
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2022) 13:3457–3466
https://doi.org/10.1007/s12652-020-01848-9

ORIGINAL RESEARCH

Deep learning‑based classification model for botnet attack detection

Abdulghani Ali Ahmed1 · Waheb A. Jabbar2 · Ali Safaa Sadiq3 · Hiran Patel3

Received: 19 October 2019 / Accepted: 26 February 2020 / Published online: 9 March 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Botnets are vectors through which hackers can seize control of multiple systems and conduct malicious activities. Research-
ers have proposed multiple solutions to detect and identify botnets in real time. However, these proposed solutions have
difficulties in keeping pace with the rapid evolution of botnets. This paper proposes a model for detecting botnets using deep
learning to identify zero-day botnet attacks in real time. The proposed model is trained and evaluated on a CTU-13 dataset
with multiple neural network designs and hidden layers. Results demonstrate that the deep-learning artificial neural network
model can accurately and efficiently identify botnets.

Keywords Security · Botnet · Feed-forward · Artificial neural network · Backpropagation · Deep learning

1 Introduction

In our modern world, computers have become a conveni-
ent and ubiquitous part of our everyday lives. However, the
increased proliferation of computer systems has introduced
new kinds of security risks. These security risks can com-
promise user data or severely hamper the operations of com-
puter systems, potentially causing complete system failures
(Shah et al. 2013).

Botnet detection has become a popular subject in the
cybersecurity literature. Botnets are a type of network-
based attack that seeks to subvert multiple computers

simultaneously and turn them into “zombie” systems, as
shown in Fig. 1. These “zombie” computers are then used
for malicious activities such as identifying theft, distributed
denial of service attacks (DDoS), phishing, spamming, and
domain name system spoofing.

This paper reviews several methods in the literature for
detecting botnet attacks. Numerous studies in cybersecurity
literature (Ahmed 2015; Ahmed et al. 2013a, b, 2016) have
covered such attacks. These studies have employed machine-
learning algorithms such as support vector machine (SVM)
(Narang et al. 2014), decision tree (Dai et al. 2016), naïve
Bayes (NB) (Kalaivani and Vijaya 2016), bees (Jantan and
Ahmed 2014a, b) and random forest (Singh et al. 2014).
However, a topic that has been rarely covered is the use
of deep learning algorithm (Svozil et al. 1997) for training
artificial neural networks (ANNs) to detect botnets.

This paper makes two significant contributions to the
literature. First, it evaluates the efficiency and accuracy of
a deep neural network (DNN) for botnet attack detection.
Second, a DNN algorithm is used on a CTU-13 dataset (Gar-
cia et al. 2014) with multiple neural network (NN) designs
and hidden layers to determine the abilities of the proposed
technique. The rest of this paper is arranged as follows:
Sect. 2 covers the literature review. Section 3 covers the
feed-forward backpropagation ANN technique. Section 4
discusses the implementation of the proposed model. Sec-
tion 5 contains the results and analysis. Section 6 presents
the conclusions and provides ideas for future research.

 * Abdulghani Ali Ahmed
 abdulghani@ump.edu.my

 Waheb A. Jabbar
 waheb@ieee.org

 Ali Safaa Sadiq
 ali.sadiq@wlv.ac.uk

 Hiran Patel
 H.Patel10@wlv.ac.uk

1 Safecyber Systems Corporation, 26300 Kuantan, Pahang,
Malaysia

2 Faculty of Electrical and Electronics Engineering
Technology, Universiti Malaysia Pahang, 26600 Pekan,
Pahang, Malaysia

3 School of Mathematics and Computer Science,
University of Wolverhampton, Wulfruna Street,
Wolverhampton WV1 1LY, UK

http://orcid.org/0000-0001-9748-6067
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-01848-9&domain=pdf

3458 A. A. Ahmed et al.

1 3

2 Literature review

Multiple methods have been proposed in the literature
to identify botnets. One study (Karasaridis et al. 2007)
has used an anomaly-based botnet detection method to
identify botnet controllers using transport layer data, thus
enabling the detection of IRC botnet controllers without
known signatures or captured binaries and making it a
passive method that is invisible to operators, scale to
large networks, and protects end users. This method also
determines a botnet’s size and activities from outside of
compromised networks, making it capable of identifying
botnets using encrypted and obfuscated protocols.

