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Abstract
In recent years, gait detection has been widely used in medical rehabilitation, smart phone, criminal investigation, naviga-
tion and positioning and other fields. With the rapid development of micro-electro mechanical systems, inertial measure-
ment unit (IMU) has been widely used in the field of gait recognition with many advantages, such as low cost, small size, 
and light weight. Therefore, this paper proposes a gait recognition algorithm based on IMU, which is named as FPRF-GR. 
Firstly, a fusion feature engineering operator is designed to eliminate redundant and defective features, which is mainly 
based on Fast Fourier Transform and principal component analysis. Then, in the design of classifier, in order to meet the 
requirements of gait recognition model for accuracy, generalization ability, speed, and noise resistance, this paper compares 
random forest (RF) and several commonly used classification algorithms, and finds that the model constructed by RF can 
meet the requirements. FPRF-GR builds the model based on RF, and uses the tenfold cross validation method to evaluate 
the model. Finally, this paper proposes an optimization scheme for the two parameters of decision tree number and sample 
number in RF. The results show that FPRF-GR can identify five gaits (walk, stationary, run, and up and down stairs) with 
the average accuracy of 98.2%.
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1  Introduction

The research of gait recognition started from 1960s by Mur-
ray et al. (1964). Gait recognition has been applied in many 
fields, such as medical rehabilitation, entertainment indus-
try, sports industry, and in the field of information science. 
For example, Zhi and Zhang (2012) used relative wavelet 
energy as features to discriminate walking pattern based on 
their improved physical activity healthcare system. Vikas 
and Crane (2013) proposed a novel approach of non-contact, 
dynamic measurement of joint parameters using the planar 
vestibular dynamic inclinometer. Ahmadi et al. (2014) pre-
sented a system that using discrete wavelet transform during 
a sports training session. Anwary et al. (2018) proposed an 
automatic gait feature extraction method to analyze the data 
during walking.

To identify a manner of gait, three types of gait recogni-
tion methods are mainly proposed, including floor sensor 
based, computer vision based, and wearable sensor based 
(Loudon and Janice 2008). In floor sensor based approaches, 
one of the main advantages is in its unobtrusive data collec-
tion, and this type method is usually installed in buildings 
and can be deployed in access control application (Gafurov 
2007). In the category of computer vision based, image and 
video techniques are used to extract features of gait for gait 
recognition, and most of the computer vision based meth-
ods are based on human silhouette (Khan et al. 2018; Liu 
et al. 2004). Martino et al. (2017) designs a sequential Monte 
Carlo scheme for the dual purpose of Bayesian inference 
and model selection, which considers the application con-
text of urban mobility, where several modalities of transport 
and different measurement devices can be employed. Wu 
et al. (2004) presents a switching Kalman filter model for 
the real-time inference of hand kinematics from a popula-
tion of motor cortical neurons. Achutegui et al. (2009) pro-
poses the problem of indoor tracking using received signal 
strength (RSS) as a position dependent data measurement. 
Although the recognition rate of gait based on computer 
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vision is relatively high, gait is recognized by pictures, 
which relies heavily on external environment, and requires 
high light intensity and background environment. If the light 
is insufficient and the background environment is not clear, 
the gait recognition rate would be low. The application areas 
of this type method are usually forensics and surveillance. 
In wearable sensor based approaches, data collections are 
more unobtrusive and more convenient than other methods. 
With advances in miniaturization techniques, it is feasible 
to integrate the sensor with personal devices. Thus, in this 
paper, we introduce a wearable sensor based approach to 
solve gait recognition problems.

In recent years, micro-electro-mechanical systems 
(MEMS) technology has attracted many researchers (Shuai 
et al. 2018; Wixted et al. 2007; Liu et al. 2018; Qureshi 
and Golnaraghi 2017), and a lot of studies related with gait 
recognition are using MEMS sensor, especially based on 
inertial measurement unit (IMU). IMU possesses many 
advantages, such as small size, light weight, wearable, low 
cost, and low power, which make it easy and convenient to 
implement with good properties. In recent years, with the 
rapid development of artificial intelligence technology, on 
the basis of wearable devices, researchers combine classifi-
cation algorithms in machine learning to extract and recog-
nize features (Mashal et al. 2016), including support vector 
machines (SVM) (Sprager and Zazula 2009), decision trees 
(Watanabe 2014), neural networks (Yuan 2012), and Gauss-
ian mixture model (Lu et al. 2014).

