
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:6077–6091 
https://doi.org/10.1007/s12652-020-01917-z

ORIGINAL RESEARCH

Enhanced fuzzy finite state machine for human activity modelling 
and recognition

Gadelhag Mohmed1 · Ahmad Lotfi1 · Amir Pourabdollah1

Received: 14 October 2019 / Accepted: 26 March 2020 / Published online: 30 April 2020 
© The Author(s) 2020

Abstract
A challenging key aspect of modelling and recognising human activity is to design a model that can deal with the uncertainty 
in human behaviour. Several machine learning and deep learning techniques are employed to model the Activity of Daily 
Living (ADL) representing the human activity. This paper proposes an enhanced Fuzzy Finite State Machine (FFSM) model 
by combining the classical FFSM with Long Short-Term Memory (LSTM) neural network and Convolutional Neural Network 
(CNN). The learning capability in the LSTM and CNN allows the system to learn the relationship in the temporal human 
activity data and to identify the parameters of the rule-based system as building blocks of the FFSM through time steps in 
the learning mode. The learned parameters are then used for generating the fuzzy rules that govern the transitions between 
the system’s states representing activities. The proposed enhanced FFSMs were tested and evaluated using two different 
datasets; a real dataset collected by our research group and a public dataset collected from CASAS smart home project. Using 
LSTM-FFSM, the experimental results achieved 95.7% and 97.6% for the first dataset and the second dataset, respectively. 
Once CNN-FFSM was applied to both datasets, the obtained results were 94.2% and 99.3% , respectively.

Keywords  Human activity modelling and recognition · Fuzzy finite state machine · Long short-term memory neural 
network · Convolutional neural network

1  Introduction

Monitoring and recognising human activities within a home 
environment are investigated in order to support the inde-
pendent living of older adults in Ambient Intelligence (AmI) 
environments (Chen et al. 2012; Medina-Quero et al. 2018). 
Several techniques are used to gather the information that 
represents the Activity of Daily Living (ADL) from a real 
environment for the monitored user (Cook et al. 2013; Lan-
gensiepen et al. 2014). This information is commonly gath-
ered from the signals that are collected from ambient sen-
sors such as door entry sensors, movement and occupancy 

sensors etc., (Hassan et  al. 2018). The information can 
also be extracted based on vision sensors such as cameras 
that capture images or video streams (Cook et al. 2013), 
although, for privacy concerns, recent attention has predomi-
nantly focused on data collected by ambient sensors, which 
are more acceptable to users (Aicha et al. 2017). The gath-
ered information is then processed and analysed in a useful 
format to be used in many different applications, including 
anomaly detection in daily human activities, energy con-
sumption optimisation, addressing health and safety con-
cerns, leading to an improved level of comfort and quality 
of life (Langensiepen et al. 2014; Lotfi et al. 2012).

One of the promising techniques to model dynamic 
processes when data changes over time is the Finite State 
Machine (FSM) (Mohmed et al. 2018b; Alvarez-Alvarez 
et al. 2012). The FSM contains several states representing 
different actions and the mechanism of transitions between 
them. Many researchers have considered using the FSM to 
model and represent human activities. Since humans behav-
iour is not restricted to a single state at any time and there 
are uncertainties associated with each state, it is reason-
able to consider some degree of fuzziness within the FSM, 
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thereby creating a more powerful tool to model dynamic 
processes that may change over time (Langensiepen et al. 
2014; Mohmed et al. 2018a; Medina-Quero et al. 2018). The 
classical version of FSM is enhanced by incorporating fuzzy 
states/transitions leading to Fuzzy Finite State Machine 
(FFSM). Both inputs and outputs are treated as fuzzy sets 
instead of being treated as crisp values. This allows the 
system to handle and process the input information with a 
degree of belonging, which often provides more flexibility 
and human comprehensibility (Unal and Khan 1994). The 
FFSM is one of the most suitable technique to deal with a 
large amount of uncertain data gathered from low-level sen-
sory devices in AmI environments. In this case, the system 
can assign a degree of truth to the occurrence of each activ-
ity. The transitions between the system’s states in the FFSM 
are triggered by fuzzy values rather than crisp values used in 
the classical FSM. This provides a realistic model supported 
by a fuzzy reasoning mechanism, represented by a degree of 
truth related to each state transition. Therefore, more than 
one state can be in an active mode at any time based on the 
membership values of each state (Langensiepen et al. 2014; 
Alvarez-Alvarez et al. 2011; Sridhar et al. 2019).

By nature, several activities can be undertaken by a sin-
gle user at the same time (Cook et al. 2013). For example, 
people can watch TV while they are eating their meal. In this 
particular scenario, it is not necessary to know which activ-
ity started first. However, it is essential to know the degree 
of involvement in each activity at that time. That means the 
existence of simultaneous activities when an activity (e.g., 
eating) starts while the other activity is already started (e.g., 
watching TV). A specialised approach is required to rec-
ognise these non-sequential behaviours. One of the most 
promising technique to deal with such uncertainties that 
associated with human activities is using fuzzy sets. Hence, 
the classical FSM is integrated with a fuzzy logic system to 
address these uncertainties.

This paper is an extension of the authors’ research work 
in developing an FFSM used for modelling and recognising 
human activity. In this work, the FFSM is introduced as a 
means of defining daily human activities and the transition 
between the states (here, the activities). There are many 
unknown parameters in the FFSM which needs to be identi-
fied in order to represent a model for the ADL. The aim of 
the research reported here is to identify the parameters to 
represent the real activities of a human subject in an AmI 
environment accurately. The research presented in this paper 
addresses only the challenges in modelling and recognising 
a single-occupancy at a real-home environment based on 
a dataset collected from ambient sensory devices. Anther 
research exploring the domain of modelling and recognis-
ing human activities within multi-occupancy environments 
are currently ongoing with other researchers in our research 

group. The research reported in this paper has made the fol-
lowing contributions:

•	 Integrating the FFSM with Long Short-Term Memory 
(LSTM) neural networks to enhance the learning capa-
bility of the FFSM model for accurately generating the 
fuzzy rules that govern the transition between the sys-
tem states. The new model is referred to as a Short-Term 
Memory-Fuzzy Finite State Machine (LSTM-FFSM).

