
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:5245–5258 
https://doi.org/10.1007/s12652-020-01853-y

ORIGINAL RESEARCH

A ranking method based on possibility mean for multi‑attribute 
decision making with single valued neutrosophic numbers

Totan Garai1 · Harish Garg2 · Tapan Kumar Roy3

Received: 18 April 2019 / Accepted: 28 February 2020 / Published online: 11 March 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Single valued neutrosophic (SVN) set has a useful independent mathematical structure for expressing the incomplete, incon-
sistent and indeterminate information. Many researchers have studied decision making problems with SVN environment. This 
paper presented a new ranking method of SVN-numbers based on possibility theory for solving a multi-attribute decision 
making (MADM) problem. The first time we have defined the concept of possibility mean of SVN numbers and applied to 
multi-attribute decision making problem in which the attribute values are considered as SVN-numbers. Then, we propose 
the possibility mean of the truth-membership function, indeterminacy-membership function and falsity-membership func-
tion for single valued trapezoidal neutrosophic (SVTN) numbers and studied some desired properties of SVTN. Thus, we 
have developed a new ranking approach using the concept of weighted possibility mean, and applied to MADM problems. 
Finally, a numerical example is examined to show the applicability and an embodiment of the proposed method.

Keywords Possibility mean · Single valued neutrosophic numbers · Trapezoidal neutrosophic numbers · Triangular 
neutrosophic numbers · Multi-attribute decision making

1 Introduction

Multi attribute decision making (MADM) which is an 
important part of decision science is to find an optimal alter-
native, which are characterized in terms of multiple attrib-
ute, from alternative sets. In some real applications, the deci-
sion makers may be not capable to find exactly the values 
of the MADM problems due to uncertain and asymmetric 
information between decision maker. Multi-attribute deci-
sion making is the process to select an optimal alternative 

from the gathering feasible alternatives based on the num-
ber of attributes. But due to uncertainty and incompleteness 
decision making information, decision making process is 
not so easy to select the alternative from the set of feasible 
alternatives. As the result, output of the ranking order of 
alternatives is not accurate always. It is helpful for some 
sets, which deal with uncertainty, incomplete information 
such as fuzzy set, intuitionistic fuzzy set, neutrosophic set.

Some recent useful applications of fuzzy decision making 
are stated (Kacprzak 2019; Yazdani et al. 2019). Bellman 
and Zadeh (1970) gave first a decision making concept in 
fuzzy set environment. After that, Atanassov (1986) intro-
duced intuitionistic fuzzy set (IFS) defining non-member-
ship functions at first as independent component to reveal 
the uncertainty in different way. Recently, Jiang et al. (2018) 
defined new power aggregation operator on IFS and applied 
it to software selection problem. Liu et al. (2018) introduced 
intuitionistic fuzzy Dombi Bonferroni mean (IFDBM) oper-
ator depend on the Dombi operations and Bonferroni mean 
operator. Garg (2016) presented generalized intuitionistic 
fuzzy aggregation operators under the intuitionistic multi-
plicative preference relation instead of intuitionistic fuzzy 
preference relations. Some other important applications 
of intuitionistic fuzzy set in decision making (Jiang et al. 
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2019; Rashid et al. 2018). Joshi and Kumar (2018) defined 
a new accuracy functions under interval-valued intuitionistic 
fuzzy sets (IVIFSs), namely improved accuracy function to 
compare all comparable IVIFSs correctly. Using proposed 
accuracy function, they developed a multi-attribute group 
decision making (MAGDM) method with partially known 
attributes’ weight. Garg and Arora (2018) developed some 
new Bonferroni mean (BM) and weighted BM averaging 
operator for aggregating the different preferences of the 
decision-maker in intuitionistic fuzzy soft set environment. 
Recently, Garg (2017) introduced a series of averaging 
aggregation operators in the intuitionistic fuzzy environment 
by considering the degrees of hesitation between the mem-
bership functions and non-membership functions. Based on 
these averaging aggregation operators, he has been proposed 
a multi-criteria decision making method. Li (2014) gave a 
ranking method of intuitionistic fuzzy numbers and applica-
tion to multi-attribute decision making problems in which 
attribute ratings are expressed with intuitionistic fuzzy num-
bers in management problem.

However, the theories of FS and IFS are incapable of 
managing the uncertainties such as indeterminate and incon-
sistent information. To get rid of such uncertainties, a new 
theory of neutrosophic sets (NSs) was introduced by Sma-
randache (1999), which is a branch of philosophy, studies 
the nature and scope of neutralities. The neutrosophic set 
(NS) as the generalization mathematical structure of FS and 
IFS by defining the three independent component. Truth, 
indeterminacy and falsity membership degree are the three 
independent components of NS. Later on, Wang et al. (2010) 
defined a special form of NS for realistic applications is 
called single valued neutrosophic set (SVNS). Liu and Wang 
(2018b) has been established interval neutrosophic prior-
itized owa operator and its application to multiple attribute 
decision making problems. Garg and Nancy (2018) was pro-
posed the tinguistic single valued neutrosophic prioritized 
aggregation operators and their applications to multiple 
attribute group decision making problems. Liu and Wang 
(2018a) presented a multiple attribute decision-making 
method based on single-valued neutrosophic normalized 
weighted bonferroni mean. Some important study on SVN-
sets which have been great impact on decision making 
(Sodenkamp et al. 2018; Wei and Wei 2018; Ren 2017).

Due to existence of uncertainty in real application data, 
Zadeh (1965) first introduced fuzzy set to deal with uncer-
tainty in real and scientific problems. Possibility theory 
is one of the current uncertainty theories devoted to the 
handling of incomplete information, more precisely it is 
the simplest one, mathematically. To a large extent, it is 
similar to probability theory because it is based on set-
functions. The possibility theory of fuzzy set was proposed 
by Zadeh (1978) and developed by many researchers, e.g., 
Dubois and Prade (1988), Yager (1992), Klir (1999) and 

others. Its academic meaning is in building a theoretical 
appearance of real applications for fuzzy sets. The pos-
sibility mean is the significant mathematical prominence 
of fuzzy numbers. Carlsson and Fuller (2001) introduced 
the notations of lower and upper possibilistic mean val-
ues and the inter valued possibilistic mean. They also 
proposed the notations of crisp possibilistic mean value 
and crisp possibilistic variance of continuous possibility 
distributions. Fuller and Majlender (2003) considered the 
notation of weighted interval-valued possibilistic mean 
value of fuzzy numbers and investigate its relationship to 
the interval-valued probabilistic mean. Wan et al. (2013) 
introduced the possibility mean, variance and covariance 
of triangular intuitionistic fuzzy numbers. Recently, the 
concept of the possibility mean, variance and covariance 
of generalized intuitionistic fuzzy number proposed by 
Garai et al. (2018).

In multiple difficult decision making problems, the 
decision information provided by a decision maker is 
often imprecise or uncertain due to time pressure, lack of 
data, or the decision maker’s limited attention and infor-
mation processing capabilities. Therefore, introducing 
the possibility mean and variance into the nutrosophic the 
multi-attribute decision making (MADM) is of a great 
importance for scientific researches and real applications. 
However, there was no investigation on the possibility 
mean of nutrosophic number and application to MADM 
problems. The aim of this paper is defined a new rank-
ing method based on possibility mean. Instead of this the 
proposed method has been applied for solving MADM 
problems under nutrosophic numbers.

In spite of the above mentioned developments, follow-
ing additions can also be made in the possibility mean of 
single valued nutrosophic numbers and its application to 
multi-attribute decision making problem. 

∙  Possibility mean of single valued nutrosophic numbers.
∙  The weighted possibility mean of single valued nutro-

sophic numbers.
∙  Formulation of some valuable theorems with possibility 

of single valued nutrosophic numbers.
∙  First time a rigorous ranking methodology to solve multi-

attribute decision making problem.

The rest of the paper is organized as follows: In Sect.  2, 
we present some basic knowledge of SVN-numbers, In 
Sect.  3, we formulate the possibility mean of SVN-num-
bers and its valuable theorems. In Sect.  4, we introduce 
a multi-attribute decision making method based on pos-
sibility mean with SVN-numbers. The numerical examples 
with comparative studies are given in Sect.  5. Finally, the 
conclusion and scope of future work plan affair in Sect.  6.
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2  Basic preliminaries

Definition 2.1 Let X be universe set. An intuitionistic 
fuzzy set (Deli and Broumi 2015) K over X is defined by 
K = {⟨x,�K(x), �K(x)⟩ ∶ x ∈ X} ,  where �K ∶ X → [0, 1] 
and �K ∶ X → [0, 1] such that 0 ≤ �K(x) + �K(x) ≤ 1 for 
any x ∈ X  . For each x ∈ X  , the values �K(x) and �K(x) 
are the degree of membership and non-membership of x, 
respectively.