A Botsniffer (Gu et al. 2008) that uses network-based
anomaly detection was developed to locate and identify
botnet command and control (C&C) channels in local
area networks without the use of botnet signatures. This
technique relies on the tendencies for parts of a botnet
to possess similar spatiotemporal correlations and behav-
iors because of preprogrammed activities related to C&C
communication in the protocol layer. The Botsniffer uses
statistical and analysis algorithms to track botnets with
centralized IRC architectures and network traffic with a
low false positive rate, respectively.

A BotDigger (Al-Duwairi and Al-Ebbini 2010) was
developed to detect botnets using the logical rules and fea-
tures that define their behavior. The BotDigger measures
the influence of fuzzy member sets to infer human rea-
soning and decision-making. All techniques that employ
fuzzy logic, amount, type, and behavior of fuzzy member
functions and rules exert a substantial influence.

A host-based botnet detection (Masud et al. 2008) that
correlates multiple log fields using a flow-based detection
method was developed to segregate Botmaster commands
into different categories. Bots have faster reaction times

than humans, thus simplifying the mining or correlation
of multiple log files. This technique efficiently identifies
certain kinds of C&C traffic by correlating multiple host-
based log files from IRC bots. The technique also works
on non-IRC bots because it can detect C&C traffic before
a payload is identified.

Several studies have used machine-learning techniques
to identify botnets, and the decision tree (Dai et al. 2016)
method is popular for differentiating between botnet and
non-botnet traffic. This technique abstracts classification
rules into decision tress using disordered and irregular
instance groups. This technique compares internal decision
tree node qualities, values downward branches according
to node attributes, and derives conclusion using leaf nodes
in a top–down recursive manner. This technique ensures
that root-to-leaf nodes represent conjunctive nodes, and the
entire tree represents groups of disjunctive expression rules.
This technique has advantages because the decision tree
classification algorithm creates rules that are easy to under-
stand for different data types without using large amounts
of computational resources. The decision tree can identify
the significance and limitations of certain nodes (such as dif-
ficulties in estimating continuation fields) through the exten-
sive pre-treatment of chronological data. Decision trees may
suffer from errors when using numerous categories.

An NB (Kalaivani and Vijaya 2016) classifier proposed
to process natural language and retrieve information is a
simple and effective method using Bayesian theorems. This
classifier is suitable for inputs with large amounts of dimen-
sionality. This classifier assumes that the variables’ effect
on a given class are not influenced by the values of other
variables. For example, the NB inducer derives class condi-
tional probabilities to identify the one with the uppermost
posterior. The NB classifier can be used as a supervised
machine-learning algorithm for certain probability models.

SVM (Narang et al. 2014) is a supervised pattern clas-
sification method developed for pattern recognition. This
algorithm uses machine learning to derive training classifi-
cation and regression rules. This algorithm efficiently han-
dles high-dimensionality feature spaces owing to its solid
mathematical foundation, and it can provide simple and
effective results.

Existing studies are helpful (Cui et al. 2018) but demon-
strate slow speed and poor accuracy in detecting malware.
The DNN approach was recently introduced as an efficient
method to detect malware. The key point of DNN methods is
their capability in achieving a high detection rate while gener-
ating a low false-positive rate. DNN-based studies(Cui et al.
2018; Ye et al. 2018; Kolosnjaji et al. 2016; Saxe and Berlin
2015; Vinayakumar et al. 2017) have demonstrated promising
results in identifying malicious code variants, detecting intelli-
gent malware, classifying malware system call sequences, and
detecting and classifying Android malware. This paper uses a

Fig. 1 Typical botnet life cycle

3459Deep learning-based classification model for botnet attack detection

1 3

deep learning ANN model to train NNs for botnet attack detec-
tion. The developed model is compared with other machine
learning-based algorithms to determine its efficiency and
effectiveness.