•	 Integrating the FFSM with Convolutional Neural Net-
work (CNN) to add the learning ability to model daily 
human activities based on the numerical and temporal 
information gathered from the sensory data. The new 
model is referred to as Convolutional-Fuzzy Finite State 
Machine (CNN-FFSM).

•	 Testing and evaluating the proposed models using two 
different datasets gathered from real home environments 
representing ADL for a single user.

The rest of this paper is organised as follows: a review of the 
related literature is provided in Sect. 2, the methodologies 
are presented in Sect. 3 introducing fuzzy feature representa-
tion and Fuzzy Finite State Machine (FFSM). In Sect. 4 two 
proposed FFSM models namely LSTM-FFSM and CNN-
FFSM are explained. In Sect. 5, a human activity recogni-
tion case study is detailed, including the experiment using 
two different datasets. Followed by the obtained results in 
Sect. 6. The pertinent conclusions are drawn in Sect. 7.

2 � Related work

Most of the research related to human activity recognition 
is carried out using statistical techniques including Support 
Vector Machine (SVM) (Khemchandani and Sharma 2017; 
Anguita et al. 2012) and Finite State Machine (FSM) (Trinh 
et al. 2011) are used to find the relationship between the real 
action (activity) and the temporal data gathered from sen-
sors. The ultimate goal of these techniques is to identify the 
activity of the user. Several graphical techniques are intro-
duced to recognise and model human activities, for example, 
Hidden Markov Model (HMM) can represent random vari-
ables, actions and temporal variation within the collected 
data (Chung and Liu 2008; Kong and Fu 2018). Relatively 
new research in Aicha et al. (2017) and Malasinghe et al. 
(2019) have presented a new model based on the Markov 
Modulated Poisson Process (MMPP) which promises to 
come up with a model to represent multi-visitor recognition 
with more accuracy. The only issue with this approach is the 
difficulty in processing a large amount of low-level data such 
as the data gathered from ambient sensory devices.

In Langensiepen et al. (2014), the authors used FSM 
for locating and modelling the activity of a single user in 
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an apartment. The FSM is a powerful technique for mod-
elling dynamic events, that is, the events that change over 
time, such as human activity. The FSM model is enhanced 
by being integrated with a fuzzy system, which is used to 
increase the efficiency of the FSM by proposing the Fuzzy 
Finite-State Machine (FFSM), where transitions between 
the states are triggered by the sense of fuzziness instead of 
using crisp values. This has the advantage of smooth mod-
elling and reasoning with a degree of truth, which proves 
to be more accurate. Thus, the system can be in more than 
one state at a time, based on the truth degree for each state 
(Alvarez-Alvarez et al. 2011; Langensiepen et al. 2014). The 
main advantage of using the fuzzy state is that it can deal 
with uncertain data and can be represented in more than one 
state at the same time as membership degrees.

Computational intelligence techniques are also widely 
used to recognise and model human activities, as an alterna-
tive or in combination with other statistical methods. Neural 
Networks (NNs) are used to deal with and process pattern 
recognition based on numerical data that is gathered from 
sensors in an AmI environment (Benmansour et al. 2017; 
Subramanian and Suresh 2012). Recurrent Neural Networks 
(RNNs) are proven to be a powerful tool to solve the dif-
ficulties of the temporal relationships of inputs and outputs 
at different time steps (Medina-Quero et al. 2018; Tran et al. 
2018). In Medina-Quero et al. (2018), authors created fuzzy 
temporal windows for the collated binary data representing 
the human activities, and then applied them to an ensemble 
classifier based on LSTM neural networks. The LSTM is 
used in Jenckel et al. (2018) for annotating historical docu-
ments, where authors are used fuzzy ground truth to repre-
sent the input data to provide all possible annotations for 
each input variable, instead of just one. The LSTM neural 
networks prove their ability to be a good approach to model 
sequential forms of data such as human activity data (Yulita 
et al. 2017a). Moreover, the LSTM can save past informa-
tion by looping it inside its architecture, which reuses the 
information from the previously learned iteration. The main 
purpose of using the LSTM is to reduce the risk of van-
ishing gradients in the sequential temporal data. In some 
of the recent works in human activity recognition Arifoglu 
and Bouchachia (2019); Gochoo et al. (2019), researchers 
focused on employing the CNN with binary datasets to rec-
ognise human activities and to detect any abnormal activities 
in the users’ behavioural pattern based on a trained CNN 
model.

A widely used method for feature representation is the 
fuzzy feature representation approach. In Deng et al. (2017), 
the authors proposed a fuzzy computational approach to 
extract features from one-dimensional input vectors. They 
employed a deep neural network with the extracted features 
for classifying the given data. A fuzzy temporal windows 
approach is proposed in Medina-Quero et al. (2018); Yulita 

et al. (2017a) to define temporal-sequence representations 
to aggregate information from binary sensors for real-time 
recognition of human activities. The methods in Deng et al. 
(2017); Medina-Quero et al. (2018) have been successful 
in capturing features that improved the performance of the 
classification tasks for human activity recognition.

Based on the literature review conducted for this research, 
the fuzzy feature representation approach is used to fuzzify 
the data representing human activities. Two different deep 
learning techniques, namely LSTM and CNN are integrated 
with the FFSM for enhancing the learning process of the 
parameters that are used to generate the fuzzy rules govern-
ing the states’ transitions.

