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Abstract
Botnets are vectors through which hackers can seize control of multiple systems and conduct malicious activities. Research-
ers have proposed multiple solutions to detect and identify botnets in real time. However, these proposed solutions have 
difficulties in keeping pace with the rapid evolution of botnets. This paper proposes a model for detecting botnets using deep 
learning to identify zero-day botnet attacks in real time. The proposed model is trained and evaluated on a CTU-13 dataset 
with multiple neural network designs and hidden layers. Results demonstrate that the deep-learning artificial neural network 
model can accurately and efficiently identify botnets.
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1 Introduction

In our modern world, computers have become a conveni-
ent and ubiquitous part of our everyday lives. However, the 
increased proliferation of computer systems has introduced 
new kinds of security risks. These security risks can com-
promise user data or severely hamper the operations of com-
puter systems, potentially causing complete system failures 
(Shah et al. 2013).

Botnet detection has become a popular subject in the 
cybersecurity literature. Botnets are a type of network-
based attack that seeks to subvert multiple computers 

simultaneously and turn them into “zombie” systems, as 
shown in Fig. 1. These “zombie” computers are then used 
for malicious activities such as identifying theft, distributed 
denial of service attacks (DDoS), phishing, spamming, and 
domain name system spoofing.

This paper reviews several methods in the literature for 
detecting botnet attacks. Numerous studies in cybersecurity 
literature (Ahmed 2015; Ahmed et al. 2013a, b, 2016) have 
covered such attacks. These studies have employed machine-
learning algorithms such as support vector machine (SVM) 
(Narang et al. 2014), decision tree (Dai et al. 2016), naïve 
Bayes (NB) (Kalaivani and Vijaya 2016), bees (Jantan and 
Ahmed 2014a, b) and random forest (Singh et al. 2014). 
However, a topic that has been rarely covered is the use 
of deep learning algorithm (Svozil et al. 1997) for training 
artificial neural networks (ANNs) to detect botnets.

This paper makes two significant contributions to the 
literature. First, it evaluates the efficiency and accuracy of 
a deep neural network (DNN) for botnet attack detection. 
Second, a DNN algorithm is used on a CTU-13 dataset (Gar-
cia et al. 2014) with multiple neural network (NN) designs 
and hidden layers to determine the abilities of the proposed 
technique. The rest of this paper is arranged as follows: 
Sect. 2 covers the literature review. Section 3 covers the 
feed-forward backpropagation ANN technique. Section 4 
discusses the implementation of the proposed model. Sec-
tion 5 contains the results and analysis. Section 6 presents 
the conclusions and provides ideas for future research.
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2  Literature review

Multiple methods have been proposed in the literature 
to identify botnets. One study (Karasaridis et al. 2007) 
has used an anomaly-based botnet detection method to 
identify botnet controllers using transport layer data, thus 
enabling the detection of IRC botnet controllers without 
known signatures or captured binaries and making it a 
passive method that is invisible to operators, scale to 
large networks, and protects end users. This method also 
determines a botnet’s size and activities from outside of 
compromised networks, making it capable of identifying 
botnets using encrypted and obfuscated protocols.

A Botsniffer (Gu et al. 2008) that uses network-based 
anomaly detection was developed to locate and identify 
botnet command and control (C&C) channels in local 
area networks without the use of botnet signatures. This 
technique relies on the tendencies for parts of a botnet 
to possess similar spatiotemporal correlations and behav-
iors because of preprogrammed activities related to C&C 
communication in the protocol layer. The Botsniffer uses 
statistical and analysis algorithms to track botnets with 
centralized IRC architectures and network traffic with a 
low false positive rate, respectively.

A BotDigger (Al-Duwairi and Al-Ebbini 2010) was 
developed to detect botnets using the logical rules and fea-
tures that define their behavior. The BotDigger measures 
the influence of fuzzy member sets to infer human rea-
soning and decision-making. All techniques that employ 
fuzzy logic, amount, type, and behavior of fuzzy member 
functions and rules exert a substantial influence.

A host-based botnet detection (Masud et al. 2008) that 
correlates multiple log fields using a flow-based detection 
method was developed to segregate Botmaster commands 
into different categories. Bots have faster reaction times 

than humans, thus simplifying the mining or correlation 
of multiple log files. This technique efficiently identifies 
certain kinds of C&C traffic by correlating multiple host-
based log files from IRC bots. The technique also works 
on non-IRC bots because it can detect C&C traffic before 
a payload is identified.