On the other hands, the authors in Al Shorman et al. (2019)
have introduced new unsupervised evolutionary Internet of
Things (IoT) based botnet detection method. The foremost
goal of their proposed method was to distinguish IoT botnet
attacks that triggered form compromised IoT devices. They
have achieved this by take advantage of the efficiency of the
modern swarm intelligence algorithm known as Grey Wolf
Optimization algorithm (GWO). GWO was used to optimize
the hyperparameters of their baseline One Class Support
Vector Machine (OCSVM). Their model was also tending to
find the features that best describe the IoT botnet problem.
This paper uses a deep learning ANN model to train NNs for
botnet attack detection. In another attempt, to produce a new
android dataset, Moodi and Ghazvini (2019) have come out
with 28 Standard Android Botnet Dataset (28-SABD). They
have used ensemble K-Nearest Neighbors (KNN) technique
as a way to advance the accuracy of the allocated labels by
the signature-based method. However, the obtained overall
accuracy was 94%, which indicates that there is still need
for further improvement or need for more accurate detection
model. In contrast, Wang et al. (2019) have tried to reduce
the false positives of DDoS attacks by cultivating execution
efficiency and improving the relationship between detection
and prevention courses. In their work, a defensive mechanism
based on honeynet technology was introduced. Yet, these types
of technologies are analytically expensive and they enquire
more knowledge to be feeding into the model for better detec-
tion with more dynamic data behavior, where deep-learning
based model is needed to overcome such limitation Maimó
et al. (2019). While a novel multi feature behavior approxima-
tion algorithm was proposed by Dhaya and Ravi (2020) as a
way to increase the performance of botnet detection. A multi
feature behavior approximation algorithm was introduced to
monitor each transaction performed by different users. How-
ever, there is always still room for improvements to have more
robust detection model to advance this research area. Hence,
taking the advantages that introduced by the recent introduced
deep learning models, and to overcome the aforementioned
limitations, this paper uses a deep learning ANN model to
train NNs for botnet attack detection. The developed model
is compared with other machine learning-based algorithms to
determine its efficiency and effectiveness.

3 Botnet detection

This section studies the detection of Botnet using two main
parts: machine learning and deep learning. For the first
part, a feed-forward backpropagation ANN is presented as

a preliminary study to show the efficiency of using DNN
model in detecting Botnet attacks compared with machine
learning techniques. The second part studies the deep-learn-
ing model for the detection of Botnet attack. These two parts
are further explained in the following subsections.

3.1 Feed‑forward backpropagation ANN technique

The feed-forward backpropagation ANN technique has two
main components, namely, preprocessing and classifier, as
shown in Fig. 2.

Network traffic is analyzed on a flow level by the preproc-
essing component, which extracts a set of features for all
traffic flows. The selection of features that effectively iden-
tify botnet attacks is critical in flow-based traffic analysis.
A total of 15 traffic flow statistical features are extracted, as
shown in Table 1.

Common features alone are not sufficient to differenti-
ate botnet traffic from normal traffic (Kalaivani and Vijaya
2016). Hence, this paper employs new features, such as aver-
age byte rate, average packet rate, ping bytes, time com-
parison, and malicious ports, to identify botnet activities.
The development of a botnet/non-botnet traffic model is con-
ducted by the classifier component using information from
the preprocessing component. The classification process
has two phases: training and testing. The backpropagation
learning algorithm is selected, and data are represented in
the training phase. This information is used to map inputs to
desired outputs. The feed-forward and backward processes
(Rumelhart et al. 1995) are used to train the developed
model to predict the outputs of certain inputs, as illustrated
in Fig. 3.

Fig. 2 Feed-forward backpropagation technique for botnet detection

3460 A. A. Ahmed et al.

1 3

For a feed-forward back propagation ANN-based network
with xn input (i) nodes, h hidden (j) nodes, and o output (k)
nodes, the back propagation training cycle has a forward and
backward phase. In the forward phase, a set of input vectors
 x1,…, xn is propagated through multiplication with associ-
ated weights w1,…, wn. Prior node outputs are multiplied
with their respective weights and summed to calculate the
net input for the jth node in the hidden layer as follows:

The value obtained from (1) specifies the ANN neuron
outputs, which become input values for neurons in the next
linked layer. Thus, the output (activation) of the jth node in
the hidden layer is provided by the following:

The net input to the kth output node is calculated as
follows:

The net output ωj to the kth output node is calculated as
follows:

(1)netj =

n
∑

i=1

wji xi

(2)ohj = ∫ (netj).

(3)netk =

L
∑

j=1

wkj ohj .

(4)�j = ∫ (netk).

The error signal is propagated through the network in
a backward direction to adjust weights and bias values
throughout the backward phase. These calculated weight
changes are then applied to free network parameters. Dur-
ing subsequent iterations, the entire process is repeated
using the next training model to minimize statistical
errors. The delta term for each output node εk is provided
by calculating the error signal for each output node Δok
(the difference between the targeted value ϖk and the
actual values ωk in the output layer) and multiplying it by
the actual output of that node multiplied by (1—its actual
output).