3 � Methodologies

In this section, the Fuzzy Finite State Machine (FFSM) 
incorporating fuzzy feature representation is introduced 
initially. Then, two proposed, enhanced FFSM approaches 
are introduced. Fig. 1 illustrates the schematic diagram of 
the proposed FFSM. This consists of three different stages; 
data collection process, fuzzy feature representation, and the 
fuzzy finite state machine model. In the data collection stage, 
the data from sensors in an AmI environment representing 
the ADL is collected. The fuzzy feature representation stage 
is designed to transform the data into fuzzy features to be 
used as inputs to the proposed FFSM model. In the third 
stage, the proposed FFSM model will generate the fuzzy 
rules employing the capabilities of learning algorithms in 
LSTM and CNN to representing the states’ transitions.

3.1 � Fuzzy feature representation

Fuzzy feature representation approach is designed to con-
vert the collected information into their relevant member-
ship degrees (Yulita et al. 2017b). The resulting membership 
degrees are taken as features to be used as inputs to train the 
proposed model. Therefore, fuzzy feature representation is 
applied to determine the number of Membership Functions 
(MFs) representing the input data as membership degrees. 
By replacing each value in the input data with their cor-
responding degree of memberships; thus, each value in the 
input data is represented as fuzzified values obtained for 
each MF as follows:

Xuj is the fuzzified set of the input variable uj . P is the last 
value in the input variable uj . �A is the degree of MF associ-
ated with each linguistic label. The Fuzzy feature representa-
tion process can be summarised as follows: 

(1)Xuj = [�A1

uj
,�A2

uj
, ...,�AM

uj
] j = 1, ...,P
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1.	 Apply the input data to the fuzzifier algorithm consists 
of M MFs that are represented with the linguistic labels.

2.	 Define the degree of fuzziness �A that corresponds to 
each MF.

3.	 Determine the maximum degree of fuzziness for the 
variable uj in each iteration.

4.	 Create a matrix q = r × z to store the degree of MFs for 
each variable uj . Where r is the total number of activ-

ity instances in the input data uj , and z is the number of 
fuzzified values for the variable uj.

5.	 Update the matrix q after each iteration with the new 
fuzzified values that corresponding to the next input 
value.

T h e  f i n a l  s e t  o f  t h e  f u z z i f i e d  fe a t u r e s 
Xuj = [�A1

uj
,�A2

uj
, ...,�AM

uj
] , will be used as inputs to train the 

Fig. 1   A schematic diagram of the proposed Fuzzy Finite State Machine models
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proposed model for learning the relations between the 
inputs and output data, as it is explained in the next sec-
tions. The process of fuzzy feature representation is elabo-
rated in Sect. 5 when modelling and recognising human 
activity datasets are presented.

3.2 � Fuzzy finite state machine

Fuzzy Finite State Machine (FFSM) is an extended ver-
sion of the classical FSM. The FSM can be presented as 
a model made of two or more states; each state represents 
one event from a sequence of events in a dynamic process 
(Mohmed et al. 2018b). Only one single state of this model 
can be active at a time. The model is moved from one state to 
another by triggering crisp values. In human activity recog-
nition and modelling, a user may be associated with multiple 
states. This would require to be quantified with a degree of 
belonging (degree of fuzziness). Once the fuzziness aspect 
is added to the state transitions in the classical FSM, the 
transitions are not triggered based on crisp values, but using 
fuzzy variables (Langensiepen et al. 2014; Alvarez-Alvarez 
et al. 2012; Unal and Khan 1994). This implies that the cur-
rent activated state of the model is not necessarily one state, 
but it could be more than one state at any given time with 
belonging degrees (Unal and Khan 1994).

In an FFSM, the system’s states are represented as a set of 
linguistic variables S(t) = [s

1
(t), s

2
(t), ..., si(t), ..., sN(t)] where 

N is the number of states. For a non-sequential system at a 
time t, the system’s states are represented as a state vector 
S(t). When the system evolves in time, the next state is rep-
resented as a vector S(t + 1).

In general, as in Alvarez-Alvarez et al. (2012); Langensie-
pen et al. (2014), the FFSM is defined as a tuple of param-
eters (S(t),U(t), f , Y(t), g) . where;

•	 Fuzzy State, S(t) = [s
1
(t), s

2
(t), ..., si(t), ..., sN(t)] is pre-

senting a vector identifying the system’s states at time 
t and N is the number of states. Each individual state at 
time t is si(t);i = 1...N is a numerical value that is in fact 
the membership grade (between 0 and 1) given to each 
linguistic variable si(t) within the set of FFSM’s states 
S(t).

•	 Input Vector, U(t) = [u
1
(t), u

2
(t), ..., uj(t), ...., uP(t)] is the 

input vector at time t representing the associated value to 
the linguistic variables that are generally obtained after 
a fuzzification process for the input data. P are the num-
ber of input variables. This input data could be a sensors’ 
data, a combination of different signals, or any other cal-
culation to numerical data. The fuzzification process that 
is designed based on experts’ view to translating the 
numerical input values to a set of membership grades 
given to each linguistic label that defines all the accept-
able values in the input vector. The labels that are associ-

ated with the input uj(t) is  represented as 
Auj

= {A1

uj
,A2

uj
, ...,AM

uj
} , where M is the number of the 

associated linguistic labels (Alvarez-Alvarez et al. 2011).
•	 Transition Function, f is the state transition function that 

is mainly used to calculate the next state vector S(t + 1) , 
at each time instant t. The transition function f controls 
the allowed transitions between the defined system’s 
states. Also, it is implemented as a set of fuzzy rules. 
There are different ways to define the rules, e.g., using 
the human expert knowledge (Mohmed et al. 2019) or 
learning from the numerical input-output data by apply-
ing machine learning algorithms such as Artificial Neural 
Network (ANN) and Genetic Algorithm (GA) (Bombar-
dier and Schmitt 2010; Wang et al. 2012; Wang and Men-
del 1992). A combination of these approaches can also 
be implemented to have one framework containing the 
rules that are generated by learning from the numerical 
data and those assigned by the human experts’ knowl-
edge (Wang and Mendel 1992).