Several studies have used machine-learning techniques 
to identify botnets, and the decision tree (Dai et al. 2016) 
method is popular for differentiating between botnet and 
non-botnet traffic. This technique abstracts classification 
rules into decision tress using disordered and irregular 
instance groups. This technique compares internal decision 
tree node qualities, values downward branches according 
to node attributes, and derives conclusion using leaf nodes 
in a top–down recursive manner. This technique ensures 
that root-to-leaf nodes represent conjunctive nodes, and the 
entire tree represents groups of disjunctive expression rules. 
This technique has advantages because the decision tree 
classification algorithm creates rules that are easy to under-
stand for different data types without using large amounts 
of computational resources. The decision tree can identify 
the significance and limitations of certain nodes (such as dif-
ficulties in estimating continuation fields) through the exten-
sive pre-treatment of chronological data. Decision trees may 
suffer from errors when using numerous categories.

An NB (Kalaivani and Vijaya 2016) classifier proposed 
to process natural language and retrieve information is a 
simple and effective method using Bayesian theorems. This 
classifier is suitable for inputs with large amounts of dimen-
sionality. This classifier assumes that the variables’ effect 
on a given class are not influenced by the values of other 
variables. For example, the NB inducer derives class condi-
tional probabilities to identify the one with the uppermost 
posterior. The NB classifier can be used as a supervised 
machine-learning algorithm for certain probability models.

SVM (Narang et al. 2014) is a supervised pattern clas-
sification method developed for pattern recognition. This 
algorithm uses machine learning to derive training classifi-
cation and regression rules. This algorithm efficiently han-
dles high-dimensionality feature spaces owing to its solid 
mathematical foundation, and it can provide simple and 
effective results.

Existing studies are helpful (Cui et al. 2018) but demon-
strate slow speed and poor accuracy in detecting malware. 
The DNN approach was recently introduced as an efficient 
method to detect malware. The key point of DNN methods is 
their capability in achieving a high detection rate while gener-
ating a low false-positive rate. DNN-based studies(Cui et al. 
2018; Ye et al. 2018; Kolosnjaji et al. 2016; Saxe and Berlin 
2015; Vinayakumar et al. 2017) have demonstrated promising 
results in identifying malicious code variants, detecting intelli-
gent malware, classifying malware system call sequences, and 
detecting and classifying Android malware. This paper uses a 

Fig. 1  Typical botnet life cycle
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deep learning ANN model to train NNs for botnet attack detec-
tion. The developed model is compared with other machine 
learning-based algorithms to determine its efficiency and 
effectiveness.

On the other hands, the authors in Al Shorman et al. (2019) 
have introduced new unsupervised evolutionary Internet of 
Things (IoT) based botnet detection method. The foremost 
goal of their proposed method was to distinguish IoT botnet 
attacks that triggered form compromised IoT devices. They 
have achieved this by take advantage of the efficiency of the 
modern swarm intelligence algorithm known as Grey Wolf 
Optimization algorithm (GWO). GWO was used to optimize 
the hyperparameters of their baseline One Class Support 
Vector Machine (OCSVM). Their model was also tending to 
find the features that best describe the IoT botnet problem. 
This paper uses a deep learning ANN model to train NNs for 
botnet attack detection. In another attempt, to produce a new 
android dataset, Moodi and Ghazvini (2019) have come out 
with 28 Standard Android Botnet Dataset (28-SABD). They 
have used ensemble K-Nearest Neighbors (KNN) technique 
as a way to advance the accuracy of the allocated labels by 
the signature-based method. However, the obtained overall 
accuracy was 94%, which indicates that there is still need 
for further improvement or need for more accurate detection 
model. In contrast, Wang et al. (2019) have tried to reduce 
the false positives of DDoS attacks by cultivating execution 
efficiency and improving the relationship between detection 
and prevention courses. In their work, a defensive mechanism 
based on honeynet technology was introduced. Yet, these types 
of technologies are analytically expensive and they enquire 
more knowledge to be feeding into the model for better detec-
tion with more dynamic data behavior, where deep-learning 
based model is needed to overcome such limitation Maimó 
et al. (2019). While a novel multi feature behavior approxima-
tion algorithm was proposed by Dhaya and Ravi (2020) as a 
way to increase the performance of botnet detection. A multi 
feature behavior approximation algorithm was introduced to 
monitor each transaction performed by different users. How-
ever, there is always still room for improvements to have more 
robust detection model to advance this research area. Hence, 
taking the advantages that introduced by the recent introduced 
deep learning models, and to overcome the aforementioned 
limitations, this paper uses a deep learning ANN model to 
train NNs for botnet attack detection. The developed model 
is compared with other machine learning-based algorithms to 
determine its efficiency and effectiveness.

