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Abstract
Due to the advancement in technologies and excessive usability of smartphones in various domains (e.g., mobile banking), 
smartphones became more prone to malicious attacks.Typing on the soft keyboard of a smartphone produces different 
vibrations, which can be abused to recognize the keys being pressed, hence, facilitating side-channel attacks. In this work, 
we develop and evaluate AlphaLogger- an Android-based application that infers the alphabet keys being typed on a soft 
keyboard. AlphaLogger runs in the background and collects data at a frequency of 10Hz/sec from the smartphone hardware 
sensors (accelerometer, gyroscope and magnetometer) to accurately infer the keystrokes being typed on the soft keyboard 
of all other applications running in the foreground. We show a performance analysis of the different combinations of sen-
sors. A thorough evaluation demonstrates that keystrokes can be inferred with an accuracy of 90.2% using accelerometer, 
gyroscope, and magnetometer.

Keywords Smartphone security · Keystroke inference · Side-channel attacks · Machine learning · Motion sensor

1 Introduction

Recent expansion in mobile technology has brought about 
the enhancement of diverse and more powerful sensors-
based smartphones that are used for daily activities, such 
as communication, social interaction, business, and finan-
cial transactions (Cook 2010; Deb et al. 2020). Smart-
phones are embedded with numerous sensors, including 
Global Positioning System (GPS), audio sensors, motion 

sensors, light sensors, position sensors, and temperature 
sensors (Voicu et al. 2019). The availability of readings 
from these sensors creates exciting new applications, such 
as remote health monitoring (Hussain et al. 2016), and new 
concerns for security experts. Since smartphones contain 
potentially sensitive personal information about the user’s 
activities, attackers are also investing huge amounts of 
time and effort to create malicious applications to acquire 
the victim’s data (Lanette and Mazmanian 2018). Accord-
ing to a study (Cai and Chen 2011), the W3C DeviceOri-
entation Event Specification allows applications to access 
smartphone hardware sensors using Javascript that is sup-
ported by both Android 3.0 and iOS 4.2. The Android 
platform allows applications to read from a vast variety of 
smartphone sensors, while iOS has a much stricter policy 
that allows few third-party applications to read hardware 
sensors. In terms of human-computer interaction, the key-
board is the key input device used to input data and com-
mands in smartphones. Keyboards are commonly used to 
enter personal data such as PINs, passwords, and credit 
card information other than the usual text (such as text 
messages, emails, etc.) (Kucukyilmaz et al. 2008; Tang 
et al. 2014). However, this utility can make the smart-
phones vulnerable to attacks such as keylogger side-chan-
nel attacks (Hussain et al. 2016). In these attacks, hackers 
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can make users install malicious apps, integrated with 
keyloggers, to record the keys a user types on a soft key-
board. The leakage of such information can cause serious 
damage and may lead to loss of confidential information, 
or financial loss.

Accelerometer and gyroscope readings can be easily 
accessed using Javascript (Cai and Chen 2011) which 
is supported by both Android and iOS systems. In this 
paper, we introduce AlphaLogger, which has the capability 
to infer the soft keys of smartphones using motion sen-
sors. Once the user installs AlphaLogger and grants it the 
motion sensor privilege, it starts the process of sensing 
motions and inferring keystrokes. We use accelerometer, 
gyroscope, and magnetometer readings to detect user key-
strokes to emulate side-channel attacks. We observe that 
by using these sensor readings a learning model can easily 
be trained to accurately determine soft keyboard inputs on 
an Android device. We develop an Android-based applica-
tion called AlphaLogger that is installed on a user’s smart-
phone. A wide variety of smartphones are available in the 
market, we make this application run-able for Android-
based smartphones.

Although there exist several studies (Ping et al. 2015; Cai 
and Chen 2011), which look at keystroke inference using 
smartphone sensors, they lack in providing promising results 
in regards to achieving higher accuracy when classifying 
keystrokes. Moreover, they do not consider the keystroke 
inference across applications (Ping et al. 2015). The results 
gained from the experimentation of the proposed approach 
demonstrate a superior performance with an accuracy of 
90.2% as compared to the state-of-the-art.

To this end, the main contributions of this paper are as 
follow: 

1. We develop AlphaLogger, a systematic and functional 
application that demonstrates the feasibility of inferring 
soft keyboard inputs accurately from smartphone sensor 
readings.