•	 Output Vector, Y(t) = [y
1
(t), y

2
(t), ..., yk(t), ..., yQ(t)] is 

the output vector consisting of crisp values associated to 
each output at the time t and Q is the number of output 
variables. Values in the output vector Y(t) are calculated 
based on the current state of the system S(t) and the input 
vector U(t).

•	 Output Function, g is the output function that is used 
to calculate the value of output vector Y(t), at each time 
instant t.

The states and outputs of the time-invariant FFSM (Alvarez-
Alvarez et al. 2012, 2011) are expressed as:

The states’ transition mechanism between two exemplary 
states sm and sn in the FFSM is illustrated in Fig. 2. Consider-
ing the complexity of modelling a large scale dataset, it may 
be impossible to analytically identify the functions f and g. 
This complexity will be even harder when it is used for time-
invariant models (Langensiepen et al. 2014; Alvarez-Alvarez 
et al. 2012). Therefore, a rule Rmn is used to establish the 
relationship between states sm and sn . These states’ transi-
tions can be expressed as a general fuzzy rule format (Unal 
and Khan 1994), as follows:

where the fuzzy rule has the following parts:

(2)S(t + 1) = f (S(t),U(t))

(3)Y(t) = g(S(t),U(t))

R�
mn

∶ �� (S(t) �� sm)���Hmn ����

S(t + 1) �� sn � = 1, ...,�
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–	 The Antecedent Part: is a combination of two terms; the 
first term, (S(t) is sm) is used to determine if the state sm is 
an activated state in time instant t. Therefore, the system 
can change from state sm to state sn or remains in state 
sm , only if m = n , the second term of the antecedent part 
is Hmn which represents all constraints imposed on the 
input variables that are required to either remain in state 
sm (when, m = n ) or change to state sn , e.g., Hmn = (u

1
(t) 

is A3

u1
) AND (u

2
(t) is A4

u2
 OR A2

u2
).

–	 The Consequent Part: (S(t + 1) is sn) is the THEN part 
of the fuzzy rule, which determines the next value of the 
state vector S(t + 1) for being in state sn . The linguis-
tic variables of the consequent are considered as being 
singletons, i.e. all elements of the S(t) vector are zero, 
except for the mth element which is 1 (Alvarez-Alvarez 
et al. 2012).

For a rule-base consisting of � rules, the next value of the 
state vector S(t + 1) is the weighted average utilising the fir-
ing degree of each rule (Mohmed et al. 2018b), defined as:

Readers are referred to (Langensiepen et al. 2014; Alvarez-
Alvarez et al. 2012; Ambres and Trivino 2012; Mohmed 
et al. 2018b) for more details about FFSM. More details 

(4)S(t + 1) =

∑�

�=1
w�.S(t)∑�

�=1
w�

if

��
�=1

w� ≠ 0

(5)S(t + 1) = S(t) if

�∑
�=1

w� = 0

about the transition function elements and how they can be 
enhanced by integrating them with different learning tech-
niques based on fuzzy rules are explained in the following 
sections.

4 � Enhanced fuzzy finite state machine

Defining the relationship between states of a system based on 
fuzzy rules comes with its shortcomings. An FFSM can rep-
resent the system’s states and the transition between them, 
assuming that all parameters are known. In this research, the 
aim is to enhance the performance of the FFSM by identi-
fying optimum values for parameters of fuzzy rules. In our 
previous publication (Mohmed et al. 2018b), the FFSM was 
integrated with standard NNs to learn and adapt the param-
eters based so the FFSM model could represent the states’ 
transitions and the output of each state accurately.

The work presented in this paper improves the perfor-
mance of FFSM even further by integrating it with Long 
Short-Term Memory and Convolutional Neural Networks 
leading to two new models referred to as Long Short-Term 
Memory Fuzzy Finite State Machine (LSTM-FFSM) and 
Convolutional Fuzzy Finite State Machine (CNN-FFSM). 
The details of both enhanced FFSM is provided in the con-
sequent sections.

4.1 � Long short‑term memory‑fuzzy finite state 
machine

To improve the learning capability of the FFSM, an integra-
tion of Long Short-Term Memory and Fuzzy Finite State 
Machine is proposed. A brief explanation about the LSTM 
is provided first, and then the enhanced LSTM-FFSM is 
introduced.

The LSTM is a particular kind of RNNs designed to solve 
vanishing and gradients problems in the standard RNNs 
(Yulita et al. 2017a; Jenckel et al. 2018). The LSTM is a 
powerful tool for learning the sequential tasks that are rep-
resented as temporal data. It can also remember previous 
information for long periods. These characteristics make 
LSTM especially useful for temporal data classification 
problems (Medina-Quero et al. 2018). The LSTM cell con-
sists of three gating mechanisms to provide the ability to 
remove or add information to the memory cell. These three 
gates are used to regulate the impact of the input through an 
input gate, the previous cell state through a forget gate and 
an output through the output gate. The essential gate in the 
LSTM cell is the forget gate as it decides if the information 
is going to be remembered or be forgotten from the previ-
ous states.

The LSTM-FFSM is an enhancement version of FFSM, 
allowing the system to learn the temporal relations in the 

Fig. 2   States and states’ transition diagram of Fuzzy Finite State 
Machine
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data by storing the information through the time-sequential 
steps. The learned relations are then used to formulate the 
fuzzy rules that control the transitions between the system’s 
states and identify the current activated states at any given 
time t. In this approach, the experts are also allowed to intro-
duce their knowledge over the whole system by defining the 
following aspects:

•	 Defining the system states.
•	 Specifying the general structure of the fuzzy rules that 

represent the state transitions.
•	 Specifying the number of linguistic labels that are associ-

ated with each input variable.