Gait recognition is a prerequisite for autonomous pedes-
trian positioning and navigation. In particular, the devel-
opment of artificial intelligence technology now requires 
automatic gait recognition to achieve pedestrian navigation 
or positioning needs in arbitrary attitudes. To achieve a 
higher accuracy, we present a more robust and high accu-
racy method called FPRF-GR. Firstly, the acceleration and 
angular velocity are collected by the MEMS sensor, and 
the preprocessed data are windowed and coordinate system 
transformed. Secondly, Fast Fourier Transform (FFT) + prin-
cipal component analysis (PCA) fusion feature engineering 
is used to reduce redundant or defective features. Thirdly, 
by comparing the advantages and disadvantages of SVM, 
K-Nearest Neighbor (KNN), Gradient Boosting Decision 
Tree (GBDT) and random forest (RF) (Breiman 2001), it 
is found that RF is most suitable for the requirements of 
the model in this paper. Therefore, FPRF-GR is based on 
RF to train the data after feature construction, and uses ten-
fold cross-validation method to evaluate the model. Finally, 
the optimization scheme of two parameters is proposed, 
including the number of decision trees and the number of 
samples. The results show that FPRF-GR possesses better 
performance than other methods.

The rest of this paper is organized as follows: Sect. 2 pre-
sents the details of the proposed method. The experiments 

are given in Sect. 3. Section 4 concludes the work in this 
paper.

2 � Proposed method

The proposed method is parted into three parts. Section 2.1 
introduces the data acquisition. Section 2.2 gives the details 
of feature engineering. Section 2.3 depicts the implementa-
tion of FPRF-GR.

2.1 � Data acquisition

2.1.1 � Acquisition platform

In this paper, the acceleration of X-axis, Y-axis, Z-axis 
and angular velocity of X-axis, Y-axis and Z-axis under 
five pedestrian gaits are collected by an IMU. The physical 
photo of the IMU is shown in Fig. 1. The MPU9250 includes 
three mutually orthogonal accelerometers, gyroscopes, and 
magnetometers. The RS-232 and the bus help us display 
and store the output data by communicating with personal 
computer (PC). The STM32 is the CPU to control the raw 
output data. The IMU can output the raw data from the sen-
sor and the orientation, which can be used for processing and 
analyzing by researchers.

2.1.2 � IMU wearing position

As shown in Fig. 2, the IMU is worn on the ankle during 
the experiment. Compared with other parts of the body, the 
data collected by the IMU wearing on the ankle is more 
accurate, can reflect the characteristics of each gait, and 
the data acquisition is more convenient. When the IMU is 
worn on the hand for data acquisition, the hand may shake, 
which will cause redundant features in the collected data to 
affect the classification model’s judgment of features. Simi-
larly, if worn on the chest, because the chest can’t be fixed, 
it will produce jitter phenomenon, which will lead to the 

Fig. 1   A physical photograph of the hardware based on MEMS sen-
sors
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data collected by the sensor noise is very large, resulting 
in redundant features. When the IMU is worn on the waist 
because the waist characteristics do not change significantly, 
the data differences of the subjects in walk, stationary, and 
run are not so obvious so that it can not well reflect the 
characteristics of each gait. If the IMU is worn on the instep, 
the gait data collected will be more accurate than the data 
collected on the ankle. But wearing the IMU on the instep is 
not conducive to walking, and it is not convenient to use in 
real life. Therefore, considering the accuracy of acceleration 
and angular velocity characteristics and the convenience of 
IMU wearing, this paper will wear the IMU on the ankle.

2.1.3 � Experimental subjects

In order to collect experimental data, we invite some vol-
unteers in our laboratory and school. In consideration of 
the comprehensiveness of data, various genders, ages, and 
heights of volunteers are guaranteed. In total, 20 volunteers 
participate in data collection. For each volunteer, three 
groups of experiments with five different gait (walk, station-
ary, run, and up and down stairs) will be conducted.