2. We develop a dataset of ten users using different Android 
smartphones, which provides the diversity to the infer-
ring model to infer the alphabets typed by the smart-
phone user.

3. We evaluate AlphaLogger using state-of-the-art machine 
learning techniques, including Ensemble Adaboost, 
Ensemble Voting, Decision Tree (J48), Sequential Min-
imal Optimization (SMO) and Multilayer Perceptron 
(MLP). Our results show that the AlphaLogger achieves 
better accuracy than the state-of-the-art.

The paper is organized into five sections. Section 2 briefly 
covers the technical background and recent advancements in 
side-channel attacks. Section 3 presents the overview of the 
proposed Alphaloger application. The experimental set up 

and results are articulated in Sect. 4. Finally, Sect. 5 con-
cludes the paper and identifies directions for future work.

2  Related work

In research literature, side-channel attacks have been stud-
ied ranging from traditional desktops (Vuagnoux and Pas-
ini 2009; Zhuang et al. 2009; Foo Kune and Kim 2010) to 
smartphones (Cai and Chen 2011; Xu et al. 2009; Owusu 
et al. 2012).

Cai et al. (2009) present three studies one after another 
to examine the motion-based side-channel attacks. In their 
study, the authors inspect the security ramifications of 
implicit sensors in smartphones. They talk about a general 
structure of protection against sensor-sniffing attacks. The 
work demonstrates the more common sensors such as GPS, 
cameras, and mouthpieces. The same authors present their 
first study in Cai and Chen (2011) to discuss motion-based 
side-channel attacks. The authors present an Android appli-
cation called TouchLogger to show the vulnerability of a 
side-channel attack. TouchLogger utilized machine learning 
algorithms to infer keystrokes using the gyroscope sensor’s 
reading. The work was assessed on an HTC Evo 4G smart-
phone in the landscape mode utilizing a numeric keypad. 
TouchLogger accurately inferred over 70% of keystrokes.

Owusu et  al. (2012) present an application to detect 
keystrokes that divide the smartphone screen into multiple 
zones and keystroke were inferred using the tapped zone. 
They use a single accelerometer to infer the readings of a 
motion sensor. They reported that dividing the smartphone 
screen into eight zones produces the prediction accuracy of 
24%. Xu et al. (2012) perform the online training and clas-
sification to track the motion readings. They focused on the 
numeric keypad to extract pins and passwords. They focus 
on two types of attacks: the number is written while press-
ing during a phone call and the other was the lock screen 
password. They use an accelerometer and gyroscope to 
collect data for this process. They show that the best PIN 
inference can be done when a PIN consists of four digits. 
In Aviv et al. (2012), the authors focus on two modes of 
passwords: Pin-lock and swipe password. This study was 
carried out on 24 individuals for each mode. A total of 12 
individuals were considered to type the PIN and provide the 
swiped password using four smartphones. They use a single 
accelerometer sensor for data collection. Their study yield 
an accuracy of 43% when an individual was sitting while 
typing. They report an accuracy of 20% for the PINs and 
40% for the swipe patterns within 5 attempts in a random 
environment. Ping et al. (2015) present a study for a longer 
information derivation, for example, chat and email content. 
They achieve an accuracy of 36% using ensemble learning of 
four algorithms: Simple Logistic, Random Forest, SMO, and 



4871AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes  

1 3

k-Nearest Neighbor. Song et al. (2018) present an algorithm 
to extract frequency domain features from a motion sensor 
raw readings to infer the keystroke on a smartphone. Their 
study reports that PINs and passwords can be inferred effi-
ciently in complex scenarios even when the frequency rate is 
lower than 80Hz. They report the overall accuracy of 74.6%. 
A similar study presented by Tang et al. (2018) for infer-
ring user-independent keystrokes to unlock a smartphone. 
They use a probabilistic model to classify the keystrokes and 
used the angle of keystroke movements to show the trends 
in a dynamic environment. They report an accuracy of 70% 
and 85% in 10 attempts for both user-dependent and user-
independent scenarios.