3  Botnet detection

This section studies the detection of Botnet using two main 
parts: machine learning and deep learning. For the first 
part, a feed-forward backpropagation ANN is presented as 

a preliminary study to show the efficiency of using DNN 
model in detecting Botnet attacks compared with machine 
learning techniques. The second part studies the deep-learn-
ing model for the detection of Botnet attack. These two parts 
are further explained in the following subsections.

3.1  Feed‑forward backpropagation ANN technique

The feed-forward backpropagation ANN technique has two 
main components, namely, preprocessing and classifier, as 
shown in Fig. 2.

Network traffic is analyzed on a flow level by the preproc-
essing component, which extracts a set of features for all 
traffic flows. The selection of features that effectively iden-
tify botnet attacks is critical in flow-based traffic analysis. 
A total of 15 traffic flow statistical features are extracted, as 
shown in Table 1.

Common features alone are not sufficient to differenti-
ate botnet traffic from normal traffic (Kalaivani and Vijaya 
2016). Hence, this paper employs new features, such as aver-
age byte rate, average packet rate, ping bytes, time com-
parison, and malicious ports, to identify botnet activities. 
The development of a botnet/non-botnet traffic model is con-
ducted by the classifier component using information from 
the preprocessing component. The classification process 
has two phases: training and testing. The backpropagation 
learning algorithm is selected, and data are represented in 
the training phase. This information is used to map inputs to 
desired outputs. The feed-forward and backward processes 
(Rumelhart et al. 1995) are used to train the developed 
model to predict the outputs of certain inputs, as illustrated 
in Fig. 3.

Fig. 2  Feed-forward backpropagation technique for botnet detection
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For a feed-forward back propagation ANN-based network 
with xn input (i) nodes, h hidden (j) nodes, and o output (k) 
nodes, the back propagation training cycle has a forward and 
backward phase. In the forward phase, a set of input vectors 
 x1,…,  xn is propagated through multiplication with associ-
ated weights  w1,…,  wn. Prior node outputs are multiplied 
with their respective weights and summed to calculate the 
net input for the jth node in the hidden layer as follows:

The value obtained from (1) specifies the ANN neuron 
outputs, which become input values for neurons in the next 
linked layer. Thus, the output (activation) of the jth node in 
the hidden layer is provided by the following:

The net input to the kth output node is calculated as 
follows:

The net output ωj to the kth output node is calculated as 
follows:

(1)netj =

n
∑

i=1

wji xi

(2)ohj = ∫ (netj).

(3)netk =

L
∑

j=1

wkj ohj .

(4)�j = ∫ (netk).

The error signal is propagated through the network in 
a backward direction to adjust weights and bias values 
throughout the backward phase. These calculated weight 
changes are then applied to free network parameters. Dur-
ing subsequent iterations, the entire process is repeated 
using the next training model to minimize statistical 
errors. The delta term for each output node εk is provided 
by calculating the error signal for each output node Δok 
(the difference between the targeted value ϖk and the 
actual values ωk in the output layer) and multiplying it by 
the actual output of that node multiplied by (1—its actual 
output).

The sum of the output node deltas for a particular hid-
den node are multiplied by the weight between that output 
and the hidden nodes to calculate the error signal for each 
hidden node Δhj.

The error signal for the jth hidden node is then mul-
tiplied by its output and by (1—its output) to obtain the 
delta term for the jth hidden node εhj,

(5)

Δok = (�k − �k ),

�ok = Δok�k(1 − �k),

�ok = (�k − �k)�k(1 − �k).

Δhj =

w
∑

k=1

�ok wkj .

Table 1  List of extracted traffic flow features

No Feature Description

1 Start time Beginning of traffic flow
2 Duration Total time taken for a particular flow to complete
3 Protocol Use of a TCP, ICMP, UDP, or SMTP protocol
4 Source and destination IP addresses Origin and destination of a packet
5 Direction Path taken by a packet
6 Source and destination ports Data service or location where a request should be sent
7 State A SYN, RST, CON, ACK, or FIN flow state
8 Type of service (ToS) Specific treatment or priority of each IP packet
9 Total packets Number of packets in a specific flow or number of packets transmit-

ted within a specific flow/time
10 Total bytes Total number of bytes that the client sends for each request
11 Time comparison Comparison between flow start time and flow end time
12 Average byte rate Average byte rate calculated using total bytes and duration
13 Average packet rate Average packet rate calculated using total packets and duration
14 Ping byte A packet with a size larger than 65,435 bytes is considered malicious
15 Malicious port Port number is also used to obtain information on remote systems 

that may be the target of malicious attacks
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The delta of each output node is multiplied by the out-
put (activation) of the hidden node to which it is connected 
to derive the weight error for each weight vector between 
the hidden and output nodes γjk. γjk is used to adapt the 
weights between the output and the hidden layers as below.

