
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:4869–4882
https://doi.org/10.1007/s12652-020-01770-0

ORIGINAL RESEARCH

AlphaLogger: detecting motion‑based side‑channel attack using
smartphone keystrokes

Abdul Rehman Javed1 · Mirza Omer Beg1 · Muhammad Asim1 · Thar Baker2 · Ali Hilal Al‑Bayatti3

Received: 24 August 2019 / Accepted: 6 February 2020 / Published online: 15 February 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Due to the advancement in technologies and excessive usability of smartphones in various domains (e.g., mobile banking),
smartphones became more prone to malicious attacks.Typing on the soft keyboard of a smartphone produces different
vibrations, which can be abused to recognize the keys being pressed, hence, facilitating side-channel attacks. In this work,
we develop and evaluate AlphaLogger- an Android-based application that infers the alphabet keys being typed on a soft
keyboard. AlphaLogger runs in the background and collects data at a frequency of 10Hz/sec from the smartphone hardware
sensors (accelerometer, gyroscope and magnetometer) to accurately infer the keystrokes being typed on the soft keyboard
of all other applications running in the foreground. We show a performance analysis of the different combinations of sen-
sors. A thorough evaluation demonstrates that keystrokes can be inferred with an accuracy of 90.2% using accelerometer,
gyroscope, and magnetometer.

Keywords Smartphone security · Keystroke inference · Side-channel attacks · Machine learning · Motion sensor

1 Introduction

Recent expansion in mobile technology has brought about
the enhancement of diverse and more powerful sensors-
based smartphones that are used for daily activities, such
as communication, social interaction, business, and finan-
cial transactions (Cook 2010; Deb et al. 2020). Smart-
phones are embedded with numerous sensors, including
Global Positioning System (GPS), audio sensors, motion

sensors, light sensors, position sensors, and temperature
sensors (Voicu et al. 2019). The availability of readings
from these sensors creates exciting new applications, such
as remote health monitoring (Hussain et al. 2016), and new
concerns for security experts. Since smartphones contain
potentially sensitive personal information about the user’s
activities, attackers are also investing huge amounts of
time and effort to create malicious applications to acquire
the victim’s data (Lanette and Mazmanian 2018). Accord-
ing to a study (Cai and Chen 2011), the W3C DeviceOri-
entation Event Specification allows applications to access
smartphone hardware sensors using Javascript that is sup-
ported by both Android 3.0 and iOS 4.2. The Android
platform allows applications to read from a vast variety of
smartphone sensors, while iOS has a much stricter policy
that allows few third-party applications to read hardware
sensors. In terms of human-computer interaction, the key-
board is the key input device used to input data and com-
mands in smartphones. Keyboards are commonly used to
enter personal data such as PINs, passwords, and credit
card information other than the usual text (such as text
messages, emails, etc.) (Kucukyilmaz et al. 2008; Tang
et al. 2014). However, this utility can make the smart-
phones vulnerable to attacks such as keylogger side-chan-
nel attacks (Hussain et al. 2016). In these attacks, hackers

 * Muhammad Asim
 muhammad.asim@nu.edu.pk

 Abdul Rehman Javed
 abdurrahman.j74@gmail.com

 Mirza Omer Beg
 omer.beg@nu.edu.pk

 Thar Baker
 t.baker@ljmu.ac.uk

 Ali Hilal Al-Bayatti
 alihmohd@dmu.ac.uk

1 National University of Computer and Emerging Sciences,
Islamabad 44000, Pakistan

2 Liverpool John Moores University (LJMU), Liverpool, UK
3 De Montfort University, Leicester, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-01770-0&domain=pdf

4870 A. R. Javed et al.

1 3

can make users install malicious apps, integrated with
keyloggers, to record the keys a user types on a soft key-
board. The leakage of such information can cause serious
damage and may lead to loss of confidential information,
or financial loss.

Accelerometer and gyroscope readings can be easily
accessed using Javascript (Cai and Chen 2011) which
is supported by both Android and iOS systems. In this
paper, we introduce AlphaLogger, which has the capability
to infer the soft keys of smartphones using motion sen-
sors. Once the user installs AlphaLogger and grants it the
motion sensor privilege, it starts the process of sensing
motions and inferring keystrokes. We use accelerometer,
gyroscope, and magnetometer readings to detect user key-
strokes to emulate side-channel attacks. We observe that
by using these sensor readings a learning model can easily
be trained to accurately determine soft keyboard inputs on
an Android device. We develop an Android-based applica-
tion called AlphaLogger that is installed on a user’s smart-
phone. A wide variety of smartphones are available in the
market, we make this application run-able for Android-
based smartphones.

Although there exist several studies (Ping et al. 2015; Cai
and Chen 2011), which look at keystroke inference using
smartphone sensors, they lack in providing promising results
in regards to achieving higher accuracy when classifying
keystrokes. Moreover, they do not consider the keystroke
inference across applications (Ping et al. 2015). The results
gained from the experimentation of the proposed approach
demonstrate a superior performance with an accuracy of
90.2% as compared to the state-of-the-art.

