 
preprocessing method

Model Precision (%) Recall (%) F1-score (%) Accuracy (%)

MOWPT + FCResNet 99.39 95.16 97.23 98.79
DWPT + FCResNet 98.35 91.31 94.70 97.66

Table 4  Comparison with existing classification approaches

Model Work Precision (%) Recall (%) F1-score (%) Average 
accuracy 
(%)

FCResNet Proposed 99.39 95.16 97.23 98.79
FFNN Güler and Übeylı (2005) 97.51 93.37 95.39 96.92

Yu and Chou (2008) 98.88 94.67 92.72 98.27
SVM Melgani and Bazi (2008) 91.94 88.25 89.97 91.37

Dutta et al. (2010) 95.71 91.63 93.61 95.11
RNN Übeyli (2009) 98.62 94.44 96.47 98.02
RF Kumar and Kumaraswamy (2012) 92.66 88.75 90.66 92.12
K-NN Park et al. (2013) 97.62 93.46 95.49 97.02
FDResNet Cao et al. (2019a, b) 94.22 90.27 91.86 93.54
2D-CNN Huang et al. (2019) 99.32 95.12 96.76 98.75
KPCA + SVM Kallas et al. (2012) 97.76 93.66 95.66 97.17
WT&AR + SVM Zhao and Zhang (2005) 98.99 94.72 96.78 98.33
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input to the experimental classifiers such that the ECG 
arrhythmia types were identified and classified.

  As can be seen from Table 4, our proposed FCResNet 
model achieved the best precision rate, recall rate, 
F1-score and average accuracy in comparison with 
these previous ECG arrhythmia classification works. 
The proposed FCResNet model achieved successful 
performance compared to other previous works while 
introducing the different approach of classifying ECG 
arrhythmia using MOWPT and fast compression resid-
ual convolutional neural networks.

  What’s more, we also compared with feature extrac-
tion-pattern classification approaches.

6. Kernel Principal Component Analysis (KPCA)
  Principal component analysis (PCA) is a mathemati-

cal technique whose purpose is to transform a number of 
correlated variables into a number of uncorrelated vari-
ables called “principal components” (PC). These PCs 
account for the maximum variance of the data set. The 
redundancy of the original variables means that they are 
measuring the same concept (Jolliffe 1986). The basic 
idea of KPCA is to map the original data into a high 
dimensional space via a specific function and then to 
apply the standard PCA algorithm on it. The linear PCA 
in the high dimensional feature space corresponds to a 
nonlinear PCA in the original input space and can find 
the most interesting direction (Müller et al. 2001).

7. Autoregressive Modelling (AR)
  AR is a signal feature extraction method where the 

output variable is predicted based on linearly depending 
on its own previous values. The autoregressive frame-
work assumes that the EEG signal can be modeled as a 
linear combination of the signals at the previous time 
points (Lawhern et al. 2012).

From the Table 4, we can observe that the classification 
accuracy of the two feature-extraction–pattern classifica-
tion approach is similar to that of the proposed method 
in this paper. The two feature-extraction-pattern clas-
sification approach are comprised of three components 
including data preprocessing, feature extraction and clas-
sification of ECG signals. Compared with the proposed 
FCResNet classifier, the feature-extraction processing of 
feature-extraction-pattern approaches is much more com-
plex. It greatly increases the efficiency and convenience 
of ECG classification.

In summary, the proposed method in this paper is a sim-
ple and efficient method with high classification accuracy. 
The method proposed obtains the classification results com-
parable to the best research results without involving the pro-
fessional knowledge of electrocardiogram. It is foreseeable 
that with the further accumulation of datasets, especially the 
increase of abnormal ECG samples and pattern subdivision, 

the deep learning model can achieve a more powerful clas-
sification ability.

5  Conclusion

In this paper, we proposed an ECG arrhythmia classification 
method using maximal overlap wavelet packet transform and 
fast compression residual convolutional neural networks.

ECG signals, belonging to five different types, were 
obtained from the MIT-BIH arrhythmia database. The ECG 
signals were segmented into records of the duration of 10 s. 
2520 records were selected for ECG classification. In the 
procedure of the proposed method, the time domain signals 
of ECG were decomposed and reconstituted into sub-signal 
samples of different scales using MOWPT. Subsequently, 
the samples of the five arrhythmia types were utilized as 
input to the FCResNet such that the ECG arrhythmia types 
were identified and classified finally. Using ECG recordings 
from the MIT-BIH arrhythmia database as the training and 
testing data, the classification results show that the proposed 
FCResNet model can reach an averaged accuracy of 98.79%. 
It is validated that the proposed FCResNet classifier using 
ECG sub-signal samples of different scales as input can 
achieve improved classification accuracy without additional 
manual pre-processing of the ECG signals.

In addition, in order to achieve the best classification 
performance, a series of contrast experiments with differ-
ent parameter sets were made. We found that the classi-
fier achieved the best classification performance with high 
accuracy and low loss when the number of the wide-stride 
convolution (WSConv) in fast down-sampling module is 2, 
the batch size parameter is 20 and the reconstructed ECG 
dataset of ([0, 11.25 Hz]) being the model input.
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