The weight error derivatives for each weight between the 
input node and the hidden node γij are provided by multiplying 

(6)�hj =
(

ohj
)(

1 − ohj
)

W
∑

k=1

�ok wkj .

(7)�jk = �ok(ohj).

the delta of each hidden node with the activation of the input 
node to which it is linked. γij is used to adapt the weights 
between the input and hidden layers as follows:

A learning rate parameter σ is needed to perform changes 
on the weights themselves to update weights during each 
backpropagation cycle. Weights that link the hidden and 
output nodes at time (t + 1) are provided using the weights 
at time (t) and γjk using the following equation:

Likewise, the weights that link input and hidden units are 
provided using the following equation:

This equation ensures that every node in the ANN 
receives an error signal that shows its proportional contribu-
tion to the total errors between targeted and actual outputs. 
The update process for the weights that link nodes between 
layers depends on the error signal obtained by the nodes. 
The mean square error between the actual output of the ANN 
and its desired output is reduced for all sets of training inputs 
by iterating the two processes in (8, 9) for different input 
patterns and targets.

3.2  Deep‑learning model for the detection 
of botnet

In the part of deep-learning, model is developed based 
on the Tenserflow platform using Adam (Kingma and Ba 
2014) as an optimization algorithm for the first-order gra-
dient-based optimization of stochastic objective function, 
which is obtaining the maximum accuracy of the classifi-
cation rate for the botnet detection model. This optimizer 
works on adaptive estimates of lower-order instants. Using 
this method enables our developed model with an upfront 
implementation process. It is computationally efficient and 
has slight memory desires. Moreover, Adam’s optimizer 
resists with slanting rescaling of the gradients of the problem 
space, and it is well-fitted for botnet detection problem with 

�
ij = �hj(xi).

(8)wjk(t + 1) = wjk(t) + �

(

�jk

)

.

(9)wij(t + 1) = wij(t) + �

(

wedij
)

.

Fig. 3  Methodology of proposed technique

Table 2  Optimizer parameter 
setup

Parameter Value

learning_rate 0.001
beta_1 0.9
beta_2 0.999
Epsilon 1e−07
amsgrad False
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immense volume in terms of data and/or features of attack-
ers. Table 2 lists the main setup of Adam’s optimization 
algorithm. The algorithm exponentially updates its moving 
averages of the gradient (mt) and the squared gradient β_1, 
β _2 ∊ [0, 1], regulating the exponential degeneration rates of 
the moving averages toward the optimal decision (in our case 
is the class 0/1 attack/non-attack). Optimization algorithm 
for the DNN-Botnet detection model is shown in Fig. 4.

The optimization parameters are defined as follows:

• learning_rate: A tensor or a floating point value, which 
indicates the learning rate.

• beta_1: The float value or a constant float tensor. The 
exponential degeneration rate for the 1st moment 
guesses.

• beta_2: The float value or a constant float tensor. The 
exponential degeneration rate for the 1st moment 
guesses.

• epsilon: A tiny constant for numerical stability of the 
model.

• amsgrad: Boolean value, which indicates whether to 
apply AMSGrad variant of this algorithm. The reader 
may refer  to24 for more details.

4  Implementation

This section covers the use of the proposed deep learning 
DNN and feed-forward backpropagation ANN technique 
to detect botnet attacks using the following steps, namely, 

dataset selection, feature extraction, data normalization, 
training, validation, and testing, as shown in Fig. 5.

The CTU-13 dataset from the Botnet Capture Facil-
ity Project is used in the first step. The CTU-13 contains 
13 different botnet scenarios in which normal and Bot-
net traffic is clearly identified. The second step identifies 
input layer features, as shown in Table 3. Following feature 
selection, data values are normalized to between 0 (normal 
traffic) and 1 (botnet traffic).

Fig. 4  Optimization algorithm for the DNN-botnet detection model

Fig. 5  Implementation of DNN model and feed-forward backpropa-
gation ANN technique
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Following data normalization, the dataset undergoes 
training, validation, and testing in MATLAB 2016 ver-
sion 9 using 10,000 randomly selected flows.

4.1  Feed‑forward backpropagation ANN 
implementation

Table 4 shows the flow distributions for the experiment of 
feed-forward backpropagation algorithm. The flow distribu-
tion pattern is used for three different NN designs, as shown 
in Table 5. Each NN design has a similar number of inputs 
and flows.