In a typical FFSM, a rule to identify the transition between 
state m and state n is presented as R�

mn
 in Sect. 3.2. This 

demonstrates the relation between the system’s current state 
S(t) and the input variables that are represented as Hmn to 
identify the next state S(t + 1) . Each input variable involved 
in the term Hmn is fuzzified in order to convert the numerical 
data into their relevant membership degrees as it is explained 
in Sect. 3.1. These membership degrees for each input Xuj 
are represented as Xuj = [�A1

uj
,�A2

uj
, ...,�AM

uj
] , where M is the 

number of associated linguistic labels that represented as 
membership degrees �AM

uj
 . At this point, LSTM is employed 

to learn the temporal relations in the data by storing the 
previous information in a time-sequential manner. Thus the 
term Hmn will be represented as:

where Z is current output of the LSTM at time t and 
Xuj(t) = [�A1

uj
,�A2

uj
,… ,�AM

uj
]M ≠ 0 is the fuzzified input at 

time t. M is the number of membership degrees �A that are 
associated with the input uj. Based on the explanation intro-
duced in the proceeding sections, LSTM-FFSM is proposed 
to generate the fuzzy rules representing the transition based 
on learning the relations in the sequential temporal data. 
Therefore, the term Hmn is computed based on the proceed-
ing explanation, and then the obtained parameters are used 
to demonstrate the fuzzy rule R�

mn
 that governs the transition 

between state m and state n.

4.2 � Convolutional‑fuzzy finite state machine

The integration of CNN with FFSM is also proposed for 
enhancing the learning capabilities of the FFSM. This is 
achieved by selecting the most effective features to learn 
the relationship between the inputs and outputs data. In this 
section, a brief explanation about CNN is provided first, 
and then the enhanced Convolutional-Fuzzy Finite State 
Machine (CNN-FFSM) is produced (Flagel et al. 2018).

(6)Hmn = Xuj(t) + Zt

Generally, the input data to a CNN is a matrix c in 
dimensions of h × w × d , where h, w and d are the height, 
width and the number of channels in the input matrix c 
(Arifoglu and Bouchachia 2019; Gochoo et  al. 2019). 
When the input window has only one class, the number 
of channel d is 1.

The common use of CNN architecture has two conven-
tional layers or more and one fully-connected layer. Each 
convolutional layer contains multiple feature filters to opti-
mise the values during the training phase. Each convolu-
tional layer is followed by a max-pooling layer that has a 
window in a certain size to ensure the outputs from each 
conventional layer are smaller than the inputs. Rectified 
Linear Unit (ReLU) is added after each convolutional layer 
that operates as an activation function. The used fully-con-
nected layer in this architecture is a traditional Multi-Layer 
Perceptron (MLP) that operates a softmax activation func-
tion for the output layer. By using the softmax activation 
function for the output layer, the CNN classifier model will 
be able to classify the input features into various classes 
based on the learned relations during the training stage.

In case of expecting highly complex input data, the 
CNN architecture can contain more than one pair of 
the convolutional and max-pooling layers with different 
sizes of border filters to process such data (Arifoglu and 
Bouchachia 2019). Also, the top convolutional layer is 
followed by one or more fully-connected layers for the 
final classification purpose. During the training phase, the 
standard forward and backward propagation algorithms are 
used to estimate the values of the CNN parameters. The 
selected features are mapped by the convolutional operator 
(Arifoglu and Bouchachia 2019) as follows:

where � denotes the convolutional operator, ��� is the convo-
lutional filter for the �-th input, Vt is the generated �-th output 
feature map which is achieved by selecting the most effective 
features over the non-overlapping pooling regions from the 
input data x� and d� denotes the bias.

Based on the provided explanation about the CNN in this 
section and the FFSM in the previous section, the CNN-
FFSM may be considered as an enhancement version of 
FFSM by employing CNN that is allowing the system to 
select the most effective features from the input dataset and 
then learn the temporal relations from the selected features 
by storing the information through the time-sequential steps. 
The learned relations are used for formulating the fuzzy 
rules that are used to control the system’s state transitions 
and identify the current activated states at any given time 
t. In this approach, the experts are also allowed to intro-
duce their knowledge over the whole system. Defining the 

(7)Vt =
1

1 + exp(d� +
∑

�
����x�)
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system’s states, the general structure of the fuzzy rules, and 
the number of associated linguistic labels where each input 
variable are the aspects that are specified by experts.

As mentioned earlier, the rule R�
mn

 used to control the 
transition between state m and n involves the relation 
between the system’s current state S(t) and the input varia-
bles that are represented as Hmn . The final value obtained 
from this calculation is used to identify the next state 
S(t + 1) . As each input variable involved in the term Hmn is 
fuzzified to convert the numerical data into their relevant 
membership degrees �AM

uj
 . At this stage, CNN is employed 

to learn the relations in the inputs (features) and outputs 
(labels) data by selecting and mapping the most effective 
features. Therefore, the term Hmn will be represented as:

where Vt is the generated �-th output feature map using CNN 
at time t and Xuj(t) = [�A1

uj
,�A2

uj
,… ,�AM

uj
]M ≠ 0 is the fuzzi-

fied input dataset at time t. M is the number of membership 
degrees �A that are associated with the input uj. Based on 
that, CNN is used as state-of-the-art to select the most effec-
tive features from the input dataset and learn the relations 
between the inputs (selected features) and the outputs 
(labels). The learned parameters are used essentially in this 
work to generate the fuzzy rules R�

mn
 representing the transi-

tion between the system’s states in the proposed 
CNN-FFSM.

The proposed LSTM-FFSM and CNN-FFSM are 
employed to learn the unknown parameters for generat-
ing the fuzzy rules representing the transition between the 
FFSM’s states. The next section introduces experiments with 
the proposed approaches, which integrates the learning abili-
ties of the LSTM and CNN by selecting and mapping the 

(8)Hmn = Xuj(t) + Vt

most effective features in the temporal dataset representing 
daily human activities.