Shumailov et al. (2019) present a study to infer the typed 
keys on the soft keyboard of the smartphone. They used 
acoustic signals to predict the typed soft key. They show 
that the microphone is capable to hear low sound waves 
which can be translated to recover the alphabet. In results, 
they show that their approach recovers 61% of the alpha-
bets. Another study by Wang et al. (2019) shows that how a 
password can be inference using an eye pattern. They use the 
smartphone’s front camera to record the pattern of the user’s 
eyes. They use these patterns to infer the typed password.

Authors in different studies discussed various verification 
and theft anticipation schemes to counter security attacks. 
For example, Ali et al. (2018) propose a three-factor based 
remote client confirmation convention for wireless medi-
cal sensor networks to manage off-line password guessing 
attack, client impersonation assault, session-key temporary 
information attack and the disclosure of secret parameters. 
Xu et al. (2019) present an elliptic bend cryptography (ECC) 
based three-factor authentication scheme for enhancing 
security in multi-server environments. Kuppusamy (2019) 
propose two transformations of the password termed as 
“PassContext” and “PassActions”, to counter vulnerabilities 
in plain-content secret phrases by utilizing the complexities 
of human-computer association. Ruan et al. (2019) proposed 

a security planning model for the Three-party password-
based authenticated key exchange (3PAKE) protocol con-
ventions that is vulnerable to leakage attacks.

In summary, the accuracy reported in the past papers is 
quite low and is limited to recognize keystrokes within the 
applications. Some previous work focuses more on dividing 
the screen into multiple zones, which fails when the size of 
a screen varies from device to device. Our proposed frame-
work is highly accurate and supports cross-application key-
stroke recognition using fused sensors technique.

3  AlphaLogger

This section presents the steps of our proposed approach; 
keystroke data collection and pre-processing, feature gen-
eration and transformation, tap event detection and then 
machine learning algorithm for inferring keystrokes, as 
illustrated in Fig. 1.

3.1  Keystroke data collection and pre‑processing

The data collection task is controlled by an application we 
created that is installed on an Android-based smartphone. 
We collect data from five different smartphones and ten par-
ticipants: Oppo F3, Oppo F1, Samsung J7, Samsung Grand 
Prime and Huawie Honor. The typing process is performed 
by the participants during the standing and sitting positions. 
These are the most commonly used postures with minimum 
noise generally caused by the body movement. Throughout 
the experimentation phase, the portrait mode is used, and the 
participant is asked to hold the smartphone with both hands 
and type with thumbs. The data collection is performed 
with a focus on what data to collect and how frequently it 
needs to be collected. The data is collected at a fixed sample 
frequency of 30 samples per second as recommended by 

Fig. 1  Block diagram of the 
AlphaLogger 



4872 A. R. Javed et al.

1 3

Kwapisz et al. (2011), Krause et al. (2005). The collection 
duration was approximately 2–3 mins to catch all signals.

The dataset consists of sensor events generated while typ-
ing alphabets on a smartphone keyboard. Each smartphone 
contains various hardware sensors. Some smartphones of 
our participants were not equipped with the magnetometer 
sensor and some smartphones were used without the gyro-
scope sensor. To address this, multiple models are trained: 
one on the dataset containing raw acceleration readings, 
and the others are based on readings in combination with 
other sensors (magnetometer and gyroscope) (see Table 1 
for more details). Each alphabet is typed continuously for 
approximately 2–3 mins, and all the readings are recorded in 
a comma-separated file (CSV). To ensure that the recorded 
readings are well-structured, we assign a timestamp to each 
reading. In this way, the dataset consists of 26 alphabet files.

3.2  Feature extraction

We transform raw data to a sensor event window. We select 
a window of 500 samples from each file of each participant. 
The selected window is diverse enough to capture all the 
required readings to apply classification methods. We assign 
labels manually according to the alphabets being pressed as 
a ground truth. This enables us to correctly map and record 
the sensor measurements along with the corresponding 
alphabets being pressed. Later, a feature matrix based on 
130,000 raw sensor data readings is generated where each 
reading contains 3-axis of all the three sensors.