To this end, the main contributions of this paper are as
follow:

1. We develop AlphaLogger, a systematic and functional
application that demonstrates the feasibility of inferring
soft keyboard inputs accurately from smartphone sensor
readings.

2. We develop a dataset of ten users using different Android
smartphones, which provides the diversity to the infer-
ring model to infer the alphabets typed by the smart-
phone user.

3. We evaluate AlphaLogger using state-of-the-art machine
learning techniques, including Ensemble Adaboost,
Ensemble Voting, Decision Tree (J48), Sequential Min-
imal Optimization (SMO) and Multilayer Perceptron
(MLP). Our results show that the AlphaLogger achieves
better accuracy than the state-of-the-art.

The paper is organized into five sections. Section 2 briefly
covers the technical background and recent advancements in
side-channel attacks. Section 3 presents the overview of the
proposed Alphaloger application. The experimental set up

and results are articulated in Sect. 4. Finally, Sect. 5 con-
cludes the paper and identifies directions for future work.

2 Related work

In research literature, side-channel attacks have been stud-
ied ranging from traditional desktops (Vuagnoux and Pas-
ini 2009; Zhuang et al. 2009; Foo Kune and Kim 2010) to
smartphones (Cai and Chen 2011; Xu et al. 2009; Owusu
et al. 2012).

Cai et al. (2009) present three studies one after another
to examine the motion-based side-channel attacks. In their
study, the authors inspect the security ramifications of
implicit sensors in smartphones. They talk about a general
structure of protection against sensor-sniffing attacks. The
work demonstrates the more common sensors such as GPS,
cameras, and mouthpieces. The same authors present their
first study in Cai and Chen (2011) to discuss motion-based
side-channel attacks. The authors present an Android appli-
cation called TouchLogger to show the vulnerability of a
side-channel attack. TouchLogger utilized machine learning
algorithms to infer keystrokes using the gyroscope sensor’s
reading. The work was assessed on an HTC Evo 4G smart-
phone in the landscape mode utilizing a numeric keypad.
TouchLogger accurately inferred over 70% of keystrokes.

Owusu et al. (2012) present an application to detect
keystrokes that divide the smartphone screen into multiple
zones and keystroke were inferred using the tapped zone.
They use a single accelerometer to infer the readings of a
motion sensor. They reported that dividing the smartphone
screen into eight zones produces the prediction accuracy of
24%. Xu et al. (2012) perform the online training and clas-
sification to track the motion readings. They focused on the
numeric keypad to extract pins and passwords. They focus
on two types of attacks: the number is written while press-
ing during a phone call and the other was the lock screen
password. They use an accelerometer and gyroscope to
collect data for this process. They show that the best PIN
inference can be done when a PIN consists of four digits.
In Aviv et al. (2012), the authors focus on two modes of
passwords: Pin-lock and swipe password. This study was
carried out on 24 individuals for each mode. A total of 12
individuals were considered to type the PIN and provide the
swiped password using four smartphones. They use a single
accelerometer sensor for data collection. Their study yield
an accuracy of 43% when an individual was sitting while
typing. They report an accuracy of 20% for the PINs and
40% for the swipe patterns within 5 attempts in a random
environment. Ping et al. (2015) present a study for a longer
information derivation, for example, chat and email content.
They achieve an accuracy of 36% using ensemble learning of
four algorithms: Simple Logistic, Random Forest, SMO, and

4871AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes

1 3

k-Nearest Neighbor. Song et al. (2018) present an algorithm
to extract frequency domain features from a motion sensor
raw readings to infer the keystroke on a smartphone. Their
study reports that PINs and passwords can be inferred effi-
ciently in complex scenarios even when the frequency rate is
lower than 80Hz. They report the overall accuracy of 74.6%.
A similar study presented by Tang et al. (2018) for infer-
ring user-independent keystrokes to unlock a smartphone.
They use a probabilistic model to classify the keystrokes and
used the angle of keystroke movements to show the trends
in a dynamic environment. They report an accuracy of 70%
and 85% in 10 attempts for both user-dependent and user-
independent scenarios.

Shumailov et al. (2019) present a study to infer the typed
keys on the soft keyboard of the smartphone. They used
acoustic signals to predict the typed soft key. They show
that the microphone is capable to hear low sound waves
which can be translated to recover the alphabet. In results,
they show that their approach recovers 61% of the alpha-
bets. Another study by Wang et al. (2019) shows that how a
password can be inference using an eye pattern. They use the
smartphone’s front camera to record the pattern of the user’s
eyes. They use these patterns to infer the typed password.

Authors in different studies discussed various verification
and theft anticipation schemes to counter security attacks.
For example, Ali et al. (2018) propose a three-factor based
remote client confirmation convention for wireless medi-
cal sensor networks to manage off-line password guessing
attack, client impersonation assault, session-key temporary
information attack and the disclosure of secret parameters.
Xu et al. (2019) present an elliptic bend cryptography (ECC)
based three-factor authentication scheme for enhancing
security in multi-server environments. Kuppusamy (2019)
propose two transformations of the password termed as
“PassContext” and “PassActions”, to counter vulnerabilities
in plain-content secret phrases by utilizing the complexities
of human-computer association. Ruan et al. (2019) proposed

a security planning model for the Three-party password-
based authenticated key exchange (3PAKE) protocol con-
ventions that is vulnerable to leakage attacks.