The sum of the output node deltas for a particular hid-
den node are multiplied by the weight between that output
and the hidden nodes to calculate the error signal for each
hidden node Δhj.

The error signal for the jth hidden node is then mul-
tiplied by its output and by (1—its output) to obtain the
delta term for the jth hidden node εhj,

(5)

Δok = (�k − �k),

�ok = Δok�k(1 − �k),

�ok = (�k − �k)�k(1 − �k).

Δhj =

w
∑

k=1

�ok wkj .

Table 1 List of extracted traffic flow features

No Feature Description

1 Start time Beginning of traffic flow
2 Duration Total time taken for a particular flow to complete
3 Protocol Use of a TCP, ICMP, UDP, or SMTP protocol
4 Source and destination IP addresses Origin and destination of a packet
5 Direction Path taken by a packet
6 Source and destination ports Data service or location where a request should be sent
7 State A SYN, RST, CON, ACK, or FIN flow state
8 Type of service (ToS) Specific treatment or priority of each IP packet
9 Total packets Number of packets in a specific flow or number of packets transmit-

ted within a specific flow/time
10 Total bytes Total number of bytes that the client sends for each request
11 Time comparison Comparison between flow start time and flow end time
12 Average byte rate Average byte rate calculated using total bytes and duration
13 Average packet rate Average packet rate calculated using total packets and duration
14 Ping byte A packet with a size larger than 65,435 bytes is considered malicious
15 Malicious port Port number is also used to obtain information on remote systems

that may be the target of malicious attacks

3461Deep learning-based classification model for botnet attack detection

1 3

The delta of each output node is multiplied by the out-
put (activation) of the hidden node to which it is connected
to derive the weight error for each weight vector between
the hidden and output nodes γjk. γjk is used to adapt the
weights between the output and the hidden layers as below.

The weight error derivatives for each weight between the
input node and the hidden node γij are provided by multiplying

(6)�hj =
(

ohj
)(

1 − ohj
)

W
∑

k=1

�ok wkj .

(7)�jk = �ok(ohj).

the delta of each hidden node with the activation of the input
node to which it is linked. γij is used to adapt the weights
between the input and hidden layers as follows:

A learning rate parameter σ is needed to perform changes
on the weights themselves to update weights during each
backpropagation cycle. Weights that link the hidden and
output nodes at time (t + 1) are provided using the weights
at time (t) and γjk using the following equation:

Likewise, the weights that link input and hidden units are
provided using the following equation:

This equation ensures that every node in the ANN
receives an error signal that shows its proportional contribu-
tion to the total errors between targeted and actual outputs.
The update process for the weights that link nodes between
layers depends on the error signal obtained by the nodes.
The mean square error between the actual output of the ANN
and its desired output is reduced for all sets of training inputs
by iterating the two processes in (8, 9) for different input
patterns and targets.

3.2 Deep‑learning model for the detection
of botnet

In the part of deep-learning, model is developed based
on the Tenserflow platform using Adam (Kingma and Ba
2014) as an optimization algorithm for the first-order gra-
dient-based optimization of stochastic objective function,
which is obtaining the maximum accuracy of the classifi-
cation rate for the botnet detection model. This optimizer
works on adaptive estimates of lower-order instants. Using
this method enables our developed model with an upfront
implementation process. It is computationally efficient and
has slight memory desires. Moreover, Adam’s optimizer
resists with slanting rescaling of the gradients of the problem
space, and it is well-fitted for botnet detection problem with

�
ij = �hj(xi).

(8)wjk(t + 1) = wjk(t) + �

(

�jk

)

.

(9)wij(t + 1) = wij(t) + �

(

wedij
)

.

Fig. 3 Methodology of proposed technique

Table 2 Optimizer parameter
setup

Parameter Value

learning_rate 0.001
beta_1 0.9
beta_2 0.999
Epsilon 1e−07
amsgrad False

3462 A. A. Ahmed et al.

1 3

immense volume in terms of data and/or features of attack-
ers. Table 2 lists the main setup of Adam’s optimization
algorithm. The algorithm exponentially updates its moving
averages of the gradient (mt) and the squared gradient β_1,
β _2 ∊ [0, 1], regulating the exponential degeneration rates of
the moving averages toward the optimal decision (in our case
is the class 0/1 attack/non-attack). Optimization algorithm
for the DNN-Botnet detection model is shown in Fig. 4.