Definition 2.2 Let X be a universe. A nutrosophic 
sates (Deli and Broumi 2015) A over X is defined by 
A = {⟨x, (TA(x), IA(x) , FA(x))⟩ ∶ x ∈ X} , where TA(x), IA(x) 
and FA(x) are called truth membership function, indetermi-
nacy-membership function and falsity membership function, 
respectively. They are respectively defined by

such that 0− ≤ TA(x) + IA(x) + FA(x) ≤ 3+

Definition 2.3 Let X be a universe (Deli and Broumi 2015). 
An single valued neutrosophic set (SVN-set) over X is a 
neutroophic set over X, but the truth-membership function, 
indeterminacy-membership function and falsity-membership 
function are respectively defined by

such that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.4 Let wã, uã, yã ∈ [0, 1] be any real numbers, 
at
j
, ai

j
, a

f

j
∈ ℝ (j = 1, 2, 3, 4) and a1 ≤ a2 ≤ a3 ≤ a4 . Then a 

single valued neutrosophic number (Deli and Broumi 2015) 
(SVN-number) ã = ⟨((at

1
, at

2
, at

3
, at

4
); w

ã
), ((ai

1
, ai

2
, ai

3
, ai

4
), u

a
),

((a
f

1
, a

f

2
, a

f

3
, a

f

4
);yã)⟩ is a special netrosophic set on the set of 

real numbers ℝ , whose truth-membership function 

TA ∶ X →]−0, 1+[, IA ∶ X →]−0, 1+[, FA ∶ X →]−0, 1+[

TA ∶ X → [0, 1], IA ∶ X → [0, 1], FA ∶ X → [0, 1]

𝜇ã ∶ ℝ → [0, 1] , indeterminacy membership function 
𝜈ã ∶ ℝ → [0, 1] and falsi ty membership function 
𝜆ã ∶ ℝ → [0, 1] are respectively defined by

w h e r e  t h e  f u n c t i o n  f l
𝜇
∶ [at

1
, at

2
] → [0,wã]  , 

f l
𝜈
∶ [ai

3
, ai

4
] → [uã] and f l

𝜆
∶ [a

f

3
, a

f

4
] → [yã, 1] are con-

tinuous and non increasing, and satisfy the condi-
t ions:  f l

𝜇
(at

1
) = 0, f l

𝜇
(at

2
) = wã  ,  f r

𝜈
(ai

4
) = uã, f

r
𝜈
(ai

4
) = 1 , 

f r
𝜆
(a

f

3
) = yã, f

r
𝜆
(a

f

4
) = 1 ; the functions f r

𝜇
∶ [at

3
, at

4
] → [0,wã] , 

f r
𝜈
∶ [ai

1
, ai

2
] → [uã] a n d  f r

𝜆
∶ [a

f

1
, a

f

2
] → [yã, 1] a r e 

continuous and increasing, and satisfy the condi-
t ions :  f r

𝜇
(at

3
) = 0, f r

𝜇
(at

4
) = wã  ,  f l

𝜈
(ai

1
) = uã, f

l
𝜈
(ai

2
) = 1 , 

f l
𝜆
(a

f

1
) = yã, f

l
𝜆
(a

f

2
) = 1 . [at

2
, at

3
] , at

1
, at

4
 are called the mean 

interval and lower and upper limits of the general neutro-
sophic number ã for truth-membership function, respec-
tively. [ai

2
, ai

3
] , ai

1
, ai

4
 are called the mean interval and lower 

and upper limits of the general neutrosophic number ã for 
indeterminacy-membership function, respectively. [af

2
, a

f

3
] , 

a
f

1
, a

f

4
 are called the mean interval and lower and upper limits 

of the general neutrosophic number ã for falsity-membership 
function, respectively. wã, uã and yã are called the maximum 
truth membership degree, minimum indeterminacy-mem-
bership degree and minimum falsity membership degree, 
respectively.

Example 1 Assume that ã = ⟨((1, 3, 5, 8), 0.9), ((1, 2, 6, 8),

0.3), ((1, 3, 5, 8), 0.5)⟩ be a SVN-number. Then, the mean-
ings of ã is interpreted as follows: For example the truth-
membership degree of the element 3 ∈ ℝ belonging to ã is 
0.9 whereas the indeterminacy membership degree is 0.1 
and falsity-membership degree is 𝜇ã(3) = 0.9, 𝜈ã(3) = 0.3 
and 𝜆ã(3) = 0.5 (cf. Fig. 1).

𝜇ã(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

f l
𝜇
(x), if at

1
≤ x < at

2

wã, if at
2
≤ x ≤ at

3

f r
𝜇
(x), if at

3
< x ≤ at

4

0 otherwise

𝜈ã(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

f l
𝜈
(x), if ai

1
≤ x < ai

2

uã, if ai
2
≤ x ≤ ai

3

f r
𝜈
(x), if ai

3
< x ≤ ai

4

0 otherwise

𝜆ã(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

f l
𝜆
(x), if a

f

1
≤ x < a

f

2

yã, if a
f

2
≤ x ≤ a

f

3

f r
𝜆
(x), if a

f

3
< x ≤ a

f

4

0 otherwise

Fig. 1  �-cut set of truth-membership, �-cut set of indeterminacy-
membership, and �-cut set of falsity-membership functions for SVN-
numbers ( ̃a)
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Definition 2.5 A single valued trapezoidal neutrosophic 
number (SVTN-number) ã = ⟨(a1, a2, a3, a4) ; wã, uã, yã⟩ is 
a special neutrosophic set (Deli and Broumi 2015) on the 
real number set ℝ , whose truth-membership, indeterminacy 
membership and falsity membership functions are given as 
follows:

and

respectively.

Definition 2.6 A single valued triangular neutrosophic num-
ber (SVTrN) ã = ⟨(a1, a2, a3);wã, uã, yã⟩ is a special neutro-
sophic set (Deli and Broumi 2015) on the real number set 
ℝ , whose truth-membership, indeterminacy membership and 
falsity membership functions are given as follows:

and

𝜇ã(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x − a1

a2 − a1
wã, if a1 ≤ x < a2

wã, if a2 ≤ x ≤ a3
a4 − x

a4 − a3
wã, if a3 < x ≤ a4

0 otherwise

𝜈ã(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(a2 − x) + (x − a1)uã

a2 − a1
, if a1 ≤ x < a2

uã, if a2 ≤ x ≤ a3
(x − a3) + (a4 − x)uã

a4 − a3
, if a3 < x ≤ a4

0 otherwise

𝜆ã(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(a2 − x) + (x − a1)yã

a2 − a1
, if a1 ≤ x < a2

yã, if a2 ≤ x ≤ a3
(x − a3) + (a4 − x)yã

a4 − a3
, if a3 < x ≤ a4

0 otherwise

𝜇ã(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x − a1

a2 − a1
wã, if a1 ≤ x < a2

wã, if x = a2
a3 − x

a3 − a2
wã, if a2 < x ≤ a3

0 otherwise

𝜈ã(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(a2 − x) + (x − a1)uã

a2 − a1
, if a1 ≤ x < a2

uã, if x = a2
(x − a2) + (a3 − x)uã

a3 − a2
, if a2 < x ≤ a3

0 otherwise

respectively.

If a1 > 0 (a1 ≤ a2 ≤ a3) and at least a3 > 0 then 
ã = ⟨(a1, a2, a3);wã, uã, yã⟩ is called a positive SVTrN, 
denoted by ã . Likewise, if a3 ≤ 0 (a1 ≤ a2 ≤ a3) and at least 
a1 < 0 , then ã = ⟨(a1, a2, a3);wã, uã, yã⟩ is called a negative 
SVTrN, denoted by ã < 0 . A SVTrN ã may be express an 
ã = ⟨(a1, a2, a3);wã, uã, yã⟩.

Definition 2.7 Let ã = ⟨(a1, a2, a3, a4);wã, uã, yã⟩ and 
b̃ = ⟨(b1, b2, b3, b4);wb̃, ub̃, yb̃⟩ be a SVTN-numbers and k ≠ 0 
be any number and ∧ = min , ∨ = max . Then 

 (i) ã + b̃ = ⟨(a1 + b1, a2 + b2, a3 + b3, a4 + b4);

wã ∧ wb̃, uã ∨ ub̃, yã ∨ yb̃⟩

 (ii) ̃ab̃ =

⎧
⎪
⎨
⎪
⎩

⟨(a1b1, a2b2, a3b3, a4b4);wã ∧ wb̃, uã ∨ ub̃, yã ∨ yb̃⟩ a4 > 0, b4 > 0

⟨(a1b4, a2b3, a3b2, a4b1);wã ∧ wb̃, uã ∨ ub̃, yã ∨ yb̃⟩ a4 < 0, b4 > 0

⟨(a4b4, a3b3, a2b2, a1b1);wã ∧ wb̃, uã ∨ ub̃, yã ∨ yb̃⟩ a4 < 0, b4 < 0

 (iii) 𝛾 ã =

�
⟨(𝛾a1, 𝛾a2, 𝛾a3, 𝛾a4);wã, uã, yã⟩ 𝛾 > 0

⟨(𝛾a4, 𝛾a3, 𝛾a2, 𝛾a1);wã, uã, yã⟩ 𝛾 < 0

3  Concept of possibility mean 
for SVN‑numbers

In this section, we first define the concept of cut sets, pos-
sibility mean values, weighted possibility mean values of 
SVN-numbers and give some desired properties. Also we 
have developed a new ranking method of SVN-numbers. 
In the following definitions and operations on generalized 
intuitionistic numbers, defined (Garai et al. 2018), we 
extend these definitions and operations to single valued 
neutrosophic numbers.