Table 1 shows the details of these volunteers. “# Subject 
x” (x = 1, 2, …, 20) means the symbol of the volunteer. For 
the “Sex”, ♂ represents male, and ♀ represents female. The 
units of “Height” and “Weight” are centimeters (cm) and 
kilograms (kg), respectively. We balance the number of male 
and female as much as possible with 12 males and 8 females. 
The weight is range from 49 to 85 kg. Volunteers are mainly 

during 21–26 years old. For each volunteer, 100 s of data are 
collected for each gait.

2.2 � Feature engineering

Since gait recognition is difficult directly using input data 
acquired from the IMU that raw data of the IMU is difficult 
to make gait recognition because there is serious noise in 
seniors’ output, some technologies of feature engineering 
are proposed. For example, Dehzangi et al. (2017) used con-
volutional neural networks to extract features. In the field of 
machine learning, various technologies have been used to get 
proper datasets, i.e. features. A set of good features will be 
conducive to acquire good results. Thus, this paper designs 
a method to extract features.

2.2.1 � Windowing

The data set is windowed. There are 100 sets of output data 
in 1 s of the MEMS sensor, each group of data represents 
three-axis acceleration information and three-axis angular 
velocity information. If these data are directly used in model 
training, it would be not practical, because each sample is 
0.01 s data. It represents the instantaneous state of walking, 
which can’t reflect the characteristics of motion. Generally 
speaking, when an adult walks normally, every gait will 
show a periodic change. Research shows that 1.5 m/s is the 
normal walking speed of adult, so it can be considered that 

Fig. 2   The location of IMU

Table 1   The parameters of the volunteers

Sex Age Height (cm) Weight (kg)

# Subject 1 ♂ 25 172 62
# Subject 2 ♀ 24 163 52
# Subject 3 ♂ 23 170 63
# Subject 4 ♀ 24 167 55
# Subject 5 ♂ 22 187 65
# Subject 6 ♀ 21 158 49
# Subject 7 ♂ 25 170 58
# Subject 8 ♀ 25 168 58
# Subject 9 ♂ 51 180 75
# Subject 10 ♀ 49 161 55
# Subject 11 ♂ 22 178 70
# Subject 12 ♂ 47 174 60
# Subject 13 ♂ 23 183 85
# Subject 14 ♂ 25 182 60
# Subject 15 ♀ 26 162 60
# Subject 16 ♂ 24 178 71
# Subject 17 ♀ 22 180 70
# Subject 18 ♂ 21 161 50
# Subject 19 ♀ 25 179 80
# Subject 20 ♂ 24 163 52
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the measured person can complete a step in 1 s. Because 
each training data must contain at least one step of state 
information in the process of walking, this paper adopts 
windowed method to process data. In this paper, a window 
with a length of 1 s is set up, and the 1 s data in the window 
is regarded as a piece of training data of the classifier. It 
ensures that the data in the window contains at least one 
complete gait cycle, so as to retain all gait information of 
the subject’s walking step.

Each input item of training data is shown as Eq. (1). Then 
each input item of training data is a matrix of 100 × 6. Class 
labels are added after windows are added. The definition of 
labels is Y = {1, 2,…, N}, N is the number of gait patterns. 
This paper defines five classes, including walk, stationary, 
run, up and down stairs, so N is 5.

Each input item of training data in the general classifica-
tion model is one row or one column. Therefore, as shown 
in Fig. 3, this paper connects the top and bottom of 100 data 
in the window, and changes the matrix of 100 × 6 to 1 × 600.