The optimization parameters are defined as follows:

• learning_rate: A tensor or a floating point value, which
indicates the learning rate.

• beta_1: The float value or a constant float tensor. The
exponential degeneration rate for the 1st moment
guesses.

• beta_2: The float value or a constant float tensor. The
exponential degeneration rate for the 1st moment
guesses.

• epsilon: A tiny constant for numerical stability of the
model.

• amsgrad: Boolean value, which indicates whether to
apply AMSGrad variant of this algorithm. The reader
may refer to24 for more details.

4 Implementation

This section covers the use of the proposed deep learning
DNN and feed-forward backpropagation ANN technique
to detect botnet attacks using the following steps, namely,

dataset selection, feature extraction, data normalization,
training, validation, and testing, as shown in Fig. 5.

The CTU-13 dataset from the Botnet Capture Facil-
ity Project is used in the first step. The CTU-13 contains
13 different botnet scenarios in which normal and Bot-
net traffic is clearly identified. The second step identifies
input layer features, as shown in Table 3. Following feature
selection, data values are normalized to between 0 (normal
traffic) and 1 (botnet traffic).

Fig. 4 Optimization algorithm for the DNN-botnet detection model

Fig. 5 Implementation of DNN model and feed-forward backpropa-
gation ANN technique

3463Deep learning-based classification model for botnet attack detection

1 3

Following data normalization, the dataset undergoes
training, validation, and testing in MATLAB 2016 ver-
sion 9 using 10,000 randomly selected flows.

4.1 Feed‑forward backpropagation ANN
implementation

Table 4 shows the flow distributions for the experiment of
feed-forward backpropagation algorithm. The flow distribu-
tion pattern is used for three different NN designs, as shown
in Table 5. Each NN design has a similar number of inputs
and flows.

4.2 Deep‑learning neural network implementation

This subsection provides the experiment setup to implement
the developed deep-learning model. Table 6 shows the flow

distributions for the developed model using Tenserflow
framework.

Figure 6 shows the data loading and pre-processing steps
before loading to the DL-Botnet Model. The first step is
normalizing the entire data of all input variables such that
our proposed model can smoothly integrate the data into
the NN model.

Figure 7 demonstrates the algorithm’s steps of the devel-
oped model trained with 8000 records from botnet data,
which consist of mixed traffic of attack/non-attack. The
model is optimized using Adam’s optimizer as discussed
earlier. The model for each run is trained for 300 itera-
tions against the objective function, which is maximizing
accuracy.

5 Results and discussion

This section covers the study results. In case of the feed-
forward backpropagation technique, the performance of
each NN design during training, validation, and testing is
shown in Fig. 8. NN Design 3 (10 hidden neurons) shows
the greatest accuracy. All NN designs reflect a decrease in
their mean square error over time, but this decrease is likely
to be reversed when the validation dataset begins to over-
fit the training data as it identifies random noise instead of
underlying relationships.

In case of the deep-learning model, Fig. 9, demonstrates
the classification accuracy achieved using our developed

Table 3 Input layer features

Input layer Data attribute

X1 Total bytes
X2 Total packets
X3 Duration
X4 Source IP address
X5 Destination IP address
X6 Average bytes
X7 Average packets
X8 Source port
X9 Destination port

Table 4 Flow distribution Flows Purpose

3000 Training
3500 Validation
3500 Testing

Table 5 NN designs ANN design No. of
hidden
neurons

1 6
2 8
3 10

Table 6 Flow distribution for
developed deep-learning model

Flows Purpose

8000 Training
2000 Testing

Fig. 6 Data loading and pre-processing algorithm

3464 A. A. Ahmed et al.

1 3

DNN based Botnet detection model. It is clear that our
model could converge rapidly after initial 20 iterations to
achieve over 90% accuracy, until it sustained with 99.6%
accuracy after 300 iterations. Hence, out of several training

and testing iterations, the model was saved to be used for
testing process.