5 � Experimental setup

To evaluate the performance of the proposed approached, 
experimental works are conducted where Activity of Daily 
Living (ADL) for a single user is used for modelling and 
recognising the user’s activities. The experimental setup is 
presented below and all results are presented in the next 
section.

5.1 � Datasets

Two datasets referred to as Dataset A and Dataset B are 
used to evaluate the proposed approaches for human activ-
ity modelling and recognition. Details of these datasets are 
provided below.

Dataset A: The dataset was collected by our research 
group from a real home environment representing the ADL 
of a single user. The dataset was collected at the Smart Home 
facilities within Nottingham Trent University. A floor plan 
of the house is shown in Fig. 3. A list of the used sensors for 
collecting this dataset is listed in Table 1. There are seven 
activities, which are Sleeping, Toilet, Kitchen, Dining-room, 
Living-room, Garden, and Leaving.

Dataset B: This is a publicly available dataset known 
as Aruba representing ADL for a single user was collected 
using the Centre for Advanced Studies in Adaptive System 
(CASAS) at Washington State University (Cook 2010). They 
used motion, door, and temperature sensors. However, as 
this work focuses on the ADL, the temperature sensors are 
excluded, and the other 34 sensors (3 door sensors and 31 

Fig. 3   Floor plan layout and 
location of the installed sen-
sors used for data collection in 
dataset A
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motion sensors) are used. A single elderly woman lived in 
the Aruba testbed, and she had received regular visits from 
her children and grandchildren during the data collection 
period. The final dataset is saved as a list of sensor-ID, time-
stamp, and sensor status.

In this dataset, there are 11 activities performed by 
the women who was living in the apartment and the data 
were collected over a period of 224 days. These activi-
ties are Sleeping (401 instances), Meal Preparation (1606 
instances), Relaxing (2910 instances), Bed-to-toilet (157 
instances), Leaving home (431 instances), Entering home 
(431 instances), Housekeeping (33 instances), Eating 
(257 instances), Washing dishes (65 instances), Work (171 
instances) and Resperate (6 instances). The Resperate activ-
ity is excluded from the dataset as it has only 6 instances.

5.2 � Feature fuzzification

Extracting the numerical information from acquired raw 
sensor data is crucial to any learning system as raw data 
does not provide adequate information that can be used as 
inputs to the model. The collected data was gathered from 
low-level ambient sensory devices; it will be saved to a 
database as time-stamped binary data. This gathered raw 
data would be represented and interpreted using the ontol-
ogy data representation approach in Wongpatikaseree et al. 

(2012) to convert it into an occupancy data for chunking 
the activity-windows as it is shown in Fig. 4. To fuzzify the 
activity data for each activity-window start time, end time, 
duration, an activity count and activity sequential order are 
extracted. Therefore, the activity data are extracted for each 
activity window and represented as a matrix where rows are 
the length of the activity window and columns are the num-
ber of recorded information from the sensors in the window.

The extracted information from each activity-window is 
mapped into a numerical activity data representing the input 
variables U(t) = [u

1
(t),… , uj(t),… , uP(t)] . An overall frame-

work of the used approach for representing the activity data 
as fuzzy features is illustrated in Fig. 5. Each value in the 
input variable uj is represented with the relevant membership 
values to each fuzzy set. The final set of the fuzzified fea-
tures Xuj = [�A1

uj
,�A2

uj
,… ,�AM

uj
] , will be used as inputs to 

train the proposed models for modelling and recognising the 
activities, as it is explained in the next sections.

5.3 � System definition

The collected datasets represent 7 and 11 different activi-
ties in dataset A and dataset B, respectively. Each activity is 
represented as one state in the FFSM model. These states 
are defined based on the experts’ knowledge. This is easily 

Table 1   List of sensors used 
for collecting the dataset A to 
measure different conditions 
and activities

*The unused sensors in this study

Sensor Purpose of use

Passive Infrared (PIR) Detecting the movement.
Door on/off switches Detecting when doors are opened and closed.
Mat pressure sensor Measuring bed and sofa occupancy.
Electricity consumption plugs Measuring electricity consumption.
* Indoor temperature sensor Measuring ambient temperature.
* Outdoor temperature sensor Measuring outdoor temperature.
* humidity sensor Measuring ambient humidity.
* Light intensity sensor Measuring ambient light intensity.

Fig. 4   An illustration of activity 
windows for 1-day activities
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represented using the proposed state diagram illustrated 
in Fig. 6. These states in datasets A and B are defined as 
follows:

5.3.1 � States representing activities in dataset A

States representing the dataset A are as follows:

•	 s
1
∶ The sleeping state represents the sleeping activity, 

either night sleeping or daytime napping.

Fig. 5   Overall framework of the used fuzzy feature representation approach

Fig. 6   A state diagram of 
human activity’s based on an 
experimental datasets
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•	 s
2
∶ The toilet state represents the time when the user 

is using the toilet.
•	 s

3
∶ The kitchen state represents when the user is using 

the kitchen for preparing food or cleaning, e.g., dish-
washing.

•	 s
4
∶ The dining state, which usually comes after the 

kitchen state, represents the time when the user is in the 
dining room to eat the prepared meal.

•	 s
5
∶ The living room state represents the time spent in the 

living room for either relaxing or watching TV.
•	 s

6
∶ The leaving home state represents when the user is 

leaving home through the front door.
•	 s

6.1
∶ The garden state. This state is part of the leaving 

state S
6
 , which represents the time when the user is leav-

ing to go to the garden through the back door.

5.3.2 � States representing activities in dataset B

States representing the dataset B are as follows:

•	 s
1
∶ Sleeping states to represent the sleeping activities.