2.2.2 � Coordinate system transformation

The coordinate system transformation of the data is car-
ried out. Currently, the collected acceleration and angular 

(1)Xt =

⎛
⎜⎜⎜⎝

x1,1 x1,2 … , x1,6
x2,1 x2,2 … , x2,6
⋮ ⋮ ⋱ ⋮

x100,1 x100,2 … , x100,3

⎞
⎟⎟⎟⎠

velocity are based on the carrier coordinate system. As 
shown in Fig. 4, although the IMU is worn on the ankle dur-
ing the experiment, the position of IMU is different, which 
is installed in Fig. 4a, b, and the direction of each axis in the 
carrier coordinate system is different, which leads to the data 
collected not in the same standard. In gait recognition, the 
data under different standards are unreasonable, so it is nec-
essary to rotate the data under the carrier coordinate system 
(b) to the geographic coordinate system (n), so as to unify 
the data comparison standard. In Fig. 4, carrier coordinate 
shows that the IMU (the white box) on MPU9250 is installed 
Cartesian coordinate system. Figure  4a is installation 

Fig. 3   Construction schematic diagram of original training samples

Fig. 4   Carrier coordinate system
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perpendicular to the ground while Fig. 4b is installation 
non-perpendicular to the ground. Figure 5 shows the coor-
dinates of the accelerometer and gyroscope in MPU9250. 
Moreover, Fig. 5 is MPU9250 data sheet description of car-
rier coordinates. Figure 6 gives the geographic coordinate 
system. X, Y and Z show the direction of east, north and 
sky. In addition, Fig. 6 is the geographic coordinate system 
on the earth surface.

The direction of geographic coordinate system is north-
east celestial direction. Acceleration and angular velocity 
in carrier coordinate system rotate to geographic coordinate 
system through rotation sequence of Z axis, Y axis and X 
axis. The rotation matrix is shown in Eq. (2).

� , � and � represent yaw angle, roll angle and pitch angle 
respectively. Therefore, the conversion formula of accelera-
tion and angular velocity in carrier coordinate system is 
defined in Eqs. (3) and (4). In Eqs. (3) and (4), an

k
 and �n

k
 are 

(2)

Cn
b
=

⎛
⎜⎜⎝

cos � 0 sin �

0 1 0

− sin � 0 cos �

⎞
⎟⎟⎠
⋅

⎛
⎜⎜⎝

1 0 0

0 cos� − sin�

0 sin� cos�

⎞
⎟⎟⎠
⋅

⎛
⎜⎜⎝

cos� − sin� 0

sin� cos� 0

0 0 1

⎞
⎟⎟⎠

the acceleration and angular velocity in geographic coordi-
nates, respectively. Superscript n is geographic coordinates, 
sub-indices k shows discrete time, and sub-indices b is car-
rier coordinate.

2.2.3 � FFT

The Feature Fusion Engineering in FPRF-GR combines FFT 
with PCA. Firstly, FFT is used to convert the time-varying 
signals into time-invariant signals in frequency domain. The 
reason is that when a normal person walks at a certain speed, 
his whole walking state presents periodic regularity, but the 
gait data of each sample point at the moment is different 
from the sample point after 1 s. Although in practical physi-
cal sense, the latter is only the translation of the former and 
should be the same gait. But in the classifier, because of the 
phase, the two sampling points on gait state will appear in 
completely different positions in the output space. Therefore, 
the classifier will assume that the current state and the state 
after 1 s are not the same gait so that making a wrong judg-
ment. In this paper, FFT operator is introduced to process 
each row of data separately, and only the amplitude–fre-
quency features of each gait are extracted to avoid the mis-
judgment of the classifier caused by the phase features.

In order to verify the validity of FFT, a random sample 
of the measured data is selected. The selected data are pre-
processed, windowed and coordinate system transformed. 
Then the Z-axis acceleration amplitude–frequency map 
and X-axis angular velocity amplitude–frequency map of 
the measured person in walk, run, stationary, up and down 
stairs gait are plotted by Spyder Softeware. Figure 7 depicts 
the amplitude–frequency variation of Z-axis acceleration in 
five gaits. The abscissa represents the frequency point and 
the ordinate represents the amplitude. Figure 8 gives the 
amplitude–frequency variation of X-axis angular velocity 
after FFT in five gaits. In Figs. 7 and 8, it can be found that 
the phase characteristics are eliminated, and the amplitudes 
of acceleration and angular velocity under the five gaits are 
different, which can reflect the characteristics of each gait.