3.3  Machine learning model

We use the extracted features to build a machine learn-
ing model. We decided to use the Weka (Hall et al. 2009) 
toolkit for training our model to infer the keystrokes. Infer-
ence refers to the classification of the alphabets. We use 
machine learning techniques: Decision Tree (J48), Sequen-
tial Minimal Optimization (SMO), and Multilayer Percep-
tron (MLP) and meta-classifiers Ensemble Adaboost and 
Ensemble Voting for supervised classification. The choice 
of machine learning techniques depends on the size of data. 
Some techniques require a large amount of data, and some 
can work well with significantly less. Some techniques are 
designed to work with categorical data and some to work 
only with numeric data. We use these algorithms to justify 
the keystroke inference accuracy and results as these algo-
rithms belong to different categories and have a different 
structure. All these algorithms provide a similar inference 
accuracy that justifies our approach. We describe the work-
ing of algorithms in the following subsections.

– Decision Tree (J48): This classifier builds the deci-
sion tree based on their information gain and entropy 

(Hall et al. 2009). Data is split on each node into sub-
sets based on the highest information gain. A stop-
ping condition is made to stop splitting the tree to 
control the depth of a tree when the required results 
are achieved. There are two measures in decision tree: 
Entropy and Information Gain. For best performance, 
entropy should be low and information gain should be 
high. Entropy is calculated as: 

 where Ki is the probability of class i in the database. 
H(feature) is the entropy that measures the degree of 
“impurity”. In the dataset, noisy sensor readings that 
typically occur before and after keystroke, are referred to 
as impurity. Impurity produces misleading information in 
the keystroke inference process. The amount of impurity 
can be estimated by examining H. The value of H closer 
to 0 means the lesser the impurity in the dataset. A good 
feature provides high information gain and less entropy. 

 To measure the information gain of a feature Fi , IG is 
calculated as per Eq. (2) where C represents different 
classification classes, and Fi represents different features 
in the dataset.

– Sequential Minimal Optimization (SMO): The Sup-
port Vector Machine (SVM) algorithm uses the quad-
ratic programming (QP) as an inner loop due to which 
SMO breaks QP into a series of small QP problems 
(Platt 1998). It solves the smallest possible optimiza-
tion sub-problem analytically at each step. The benefit 
of using SMO is that QP optimization can be avoided 
entirely which makes it fast to solve sub-problems. The 
optimization function is given by: 

 where C is a SVM hyper-parameter and K(x − i, x − j) 
is the kernel function, both supplied by the user; and the 
variables �i are Lagrange multipliers. In SMO two multi-
pliers are solved first. In the case of SVM, the constraints 
are changed to the following: 

(1)

Entropy = H(T) = IE(k1, k2,… , kJ) = −

J∑

i=1

ki log2 ki

(2)IG(Fi) = H(C) − H(C|Fi)

(3)

max
�

n∑

i=1

�i −
1

2

n∑

i=1

n∑

j=1

yiyjK(xi, xj)�i�j,

subject to ∶

0 ≤ �i ≤ C, for i = 1, 2,… , n,

n∑

i=1

yi�1 = 0
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– Multilayer Perceptron (MLP): MLP is a network of 
perceptron (Hall et al. 2009). MLP trained with back-
propagation algorithm is used for data mining. It uses 
backpropagation to learn a Multilayer Perceptron to 
classify instances. It consists of an activation function, 
an input layer, hidden layers and output layer which are 
connected. Each connection consists of a weight. Each 
node measures the weighted sum of all the inputs and 
uses threshold model data. Below are the two activation 
functions: tanh and sigmoid. 

 The node weights are adjusted based on the corrections 
that minimize the error in the entire output, given by 

 where weight can be updated using gradient decent. The 
gradient decent function described using the equation: 

 where yi is the output of the previous perception and � 
is the learning rate.

– Ensemble Voting: We use voting ensemble method 
(Dietterich 2000) for cognitive health classification. 
It can be used for both supervised and unsupervised 
learning. It consists of a base classifier and sub-classi-
fiers. Each model makes a prediction and these predic-
tions are combined by several methods like majority 
voting, average, mean, mode, etc. We picked J48 (Hall 
et al. 2009), K-nearest neighbor (kNN) (Altman 1992), 
SMO (Platt 1998) and MLP (Hall et al. 2009) for voting 
predictions and used majority voting rule to evaluate 
results. We got the best results using information gain 
feature selection, SMOTE data balancing and Adaboost 
classifier.