In summary, the accuracy reported in the past papers is
quite low and is limited to recognize keystrokes within the
applications. Some previous work focuses more on dividing
the screen into multiple zones, which fails when the size of
a screen varies from device to device. Our proposed frame-
work is highly accurate and supports cross-application key-
stroke recognition using fused sensors technique.

3 AlphaLogger

This section presents the steps of our proposed approach;
keystroke data collection and pre-processing, feature gen-
eration and transformation, tap event detection and then
machine learning algorithm for inferring keystrokes, as
illustrated in Fig. 1.

3.1 Keystroke data collection and pre‑processing

The data collection task is controlled by an application we
created that is installed on an Android-based smartphone.
We collect data from five different smartphones and ten par-
ticipants: Oppo F3, Oppo F1, Samsung J7, Samsung Grand
Prime and Huawie Honor. The typing process is performed
by the participants during the standing and sitting positions.
These are the most commonly used postures with minimum
noise generally caused by the body movement. Throughout
the experimentation phase, the portrait mode is used, and the
participant is asked to hold the smartphone with both hands
and type with thumbs. The data collection is performed
with a focus on what data to collect and how frequently it
needs to be collected. The data is collected at a fixed sample
frequency of 30 samples per second as recommended by

Fig. 1 Block diagram of the
AlphaLogger

4872 A. R. Javed et al.

1 3

Kwapisz et al. (2011), Krause et al. (2005). The collection
duration was approximately 2–3 mins to catch all signals.

The dataset consists of sensor events generated while typ-
ing alphabets on a smartphone keyboard. Each smartphone
contains various hardware sensors. Some smartphones of
our participants were not equipped with the magnetometer
sensor and some smartphones were used without the gyro-
scope sensor. To address this, multiple models are trained:
one on the dataset containing raw acceleration readings,
and the others are based on readings in combination with
other sensors (magnetometer and gyroscope) (see Table 1
for more details). Each alphabet is typed continuously for
approximately 2–3 mins, and all the readings are recorded in
a comma-separated file (CSV). To ensure that the recorded
readings are well-structured, we assign a timestamp to each
reading. In this way, the dataset consists of 26 alphabet files.

3.2 Feature extraction

We transform raw data to a sensor event window. We select
a window of 500 samples from each file of each participant.
The selected window is diverse enough to capture all the
required readings to apply classification methods. We assign
labels manually according to the alphabets being pressed as
a ground truth. This enables us to correctly map and record
the sensor measurements along with the corresponding
alphabets being pressed. Later, a feature matrix based on
130,000 raw sensor data readings is generated where each
reading contains 3-axis of all the three sensors.

3.3 Machine learning model

We use the extracted features to build a machine learn-
ing model. We decided to use the Weka (Hall et al. 2009)
toolkit for training our model to infer the keystrokes. Infer-
ence refers to the classification of the alphabets. We use
machine learning techniques: Decision Tree (J48), Sequen-
tial Minimal Optimization (SMO), and Multilayer Percep-
tron (MLP) and meta-classifiers Ensemble Adaboost and
Ensemble Voting for supervised classification. The choice
of machine learning techniques depends on the size of data.
Some techniques require a large amount of data, and some
can work well with significantly less. Some techniques are
designed to work with categorical data and some to work
only with numeric data. We use these algorithms to justify
the keystroke inference accuracy and results as these algo-
rithms belong to different categories and have a different
structure. All these algorithms provide a similar inference
accuracy that justifies our approach. We describe the work-
ing of algorithms in the following subsections.

– Decision Tree (J48): This classifier builds the deci-
sion tree based on their information gain and entropy

(Hall et al. 2009). Data is split on each node into sub-
sets based on the highest information gain. A stop-
ping condition is made to stop splitting the tree to
control the depth of a tree when the required results
are achieved. There are two measures in decision tree:
Entropy and Information Gain. For best performance,
entropy should be low and information gain should be
high. Entropy is calculated as:

 where Ki is the probability of class i in the database.
H(feature) is the entropy that measures the degree of
“impurity”. In the dataset, noisy sensor readings that
typically occur before and after keystroke, are referred to
as impurity. Impurity produces misleading information in
the keystroke inference process. The amount of impurity
can be estimated by examining H. The value of H closer
to 0 means the lesser the impurity in the dataset. A good
feature provides high information gain and less entropy.

 To measure the information gain of a feature Fi , IG is
calculated as per Eq. (2) where C represents different
classification classes, and Fi represents different features
in the dataset.