Therefore, three-axis acceleration and three-axis angular 
velocity can eliminate the interference of phase character-
istics after FFT, and the difference of amplitude–frequency 
characteristics is obvious in each state, which can improve 
the accuracy of model training. In this experiment, the sam-
pling frequency of accelerometer and gyroscope is 1 kHz, 
and the data output frequency of sensor is 100 Hz. The data 
of each tested person is obtained within 100 s. Therefore, in 

(3)an
k
= cn

b
⋅ ab

k

(4)�n
k
= cn

b
⋅ �b

k

Fig. 5   Carrier coordinate system of accelerometer and gyroscope

Fig. 6   Geographical coordinate system
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this paper, the FFT of 64 points is selected in FPRF-GR, and 
the amplitude of FFT is determined as input data.

2.2.4 � PCA

At present, every training data input item is a 600-dimen-
sional vector. When feature construction is carried out, if 

the dimension of input learning samples is very high, the 
amount of data for classifier learning will also increase. 
When solving large scale classification problems, the time 
and space complexity of the classifier will increase with 
the increase of data, which will affect the performance 
of the algorithm. Comparing the high-dimensional matrix 
with the sparse matrix, it will be found that the feature 

Fig. 7   Z-axis acceleration 
amplitude–frequency contrast 
map after FFT in five gaits

Fig. 8   X-axis angular velocity 
amplitude–frequency contrast 
map after FFT in five gaits
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extraction process of the high-dimensional matrix is very 
troublesome, and it may extract the abnormal features, 
which will lead to the reduction of the accuracy of the 
model. Therefore, when the data sets have many features, 
dimension reduction can be used to improve the accuracy. 
The principle of dimension reduction is to reduce dimen-
sion without losing a large number of useful features. 
After dimension reduction, the number of learning sam-
ples will be reduced, which can improve the efficiency of 
classifier for data processing.

Based on FFT feature engineering, because PCA can 
reduce the complexity of data and identify the most impor-
tant features, this paper uses PCA to reduce dimension. PCA 
can be implemented in two ways: covariance matrix decom-
position and singular value decomposition. In this paper, 
covariance matrix is used. The selected method is not singu-
lar value decomposition but covariance matrix decomposi-
tion. The reason is as following. The purpose of dimension 
reduction is noise reduction and de-redundancy. The pur-
pose of “noise reduction” is to make the correlation between 
the remaining dimensions as small as possible, while the 
purpose of “de-redundancy” is to do the remaining dimen-
sions contain as much “energy” or variance as possible. So 
the first problem is that we need to know the correlation 
between the dimensions and the variance of the dimensions. 
What data structure can show the correlation between dif-
ferent dimensions and the variance on each dimension? It 
is covariance matrix. The covariance matrix measures the 
relationship between dimensions, not between samples. The 
elements on the main diagonal of the covariance matrix are 
variances (that is, energy) on each dimension, and the other 
elements are covariances (that is, correlations) between the 
two dimensions. We have the covariance matrix for every-
thing we want.

As for the choice of dimension k after dimension reduc-
tion, the size of k can be arbitrary. Moreover, according to 
the constraints of Eq. (5), the minimum k value that meets 
the constraints of Eq. (5) is calculated.

In Eq. (5), 1
m

∑m

i=1
��x(i) − x(i)

approx
��2 is the average of the 

square of projection error, x(i)
approx

 is the mapping value, and 
1

m

∑m

i=1
��x(i)��2 is the total variance of data. In addition, x(i) 

and x(i)
approx

 represent the vector after FFT.

The value of t is determined by oneself. The value of t 
in this paper is 0.05, which represents that the PCA retains 
95% of the main information. The selection of k in this 
paper is 60, and the new matrix calculated is a 60 dimen-
sional matrix. The training data input set of each sample 
is 60 dimensions.