– Ensemble AdaBoost: AdaBoost is an ensemble 
method (Dietterich 2000; Graczyk et al. 2010) that 
works on nominal class attributes for classification. It 
boosts the performance of weak learner algorithms. It 
tries to overcome the prediction error made by the clas-
sification model. AdaBoost greedily minimizes expo-
nential loss which is defined as: 

(4)
0 ≤ �i, �i ≤ C

y1�1 + y2�2 = K

(5)y(vi) = tanh(vi) and y(vi) = (1 + e−vi )−1

(6)E(n) =
1

2

∑

j

e2
j
(n)

(7)�wji(n) = −�
�E(n)

�vj(n)
yi(n)

(8)FT (x) =

T∑

t=1

ft(x)

 where each ft represents the weak learner that takes an 
object x. The error is given by: 

 where h(xi) is the hypothesis that is created by each weak 
leaner. �t is the coefficient assigned to each weak learner 
such that the sum of training error is minimized.

4  Evaluation

The experimentation first requires the labeled raw data 
from all the sensors discussed in Sect. 3.1, and then trans-
form this data into examples. We collect labeled data from 
smartphone sensors and then preprocess this data to remove 
the noise present at the start and end of the dataset. The 
noise is created at the time when the sensors start acquir-
ing readings exactly when the application comes to play in 
the foreground. The experimentation is performed using the 
WEKA data mining tool (Hall et al. 2009) using Ten-fold 
cross-validation.

We show the results when an accelerometer is used alone, 
when it is used in combination with the magnetometer, when 
it is used in combination with magnetometer and gyroscope, 
when it is used in combination with the gyroscope and when 
only the accelerometer readings are used, to show the effec-
tiveness of this additional step. We collect keystrokes data 
on an alphabet-only soft keyboard. The dataset consists 
of multiple sessions containing 100–200 consecutive key-
strokes which are about 2–4 mins continuously. The datasets 
contain all the 26 keys of the smartphone keyboard. We use 
these keystrokes dataset to train and evaluate AlphaLogger. 
To explore a distinct typing environment, the participants 
were asked to type in two environments, first, writing text 
messages in the default messaging application and other is 
posting emails via Gmail. Both types of messages are sensi-
tive and private.

4.1  Simple pattern analysis

Pattern analysis is an efficient way to understand the behav-
ior of a particular feature. A feature is good if it is consistent 
among signals produced by the same keystroke while being 
distinctive between signals caused by different keystrokes in 
the case of each hardware sensor: accelerometer, gyroscope, 
and magnetometer. Figures 2, 3, 4 describes the analysis 
of each signal produced by each sensor. We analyze differ-
ent cases, their strengths, weaknesses and why there is a 
low performance of our model when it uses with the only 
accelerometer and when it is used in combination with other 
sensors.

(9)Et =
∑

i

E[Ft−1(xi) + �th(xi)]
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Figure 2a, b, c respectively show the pattern of three-axis 
of accelerometer Ax,Ay,Az . It does not show a unique pat-
tern against each character which is the reason for the lower 
performance of this model and Az does not contribute in 
improving the performance of the classifier as it shows the 
z-axis of an accelerometer which is usable in the case when 
there is rotation while pressing keys. Furthermore, when we 
use the accelerometer in combination with magnetometer it 
starts showing a unique pattern for each character, which 
results in an improvement in the performance of our model.

In the case of the gyroscope all combination scenarios, 
it has a negative impact. The gyroscope returns three-axis 
reading according to the gravitational pull along the x-axis, 
y-axis, and z-axis. In our particular case, there are no 

chances of rotation that is why it does not shows promising 
results as shown in Fig. 3a, b, c.

The magnetometer sensors show unique behavior along 
the three axes in Fig. 4a, b, c. Magnetometer contributes 
to enhancing the inference rate when it is used with the 
accelerometer.

4.2  Typical pattern analysis

Keystrokes can be inferred using device orientation while 
typing on the smartphone screen. Typing a specific word 
produces a particular vibration in a specific direction which 
causes the change in the axis of smartphone orientation 
which can be analyzed using the accelerometer sensor. We 

Fig. 2  Unique pattern illustration accelerometer showing the variation of readings on each keystroke
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extract typical patterns for each alphabet on a soft keyboard 
as shown in Fig.  5b. For each event accelerometer data con-
sists of three-axis ( �j, �j, �j ) , j = 1,..., n, where �j represents 
the azimath, �j represents the pitch, �j represents the roll 
angles.