D e f i n i t i o n  3 . 1  L e t  ã = ⟨((at
1
, at

2
, at

3
, at

4
);wã)  ; 

((ai
1
, ai

2
, ai

3
, ai

4
), ua), ((a

f

1
, a

f

2
, a

f

3
, a

f

4
);yã)⟩ be a SVN-number. 

Then ⟨�, �, �⟩-cut of the SVN-number ã , denoted by ã𝛼,𝛽,𝛾 , 
is defined as:

which satisfies the conditions as follows: 0 ≤ 𝛼 ≤ wã , 
uã ≤ 𝛽 ≤ 1 , yã ≤ 𝛽 ≤ 1 and 0 ≤ � + � + � ≤ 3.

𝜆ã(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(a2 − x) + (x − a1)yã

a2 − a1
, if a1 ≤ x < a2

yã, if x = a2
(x − a2) + (a3 − x)yã

a3 − a2
, if a2 < x ≤ a3

0 otherwise

ã⟨𝛼,𝛽,𝛾⟩ = {x ∶ 𝜇ã(x) ≥ 𝛼, 𝜈ã(x) ≤ 𝛽, 𝜆ã(x) ≤ 𝛾 , x ∈ ℝ}
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Clearly, any ⟨�, �, �⟩-cut set ã⟨𝛼,𝛽,𝛾⟩ of a SVN-number ã is 
a crisp subset of the real number set ℝ.

D e f i n i t i o n  3 . 2  L e t  ã = ⟨((at
1
, at

2
, at

3
, at

4
);wã)  ; 

((ai
1
, ai

2
, ai

3
, ai

4
), ua), ((a

f

1
, a

f

2
, a

f

3
, a

f

4
);yã)⟩ be a SVN-number. 

Then �-cut set of the SVN-number ã , denoted by ã𝛼 is 
defined as: ã𝛼 = {x ∶ 𝜇ã(x) ≥ 𝛼, x ∈ ℝ} , where 𝛼 ∈ [0,wã].

Clearly, any �-cut set of a SVN-number ã is a crisp subset 
of the real number set ℝ.

In here, any �-cut set of a SVN-number ã for falsity mem-
bership function is closed interval, denoted by ã𝛼 = [al

𝛼
, ar

𝛼
].

D e f i n i t i o n  3 . 3  L e t  ã = ⟨((at
1
, at

2
, at

3
, at

4
);wã)  ; 

((ai
1
, ai

2
, ai

3
, ai

4
), ua), ((a

f

1
, a

f

2
, a

f

3
, a

f

4
);yã)⟩ be a SVN-number. 

Then �-cut set of the SVN-number ã , denoted by ã𝛽 is 
defined as: ã𝛽 = {x ∶ 𝜈ã(x) ≤ 𝛽, x ∈ ℝ} , where 𝛽 ∈ [uã, 1].

Clearly, any �-cut set of a SVN-number ã is a crisp subset 
of the real number set ℝ.

In here, any �-cut set of a SVN-number ã for indetermi-
nacy membership function is closed interval, denoted by 
ã𝛽 = [al

𝛽
, ar

𝛽
].

D e f i n i t i o n  3 . 4  L e t  ã = ⟨((at
1
, at

2
, at

3
, at

4
);wã)  ; 

((ai
1
, ai

2
, ai

3
, ai

4
), ua), ((a

f

1
, a

f

2
, a

f

3
, a

f

4
);yã)⟩ be a SVN-number. 

Then �-cut set of the SVN-number ã , denoted by ã𝛾 is 
defined as: ã𝛾 = {x ∶ yã(x) ≤ 𝛾 , x ∈ ℝ} , where 𝛾 ∈ [uã, 1].

Clearly, any �-cut set of a SVN-number ã is a crisp subset 
of the real number set ℝ.

In here, any �-cut set of a SVN-number ã for falsity mem-
bership function is closed interval, denoted by ã𝛾 = [al

𝛾
, ar

𝛾
].

Definit ion 3.5  Le t  ã𝛼 = [al
𝛼
, ar

𝛼
] be  t he  � - cu t 

s e t  o f  a  SV N - n u m b e r  ã = ⟨((at
1
, at

2
, at

3
, at

4
);wã)  , 

((ai
1
, ai

2
, ai

3
, ai

4
), ua), ((a

f

1
, a

f

2
, a

f

3
, a

f

4
);yã)⟩ with 0 ≤ 𝛼 ≤ wã . The 

f lower and upper possibility (Pos) means of truth member-
ship function (Wan et al. 2013) for the SVN-number ã are 
respectively defined as follows:

where, f ∶ [0,wã] → ℝ is a increasing and non-negative 
weighted function satisfying that ∫ wã

0
f (𝛼)d𝛼 = wã and 

f (0) = 0 , and

If M
𝜇
(ã) and M𝜇(ã) are the lower and upper possibility mean 

for truth-membership function of a SVN-number ã , then 
possibility mean for truth-membership function defined as :

(1)
M

𝜇
(ã) = �

wã

0

f (Pos[ã ≤ al
𝛼
])al

𝛼
d𝛼 = �

wã

0

f (𝛼)al
𝛼
d𝛼

M𝜇(ã) = �
wã

0

f (Pos[ã ≥ ar
𝛼
])ar

𝛼
d𝛼 = �

wã

0

f (𝛼)ar
𝛼
d𝛼

(2)

Pos[ã ≤ al
𝛼
] = sup

x≤al
𝛼

{𝜇ã(x)} = 𝛼 Pos[ã ≥ ar
𝛼
] = sup

x≥ar
𝛼

{𝜇ã(x)} = 𝛼

Definition 3.6 Let ã𝛽 = [al
𝛽
, ar

𝛽
] be the �-cut set of a SVN-

n u m b e r  ã = ⟨((at
1
, at

2
, at

3
, at

4
);wã), ((a

i
1
, ai

2
, 

ai
3
, ai

4
), ua), ((a

f

1
, a

f

2
, a

f

3
, a

f

4
);yã)⟩ with uã ≤ 𝛽 ≤ 1 . The lower 

and upper possibility (Pos) means of indeterminacy mem-
bership function for the SVN-number ã are respectively 
defined as follows:

where, g ∶ [uã, 1] → ℝ is a non-increasing and non-negative 
weighted function satisfying that ∫ 1

uã
g(𝛽)d𝛽 = 1 − uã and 

g(1) = 0 , and

If M
𝜈
(ã) and M𝜈(ã) are the lower and upper possibility mean 

for indeterminacy-membership function of a SVN-number ã , 
then possibility mean for indeterminacy-membership func-
tion defined as :

Definition 3.7 Let ã𝛾 = [al
𝛾
, ar

𝛾
] be the �-cut set of 

a  S V N - n u m b e r  ã = ⟨((at
1
, at

2
, at

3
, at

4
);wã)((a

i
1
, ai

2
, 

ai
3
, ai

4
), ua), ((a

f

1
, a

f

2
, a

f

3
, a

f

4
);yã)⟩ with yã ≤ 𝛾 ≤ 1 . The lower 

and upper possibility (Pos) means of falsity membership 
function (Wan et al. 2013) for the SVN-number ã are respec-
tively defined as follows:

where, h ∶ [yã, 1] → ℝ is a non-increasing and non-negative 
weighted function satisfying that ∫ 1

yã
h(𝛽)d𝛾 = 1 − yã and 

h(1) = 0 , and

(3)
M𝜇(ã) =

M
𝜇
(ã) +M𝜇(ã)

2

=
1

2 ∫
wã

0

f (𝛼)
(
al
𝛼
+ ar

𝛼

)
d𝛼

(4)M
𝜈
(ã) = �

1

uã

g(Pos[ã ≤ al
𝛽
])al

𝛽
d𝛽 = �

1

uã

g(𝛽)al
𝛽
d𝛽

(5)M𝜈(ã) = �
1

uã

g(Pos[ã ≥ ar
𝛽
])ar

𝛽
d𝛽 = �

1

uã

g(𝛽)ar
𝛽
d𝛽

Pos[ã ≤ a
l

𝛽
] = sup

x≤al
𝛽
{𝜈

ã
(x)} = 𝛽 Pos[ã ≥ a

r

𝛽
]