(5)
1

m

∑m

i=1

���x(i) − x(i)
approx

���
2

1

m

∑m

i=1
��x(i)��2

≤ t

2.3 � Implementation of FPRF‑GR

2.3.1 � Comparisons of relevant classification algorithms

The classification model designed in this paper is expected 
to achieve high accuracy, anti-noise, strong generalization 
ability and fast running speed. In this paper, SVM, KNN, 
GBDT and RF are used to compare with the proposed algo-
rithm. As shown in Table 2, RF is superior to SVM, KNN 
and GBDT in terms of accuracy, generalization ability, speed 
and anti-noise ability of the model, which fully meets the 
design requirements of classification model.

Therefore, the paper concludes that the model designed 
based on RF will be more suitable for the classification 
model requirements of this paper. Moreover, after data fea-
ture construction, FPRF-GR builds and optimizes the model 
on the basis of RF.

2.3.2 � Optimization of stochastic forests

Figure 9 shows the experimental process of FPRF-GR. The 
original data is collected by the IMU. Firstly, filtering and 
denoising, data calibration is carried out. Secondly, the win-
dow and coordinate system are transformed. Thridly, the 
fusion feature engineering combining FFT and PCA is used 
to extract the amplitude–frequency characteristics of data 
and reduce the dimension. Finally, the data after feature 
construction is taken as the final learning sample, and the 
model is constructed on the basis of RF. Table 3 describes 
the FPRF-GR, and n is the number of integration trees.

FPRF-GR optimizes parameters based on RF. Appropri-
ate parameters are very important for the running speed and 
evaluation results of machine learning models and inappro-
priate parameters may lead to over-fitting or under-fitting. 
Therefore, this paper proposes two optimization schemes 
for the number of samples and the number of decision trees.

1.	 Sample size optimization scheme. For machine learning 
problem, if the number of samples is small at first, the 
accuracy of the model will be low. With the increase of 
sample size, the accuracy of the model will be improved. 
But when the number of samples reaches a certain level, 

Table 2   Performance comparison table of four algorithms

Algorithm Performance

Accuracy Generaliza-
tion ability

Speed Noise resistance

SVM General Stronger Faster General
KNN Higher Stronger Slower General
GBDT Higher Stronger Slower General
RF Higher Slower Fast Slower
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if the number of samples continues to increase, the data 
granularity becomes finer and finer, and the accuracy of 
gait recognition will decrease. Because the characteris-
tics of some data only exist under the specific granular-
ity, it leads to the phenomenon of over-fitting if the sam-
ple is divided too fine so that it will lose some features.

	   Therefore, a sample size optimization scheme is pro-
posed for FPRF-GR. This paper argues that the impact 
of sample size on the accuracy of model recognition will 
show a trend of first rising and then declining, so the 
optimal sample size is the corresponding sample number 
before the decline of accuracy.

2.	 Optimizing the number of decision trees. The theoretical 
study shows that the accuracy of the results is low when 
the number of decision trees is small. When the number 
of decision trees increases, the accuracy of the model 
will be improved, but it will not reach 100% because 
there will still be noise and error in the data character-
istics. When the number of trees reaches a certain level, 
the change of model accuracy will be very small and 
stable in a value, which will not appear a significant 
downward trend. This is because the randomness of 
sample and feature of RF can reduce the probability of 

over-fitting, so as the number of decision trees increases, 
the accuracy of the model will not decrease too much.

Therefore, a decision tree quantity optimization scheme is 
proposed for FPRF-GR. This paper argues that the number 
of decision trees will have an upward trend and then a steady 
trend on the accuracy of model recognition. Considering 
resource saving and computing cost, the optimal number of 
decision trees is the corresponding value when the accuracy 
of the model has just reached stationary.

In this paper, tenfold cross validation method is used to 
evaluate the model. This method will reduce the probability 
of under-fitting and over-fitting, so the accuracy of the final 
model is more convincing.

3 � Experiments

It is difficult to directly implement FPRF-GR algorithm in 
STM32 chip, so this paper uses Spyder software to imple-
ment FPRF-GR and related classification algorithm in PC. 
Firstly, Sect. 3 evaluates FPRF-GR according to several 
evaluation indexes in machine learning. Secondly, through 

Fig. 9   FPRF-GR experimental process

Table 3   FPRF-GR
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several comparative experiments, the correctness of the 
parameter optimization scheme proposed in Sect. 2 and 
the effectiveness of FFT + PCA fusion feature engineering 
are verified. The results show that FPRF-GR is superior to 
SVM, KNN and GBDT.