•	 s
2
∶ Bed-to-Toilet state to represent the times of using the 

toilet within in the sleeping time.
•	 s

3.1
∶ Meal preparation state to represent the event of pre-

paring food. This state is the first part of the kitchen state.
•	 s

3.2
∶ Washing dishes state to represent the event of wash-

ing dishes in the kitchen area. This state is the second 
part of the kitchen state.

•	 s
4.1

∶ Eating state to represent the time when the user at 
the dining room. This state is usually activated after the 
Meal preparation state.

•	 s
5.1

∶ Relaxing state to represent the time spent in the 
living room.

•	 s
6
∶ Leaving state to represent the time when the user 

leaves the house. As the house has three different doors, 
this state will be activated when any of these doors are 
used.

•	 s
7
∶ Entering home state to represent the time when the 

user comes back home.
•	 s

8
∶ Housekeeping state to represent cleaning work, e.g., 

hoovering the carpet.
•	 s

9
∶ Office-work state to represent the event of doing 

some homework in the office room.

Once the system’s states are created, the activity data 
is extracted as numerical values for each activity-window. 
Five different numerical values are used in this experiment, 
representing the start time u

1
 , end time u

2
 , activity dura-

tion u
3
 , activity count u

4
 and activity sequential order u

5
 . 

These extracted numerical values are then fuzzified using 
Gaussian MFs. Five different MF degrees are used to con-
vert each value in the start u

1
 time, end time u

2
 and duration 

u
3
 variables into their relevant membership degrees as it is 

illustrated in Fig. 5. Therefore, every single value from these 
variable is represented with the relevant number of belong-
ing degrees to each MF. The linguistic labels associated with 
each input are represented as MFs. These MFs are described 
as follows:

where XU  is the input vector of fuzzified variables 
{Xu1,Xu2,Xu3} to the system at time t. The linguistic labels 
that are associated with the MFs are explained as:

–	 The MFs representing activity start time for the input var-
iable u

1
 are represented as {EMu1

,Mu1
,AFu1

,EVu1
,NIu1} . 

Where EM, M, AF, EV and NI are MF labels correspond-
ing to Early Morning, Morning, Afternoon, Evening and 
Night respectively.

–	 The MFs representing activity end time for the input vari-
able u

2
 are represented as {EMu2

,Mu2
,AFu2

,EVu2
,NIu2} . 

Where EM, M, AF, EV and NI are the MF labels corre-
sponding to Early Morning, Morning, Afternoon, Even-
ing and Night respectively.

–	 The MFs representing activity duration for the input varia-
ble u

3
 are represented as {VSu3 , SHu3

,MEu3
, LOu3

,VLOu3
} . 

Where VS, SH, ME, LO and VLO are MF labels corre-
sponding to Very Short, Short, Medium, Long and Very 
long respectively.

The other two variables representing the activity data (activ-
ity count u

4
 and activity sequential order u

5
 ) will not be fuzz-

ified with the other activity data. They will be normalised 
and then added to the fuzzy represented features before the 
entire set of input data XU(t) is fed into the proposed models.

A set of fuzzy rules is required to control the transition 
between the system’s states. In the standard FFSM, these 
rules are defined based on the experts’ knowledge only. In 
this contribution, as the generated data is temporal data 
representing sequential order events, LSTM and CNN are 
employed to learn the relations in the data through the time 
steps. The learned relations are used to generate fuzzy rules 
in the system. The final output for this model, Y(t), is repre-
sented as the degree of belonging to each state in the system.

6 � Experimental results

The results obtained from the conducted experiments are 
presented here. As humans behave with some unpredictabil-
ity and uncertainty in their environment, datasets represent-
ing the human activities are usually imbalanced, where some 

(9)XU(t) =

⎧
⎪⎨⎪⎩

Xu1(t) → {EMu1
,Mu1

,AFu1
,EVu1

,NIu1}

Xu2(t) → {EMu2
,Mu2

,AFu2
,EVu2

,NIu2}

Xu3(t) → {VSu3 , SHu3
,MEu3

, LOu3
,VLOu3

}
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activities appear more dominant than the other activities. 
In that case, if the dominant activities are identified with a 
high degree of accuracy, the performance over the whole 
system will be high even if the other activities are not well 
identified. Therefore, each activity will be evaluated sepa-
rately, and then the performance over the whole system will 

be calculated. Both proposed models, LSTM-FFSM and 
CNN-FFSM, are tested and evaluated using the two earlier 
mentioned datasets A and B.

The confusion matrix in Figs. 7 and 8 shows the recall 
(known as sensitivity) and precision scores obtained using 
the proposed LSTM-FFSM and CNN-FFSM models for 
each activity. As well as the accuracy over the whole mod-
els. Fig. 7 shows the obtained results when the proposed 

Fig. 7   Confusion matrix for ADL modelling and recognition results 
using dataset A; a using LSTM-FFSM model, b using CNN-FFSM 
model

Fig. 8   Confusion matrix for ADL modelling and recognition results 
using dataset B; a using LSTM-FFSM model; b using CNN-FFSM 
model
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two models are applied to dataset A. The results obtained by 
applying LSTM-FFSM and CNN-FFSM based on dataset A 
are illustrated in Fig. 7a, b respectively.

The results based on the application of the proposed LSTM-
FFSM and CNN-FFSM models to dataset B are shown in 
Fig. 8a, b, respectively. As it can be seen from these figures, 
CNN-FFSM model is more efficient when it is applied to a 
larger dataset containing confusion activities such as those 
activities that could occur at the same place (e.g., Meal Prep-
aration activity and Washing Dishes activity), both of them 
undertaking at the kitchen. In Fig. 8b, nine out of ten activi-
ties, including in dataset B, are recognised with 100% scores 
of precision.