– � : represents the rotation along x-axis. � (pitch angle) 
produces variations in between the range of [−180, 180].

– � : represents the rotation along the y-axis. � (roll angle) 
produces variations in between the range of [−90, 90].

Device orientation depends only on two measures: � and � 
therefore we drop the � also known as azimuth feature. We 
estimate each tap event using peak to average as typing on 
smartphone causes vibration which produces a peak and then 
it goes down to the average.

Figure 5b shows that each alphabet represents a unique 
pattern. We observe that the angle between lobes can be used 
to distinguish the typed alphabet from others. AU is the angle 
between an upper vertex and AL is the angle between the 
lower vertex. AUB illustrates the angle of the upper bisector 

Fig. 3  Pattern illustration of gyroscope showing the variation of readings on each keystroke
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and ALB represents the angle of the lower bisector. This 
analysis helps to understand the flow of vibration when a 
particular keyboard is pressed along all axis of each sensor. 
It is seen that the z-axis of the accelerometer sensor does 
not contribute to understanding the flow of vibration. Each 
alphabet, when pressed continuously, produces repetitive 
behavior.

4.3  Results and discussion

To evaluate the performance of AlphaLogger, we use 
Accuracy, Precision, Recall, F-Value, and Area Under 
Curve (AUC) as evaluation metrics (Hall et al. 2009). 

Accuracy represents the overall correctly predicted 
instances, and is given as TP+TN

TP+TN+FP+FN
 , where TP repre-

sents the true positive which in our case are the number of 
examples predicted true that are actually true, TN number 
of examples predicted negative that are actually negative, 
FP represents number of examples predicted positive that 
are actually negative and FN represents the false negatives. 
Since our dataset contains imbalanced class representa-
tion, we also considered Precision, Recall, and F-Value to 
determine the performance of our proposed methodology. 
Where Precision and Recall are calculated using TP

TP+FP
 and 

TP

TP+FN
 respectively, While F-Value is the weighted average 

Fig. 4  Pattern illustration of magnetometer showing the variation of readings on each keystroke
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Fig. 5  Pattern analysis of differ-
ent angles when alphabets are 
pressed
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of the Precision and Recall and is given as 2 × Precision×Recall

Precision+Recall
 . 

Moreover, AUC represents the degree or measure of sepa-
rability. The AUC shows how sensitivity and specificity 
vary at every possible threshold.

The result of our proposed keystroke inferring tech-
niques is presented in Table 1 illustrating shows the pre-
dicted F-Value. AlphaLogger achieves an accuracy of over 
90% on a dataset containing magnetometer and acceler-
ometer readings, 86.5% when accelerometer, gyroscope, 
and magnetometer sensor readings are used, 59% when 
the accelerometer is used in combination with gyroscope 
and 60.3% when only the accelerometer readings are used. 
The keys with the highest inference accuracy are alpha-
bets a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, r, s, t, w 
and the lowest inference accuracy are alphabets v, x, y, z. 
Lowest inference alphabet x, z are located on a corner of 
the soft keyboard while u and y get confused with each 
other. The reason behind this confusion is that participants 
typed alphabets while holding mobile with both hands and 

pressing keys with the thumb. The location of u and y is 
difficult to press with thumb as it can be seen in Fig. 5b 
that they are confused with each other. It is common for 
the user to mistakenly press u while pressing y. Highest 
inference alphabets are consistent as shown in Figs. 2, 3, 
4. We observe that physical location of the alphabets 
decreases inference accuracy.

Table 1 describes the accelerometer results when a model 
is build using readings of accelerometer alone. We observe 
that using the only accelerometer does not perform well. A 
major drawback of using an accelerometer alone is that the 
accelerometer sensor gets the reading against each hit on a 
character. The z-axis of the accelerometer does not contrib-
ute to inferring keystrokes. It might help when the device 
rotates along the z-axis. We chose to use it in combination 
with other sensors as explained in Table 1 which resulted in 
increasing the overall performance of the model.