= sup
x≥ar

𝛽
{𝜈

ã
(x)} = 𝛽

(6)
M𝜈(ã) =

M
𝜈
(ã) +M𝜈(ã)

2

=
1

2 ∫
1

uã

g(𝛽)
(
al
𝛽
+ ar

𝛽

)
d𝛽

(7)M
𝜆
(ã) = �

1

yã

h
(
Pos

[
ã ≤ al

𝛾

])
al
𝛾
d𝛾 = �

1

yã

h(𝛾)al
𝛾
d𝛾

(8)M𝜆(ã) = �
1

yã

h
(
Pos

[
ã ≥ ar

𝛾

])
ar
𝛾
d𝛾 = �

1

uã

h(𝛾)ar
𝛾
d𝛾
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If M
𝜆
(ã) and M𝜆(ã) are the lower and upper possibility mean 

for falsity-membership function of a SVN-number ã , then 
possibility mean for falsity-membership function defined as :

Corollary 1 Let ã = ⟨(a1, a2, a3, a4);wã, uã, yã⟩ be a SVTN-
number. Then 

1. �-cut set of the SVTN-number ã for truth-membership 
function is calculated as 

where 𝛼 ∈ [0,wã] . If f (�) = 2� , we can obtain the pos-
sibility mean of a SVTN-number ã for truth-membership 
function as follows: 

2. �-cut set of the SVTN-number ã for indeterminacy-mem-
bership function is calculated as 

where 𝛽 ∈ [uã, 1] . If g(�) = 2(1 − �) , we can obtain the 
possibility mean of a SVTN-number ã for indetermi-
nacy-membership function as follows: 

Pos[ã ≤ al
𝛾
] = sup

x≤al
𝛾

{𝜆ã(x)} = 𝛾 Pos[ã ≥ ar
𝛾
] = sup

x≥ar
𝛾

{𝜆ã(x)} = 𝛾

(9)
M𝜆(ã) =

M
𝜆
(ã) +M𝜆(ã)

2

=
1

2 ∫
1

yã

h(𝛾)
(
al
𝛾
+ ar

𝛾

)
d𝛾

ã𝛼 =
[
al
𝛼
, ar

𝛼

]
=

[

a1 +
𝛼(a2 − a1)

wã

, a4 −
𝛼(a4 − a3)

wã

]

M𝜇(ã) =
1

2 ∫
wã

0

f (𝛼)
(
al
𝛼
+ ar

𝛼

)
d𝛼

=
1

2 ∫
wã

0

× (2𝛼)

[

(a1 + a4) +
(a2 + a3 − a1 − a4)𝛼

wã

]

d𝛼

=
(a1 + 2a2 + 2a3 + a4)

6
w2
ã

ã𝛽 =

[
al
𝛽
, ar

𝛽

]
=

[

a1 +
(1 − 𝛽)(a2 − a1)

1 − uã
,

a4 −
(1 − 𝛽)(a4 − a3)

1 − uã

]

3. �-cut set of the SVTN-number ã for indeterminacy-mem-
bership function is calculated as 

 where 𝛾 ∈ [yã, 1] . If g(�) = 2(1 − �) , we can obtain the 
possibility mean of a SVTN-number ã for indetermi-
nacy-membership function as follows: 

Corollary 2 Let ã = ⟨(a1, a2, a3);wã, uã, yã⟩ be a SVTrN-
number. Then 

1. �-cut set of the SVTrN-number ã for truth-membership 
function is calculated as 

where 𝛼 ∈ [0,wã] . If f (�) = 2� , we can obtain the possi-
bility mean of a SVTrN-number ã for truth-membership 
function as follows: 

M𝜈(ã) =
1

2 ∫
1

uã

g(𝛽)
(
al
𝛽
+ ar

𝛽

)
d𝛽

=
1

2 ∫
1

uã

2(1 − 𝛽)

×

[

(a1 + a4) +
(a2 + a3 − a1 − a4)(1 − 𝛽)

1 − uã

]

=
(a1 + 2a2 + 2a3 + a4)

6
(1 − uã)

2

ã𝛾 =
[
al
𝛾
, ar

𝛾

]
=

[

a1 +
(1 − 𝛾)(a2 − a1)

1 − yã
,

a4 −
(1 − 𝛾)(a4 − a3)

1 − yã

]

M𝜆(ã) =
1

2 ∫
1

yã

h(𝛾)
(
al
𝛾
+ ar

𝛾

)
d𝛾

=
1

2 ∫
1

yã

2(1 − 𝛾)

×

[

(a1 + a4) +
(a2 + a3 − a1 − a4)(1 − 𝛾)

1 − yã

]

=
(a1 + 2a2 + 2a3 + a4)

6
(1 − yã)

2

ã𝛼 =
[
al
𝛼
, ar

𝛼

]
=

[

a1 +
𝛼(a2 − a1)

wã

, a3 −
𝛼(a3 − a2)

wã

]
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2. �-cut set of the SVTrN-number ã for indeterminacy-
membership function is calculated as 

 where 𝛽 ∈ [uã, 1] . If g(�) = 2(1 − �) , we can obtain the 
possibility mean of a SVTrN-number ã for indetermi-
nacy-membership function as follows: 

3. �-cut set of the SVTrN-number ã for falsity-membership 
function is calculated as 

 where 𝛾 ∈ [yã, 1] . If g(�) = 2(1 − �) , we can obtain the 
possibility mean of a SVTrN-number ã for indetermi-
nacy-membership function as follows: 

M𝜇(ã) =
1

2 ∫
wã

0

f (𝛼)
(
al
𝛼
+ ar

𝛼

)
d𝛼

=
1

2 ∫
wã

0

(2𝛼)

[

(a1 + a3)

+
(4a2 − a1 − a3)𝛼

wã

]

d𝛼

=
(a1 + 4a2 + a3)

6
w2
ã

ã𝛽 =

[
al
𝛽
, ar

𝛽

]
=

[

a1 +
(1 − 𝛽)(a2 − a1)

1 − uã
,

a3 −
(1 − 𝛽)(a3 − a2)

1 − uã

]

M𝜈(ã) =
1

2 ∫
1

uã

g(𝛽)
(
al
𝛽
+ ar

𝛽

)
d𝛽

=
1

2 ∫
1

uã

2(1 − 𝛽)

[

(a1 + a3)

+
(2a2 − a1 − a3)(1 − 𝛽)

1 − uã

]

=
(a1 + 4a2 + a3)

6
(1 − uã)

2

ã𝛾 =
[
al
𝛾
, ar

𝛾

]
=

[

a1 +
(1 − 𝛾)(a2 − a1)

1 − yã
,

a3 −
(1 − 𝛾)(a3 − a2)

1 − yã

]

M𝜆(ã) =
1

2 ∫
1

yã

h(𝛾)
(
al
𝛾
+ ar

𝛾

)
d𝛾

=
1

2 ∫
1

yã

2(1 − 𝛾)

[

(a1 + a3)

+
(2a2 − a1 − a3)(1 − 𝛾)

1 − yã

]

=
(a1 + 4a2 + a3)

6
(1 − yã)

2

D e f i n i t i o n  3 . 8  L e t  ã = ⟨((at
1
, at

2
, at

3
, at

4
);wã)  ; 

((ai
1
, ai

2
, ai

3
, ai

4
), ua), ((a

f

1
, a

f

2
, a

f

3
, a

f

4
);yã)⟩ be a SVN-number. 

Then for � ∈ [0, 1] , the weighted possibility mean value of 
the SVN-number ã are defined as:

Corollary 3 Let ã = ⟨(a1, a2, a3, a4);wã, uã, yã⟩ is an arbitrary 
SVTN-number. Then the weighted possibility mean value is 
calculated as

Corollary 4 Let ã = ⟨(a1, a2, a3);wã, uã, yã⟩ is an arbitrary 
SVTrN-number. Then the weighted possibility mean value 
is calculated as

Now we give a new ranking method of SVN-numbers based 
on the weighted possibility mean value can be considered as 
follows:

Definition 3.9 Let ã and b̃ be two SVN-number and 
� ∈ [0, 1] . For weighted possibility values of the SVN-
numbers ã and b̃ , the ranking order of ã and b̃ is defined as 

 (i)   If M𝜗(ã) > M𝜗(b̃) , then ã is bigger than b̃ , denoted by 
ã ≻ b̃;

 (ii)   If M𝜗(ã) < M𝜗(b̃) , then ã is smaller than b̃ , denoted by 
ã ≺ b̃;

 (iii) If M𝜗(ã) = M𝜗(b̃) , then

 (a) if M𝜇(ã) > M𝜇(b̃) then ã > b̃;
 (b) when M𝜇(ã) = M𝜇(b̃) , if M𝜆(ã) > M𝜆(b̃) ,  

then ã < b̃;
 (c) when M𝜇(ã) = M𝜇(b̃) and M𝜆(ã) = M𝜆(b̃) ,  

if M𝜈(ã) > M𝜈(b̃) , then ã < b̃;

 (iv)  If M𝜗(ã) = M𝜗(b̃) , M𝜇(ã) = M𝜇(b̃) , M𝜈(ã) = M𝜈(b̃) , 
and M𝜆(ã) = M𝜆(b̃) , then ã = b̃ , i.e., two SVN-number 
are equal.