– Sequential Minimal Optimization (SMO): The Sup-
port Vector Machine (SVM) algorithm uses the quad-
ratic programming (QP) as an inner loop due to which
SMO breaks QP into a series of small QP problems
(Platt 1998). It solves the smallest possible optimiza-
tion sub-problem analytically at each step. The benefit
of using SMO is that QP optimization can be avoided
entirely which makes it fast to solve sub-problems. The
optimization function is given by:

 where C is a SVM hyper-parameter and K(x − i, x − j)
is the kernel function, both supplied by the user; and the
variables �i are Lagrange multipliers. In SMO two multi-
pliers are solved first. In the case of SVM, the constraints
are changed to the following:

(1)

Entropy = H(T) = IE(k1, k2,… , kJ) = −

J∑

i=1

ki log2 ki

(2)IG(Fi) = H(C) − H(C|Fi)

(3)

max
�

n∑

i=1

�i −
1

2

n∑

i=1

n∑

j=1

yiyjK(xi, xj)�i�j,

subject to ∶

0 ≤ �i ≤ C, for i = 1, 2,… , n,

n∑

i=1

yi�1 = 0

4873AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes

1 3

– Multilayer Perceptron (MLP): MLP is a network of
perceptron (Hall et al. 2009). MLP trained with back-
propagation algorithm is used for data mining. It uses
backpropagation to learn a Multilayer Perceptron to
classify instances. It consists of an activation function,
an input layer, hidden layers and output layer which are
connected. Each connection consists of a weight. Each
node measures the weighted sum of all the inputs and
uses threshold model data. Below are the two activation
functions: tanh and sigmoid.

 The node weights are adjusted based on the corrections
that minimize the error in the entire output, given by

 where weight can be updated using gradient decent. The
gradient decent function described using the equation:

 where yi is the output of the previous perception and �
is the learning rate.

– Ensemble Voting: We use voting ensemble method
(Dietterich 2000) for cognitive health classification.
It can be used for both supervised and unsupervised
learning. It consists of a base classifier and sub-classi-
fiers. Each model makes a prediction and these predic-
tions are combined by several methods like majority
voting, average, mean, mode, etc. We picked J48 (Hall
et al. 2009), K-nearest neighbor (kNN) (Altman 1992),
SMO (Platt 1998) and MLP (Hall et al. 2009) for voting
predictions and used majority voting rule to evaluate
results. We got the best results using information gain
feature selection, SMOTE data balancing and Adaboost
classifier.

– Ensemble AdaBoost: AdaBoost is an ensemble
method (Dietterich 2000; Graczyk et al. 2010) that
works on nominal class attributes for classification. It
boosts the performance of weak learner algorithms. It
tries to overcome the prediction error made by the clas-
sification model. AdaBoost greedily minimizes expo-
nential loss which is defined as:

(4)
0 ≤ �i, �i ≤ C

y1�1 + y2�2 = K

(5)y(vi) = tanh(vi) and y(vi) = (1 + e−vi)−1

(6)E(n) =
1

2

∑

j

e2
j
(n)

(7)�wji(n) = −�
�E(n)

�vj(n)
yi(n)

(8)FT (x) =

T∑

t=1

ft(x)

 where each ft represents the weak learner that takes an
object x. The error is given by:

 where h(xi) is the hypothesis that is created by each weak
leaner. �t is the coefficient assigned to each weak learner
such that the sum of training error is minimized.

4 Evaluation

The experimentation first requires the labeled raw data
from all the sensors discussed in Sect. 3.1, and then trans-
form this data into examples. We collect labeled data from
smartphone sensors and then preprocess this data to remove
the noise present at the start and end of the dataset. The
noise is created at the time when the sensors start acquir-
ing readings exactly when the application comes to play in
the foreground. The experimentation is performed using the
WEKA data mining tool (Hall et al. 2009) using Ten-fold
cross-validation.

We show the results when an accelerometer is used alone,
when it is used in combination with the magnetometer, when
it is used in combination with magnetometer and gyroscope,
when it is used in combination with the gyroscope and when
only the accelerometer readings are used, to show the effec-
tiveness of this additional step. We collect keystrokes data
on an alphabet-only soft keyboard. The dataset consists
of multiple sessions containing 100–200 consecutive key-
strokes which are about 2–4 mins continuously. The datasets
contain all the 26 keys of the smartphone keyboard. We use
these keystrokes dataset to train and evaluate AlphaLogger.
To explore a distinct typing environment, the participants
were asked to type in two environments, first, writing text
messages in the default messaging application and other is
posting emails via Gmail. Both types of messages are sensi-
tive and private.

4.1 Simple pattern analysis

Pattern analysis is an efficient way to understand the behav-
ior of a particular feature. A feature is good if it is consistent
among signals produced by the same keystroke while being
distinctive between signals caused by different keystrokes in
the case of each hardware sensor: accelerometer, gyroscope,
and magnetometer. Figures 2, 3, 4 describes the analysis
of each signal produced by each sensor. We analyze differ-
ent cases, their strengths, weaknesses and why there is a
low performance of our model when it uses with the only
accelerometer and when it is used in combination with other
sensors.

(9)Et =
∑

i

E[Ft−1(xi) + �th(xi)]

4874 A. R. Javed et al.

1 3

Figure 2a, b, c respectively show the pattern of three-axis
of accelerometer Ax,Ay,Az . It does not show a unique pat-
tern against each character which is the reason for the lower
performance of this model and Az does not contribute in
improving the performance of the classifier as it shows the
z-axis of an accelerometer which is usable in the case when
there is rotation while pressing keys. Furthermore, when we
use the accelerometer in combination with magnetometer it
starts showing a unique pattern for each character, which
results in an improvement in the performance of our model.