Accelerometer and gyroscope combination in Table 1 
describes the result when a model is build using readings 
of accelerometer and gyroscope. We observe that using an 

Table 1  F-value of inference 
performance of different 
combination of sensors

Character Accelerometer Accelerometer + 
gyroscope

Accelerometer + gyroscope 
+ magnetometer

Accelerometer 
+ magnetom-
eter

a 0.206 0.223 1.000 1.000
b 0.227 0.183 1.000 1.000
c 0.798 0.849 0.999 0.999
d 0.967 0.987 0.992 0.990
e 0.961 0.982 0.992 0.990
f 0.738 0.750 0.999 0.999
g 0.531 0.457 1.000 0.999
h 0.966 0.971 0.976 0.986
i 0.918 0.934 0.976 0.934
j 0.999 0.998 1.000 1.000
k 0.766 0.782 1.000 1.000
l 0.942 0.948 0.997 1.000
m 0.966 0.955 0.998 0.999
n 0.887 0.864 0.997 0.999
o 0.586 0.593 0.998 1.000
p 0.466 0.445 1.000 1.000
q 0.158 0.120 0.616 0.821
r 0.528 0.477 0.968 0.978
s 0.977 0.953 0.969 0.979
t 0.821 0.775 0.999 0.999
u 0.302 0.279 0.714 0.865
v 0.253 0.199 0.445 0.600
w 0.184 0.160 0.926 0.977
x 0.191 0.169 0.31 0.414
y 0.127 0.148 0.315 0.464
z 0.2 0.136 0.291 0.391
Average 0.603 0.590 0.865 0.902
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accelerometer reading with a gyroscope does not perform 
well. It harms the overall performance of the model as it pro-
duces constant readings which confuse the machine learning 
model in keystroke inference. A major drawback of using 
gyroscope with the accelerometer is that the gyroscope sen-
sor provides orientation information of the device in three 
axes. In this case, the device is not rotating that is why it is 
useless in this particular scenario.

Accelerometer and magnetometer combination in Table 1 
describes the result when a model is build using readings of 
accelerometer and magnetometer. We observe that using an 
accelerometer reading with a magnetometer performs well. 
A major benefit of using a magnetometer with the acceler-
ometer is that the magnetometer sensor lets you measure the 
magnetic field around the participant.

Accelerometer, gyroscope and magnetometer com-
bination in Table 1 describes the result when a model is 
build using readings of accelerometer, gyroscope, and 

magnetometer. We observe that using an accelerometer and 
magnetometer reading with a gyroscope does not perform 
well. It harms the overall performance of the model. A major 
drawback of using gyroscope with the accelerometer is that 
the gyroscope sensor provides information about the rota-
tion of the device in three axes. In this case, the device is 
not rotating that is why it is not helpful in this particular 
scenario.

Figure 6 shows average results of all the combination of 
sensors. We found that results using the reading of accel-
erometer and magnetometer are better than all other com-
bination. Gyroscope has negative impact on the inference 
process.

Figure 7 illustrates the confusion matrix of our machine 
learning model. We see that keystrokes in the smartphone 
keyboard’s last row of alphabet especially alphabets in the 
left corner of the keyboard produce confused vibrations 
while typing as shown in Fig. 7 as well as in Fig. 5b showing 
typical patterns of each alphabet. This is due to the location 
of the alphabets on a soft keyboard. Only 4 keystrokes (x,y,z, 
and v) are the alphabets inferred with low accuracy while all 
other alphabets are inferred with high accuracy.

4.4  Comparative analysis of classification 
algorithms

Multiple machine learning classifiers are trained: J48, 
kNN, SMO, MLP, Adaboost and Ensemble Voting method 
for supervised classification to infer keystroke. We investi-
gate if model could learn the boundary between twenty six 
alphabet classes provided using motion data. For parameter Fig. 6  Result comparison of different combination of sensors