E x a m p l e  2  L e t  ã = ⟨(3, 5, 7);0.7, 0.6, 0.4⟩  a n d 
b̃ = ⟨(2, 5, 6);0.4, 0.6, 0.5⟩ be two SVTrN-numbers. Then, 
we can compare the two SVTrN-numbers ã and b̃.

Sol: We can calculate the possibility mean value of the 
SVTrN-number ã as:

M𝜗(ã) = 𝜗M𝜇(ã) + (1 − 𝜗)M𝜈(ã) + (1 − 𝜗)M𝜆(ã)

M𝜗(ã) =
a1 + 2a2 + 2a3 + a4

6

[
𝜗w2

ã

+ (1 − 𝜗)(1 − uã)
2 + (1 − 𝜗)(1 − yã)

2
]

M𝜗(ã) =
a1 + 4a2 + a3

6

[
𝜗w2

ã
+ (1 − 𝜗)(1 − uã)

2 + (1 − 𝜗)(1 − yã)
2
]



5252 T. Garai et al.

1 3

Then we have

Therefore, it is clearly that 0.57 ≤ 0.69 − 0.11� ≤ 0.69 , 
(for 0 ≤ � ≤ 1 ) which implies that M𝜗(ã) > M𝜗(b̃) for any 
� ∈ [0, 1] . Hence, it easily the ranking order of the SVTrN-
number ã and b̃ is ã ≻ b̃.

Th e o re m   1  L e t  ã = ⟨(a1, a2, a3, a4);wã, uã, yã⟩ a n d 
b̃ = ⟨(b1, b2, b3, b4);wb̃, ub̃, yb̃⟩ be two SVTN-numbers with 
wã = wb̃ , uã = ub̃ and yã = yb̃ . Then for any �1, �2 ∈ ℝ , the 
following equalities are valid:

Proof Let us assume 𝜖1, 𝜖2 > 0 . From the definition 3.2, 
we get that the �-cut set of a SVTN-number 𝜖1ã + 𝜖2b̃ is 
(𝜖1ã + 𝜖2b̃)𝛼 = [𝜖1a

l
𝛼
+ 𝜖2b

l
𝛼
, 𝜖1a

r
𝛼
+ 𝜖2b

r
𝛼
] . Using Eq. 10, we 

obtain

M𝜗(ã) =
3 + 4 × 5 + 7

6

×
[
𝜗(0.7)2

+(1 − 𝜗)(1 − 0.6)2 + (1 − 𝜗)(1 − 0.4)2
]

= 5(0.52 − 0.03𝜗)

= 2.6 − 0.15𝜗

M𝜗(b̃) =
2 + 4 × 5 + 6

6

×
[
𝜗(0.4)2 + (1 − 𝜗)(1 − 0.6)2

+ (1 − 𝜗)(1 − 0.5)2
]

=
28

6
(0.41 − 0.25𝜗)

= 1.91 − 1.16𝜗

M𝜗(ã) −M𝜗(b̃) = (2.6 − 0.15𝜗) − (1.91 − 0.04𝜗)

= 0.69 − 0.11𝜗

(10)M𝜇(𝜖1ã + 𝜖2b̃) = 𝜖1M𝜇(ã) + 𝜖2M𝜇(b̃)

(11)M𝜈(𝜖1ã + 𝜖2b̃) = 𝜖1M𝜈(ã) + 𝜖2M𝜈(b̃)

(12)M𝜆(𝜖1ã + 𝜖2b̃) = 𝜖1M𝜆(ã) + 𝜖2M𝜆(b̃)

M𝜇(𝜖1ã + 𝜖2b̃) =
1

2 ∫
wã∧wb̃

0

(
𝜖1a

l
𝛼
+

× 𝜖2b
l
𝛼
+ 𝜖1a

r
𝛼
+ 𝜖2b

r
𝛼

)
f (𝛼)d𝛼

=
1

2 ∫
wã

0

(
𝜖1a

l
𝛼
+ 𝜖1a

r
𝛼

)
f (𝛼)d𝛼

+
1

2 ∫
wb̃

0

(
𝜖2b

l
𝛼
+ 𝜖2b

r
𝛼

)
f (𝛼)d𝛼

= 𝜖1M𝜇(ã) + 𝜖2M𝜇(b̃)

From the Definition 3.3, we get that the �-cut set of a SVTN-
n u m b e r  𝜖1ã + 𝜖2b̃  i s 
(𝜖1ã + 𝜖2b̃)𝛽 = [𝜖1a

l
𝛽
+ 𝜖2b

l
𝛽
, 𝜖1a

r
𝛽
+ 𝜖2b

r
𝛽
] . Using Eq.  (11), 

we have

Fur ther, from the Definition  3.4, we get that 
the � -cut  set  of a SVTN-number 𝜖1ã + 𝜖2b̃ is 
(𝜖1ã + 𝜖2b̃)𝛾 = [𝜖1a

l
𝛾
+ 𝜖2b

l
𝛾
, 𝜖1a

r
𝛾
+ 𝜖2b

r
𝛾
] . Using Eq. 12, we 

have

Using the Eqs. (10), (11) and (12). We can also verify that 
for 𝜖1 > 0, 𝜖2 < 0 ; 𝜖1 < 0, 𝜖2 > 0 ; 𝜖1 < 0, 𝜖2 < 0.

This completes the proof.   ◻

Th e o re m   2  L e t  ã = ⟨(a1, a2, a3, a4);wã, uã, yã⟩ a n d 
b̃ = ⟨(b1, b2, b3, b4);wb̃, ub̃, yb̃⟩ be two SVTN-numbers with 
wã = wb̃ , uã = ub̃ and yã = yb̃ . If a1 > b4 , then ã ≻ b̃

Proof It is easily derived from Eq. (3) that

and

M𝜈 (𝜖1ã + 𝜖2b̃) =
1

2 ∫
1

uã∨ub̃

(
𝜖1a

l
𝛽
+ 𝜖2b

l
𝛽
+ 𝜖1a

r
𝛽
+ 𝜖2b

r
𝛽

)
g(𝛽)d𝛽

=
1

2 ∫
1

uã

(

𝜖1a
l
𝛽
+ 𝜖1a

r
𝛽
)g(𝛽)d𝛽 +

1

2 ∫
1

ub̃

(𝜖2b
l
𝛽
+ 𝜖2b

r
𝛽

)

g(𝛽)d𝛽

= 𝜖1M𝜈 (ã) + 𝜖2M𝜈 (b̃)

M𝜆(𝜖1ã + 𝜖2b̃) =
1

2 ∫
1

uã∨ub̃

(
𝜖1a

l
𝛾
+

× 𝜖2b
l
𝛾
+ 𝜖1a

r
𝛾
+ 𝜖2b

r
𝛾

)
g(𝛾)d𝛾

=
1

2 ∫
1

uã

(𝜖1a
l
𝛾
+ 𝜖1a

r
𝛾
)g(𝛾)d𝛾

+
1

2 ∫
1

ub̃

(
𝜖2b

l
𝛾
+ 𝜖2b

r
𝛾

)
g(𝛾)d𝛾

= 𝜖1M𝜆(ã) + 𝜖2M𝜆(b̃
I)

M𝜇(ã) =
1

2 �
wã

0

(
al
𝛼
+ ar

𝛼

)
f (𝛼)d𝛼

≥�
wã

0

a1f (𝛼)d𝛼

= a1 �
wã

0

f (𝛼)d𝛼

M𝜇(b̃) =
1

2 �
wb̃

0

(
bl
𝛼
+ br

𝛼

)
f (𝛼)d𝛼

≥�
wb̃

0

b4f (𝛼)d𝛼

= b4 �
wb̃

0

f (𝛼)d𝛼
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Since wã = wb̃ , we have ∫ wã

0
f (𝛼)d𝛼 = ∫ wb̃

0
f (𝛼)d𝛼 . So, 

Combining both conditions wã = wb̃ and a1 > b4 , we have 
M𝜇(ã) > M𝜇(b̃).

It easily derived from Eq. (6) that

and

For the condition uã = ub̃ , we have ∫ 1

uã
g(𝛽)d𝛽 = ∫ 1

ub̃
g(𝛽)d𝛽 . 