In the case of the gyroscope all combination scenarios,
it has a negative impact. The gyroscope returns three-axis
reading according to the gravitational pull along the x-axis,
y-axis, and z-axis. In our particular case, there are no

chances of rotation that is why it does not shows promising
results as shown in Fig. 3a, b, c.

The magnetometer sensors show unique behavior along
the three axes in Fig. 4a, b, c. Magnetometer contributes
to enhancing the inference rate when it is used with the
accelerometer.

4.2 Typical pattern analysis

Keystrokes can be inferred using device orientation while
typing on the smartphone screen. Typing a specific word
produces a particular vibration in a specific direction which
causes the change in the axis of smartphone orientation
which can be analyzed using the accelerometer sensor. We

Fig. 2 Unique pattern illustration accelerometer showing the variation of readings on each keystroke

4875AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes

1 3

extract typical patterns for each alphabet on a soft keyboard
as shown in Fig. 5b. For each event accelerometer data con-
sists of three-axis (�j, �j, �j) , j = 1,..., n, where �j represents
the azimath, �j represents the pitch, �j represents the roll
angles.

– � : represents the rotation along x-axis. � (pitch angle)
produces variations in between the range of [−180, 180].

– � : represents the rotation along the y-axis. � (roll angle)
produces variations in between the range of [−90, 90].

Device orientation depends only on two measures: � and �
therefore we drop the � also known as azimuth feature. We
estimate each tap event using peak to average as typing on
smartphone causes vibration which produces a peak and then
it goes down to the average.

Figure 5b shows that each alphabet represents a unique
pattern. We observe that the angle between lobes can be used
to distinguish the typed alphabet from others. AU is the angle
between an upper vertex and AL is the angle between the
lower vertex. AUB illustrates the angle of the upper bisector

Fig. 3 Pattern illustration of gyroscope showing the variation of readings on each keystroke

4876 A. R. Javed et al.

1 3

and ALB represents the angle of the lower bisector. This
analysis helps to understand the flow of vibration when a
particular keyboard is pressed along all axis of each sensor.
It is seen that the z-axis of the accelerometer sensor does
not contribute to understanding the flow of vibration. Each
alphabet, when pressed continuously, produces repetitive
behavior.

4.3 Results and discussion

To evaluate the performance of AlphaLogger, we use
Accuracy, Precision, Recall, F-Value, and Area Under
Curve (AUC) as evaluation metrics (Hall et al. 2009).

Accuracy represents the overall correctly predicted
instances, and is given as TP+TN

TP+TN+FP+FN
 , where TP repre-

sents the true positive which in our case are the number of
examples predicted true that are actually true, TN number
of examples predicted negative that are actually negative,
FP represents number of examples predicted positive that
are actually negative and FN represents the false negatives.
Since our dataset contains imbalanced class representa-
tion, we also considered Precision, Recall, and F-Value to
determine the performance of our proposed methodology.
Where Precision and Recall are calculated using TP

TP+FP
 and

TP

TP+FN
 respectively, While F-Value is the weighted average

Fig. 4 Pattern illustration of magnetometer showing the variation of readings on each keystroke

4877AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes

1 3

Fig. 5 Pattern analysis of differ-
ent angles when alphabets are
pressed

4878 A. R. Javed et al.

1 3

of the Precision and Recall and is given as 2 × Precision×Recall

Precision+Recall
 .

Moreover, AUC represents the degree or measure of sepa-
rability. The AUC shows how sensitivity and specificity
vary at every possible threshold.

The result of our proposed keystroke inferring tech-
niques is presented in Table 1 illustrating shows the pre-
dicted F-Value. AlphaLogger achieves an accuracy of over
90% on a dataset containing magnetometer and acceler-
ometer readings, 86.5% when accelerometer, gyroscope,
and magnetometer sensor readings are used, 59% when
the accelerometer is used in combination with gyroscope
and 60.3% when only the accelerometer readings are used.
The keys with the highest inference accuracy are alpha-
bets a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, r, s, t, w
and the lowest inference accuracy are alphabets v, x, y, z.
Lowest inference alphabet x, z are located on a corner of
the soft keyboard while u and y get confused with each
other. The reason behind this confusion is that participants
typed alphabets while holding mobile with both hands and

pressing keys with the thumb. The location of u and y is
difficult to press with thumb as it can be seen in Fig. 5b
that they are confused with each other. It is common for
the user to mistakenly press u while pressing y. Highest
inference alphabets are consistent as shown in Figs. 2, 3,
4. We observe that physical location of the alphabets
decreases inference accuracy.

Table 1 describes the accelerometer results when a model
is build using readings of accelerometer alone. We observe
that using the only accelerometer does not perform well. A
major drawback of using an accelerometer alone is that the
accelerometer sensor gets the reading against each hit on a
character. The z-axis of the accelerometer does not contrib-
ute to inferring keystrokes. It might help when the device
rotates along the z-axis. We chose to use it in combination
with other sensors as explained in Table 1 which resulted in
increasing the overall performance of the model.