The information given in the confusion matrix is explained 
as follows:

–	 The rows represent the output activities, and columns rep-
resent the target activities. The activities in dataset A are 
named as Sleeping, Toilet, Kitchen, Dining, Living, Leaving 
home, and Garden. The activities in dataset B are named as 
Sleeping, Bed-to-Toilet, Meal preparation, Washing dishes, 
Eating, Relaxing, Leaving-home, Entering-home, House-
keeping, and Office-work.

–	 The diagonal cells from the upper left to the lower right 
illustrate the activities that are correctly recognised.

–	 The off-diagonal cells present the incorrectly modelled and 
recognised activities.

–	 The precision for each activity is presented in the last col-
umn in the right.

–	 The recall for each activity is presented in the last row at 
the bottom.

–	 The accuracy over the whole model is illustrated in the 
bottom-right cell.

To evaluate and emphasise the proposed models, the results 
obtained in the experiments employing the LSTM-FFSM and 
CNN-FFSM models are compared with the results obtained 
using six different existing approaches for modelling and rec-
ognising human activities such as LSTM, SVM and NNs with 
both datasets A and B. The comparison between the perfor-
mance of the proposed LSTM-FFSM and CNN-FFSM with 
the other existing methods has been made for the accuracy 
over the whole models in Table 2. The overall performance for 
the proposed models based on dataset A is 95.7% and 94.2% 
obtained by applying LSTM-FFSM and CNN-FFSM models, 
respectively. 97.6% and 99.3% are the obtained results based 
on dataset B using LSTM-FFSM and CNN-FFSM models, 
respectively.

The expressions that are used to calculate accuracy, preci-
sion and recall for each activity are given below:

where TPi , TNi , FNi and FPi are the number of true posi-
tives, true negatives, false negatives and false positives 
of ith activity respectively. N is the number of the values 
TPi + TNi + FPi + FNi for ith activity. C is the activity of 
which its recall, precision and accuracy are calculated.

Considering the interpretability point of view, the most 
commonly used approaches for modelling and recognising 
human activities are the approaches based on mathematical, 
e.g., NNs and SVM. These models are well known as black-
box approaches because of the complexity of understanding 
their underlying calculations and concepts. This complexity 
will be more challenging when a large number of input and 
output variables are expected. As well as designing a model 
only based on the linguistic information assigned by human 
experts is not enough for a successful and robust human 
activities modelling and recognition model. Therefore, the 
advantages of integrating the experts’ knowledge with the 
learning capabilities in LSTM and CNN can be integrated 
into the proposed LSTM-FFSM and CNN-FFSM models for 
generating a successful and robust model that can be used 
for modelling and recognising human activities.

The obtained results are compared with some previous 
works, such as the research presented in (Rashidi et al. 
2010). They have used a dataset that was collected using 
ambient sensory devices to discover 5 different activities; 
Telephone use, Hand washing, Meal preparation, Eating, 
and Cleaning. A new mining method, called Discontinuous 

(10)Recall =
1

C

C∑
i=1

TPi

TPi + FNi

(11)Precision =
1

C

C∑
i=1

TPi

TPi + FPi

(12)Accuracy =
1

N

C∑
i=1

TPi

Table 2   The overall accuracy of the proposed LSTM-FFSM and 
CNN-FFSM comared with the existing approaches based on datasets 
A and B

Methods Dataset A Dataset B

CNN-FFSM 94.2% 99.3%
LSTM-FFSM 95.7% 97.6%
N-FFSM 95.2% 94.5%
LSTM 80.6% 78.1%
Bi-LSTM 83.7% 81.4%
NNs 78.7% 76.8%
FFSM 46.6% 41.3%
SVM 62.8% 60.9%
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Varied-Order Sequential Miner (DVSM), is used in this 
research with the collected dataset to find frequent patterns 
that may be discontinuous and might have variability in the 
ordering of this activities. The achieved results based on the 
DVSM is 77.3%.

In a recent publication for recognition of interleaved 
human activities, researchers have proposed a new human 
activity model containing three phases, namely Preprocess-
ing, Discovery Method for Varying Patterns (DMVP) and 
Predictive Modelling (Raeiszadeh et al. 2019). The first 
phase is used to convert the collected raw sensor data into 
event sequences, which are then fed to DMVP in the second 
phase to discover frequent activities that naturally happen 
during the normal daily routine, and then a classification 
model is applied to predict the activities in the third phase. 
The achieved results from this approach is 87.94% once it is 
evaluated with the CASAS dataset.

7 � Conclusion

The work presented in this paper has proposed two new 
methods for improving modelling and recognising human 
activities using data gathered from low-level sensory 
devices. Considering the results obtained from the con-
ducted experiments, it can be concluded that the LSTM-
FFSM and CNN-FFSM models exhibit a high score for 
accuracy, recall, and precision when its performance is 
tested for each activity separately. Also, the overall activity 
recognition performance, when it is over the whole system, 
demonstrates the effectiveness of the proposed approaches. 
The CNN-FFSM model shows more robust and reliable per-
formance once applied to a larger dataset (e.g., dataset B) 
representing ten activities over 240 days. In particular, when 
this dataset contains some activities that could be happening 
at the same place (such as Washing Dishes activity and Meal 
Preparation activity in the kitchen). In real-life scenarios, it 
is hard to know which activity is the current activity based 
on the data collected from the PIR sensory devices. Thus 
using a fuzzy feature representation approach with CNN-
FFSM will be used to deal with such cases as it can detect 
the changes in the fuzzy feature patterns. The essential fea-
ture of the proposed approach is that it integrates the avail-
able expert’s knowledge with the learned information from 
the deep learning techniques. The LSTM-FFSM has shown 
better performance for a simple scenario once it is applied 
to a short period dataset (e.g., dataset A). The CNN-FFSM 
achieved more accurate results to detect the ADL activi-
ties for a longer period dataset (e.g., dataset B). Besides, it 
can be seen how the proposed models can follow the proper 
sequence of states with the correct state activation degree.
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