Combining the assume conditions: uã = ub̃ and a1 > b4 , we 
have M𝜈(ã) > M𝜈(b̃).

Similarly, it easily follows from Eq. (9) that

and

For  the  assume condi t ion:  yã = yb̃  ,  we have 
∫ 1

yã
h(𝛾)d𝛾 = ∫ 1

yb̃
h(𝛾)d𝛾 . Combining the both assume condi-

tions: yã = yb̃ and a1 > b4 , we have M𝜆(ã) > M𝜆(b̃).
For any � ∈ [0, 1] , according to Definition 3.8, we have

M𝜈(ã) =
1

2 �
1

uã

(
al
𝛽
+ ar

𝛽

)
g(𝛽)d𝛽

≥�
1

uã

a1g(𝛽)d𝛽

= a1 �
1

uã

g(𝛽)d𝛽

M𝜈(b̃) =
1

2 �
1

ub̃

(
al
𝛽
+ ar

𝛽

)
g(𝛽)d𝛽

≥�
1

ub̃

b4g(𝛽)d𝛽

= b4 �
1

ub̃

g(𝛽)d𝛽

M𝜆(ã) =
1

2 �
1

yã

(
al
𝛾
+ ar

𝛾

)
h(𝛾)d𝛾

≥�
1

yã

a1h(𝛾)d𝛾

= a1 �
1

yã

h(𝛾)d𝛾

M𝜆(b̃) =
1

2 �
1

yb̃

(
al
𝛾
+ ar

𝛾

)
h(𝛾)d𝛾

≥�
1

yb̃

b4h(𝛾)d𝛾

= b4 �
1

yb̃

h(𝛾)d𝛾

𝜗M𝜇(ã) + (1 − 𝜗)M𝜈(ã) + (1 − 𝜗)

×M𝜆(ã) > 𝜗M𝜇(b̃) + (1 − 𝜗)M𝜈(b̃) + (1 − 𝜗)M𝜆(b̃)

i.e., M𝜗(ã) > M𝜗(b̃) . Therefore, it directly follows from the 
case Definition 3.9 that ã > b̃ .   ◻

Theorem  3 Let ã , b̃ and c̃ be two SVTN-numbers with 
wã = wb̃ , uã = ub̃ and yã = yb̃ . If ã > b̃ , then ã + c̃ > b̃ + c̃.

Proof It is easily derived from Eq. (3) that

and

Where wc̃ is the truth-membership of the SVN-number c̃ . For 
the assume conditions: ã > b̃ and wã = wb̃ , we have

So,

Likewise, it is derived from Eq. (6) that

and

M𝜇(ã + c̃) =
1

2 ∫
wã∧wc̃

0

[(
al
𝛼
+ ar

𝛼

)
+
(
cl
𝛼
+ cr

𝛼

)]
f (𝛼)d𝛼

=
1

2 ∫
wã∧wc̃

0

(
al
𝛼
+ ar

𝛼

)
f (𝛼)d𝛼

+
1

2 ∫
wã∧wc̃

0

(
cl
𝛼
+ cr

𝛼

)
f (𝛼)d𝛼

M𝜇(b̃ + c̃) =
1

2 ∫
wb̃∧wc̃

0

[(
bl
𝛼
+ ar

𝛼

)
+
(
cl
𝛼
+ cr

𝛼

)]
f (𝛼)d𝛼

=
1

2 ∫
wb̃∧wc̃

0

(
bl
𝛼
+ br

𝛼

)
f (𝛼)d𝛼 +

1

2 ∫
wb̃∧wc̃

0

×
(
cl
𝛼
+ cr

𝛼

)
f (𝛼)d𝛼

1

2 ∫
wã∧wc̃

0

(
al
𝛼
+ ar

𝛼

)
f (𝛼)d𝛼 >

1

2 ∫
wb̃∧wc̃

0

(
bl
𝛼
+ br

𝛼

)
f (𝛼)d𝛼

(13)M𝜇(ã + c̃) > M𝜇(b̃ + c̃)

M𝜈(ã + c̃) =
1

2 ∫
1

uã∨uc̃

[(
al
𝛽
+ ar

𝛽

)
+

(
cl
𝛽
+ cr

𝛽

)]
g(𝛽)d𝛽

=
1

2 ∫
1

uã∨uc̃

(al
𝛽
+ ar

𝛼
)g(𝛽)d𝛽

+
1

2 ∫
1

uã∨uc̃

(
cl
𝛽
+ cr

𝛽

)
g(𝛽)d𝛽

M𝜈(b̃ + c̃) =
1

2 ∫
1

ub̃∨uc̃

[(
bl
𝛽
+ ar

𝛽

)
+

(
cl
𝛽
+ cr

𝛽

)]
g(𝛽)d𝛽

=
1

2 ∫
1

ub̃∨uc̃

(
bl
𝛽
+ br

𝛽

)
g(𝛽)d𝛽+

1

2 ∫
1

ub̃∨uc̃

(
cl
𝛽
+ cr

𝛽

)
g(𝛽)d𝛽



5254 T. Garai et al.

1 3

where uc̃ is the indeterminacy-membership of the SVN-num-
ber c̃ . For the assumption conditions: ã > b̃ and uã = ub̃ , we 
have

Therefore, we have

Similarly, it is derived from Eq. (9) that

and

we have

According to Definition 3.8, and combining with Eqs.  (13), 
(14) and (15) the following inequality is always valid for 
any � ∈ [0, 1]

M𝜗(ã + c̃) > M𝜗(b̃ + c̃)

So, we have to seen that from the case (1) of the definition 
3.9 that ã + c̃ > b̃ + c̃ .   ◻

4  A multi‑attribute decision making method 
based on possibility mean with single 
valued neutrosophic numbers

In this section we develop a novel MADM method based 
on possibility mean of single valued neutrosophic numbers.

1

2 ∫
1

uã∨uc̃

(
al
𝛽
+ ar

𝛽

)
g(𝛽)d𝛽 >

1

2 ∫
1

ub̃∨uc̃

(
bl
𝛽
+ br

𝛽

)
g(𝛽)d𝛽

(14)M𝜈(ã + c̃) > M𝜈(b̃ + c̃)

M𝜆(ã + c̃) =
1

2 ∫
1

yã∨yc̃

[(
al
𝛾
+ ar

𝛾

)
+

(
cl
𝛾
+ cr

𝛾

)]
h(𝛾)d𝛾

=
1

2 ∫
1

yã∨yc̃

(
al
𝛾
+ ar

𝛾

)
h(𝛾)d𝛾

+
1

2 ∫
1

yã∨yc̃

(
cl
𝛾
+ cr

𝛾

)
h(𝛾)d𝛾

M𝜆(b̃ + c̃) =
1

2 ∫
1

yb̃∨yc̃

[(
bl
𝛾
+ ar

𝛾

)
+

(
cl
𝛾
+ cr

𝛾

)]
h(𝛾)d𝛾

=
1

2 ∫
1

yb̃∨yc̃

(
bl
𝛾
+ br

𝛾

)
h(𝛾)d𝛾

+
1

2 ∫
1

yb̃∨yc̃

(
cl
𝛾
+ cr

𝛾

)
h(𝛾)d𝛾

(15)M𝜆(ã + c̃) > M𝜆(b̃ + c̃)

𝜗M𝜇(ã + c̃) + (1 − 𝜗)M𝜈(ã + c̃) + (1 − 𝜗)M𝜆(ã + c̃)

> 𝜗M𝜇(b̃ + c̃) + (1 − 𝜗)M𝜈(b̃ + c̃) + (1 − 𝜗)M𝜆(b̃ + c̃)

Let A = {A1,A2, ...,Am} and G = {G1,G2, ...,Gn} be the 
discrete set of alternatives and attributes respectively. 
Let W = {w1,w2, ...,wn} be the normalized weight vec-
tor of attributes Gj (j = 1, 2, 3, ..., n), where wj ≥ 0 and 
∑n

j=1
wj = 1.

Now, we describe the following steps for the proposed 
method, and flow chart of this method given in Fig. 2.

Step 1: Formulate the decision matrix For MADM 
with SVN-number information, the rating values of the 
alternative Ai(i = 1, 2, ...,m) on the basis of attribute 
Gj(j = 1, 2, ..., n) can be expressed in SVN-number as aij 
where (i = 1, 2, 3, ..., m; j = 1, 2, 3, ..., n).

The decision matrix is represented as follows:

Step 2: Formulate the normalized decision matrix. To make 
normalized decision matrix we use the following formula: 

(16)M =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

G1 G2 . . . Gn

A1 a11 a12 . . . a1n
A2 a21 a22 . . . a2n

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Am am1 a22 . . . amn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 2  Flow chart of proposed ranking method
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for benefit type attribute a∗
ij
=

aij

max{aij}
 and for cost type 

attribute a∗
ij
= 1 −

aij

max{aij}
.