Accelerometer and gyroscope combination in Table 1
describes the result when a model is build using readings
of accelerometer and gyroscope. We observe that using an

Table 1 F-value of inference
performance of different
combination of sensors

Character Accelerometer Accelerometer +
gyroscope

Accelerometer + gyroscope
+ magnetometer

Accelerometer
+ magnetom-
eter

a 0.206 0.223 1.000 1.000
b 0.227 0.183 1.000 1.000
c 0.798 0.849 0.999 0.999
d 0.967 0.987 0.992 0.990
e 0.961 0.982 0.992 0.990
f 0.738 0.750 0.999 0.999
g 0.531 0.457 1.000 0.999
h 0.966 0.971 0.976 0.986
i 0.918 0.934 0.976 0.934
j 0.999 0.998 1.000 1.000
k 0.766 0.782 1.000 1.000
l 0.942 0.948 0.997 1.000
m 0.966 0.955 0.998 0.999
n 0.887 0.864 0.997 0.999
o 0.586 0.593 0.998 1.000
p 0.466 0.445 1.000 1.000
q 0.158 0.120 0.616 0.821
r 0.528 0.477 0.968 0.978
s 0.977 0.953 0.969 0.979
t 0.821 0.775 0.999 0.999
u 0.302 0.279 0.714 0.865
v 0.253 0.199 0.445 0.600
w 0.184 0.160 0.926 0.977
x 0.191 0.169 0.31 0.414
y 0.127 0.148 0.315 0.464
z 0.2 0.136 0.291 0.391
Average 0.603 0.590 0.865 0.902

4879AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes

1 3

accelerometer reading with a gyroscope does not perform
well. It harms the overall performance of the model as it pro-
duces constant readings which confuse the machine learning
model in keystroke inference. A major drawback of using
gyroscope with the accelerometer is that the gyroscope sen-
sor provides orientation information of the device in three
axes. In this case, the device is not rotating that is why it is
useless in this particular scenario.

Accelerometer and magnetometer combination in Table 1
describes the result when a model is build using readings of
accelerometer and magnetometer. We observe that using an
accelerometer reading with a magnetometer performs well.
A major benefit of using a magnetometer with the acceler-
ometer is that the magnetometer sensor lets you measure the
magnetic field around the participant.

Accelerometer, gyroscope and magnetometer com-
bination in Table 1 describes the result when a model is
build using readings of accelerometer, gyroscope, and

magnetometer. We observe that using an accelerometer and
magnetometer reading with a gyroscope does not perform
well. It harms the overall performance of the model. A major
drawback of using gyroscope with the accelerometer is that
the gyroscope sensor provides information about the rota-
tion of the device in three axes. In this case, the device is
not rotating that is why it is not helpful in this particular
scenario.

Figure 6 shows average results of all the combination of
sensors. We found that results using the reading of accel-
erometer and magnetometer are better than all other com-
bination. Gyroscope has negative impact on the inference
process.

Figure 7 illustrates the confusion matrix of our machine
learning model. We see that keystrokes in the smartphone
keyboard’s last row of alphabet especially alphabets in the
left corner of the keyboard produce confused vibrations
while typing as shown in Fig. 7 as well as in Fig. 5b showing
typical patterns of each alphabet. This is due to the location
of the alphabets on a soft keyboard. Only 4 keystrokes (x,y,z,
and v) are the alphabets inferred with low accuracy while all
other alphabets are inferred with high accuracy.

4.4 Comparative analysis of classification
algorithms

Multiple machine learning classifiers are trained: J48,
kNN, SMO, MLP, Adaboost and Ensemble Voting method
for supervised classification to infer keystroke. We investi-
gate if model could learn the boundary between twenty six
alphabet classes provided using motion data. For parameter Fig. 6 Result comparison of different combination of sensors

Fig. 7 90.2% keystrokes were
correctly inferred using accel-
erometer in combination with
Magnetometer

4880 A. R. Javed et al.

1 3

tuning, such as K in Eq. 3, by using Radial Basis Function
(RBF) kernel AlphaLogger got the result of 88.5% on the
training data of accelereomter and magnetometer. We also
train this model on different kernel functions: puk kernel,
normalized puk, poly kernel and different combination of
alpha and omega. When we tune this kernel function to the
puk kernel, alpha and omega to 1.0, 1.0 respectively, we
observe an improvement in accuracy. For kNN, two most
important parameters are distance function and number of
nearest neighbor. We chose Euclidean distance as distance
function and K = n nearest neighbors. We tune the value
of k and determine that the kNN is providing best perfor-
mance when it is used with k=3 neighbors. For decision tree
(J48), we use the confidence factor of 0.1 along with pruning
parameter set to the “false”. This model is then used to infer
the keystrokes. In voting meta classifier, we use the above
setting of the algorithms and chose kNN as the base clas-
sifier, given the highest priority among all other classifiers.
Table 2 presents the comparative results of all algorithms
and Ensemble Voting of five machine learning algorithms
combined with averaging or voting. The result in Table 2
shows the best accuracy of 90.2% using voting algorithm.