4.2  Deep‑learning neural network implementation

This subsection provides the experiment setup to implement 
the developed deep-learning model. Table 6 shows the flow 

distributions for the developed model using Tenserflow 
framework.

Figure 6 shows the data loading and pre-processing steps 
before loading to the DL-Botnet Model. The first step is 
normalizing the entire data of all input variables such that 
our proposed model can smoothly integrate the data into 
the NN model.

Figure 7 demonstrates the algorithm’s steps of the devel-
oped model trained with 8000 records from botnet data, 
which consist of mixed traffic of attack/non-attack. The 
model is optimized using Adam’s optimizer as discussed 
earlier. The model for each run is trained for 300 itera-
tions against the objective function, which is maximizing 
accuracy.

5  Results and discussion

This section covers the study results. In case of the feed-
forward backpropagation technique, the performance of 
each NN design during training, validation, and testing is 
shown in Fig. 8. NN Design 3 (10 hidden neurons) shows 
the greatest accuracy. All NN designs reflect a decrease in 
their mean square error over time, but this decrease is likely 
to be reversed when the validation dataset begins to over-
fit the training data as it identifies random noise instead of 
underlying relationships.

In case of the deep-learning model, Fig. 9, demonstrates 
the classification accuracy achieved using our developed 

Table 3  Input layer features

Input layer Data attribute

X1 Total bytes
X2 Total packets
X3 Duration
X4 Source IP address
X5 Destination IP address
X6 Average bytes
X7 Average packets
X8 Source port
X9 Destination port

Table 4  Flow distribution Flows Purpose

3000 Training
3500 Validation
3500 Testing

Table 5  NN designs ANN design No. of 
hidden 
neurons

1 6
2 8
3 10

Table 6  Flow distribution for 
developed deep-learning model

Flows Purpose

8000 Training
2000 Testing

Fig. 6  Data loading and pre-processing algorithm
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DNN based Botnet detection model. It is clear that our 
model could converge rapidly after initial 20 iterations to 
achieve over 90% accuracy, until it sustained with 99.6% 
accuracy after 300 iterations. Hence, out of several training 

and testing iterations, the model was saved to be used for 
testing process.

Figure 10 shows the testing steps of the obtained model, 
out of the training process, with the remaining 2000 records. 
The model can achieve 99.25% accuracy on average. The 
model is supplied with all input variables of nine features 
(listed in Table 2) without providing the Y-values (class-
label) that identify whether the given input is a botnet attack. 
Our developed model can obtain 99.25% accuracy in clas-
sifying 2000 different data traffic to its own original class 
(attack/non-attack). The total loss of our proposed model is 
0.054 from all given Y-values, which is considered a good 
improvement that helps effectively in detecting Botnet 
attacks, compared with the state of the art. Finally, we run 
an experiment using our testing data to show the ability of 
our proposed model in predicting a botnet attack. Figure 11 
shows that the model can correctly predict the class of given 
data to be recognized as a botnet attack (class label “1”).

This paper’s findings of backpropagation and deep-learn-
ing model are compared with other studies in the literature 
on the use of machine learning techniques to identify bot-
net attacks, such as SVM, decision tree, and NB. Figure 12 
shows that SVM achieves 99.5% accuracy, decision tree 
achieves 95.2%, NB achieves 98.5%, and backpropaga-
tion achieves 96.1%. Compared with previous techniques, 
the DNN Model proposed in this paper achieves 99.6% for 
training and testing and 99.2% prediction accuracy of 2000 
records. The DNN Model achieves the highest accuracy 
among the other approaches included in the comparison.

6  Conclusion

The deep learning ANN technique proposed in this paper 
effectively identifies botnet attacks and can be used to 
improve NN accuracy through hidden layer manipulation. 
The use of a reliable dataset is crucial to the high perfor-
mance of the proposed model. This paper demonstrates 
that the use of deep learning in botnet detection achieves 
accuracies of over 99.6%, which has the highest accuracy 
compared with SVM, NB, or backpropagation algorithms. 

Fig. 7  Developed DNN-Botnet detection model using keras-based tensor flow framework

93.5%

94.0%

94.5%

95.0%

95.5%

96.0%

96.5%

97.0%

6 hidden
neurons

8 hidden
neurons

10 hidden
neurons

Performance accuracy

Training Validation Test Overall score

Fig. 8  Performance of different NN designs

Fig. 9  Accuracy of our proposed model over 300 iterations
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This paper recommends that other researchers examine the 
efficiency of the proposed model in detecting botnet attacks 

with different datasets. The authors plan to apply a deep 
learning model for detecting other malicious network threats 
such as DDoS attacks in a future study.
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