The normalized decision matrix is represented as 
follows:

Step 3: Calculate weighted aggregated values. We calculate 
weighted aggregate values of all attributes for each alterna-
tive using the equation

Therefore, the aggregated decision matrix is defined as 
follows:

Step 4: Calculate the possibility mean values of alternatives 
Using the Corollary 3.4, we calculate the possibility mean 
values of these alternatives.

Step 5: Rank the alternatives We rank the alternatives 
Ai(i = 1, 2, ...,m) according to the decreasing values of pos-
sibility mean value.

4.1  Working rule of the proposed algorithm

In this section, a decision making method is proposed to 
deal with decision making problems in the single-valued 
neutrosophic environment. Therefore, the decision making 
proposed algorithm is stated below Firstly, we define a multi 
attribute decision making problem in the neutrosophic set 
environment. Then, we apply our proposed algorithm as 
follows:

(17)M∗ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

G1 G2 . . . Gn

A1 a∗
11

a∗
12

. . . a∗
1n

A2 a∗
21

a∗
22

. . . a∗
2n

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Am a∗
m1

a∗
22

. . . a∗
mn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(18)ãi =

n∑

j=1

a∗
ij
wj

(19)M̃ =

⎛
⎜
⎜
⎜
⎝

A1 ã1
A2 ã2
⋮ ⋮

Am ãm

⎞
⎟
⎟
⎟
⎠

Rule 1  Formulate the decision matrix From the decision 
making problem we formulate the decision matrix based 
on the attribute of alternatives (see the decision matrix in 
Eq.  (16)).

Rule 2   Formulate the normalized decision matrix To 
make dimension less quantity of rating values of alternative 
provided by decision maker we use the formula are stated 
in Sect.  4 step 2 and proposed normalized decision matrix 
is in the Eq.  (17).

Rule 3  Calculate weighted aggregated values We calcu-
late weighted aggregate rating values of alternatives using 
Eq.  (18).

Rule 4  Calculate the possibility mean values of alterna-
tives Using Corollary 3.4, we calculate the possibility mean 
values for ranking of alternatives.

Rule 5  Rank the alternatives We rank the alternatives 
according to our proposed method.

5  Numerical example

Let us assume that a software company required a system 
analyst. After screening test, candidates A1,A2 and A3 are 
remain for further evaluation. The MADM problem is 
adopted from Li (2014) and Li et al. (2014). The software 
company wants to select a best alternative (Candidate) 
among the set of three alternatives. The best alternative is 
selected based on the following attributes: 

1. Emotional steadiness {G1}.
2. Oral communication skill {G2}.
3. Personality {G3}.
4. Past experience {G4}.
5. Self-confidence {G5}.

T h e  we i g h t  ve c t o r  o f  f i ve  a t t r i b u t e s  i s 
{0.15, 0.25, 0.20, 0.25, 0.15} . Here, possible candidates are to 
evaluated under the above five attributes which considering 
by SVTrN-numbers. The steps of the decision making pro-
cedure to select the best alternative based on the proposed 
method are presented in the following:

Step 1. Formulate the decision matrix The rating values 
of the alternatives A1,A2 and A3 on the basis of attribute 
G1,G2,G3,G4 and G5 can be expressed in SVTrN-number 
and represented as follows:

(20)M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G1 G2 G3 G4 G5

A1 ⟨(4.7, 5.4, 8.5);0.4, 0.6, 0.2⟩ ⟨(5.7, 6.8, 8.7);0.6, 0.3, 0.3⟩ ⟨(5.3, 6.6, 9.8);0.3, 0.6, 0.2⟩ ⟨(4.4, 5.8, 7.3);0.7, 0.3, 0.3⟩ ⟨(6.4, 6.8, 8.6);0.6, 0.7, 0.1⟩

A2 ⟨(6.2, 7.5, 8.3);0.4, 0.2, 0.3⟩ ⟨(7.2, 7.6, 8.2);0.5, 0.3, 0.4⟩ ⟨(6.2, 8.8, 9.0);0.6, 0.4, 0.5⟩ ⟨(6.3, 7.4, 8.8);0.7, 0.5, 0.6⟩ ⟨(7.5, 7.8, 8.5);0.8, 0.4, 0.4⟩

A3 ⟨(5.5, 6.3, 7.3);0.8, 0.2, 0.2⟩ ⟨(4.7, 6.8, 8.5);0.7, 0.3, 0.6⟩ ⟨(7.1, 8.6, 8.9);0.5, 0.3, 0.7⟩ ⟨(6.6, 8.7, 10);0.6, 0.3, 0.2⟩ ⟨(5.3, 7.4, 8.7);0.7, 0.3, 0.7⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Step 2: Formulate the normalized decision matrix Since all 
attributes are benefit type attribute so we use a∗

ij
=

aij

max{aij}
 

for normalized the decision matrix M and the normalized 
decision matrix is

From the Fig. 3 clearly depict that the ranking order of 
alternatives based on the weighted possibility mean divided 
in three region.

Fig. 3  Ranking results based on proposed method

Table 1  Comparative study with existing methods

Methods Ranking order Range of � Best 
alterna-
tive

Deli and şubaş (2017) A2 > A3 > A1 � ∈ [0, 0.27] A2

A3 > A2 > A1 � ∈ (0.27, 1] A3

By proposed method A3 > A2 > A1 � ∈ [0, 0.62) A3

A3 > A1 > A2 � ∈ [0.62, 0.94] A3

A1 > A3 > A2 � ∈ (0.94, 1] A1

Aal et al. (2018) A1 > A3 > A2 � ∈ [0, 0.5) A1

A3 > A2 > A1 � ∈ [0.5, 1] A3

By proposed method A3 > A1 > A2 � ∈ [0, 0.1) A3

A3 > A2 > A1 � ∈ [0.1, 1] A3

(21)M
∗ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G1 G2 G3 G4 G5

A1 ⟨(.47, .54, .85);0.4, 0.6, 0.2⟩ ⟨(.57, .68, .87);0.6, 0.3, 0.3⟩ ⟨(.53, .66, .98);0.3, 0.6, 0.2⟩ ⟨(.44, .58, .73);0.7, 0.3, 0.3⟩ ⟨(.64, .68, .86);0.6, 0.7, 0.1⟩

A2 ⟨(.62, .75, .83);0.4, 0.2, 0.3⟩ ⟨(.72, .76, .82);0.5, 0.3, 0.4⟩ ⟨(.62, .88, .9);0.6, 0.4, 0.5⟩ ⟨(.63, .74, .88);0.7, 0.5, 0.6⟩ ⟨(.75, .78, .85);0.8, 0.4, 0.4⟩

A3 ⟨(.55, .63, .73);0.8, 0.2, 0.2⟩ ⟨(.47, .68, .085);0.7, 0.3, 0.6⟩ ⟨(.71, .86, .89);0.5, 0.3, 0.7⟩ ⟨(.66, .87, 1);0.6, 0.3, 0.2⟩ ⟨(.53, .74, .87);0.7, 0.3, 0.7⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Step 3: Calculate weighted aggregated values We calculate 
weighted aggregate rating values of alternatives using Eq.  
(18).The weighted aggregate values of all attributes for each 
alternative as follows:

Step 4: Calculate the possibility mean values of alternatives 
Using Corollary 3.4, we calculate the possibility mean val-
ues for ranking of alternatives. The possibility mean values 
of three alternatives are represented as follows:

(22)M̃ =

⎧
⎪
⎨
⎪
⎩

A1 = ⟨(0.53, 0.65, 0.85);0.3, 0.8, 0.3⟩

A2 = ⟨(0.65, 0.80, 0.88);0.4, 0.5, 0.6⟩

A3 = ⟨(0.59, 0.76, 0.88);0.5, 0.3, 0.8⟩

M�(A1) = 0.65[0.89 − 0.64�]

M�(A2) = 0.78[0.72 − 0.36�]

M�(A3) = 0.75[0.74 − 0.38�]

Step 5: Rank the alternatives Form Fig. 3, we can con-
clude that, A1 > A2 > A3 , when � ∈ [0, 0.14] and the best 
alternative is A1 . A2 > A1 > A3 , when � ∈ (0.14, 0.17) and 
the best alternative is A2 . A2 > A3 > A1 , when � ∈ [0.17, 1] 
the best alternative is A2.

5.1  Comparative study

In order to show the validity of the proposed ranking 
method, a comparative study with other methods was con-
structed. The proposed method compared to the methods 
that were outlined in Refs. Deli and şubaş (2017) and Aal 
et al. (2018) using SVTrN numbers. The weighted and ambi-
guities operators are developed in order to aggregate the 
SVTrN numbers which is used in Deli and şubaş (2017), 
and the arithmetic and geometric aggregation operators were 
introduced in order aggregate the SVTrN numbers which 
used in Aal et al. (2018). The results from the different meth-
ods used to resolve the proposed MADM problem are shown 
in Table 1.