Fig. 7  90.2% keystrokes were 
correctly inferred using accel-
erometer in combination with 
Magnetometer
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tuning, such as K in Eq. 3, by using Radial Basis Function 
(RBF) kernel AlphaLogger got the result of 88.5% on the 
training data of accelereomter and magnetometer. We also 
train this model on different kernel functions: puk kernel, 
normalized puk, poly kernel and different combination of 
alpha and omega. When we tune this kernel function to the 
puk kernel, alpha and omega to 1.0, 1.0 respectively, we 
observe an improvement in accuracy. For kNN, two most 
important parameters are distance function and number of 
nearest neighbor. We chose Euclidean distance as distance 
function and K = n nearest neighbors. We tune the value 
of k and determine that the kNN is providing best perfor-
mance when it is used with k=3 neighbors. For decision tree 
(J48), we use the confidence factor of 0.1 along with pruning 
parameter set to the “false”. This model is then used to infer 
the keystrokes. In voting meta classifier, we use the above 
setting of the algorithms and chose kNN as the base clas-
sifier, given the highest priority among all other classifiers. 
Table 2 presents the comparative results of all algorithms 
and Ensemble Voting of five machine learning algorithms 
combined with averaging or voting. The result in Table 2 
shows the best accuracy of 90.2% using voting algorithm.

Figure 8 depicts the result comparison of the AlphaLog-
ger using the selected evaluation metrics: Precision, Recall, 
F-value, Accuracy, and AUC. The voting algorithm outper-
forms all other machine learning algorithms in all evaluation 
metrics. All other algorithms perform equally in terms of 
all evaluation metrics. The only Voting algorithm performs 
better than all classifiers because it makes the decision of 
keystroke inference based on the votes provided by sub clas-
sifier: J48, kNN, SMO and MLP. A decision is made on the 
majority basis. If a keystroke is predicted same by majority 
classifiers then the voting algorithm returns that decision. 
The Voting achieves the overall best accuracy of 90.2%.

Table 3 depicts the result comparison with state of the art 
paper (Ping et al. 2015), in which authors report the highest 
accuracy of 36.2% using ensemble of 4 algorithms: Sim-
ple logistic, random forest (RF), SMO and kNN. There are 
some similarities in the results of both (Ping et al. 2015) and 
AlphaLogger, such as the keys on the smartphone screen 
located at the corner of the screen are difficult to classify 

as shown in Table 3 (like x, y, z, and v). In both studies 
the accuracy of these keys are quite low . By using sensor 
fusion technique AlphaLogger achieves the highest accuracy 
of 90.2%.

Table 2  Comparison of different machine learning algorithm using 
combination of accelerometer and magnetometer

Algorithm Precision Recall (%) F-value Accuracy AUC 

J48 0.888 0.888 0.888 0.888 0.967
MLP 0.891 0.891 0.891 0.890 0.964
SMO 0.889 0.880 0.871 0.880 0.991
Adaboost 0.889 0.880 0.871 0.884 0.991
Voting 0.902 0.902 0.902 0.902 0.95

Fig. 8  90.2% keystrokes were correctly inferred using accelerometer 
in combination with magnetometer

Table 3  Accuracy comparison of AlphaLogger with TextLogger 
(Ping et al. 2015)

Character AlphaLogger TextLogger

a 100.0 67.9
b 100.0 8.77
c 99.0 31.25
d 99.0 20.31
e 99.0 76.03
f 99.9 10.71
g 99.9 3.64
h 98.6 15.38
i 93.4 51.24
j 100.0 16
k 100.0 24.07
l 100.0 33.8
m 99.9 29.55
n 99.9 36.51
o 100.0 30.68
p 100.0 43.55
q 82.1 57.63
r 97.8 18.42
s 97.9 35.53
t 99.9 43.94
u 86.5 38.27
v 60.0 34.92
w 97.7 24.53
x 41.4 22.03
y 46.4 43.75
z 39.1 16.33
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5  Conclusion and future work

In this paper, we investigate the use of hardware sensors 
(such as accelerometer, gyroscope, and magnetometer) 
to infer the typed characters on the smartphone soft key-
board. Although side-channel attacks have been discussed 
widely in recent studies, the problem of inferring cross-
application keystrokes has, so far, been overlooked. We 
developed an Android-based application AlphaLogger that 
is capable of inferring character while instant writing in 
any application. An extensive evaluation showed that the 
AlphaLogger, we have used works better when sensors 
are used in combination with the magnetometer sensor 
resulting in an accuracy of 90.2%. We got the promising 
results as compared to the proceeding work and show that 
data leakage from other applications can also be sniffed. 
We believe that Alphalogger is significant for inferring 
important information on a smartphone. In the future, we 
plan to use natural language processing (NLP) and text 
mining techniques to extract more sensitive information 
from the inferred text.
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