Figure 10 shows the testing steps of the obtained model,
out of the training process, with the remaining 2000 records.
The model can achieve 99.25% accuracy on average. The
model is supplied with all input variables of nine features
(listed in Table 2) without providing the Y-values (class-
label) that identify whether the given input is a botnet attack.
Our developed model can obtain 99.25% accuracy in clas-
sifying 2000 different data traffic to its own original class
(attack/non-attack). The total loss of our proposed model is
0.054 from all given Y-values, which is considered a good
improvement that helps effectively in detecting Botnet
attacks, compared with the state of the art. Finally, we run
an experiment using our testing data to show the ability of
our proposed model in predicting a botnet attack. Figure 11
shows that the model can correctly predict the class of given
data to be recognized as a botnet attack (class label “1”).

This paper’s findings of backpropagation and deep-learn-
ing model are compared with other studies in the literature
on the use of machine learning techniques to identify bot-
net attacks, such as SVM, decision tree, and NB. Figure 12
shows that SVM achieves 99.5% accuracy, decision tree
achieves 95.2%, NB achieves 98.5%, and backpropaga-
tion achieves 96.1%. Compared with previous techniques,
the DNN Model proposed in this paper achieves 99.6% for
training and testing and 99.2% prediction accuracy of 2000
records. The DNN Model achieves the highest accuracy
among the other approaches included in the comparison.

6 Conclusion

The deep learning ANN technique proposed in this paper
effectively identifies botnet attacks and can be used to
improve NN accuracy through hidden layer manipulation.
The use of a reliable dataset is crucial to the high perfor-
mance of the proposed model. This paper demonstrates
that the use of deep learning in botnet detection achieves
accuracies of over 99.6%, which has the highest accuracy
compared with SVM, NB, or backpropagation algorithms.

Fig. 7 Developed DNN-Botnet detection model using keras-based tensor flow framework

93.5%

94.0%

94.5%

95.0%

95.5%

96.0%

96.5%

97.0%

6 hidden
neurons

8 hidden
neurons

10 hidden
neurons

Performance accuracy

Training Validation Test Overall score

Fig. 8 Performance of different NN designs

Fig. 9 Accuracy of our proposed model over 300 iterations

3465Deep learning-based classification model for botnet attack detection

1 3

This paper recommends that other researchers examine the
efficiency of the proposed model in detecting botnet attacks

with different datasets. The authors plan to apply a deep
learning model for detecting other malicious network threats
such as DDoS attacks in a future study.

Acknowledgements Funding support was provided by the fund of
COMSTECH-TWAS, Joint Research Grants Program for Young Sci-
entists in OIC countries No. 14-340 RG/ITC/AS_C.

References

Ahmed AA (2015) Investigation model for DDoS attack detection in
real-time. Int J Softw Eng Comput Syst 1(1):93–105

Ahmed AA, Jantan A, Rasmi M (2013a) Service violation monitor-
ing model for detecting and tracing bandwidth abuse. J Netw
Syst Manag 21(2):218–237

Ahmed AA, Jantan A, Wan T-C (2013b) Real-time detection of
intrusive traffic in QoS network domains. IEEE Secur Priv
11(6):45–53

Ahmed AA, Jantan A, Wan T-C (2016) Filtration model for the
detection of malicious traffic in large-scale networks. Comput
Commun 82:59–70

Al-Duwairi B, Al-Ebbini L (2010) BotDigger: a fuzzy inference sys-
tem for botnet detection. In: 2010 Fifth international conference
on internet monitoring and protection. pp 16–21

Al Shorman A, Faris H, Aljarah I (2019) Unsupervised intelligent
system based on one class support vector machine and Grey
Wolf optimization for IoT botnet detection. J Ambient Intell
Humaniz Comput. https ://doi.org/10.1007/s1265 2-019-01387 -y

Fig. 10 Model testing

Fig. 11 Botnet prediction model

Fig. 12 Comparison of findings

https://doi.org/10.1007/s12652-019-01387-y

3466 A. A. Ahmed et al.

1 3

Cui Z et al (2018) Detection of malicious code variants based on
deep learning. IEEE Trans Ind Inform 14(7):3187–3196

Dai Q-Y, Zhang C, Wu H (2016) Research of decision tree classi-
fication algorithm in data mining. Int J Database Theory Appl
9(5):1–8

Dhaya MA, Ravi R (2020) Multi feature behavior approxima-
tion model based efficient botnet detection to mitigate finan-
cial frauds. J Ambient Intell Humaniz Comput. https ://doi.
org/10.1007/s1265 2-020-01677 -w