From the result presented in Table 1, the best alternative 
is A3 and worst one is A1 in all methods. In Refs. Deli and 
şubaş (2017) and Aal et al. (2018) used the weighted and 
ambiguities operators, arithmetic and geometric aggregation 
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operators, which are very difficult for decision makers to 
confirm their judgement when using operators and measures 
that have same characteristics. But, the proposed method in 
this paper pays more attention to the impact that uncertainty 
has on the alternatives and also takes into weighted possibil-
ity mean of SVN-numbers by using the concept of possibil-
ity measures. By comparison, the proposed method in this 
paper focuses on the weighted possibility mean of the SVN-
numbers, the ranking procedure of the proposed method is 
different from other method. Thus, proposed method gives 
the more reasonable results (viz. Table 1) than the existing 
methods.

6  Conclusion

The concept of single valued neutrosophic number (SVN) 
number is of importance of quantifying an ill-known quan-
tity and the ranking of SVN-numbers are a very labored 
in the MADM problems. The main focus of this paper is 
to present possibility mean of SVN-numbers. Using the 
concept of possibility mean we have ranked the SVN-
numbers. Then, a new ranking method is introduced for 
the ordering of SVN-numbers and applied to solve MADM 
problems with SVN-numbers. It is easily seen that the pro-
posed ranking method can be extended to rank more gen-
eral SVN-numbers in a straightforward manner. Finally, 
we illustrated a numerical example to demonstrate the 
proposed decision making method. Here, we illustrate not 
only the usefulness of the ranking method is given also. 
The comparison studies show that the proposed ranking 
method in this paper has some remarkable advantages over 
existing methods (cf. Table 1).

Our proposed method is the first method in which fuzzy 
neutrosophic possibility mean is applied for ranking the 
alternatives. This is the main difference of our proposed 
method with respect to the other existing previously fuzzy 
neutrosophic set decision making methods. The proposed 
possibility mean is more important than other existing mean 
exist in an uncertain environment because it contain truth 
membership part, indeterminacy part and falsity part of an 
element. We hope that this decision making method may 
be used in the fields of others decision making area such 
as: teacher selection (Mondal and Pramanik 2014), logistics 
location selection problem (Pramanik et al. 2016), etc.

Compliance with ethical standards 

Conflicts of interest Authors declare that they have no conflict of in-
terest.

 Ethical approval This article does not contain any studies with animals 
performed by any of the authors.

References

Aal SIA, Ellatif MMA, Hassan MM (2018) Two ranking methods 
of single valued triangular neutrosophic numbers to rank and 
evaluate information systems quality. Neutrosophic Sets Syst 
19:132–141

Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96
Bellman R, Zadeh LA (1970) Decision-making in a fuzzy environment. 

Manage Sci 17:141–164
Carlsson C, Fuller R (2001) On possibilistic mean value and variance 

of fuzzy numbers. Fuzzy Sets Syst 122:315–326
Deli I, Broumi S (2015) Neutrosophic soft matrices and NSM-decision 

making. J Intell Fuzzy Syst 28:2233–2241
Deli I, şubaş Y (2017) A ranking method of single valued neutrosophic 

numbers and its applications to multi-attribute decision making 
problems. Int J Mach Learn Cybern 8:1309–1322

Dubois D, Prade H (1988) Possibility theory: an approach to computer-
ized processing of uncertainty. Plenum, New York

Fuller R, Majlender P (2003) On weighted possibilistic mean and vari-
ance of fuzzy numbers. Fuzzy Sets Syst 136:363–374

Garg H, Nancy (2018) Linguistic single valued neutrosophic prioritized 
aggregation operators and their applications to multiple attrib-
ute group decision making. J Ambient Intell Humaniz Comput 
9:1975–1997

Garg H (2017) Novel intuitionistic fuzzy decision making method 
based on an improved operation laws and its application. Eng 
Appl Artif Intell 60:164–174

Garai T, Chakraborty D, Roy TK (2018) A multi-item general-
ized intuitionistic fuzzy inventory model with inventory level 
dependent demand using possibility mean, variance and covari-
ance. J Intell Fuzzy Syst 35:1021–1036

Garg H, Arora R (2018) Bonferroni mean aggregation operators 
under intuitionistic fuzzy soft set environment and their appli-
cations to decision-making. J Oper Res Soc 9:1–14

Garg H (2016) Generalized intuitionistic fuzzy multiplicative inter-
active geometric operators and their application to multiple cri-
teria decision making. Int J Mach Learn Cybern 7:1075–1092

Jiang Q, Jin X, Lee S, Yao S (2019) A new similarity/distance meas-
ure between intuitionistic fuzzy sets based on the transformed 
isosceles triangles and its applications to pattern recognition. 
Expert Syst Appl 116:439–453

Jiang W, Wei B, Liu X, Li X, Zheng H (2018) Intuitionistic fuzzy 
power aggregation operator based on entropy and its application 
in decision making. Int J Intell Syst 33:49–67

Joshi D, Kumar S (2018) Improved accuracy function for interval-
valued intuitionistic fuzzy sets and its application to multi-
attributes group decision making. Cybern Syst 49:64–76

Kacprzak D (2019) A doubly extended TOPSIS method for group 
decision making based on ordered fuzzy numbers. Expert Syst 
Appl 116:243–254

Klir JK (1999) On fuzzy set interpretation of possibility. Fuzzy Sets 
Syst 108:263–273

Li DF (2014) Decision and game theory in management with intui-
tionistic fuzzy sets. Stud Fuzziness Soft Comput 308:407–490

Li DF, Nan JX, Zhang MJ (2014) A ranking method of triangular 
intuitionistic fuzzy numbers and application to decision making. 
Int J Comput Intell Syst 3:522–530

Liu P, Wang Y (2018) Multiple attribute decision-making method 
based on single-valued neutrosophic normalized weighted bon-
ferroni mean. Neural Comput Appl 25:2001–2010

Liu P, Wang Y (2018) Interval neutrosophic prioritized owa operator 
and its application to multiple attribute decision making. J Sci 
Complex 29:681–697



5258 T. Garai et al.

1 3

Liu P, Liu J, Chen SM (2018) Some intuitionistic fuzzy Dombi Bon-
ferroni mean operators and their application to multi-attribute 
group decision making. J Oper Res Soc 69:1–24

Mondal K, Pramanik S (2014) Multi-criteria group decision mak-
ing approach for teacher recruitment in higher education under 
simplified neutrosophic environment. Neutrosophic Sets Syst 
6:28–34

Pramanik S, Dalapati S, Roy TK (2016) Logistics center location 
selection approach based on neutrosophic multi-criteria decision 
making. New Trends Neutrosophic Theory Appl Brussells Pons 
Ed 3:161–174

Rashid T, Faizi S, Zafar S (2018) Distance based entropy measure 
of interval-valued intuitionistic fuzzy sets and its application in 
multi-criteria decision making. Adv Fuzzy Syst 5:1–10

Ren S (2017) Multicriteria decision-making method under a single val-
ued neutrosophic environment. Int J Intell Inf Technol 13:23–37

Smarandache F (1999) A unifying field in logics: neutrosophic logic. 
In: Philosophy, vol 17. American Research Press, Rehoboth, pp 
1–141

Sodenkamp MA, Tavana M, Di Caprio D (2018) An aggrega-
tion method for solving group multi-criteria decision-making 

problems with single-valued neutrosophic sets. Appl Soft Com-
put 71:715–727

Wang H, Smarandache F, Zhang YQ, Sunderraman R (2010) Single 
valued neutrosophic sets. Multi Space Multi Struct 4:410–413

Wan PS, Li FD, Rui FZ (2013) Possibility mean, variance and covari-
ance of triangular intuitionistic fuzzy numbers. J Intell Fuzzy Syst 
24:847–858

Wei G, Wei Y (2018) Some single-valued neutrosophic dombi prior-
itized weighted aggregation operators in multiple attribute deci-
sion making. J Intell Fuzzy Syst 35:1–13

Yager RR (1992) On the specificity of a possibility distribution. Fuzzy 
Sets Syst 50:279–292

Yazdani M, Kahraman C, Zarate P, Onar SC (2019) A fuzzy multi 
attribute decision framework with integration of QFD and grey 
relational analysis. Expert Syst Appl 115:474–485

Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–356
Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy 

Sets Syst 1:3–28

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	A ranking method based on possibility mean for multi-attribute decision making with single valued neutrosophic numbers
	Abstract
	1 Introduction
	2 Basic preliminaries
	3 Concept of possibility mean for SVN-numbers
	4 A multi-attribute decision making method based on possibility mean with single valued neutrosophic numbers
	4.1 Working rule of the proposed algorithm

	5 Numerical example
	5.1 Comparative study

	6 Conclusion
	References