3.1 � Evaluating indicator

To validate the performance of FPRF-GR, this paper uses 
the average of Precision, Recall and F1-score for each 
class to evaluate the results. For each class, we use the 
confusion matrix to calculate the Precision, Recall and 
F1-score. Precision, Recall and F1-score are defined in 
Eqs. (6), (7) and (8) respectively, and the confusion matrix 
is defined in Table 4. TPR and FPR are separately defined 
in Eqs. (8) and (9) respectively.

TP, FP, FN and TN are defined in Table 4. NTP is the 
number of true positives, NTN is the number of true nega-
tives, NFN is the number of false negatives, and NTN is the 
number of true negatives. This paper defines the number 
of classes is 5, and the results are the average of these 5 
classes.

Equations (6), (7) and (8) can be used to calculate the 
Precision, Recall and F1-score of FPRF-GR algorithm 
in five gaits, respectively. The results of accuracy are 
shown in Table 5. For stationary gait, all the results are 
1.000, while the other gait classes are close to 1.000. All 
these values are greater than 0.960, and the average value 
is greater than 0.980. That is to say, under these three 

(6)Precision =
NTP

NTP + NFP

(7)Recall = TPR =
NTP

NTP + NFN

(8)F1 − score =
2 × Precision × Recall

Precision + Recall

(9)FPR =
NFP

NFP + NTN

evaluation indicators, the recognition results of walk, run, 
stationary, up and down stairs are very good, which is suit-
able for the gait recognition problem in this paper.

3.2 � Effect of parameters

In Sect. 3.2, we study the effect of the two parameters on the 
proposed algorithm. Firstly, we discuss the proper value of 
the number of samples for training. Secondly, we study the 
number of trees on FPRF-GR.

3.2.1 � Effect of the number of samples

Figure 10 shows the effect of sample size on model recogni-
tion results. According to Fig. 10, it is under-fitting and the 
accuracy is low when the number of samples is 200. With 
the increase of the number of samples, the recognition accu-
racy of the model is also increasing. The recognition result 
of the model is the highest when the number of samples 
reaches 1400. However, if the number of samples continues 
to increase, the model is in the state of over-fitting, and the 
accuracy is slowly declining.

The effect of sample size on the accuracy of model results 
in Fig. 10 confirms the parameter optimization scheme pro-
posed in Sect. 2 of this paper. Therefore, 1400 samples are 
selected as the input sample size of the experiment. That is 
to say, for 20 subjects, 70 experimental samples are needed 
for each of the five gaits.

3.2.2 � Effect of the number of trees

In this paper, the number of decision trees is experimented in 
groups, and it is found that the trend of each group is almost 
the same. Now taking out one group of experiments to study 
the accuracy. According to Fig. 11, it can be found that the 
number of trees in the forest does affect the accuracy of 
the test results. When the number of trees is between 0 and 
1000, the accuracy is low at first, and then increases with 
the increase of the number of trees, which confirms that a 
small number of decision trees may lead to the phenomenon 
of under-fitting. When the number of trees reaches 1000, the 
accuracy rate is the highest. However, after 1000, with the 

Table 4   Definition of TP, FP, FN, and TN 

True condition

Positive Negative

Predicted condition
 Positive TP FP
 Negative FN TN

Table 5   Precision, Recall and F1-score of FPRF-GR

Precision Recall F1-score

Walk 0.965 0.982 0.973
Stationary 1.000 1.000 1.000
Run 1.000 0.975 0.987
Up stairs 0.980 0.980 0.980
Down stairs 0.968 0.974 0.971
Average 0.983 0.982 0.982
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increase of the number of decision trees, the accuracy rate 
will only stabilize at a fixed value and will not rise. This 
result confirms that the phenomenon of over-fitting can not 
be completely eliminated.

The above experiments confirm the optimization schemes 
of the number of trees proposed in Sect. 2 of this paper. 
Therefore, this paper uses 1000 trees to construct the model, 
which not only guarantees the accuracy of the model, but 
also reduces the calculation cost.