Garcia S, Grill M, Stiborek J, Zunino A (2014) An empirical com-
parison of botnet detection methods. Comput Secur 45:100–123

Gu G, Zhang J, Lee W (2008) BotSniffer: detecting botnet command
and control channels in network traffic. In: Proceedings of the
15 annual network and distributed system security symposium
(NDSS’08)

Jantan A, Ahmed AA (2014a) Honeybee protection system for detect-
ing and preventing network attacks. J Theor Appl Inf Technol
64(1):38–47

Jantan A, Ahmed AA (2014b) Honey bee intelligent model for net-
work zero day attack detection. Int J Digit Content Technol Appl
8(6):45–52

Kalaivani P, Vijaya M (2016) Mining based detection of botnet traffic
in network flow. Int J Comput Sci Inf Technol Secur 6:535–540

Karasaridis A, Rexroad B, Hoeflin DA et al (2007) Wide-scale botnet
detection and characterization. In: Proceedings of the first con-
ference on first workshop on hot topics in understanding botnets
(HotBots’07). pp 1–8

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization.
arXiv preprint arXiv:1412.6980

Kolosnjaji B, Zarras A, Webster G, Eckert C (2016) Deep learning for
classification of malware system call sequences. Australasian joint
conference on artificial intelligence. Springer, Cham, pp 137–149

Maimó LF, Celdrán AH, Pérez MG, Clemente FJG, Pérez GM (2019)
Dynamic management of a deep learning-based anomaly detec-
tion system for 5G networks. J Ambient Intell Humaniz Comput
10(8):3083–3097

Masud MM et al (2008) Cloud-based malware detection for evolving
data streams. ACM Trans Manag Inf Syst (TMIS) 2(3):1–27

Moodi M, Ghazvini M (2019) A new method for assigning appropriate
labels to create a 28 Standard Android Botnet Dataset (28-SABD).
J Ambient Intell Humaniz Comput 10(11):4579–4593

Narang P, Ray S, Hota C, Venkatakrishnan V (2014) Peershark: detect-
ing peer-to-peer botnets by tracking conversations. In: 2014 IEEE
security and privacy workshops. pp 108–115

Rumelhart DE, Durbin R, Golden R, Chauvin Y (1995) Backpropaga-
tion: the basic theory. In: Chauvin Y, Rumelhart DE (eds) Back-
propagation: theory, architectures and applications. Lawrence
Erlbaum Associates, Hillsdale, New Jersey; Hove, UK, pp 1–34

Saxe J, Berlin K (2015) Deep neural network based malware detection
using two dimensional binary program features. In: 2015 10th
International conference on malicious and unwanted software
(MALWARE). pp 11–20

Shah S, Jani H, Shetty S, Bhowmick K (2013) Virus detection using
artificial neural networks. Int J Comput Appl 84(5):17–23

Singh K, Guntuku SC, Thakur A, Hota C (2014) Big data analytics
framework for peer-to-peer botnet detection using random forests.
Inf Sci 278:488–497

Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-
layer feed-forward neural networks. Chemom Intell Lab Syst
39(1):43–62

Vinayakumar R, Soman KP, Poornachandran P (2017) Deep android
malware detection and classification. In: 2017 International con-
ference on advances in computing, communications and informat-
ics (ICACCI). pp 1677–1683

Wang X, Guo N, Gao F, Feng J (2019) Distributed denial of service
attack defence simulation based on honeynet technology. J Ambi-
ent Intell Humaniz Comput. https ://doi.org/10.1007/s1265 2-019-
01396 -x

Ye Y, Chen L, Hou S, Hardy W, Li X (2018) DeepAM: a heterogeneous
deep learning framework for intelligent malware detection. Knowl
Inf Syst 54(2):265–285

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12652-020-01677-w
https://doi.org/10.1007/s12652-020-01677-w
https://doi.org/10.1007/s12652-019-01396-x
https://doi.org/10.1007/s12652-019-01396-x

	Deep learning-based classification model for botnet attack detection
	Abstract
	1 Introduction
	2 Literature review
	3 Botnet detection
	3.1 Feed-forward backpropagation ANN technique
	3.2 Deep-learning model for the detection of botnet

	4 Implementation
	4.1 Feed-forward backpropagation ANN implementation
	4.2 Deep-learning neural network implementation

	5 Results and discussion
	6 Conclusion
	Acknowledgements
	References