Figure 8 depicts the result comparison of the AlphaLog-
ger using the selected evaluation metrics: Precision, Recall,
F-value, Accuracy, and AUC. The voting algorithm outper-
forms all other machine learning algorithms in all evaluation
metrics. All other algorithms perform equally in terms of
all evaluation metrics. The only Voting algorithm performs
better than all classifiers because it makes the decision of
keystroke inference based on the votes provided by sub clas-
sifier: J48, kNN, SMO and MLP. A decision is made on the
majority basis. If a keystroke is predicted same by majority
classifiers then the voting algorithm returns that decision.
The Voting achieves the overall best accuracy of 90.2%.

Table 3 depicts the result comparison with state of the art
paper (Ping et al. 2015), in which authors report the highest
accuracy of 36.2% using ensemble of 4 algorithms: Sim-
ple logistic, random forest (RF), SMO and kNN. There are
some similarities in the results of both (Ping et al. 2015) and
AlphaLogger, such as the keys on the smartphone screen
located at the corner of the screen are difficult to classify

as shown in Table 3 (like x, y, z, and v). In both studies
the accuracy of these keys are quite low . By using sensor
fusion technique AlphaLogger achieves the highest accuracy
of 90.2%.

Table 2 Comparison of different machine learning algorithm using
combination of accelerometer and magnetometer

Algorithm Precision Recall (%) F-value Accuracy AUC

J48 0.888 0.888 0.888 0.888 0.967
MLP 0.891 0.891 0.891 0.890 0.964
SMO 0.889 0.880 0.871 0.880 0.991
Adaboost 0.889 0.880 0.871 0.884 0.991
Voting 0.902 0.902 0.902 0.902 0.95

Fig. 8 90.2% keystrokes were correctly inferred using accelerometer
in combination with magnetometer

Table 3 Accuracy comparison of AlphaLogger with TextLogger
(Ping et al. 2015)

Character AlphaLogger TextLogger

a 100.0 67.9
b 100.0 8.77
c 99.0 31.25
d 99.0 20.31
e 99.0 76.03
f 99.9 10.71
g 99.9 3.64
h 98.6 15.38
i 93.4 51.24
j 100.0 16
k 100.0 24.07
l 100.0 33.8
m 99.9 29.55
n 99.9 36.51
o 100.0 30.68
p 100.0 43.55
q 82.1 57.63
r 97.8 18.42
s 97.9 35.53
t 99.9 43.94
u 86.5 38.27
v 60.0 34.92
w 97.7 24.53
x 41.4 22.03
y 46.4 43.75
z 39.1 16.33

4881AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes

1 3

5 Conclusion and future work

In this paper, we investigate the use of hardware sensors
(such as accelerometer, gyroscope, and magnetometer)
to infer the typed characters on the smartphone soft key-
board. Although side-channel attacks have been discussed
widely in recent studies, the problem of inferring cross-
application keystrokes has, so far, been overlooked. We
developed an Android-based application AlphaLogger that
is capable of inferring character while instant writing in
any application. An extensive evaluation showed that the
AlphaLogger, we have used works better when sensors
are used in combination with the magnetometer sensor
resulting in an accuracy of 90.2%. We got the promising
results as compared to the proceeding work and show that
data leakage from other applications can also be sniffed.
We believe that Alphalogger is significant for inferring
important information on a smartphone. In the future, we
plan to use natural language processing (NLP) and text
mining techniques to extract more sensitive information
from the inferred text.

References

Ali R, Pal AK, Kumari S, Sangaiah AK, Li X, Wu F (2018) An
enhanced three factor based authentication protocol using wire-
less medical sensor networks for healthcare monitoring. J Ambi-
ent Intell Human Comput, pp 1–22

Altman NS (1992) An introduction to kernel and nearest-neighbor
nonparametric regression. Am Stat 46(3):175–185

Aviv AJ, Sapp B, Blaze M, Smith JM (2012) Practicality of accel-
erometer side channels on smartphones. In: Proceedings of the
28th annual computer security applications conference, New
York, pp 41–50

Cai L, Chen H (2011) Touchlogger: Inferring keystrokes on touch
screen from smartphone motion. In: Proceedings of the 6th
USENIX conference on Hot topics in security, p 9

Cai L, Machiraju S, Chen H (2009) Defending against sensor-sniff-
ing attacks on mobile phones. In: Proceedings of the 1st ACM
workshop on networking, systems, and applications for mobile
handhelds, Barcelona, pp 31–36

Cook DJ (2010) Learning setting-generalized activity models for
smart spaces. IEEE Intell Syst 2010(99):1

Deb S, Yang YO, Chua MCH, Tian J (2020) Gait identification using
a new time-warped similarity metric based on smartphone iner-
tial signals. J Ambient Intell Hum Comput pp 1–13

Dietterich TG (2000) Ensemble methods in machine learning. In:
international workshop on multiple classifier systems, Italy,
Springer, pp 1–15

Foo Kune D, Kim Y (2010) Timing attacks on pin input devices.
In: proceedings of the 17th ACM conference on computer and
communications security, Chicago Illinois USA, pp 678–680