3.3 � Comparative study

3.3.1 � Feature engineering contrast

In order to verify the necessity of FFT + PCA fusion 
feature engineering, four kinds of feature engineering, 

including FFT feature, PCA feature, FFT + PCA feature 
and original feature are compared. The above four fea-
ture engineering models are constructed based on RF. As 
shown in Table 6, the experimental accuracy is the average 
recognition accuracy of stationary, walk, run, up and down 
stairs. The recognition algorithm based on FFT + PCA 
features has a higher accuracy rate than other recogni-
tion algorithms based on several other features, and the 

Fig. 10   The effect of sample 
number on accuracy

Fig. 11   The effect of tree num-
ber on accuracy

Table 6   Comparison table of results of different feature construction 
methods

Feature engineering FFT PCA FFT + PCA Original features

Accuracy 0.92 0.943 0.982 0.87
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accuracy rate is 98.2%. It proves that the classifier based 
on FFT + PCA features has the best result.

3.3.2 � Comparison of different algorithms

In order to prove that the FPRF-GR proposed in this paper 
is the best, the optimal models of SVM_rbf, SVM_linear, 
KNN and GBDT are constructed on the basis of the same 
feature engineering as FPRF-GR, and evaluated by tenfold 
cross-validation method. Among them, SVM_rbf denotes 
that SVM uses a Gauss kernel function, and SVM_linear 
denotes that SVM uses a linear kernel function.

Figure 12 shows the average recognition accuracy of five 
different gait classification algorithms. From Fig. 12, it can 
be seen that the accuracy of five kinds of gait classification 
of FPRF-GR algorithm is 98.2%, which is the highest, supe-
rior to SVM, GBDT and KNN. Table 7 gives the parameters 
of five algorithms.

In addition, in the later part of this paper, the designed 
algorithm will be written into the chip to achieve online 
operation, so the running time of the algorithm is also 
very important. The running time of the algorithms 
mainly depends on the training time of the models, so 
this paper compares the training time of these algorithms. 

The training time of FPRF-GR is the shortest as shown in 
Fig. 13, which is 323.51 s.

Table 8 compares the results of this study with those of 
related papers. At same the time, the results of Table 8 are 
from corresponding references. These papers are based on 
the MEMS sensor for gait recognition, and the accuracy 
of multi-classification recognition papers is lower than 
this paper. Some papers’ accuracy is similar to this paper, 
but their gait recognition types are fewer than this paper, 
which is lack of practical application.

4 � Conclusions

This paper proves that FPRF-GR has the highest model 
accuracy and the shortest training time, which is superior 
to SVM, GBDT and KNN. The proposed FPRF-GR can 
recognize pedestrian gait accurately, and the accuracy can 
reach 98.2%. It has good practicability and application 
prospects, such as medical rehabilitation, smart phone, 
criminal investigation, navigation and positioning and 
other fields.

Fig. 12   Comparisons of accuracy of different classification algo-
rithms

Table 7   Parameters of five 
algorithms

Algorithm Parameters

C Gamma Decision 
function 
shape

n estimators Learning rate Max depth Ran-
dom 
state

KNN 0.8 0.4 ovr – – – –
SVM_rbf 0.8 0.4 ovr – – – –
SVM_linear 0.8 0.4 ovr – – – –
GBDT – – – 50 1.0 1 0
FPRF-GR – – – 50 – 0 0

Fig. 13   Contrast chart of training time for different classification 
algorithms
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Table 8   Comparisons with related research results

Literature Number 
of classes

Gait Accuracy (%)

This paper 5 Walk, stationary, 
run, and up and 
down stairs

98.2

Bai and Sun (2019) 4 Walk, run, and up 
and down stairs

96.8

Liu et al. (2010) 2 Walk, run 93.7
Li and Zhang (2011) 2 Walk, others 98
Wang et al. (2014) 2 Walk, up stairs 96
Wang et al. (2014) 2 Walk, down stairs 85
Zou et al. (2019) 2 Walk, others 93.5
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