Graczyk M, Lasota T, Trawiński B, Trawiński K (2010) Comparison
of bagging, boosting and stacking ensembles applied to real
estate appraisal. In: Asian conference on intelligent informa-
tion and database systems, Yogyakarta Indonesia, Springer, pp
340–350

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten
IH (2009) The weka data mining software: an update. ACM
SIGKDD Explor Newsl 11(1):10–18

Hussain M, Al-Haiqi A, Zaidan A, Zaidan B, Kiah MM, Anuar NB,
Abdulnabi M (2016) The rise of keyloggers on smartphones: a
survey and insight into motion-based tap inference attacks. Per-
vasive Mobile Comput 25:1–25

Krause A, Ihmig M, Rankin E, Leong D, Gupta S, Siewiorek D,
Smailagic A, Deisher M, Sengupta U (2005) Trading off predic-
tion accuracy and power consumption for context-aware wearable
computing. In: Ninth IEEE international symposium on wearable
computers (ISWC’05), Osaka, IEEE, pp 20–26

Kucukyilmaz T, Cambazoglu BB, Aykanat C, Can F (2008) Chat min-
ing: predicting user and message attributes in computer-mediated
communication. Inf Process Manag 44(4):1448–1466

Kuppusamy K (2019) PassContext and PassActions: transforming
authentication into multi-dimensional contextual and interaction
sequences. J Ambient Intell Human Comput, pp 1–28

Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition
using cell phone accelerometers. ACM SigKDD Explor Newsl
12(2):74–82

Lanette S, Mazmanian M (2018) The smartphone” addiction” narrative
is compelling, but largely unfounded. In: extended abstracts of the
2018 CHI conference on human factors in computing systems,
Montreal, Canada, pp 1–6

Owusu E, Han J, Das S, Perrig A, Zhang J (2012) ACCessory: pass-
word inference using accelerometers on smartphones. In: Proceed-
ings of the twelfth workshop on mobile computing systems and
applications, San Diego California, pp 1–6

Ping D, Sun X, Mao B (2015) Textlogger: inferring longer inputs on
touch screen using motion sensors. In: proceedings of the 8th
ACM conference on security and privacy in wireless and mobile
networks, New York, pp 1–12

Platt J (1998) Sequential minimal optimization: a fast algorithm for
training support vector machines

Ruan O, Wang Q, Wang Z (2019) Provably leakage-resilient three-
party password-based authenticated key exchange. J Ambient
Intell Hum Comput 10(1):163–173

Shumailov I, Simon L, Yan J, Anderson R (2019) Hearing your
touch: a new acoustic side channel on smartphones. arXiv Prepr
1903:11137 arXiv:190311137

Song R, Song Y, Gao S, Xiao B, Hu A (2018) I know what you type:
Leaking user privacy via novel frequency-based side-channel
attacks. In: 2018 IEEE global communications conference
(GLOBECOM), Abu Dhabi, IEEE, pp 1–6

Tang G, Pei J, Luk WS (2014) Email mining: tasks, common tech-
niques, and tools. Knowl Inf Syst 41(1):1–31

Tang B, Wang Z, Wang R, Zhao L, Wang L (2018) Niffler: a context-
aware and user-independent side-channel. Wirel Commun Mobile
Comput 2018:1–19

Voicu RA, Dobre C, Bajenaru L, Ciobanu RI (2019) Human physical
activity recognition using smartphone sensors. Sensors 19(3):458

Vuagnoux M, Pasini S (2009) Compromising electromagnetic emana-
tions of wired and wireless keyboards. In: proceedings of the 18th
conference on USENIX security symposium, Montreal, pp 1–16

Wang Y, Cai W, Gu T, Shao W (2019) Your eyes reveal your secrets:
an eye movement based password inference on smartphone. IEEE
transactions on mobile computing pp 1–1

Xu N, Zhang F, Luo Y, Jia W, Xuan D, Teng J (2009) Stealthy video
capturer: a new video-based spyware in 3g smartphones. In: pro-
ceedings of the second ACM conference on wireless network
security, Zurich Switzerland, pp 69–78

Xu Z, Bai K, Zhu S (2012) Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors. In: proceed-
ings of the fifth ACM conference on security and privacy in wire-
less and mobile networks, Tucson Arizona USA, pp 113–124

4882 A. R. Javed et al.

1 3

Xu D, Chen J, Liu Q (2019) Provably secure anonymous three-factor
authentication scheme for multi-server environments. J Ambient
Intell Hum Comput 10(2):611–627

Zhuang L, Zhou F, Tygar JD (2009) Keyboard acoustic emanations
revisited. ACM Trans Inf Syst Secur (TISSEC) 13(1):1–26

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes
	Abstract
	1 Introduction
	2 Related work
	3 AlphaLogger
	3.1 Keystroke data collection and pre-processing
	3.2 Feature extraction
	3.3 Machine learning model

	4 Evaluation
	4.1 Simple pattern analysis
	4.2 Typical pattern analysis
	4.3 Results and discussion
	4.4 Comparative analysis of classification algorithms

	5 Conclusion and future work
	References

