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Abstract
The multivariate regression model is a mathematical tool for estimating the relationships among some explanatory vari‑
ables and some response variables. In some cases, observed data are imprecise. In order to model those imprecise data, 
we can employ uncertainty theory to design the uncertain regression model by regarding those data as uncertain variables. 
Parameters estimation is an important topic in the uncertain regression model. In this paper, we explore a method of param‑
eters estimation by the principle of least squares in the multivariate uncertain regression model containing more than one 
response variables and assuming both explanatory variables and response variables as uncertain variables. Besides, when 
the new explanatory variables are given, we propose an approach to obtain the forecast value and the confidence interval of 
the response variables. At last, a numerical example of the multivariate uncertain regression model is showed.

Keywords Multivariate uncertain regression · Uncertainty theory · Parameter estimation · Residual · Confidence interval

1 Introduction

In order to understand the relationships among lots of 
factors, people need to impose structure on those factors. 
Usually, we build a regression model to describe how the 
changes in some variables (explanatory variables) affect 
other variables (response variables). If the regression model 
contains only one response variable, we call the model mul‑
tiple regression model. Furthermore, if we want to study the 
relationships among explanatory variables and more than 
one response variables, maybe we have two methods. One 
is that we can establish a multiple regression model for each 
response variable and all explanatory variables, and consider 
those models independently. The other is that we can design 
a multivariate regression model including all response vari‑
ables and explanatory variables, and take the relationships 
among response variables into consider. Perhaps the latter 
one is better. Because we often meet with cases that the 

correlation of the response variables is high. For example, 
we want to study the relationships among systolic blood 
pressure, diastolic blood pressure of a patient (response vari‑
ables) and his gender, body temperature, heart rate (explana‑
tory variables). Since systolic blood pressure is highly cor‑
related with diastolic blood pressure, it is inconclusive to 
separate them. Thus, multivariate regression model is more 
reasonable. In fact, the very reason why we employ a multi‑
variate model is to incorporate the relationships of response 
variables.

In statistical domain, the relationship among each 
response variable and explanatory variables is expressed by 
a function, thus called functional relationship. For example, 
in the multivariate linear regression model, all functions are 
linear. Generally speaking, in the multivariate regression 
model, the functional relationships should be determined 
in advance through people’s experience although there are 
unknown parameters in those functions. An experienced 
simple model not only is easier to remember but also can 
inspire new idea. The process of modeling is the process 
of understanding the world. In statistics, the most widely 
used model is linear model. In Galton (1886), firstly pro‑
posed “regression” for a simple linear regression model to 
study the relationship between children’s height and par‑
ents’ height. Twelve years later, Yule (1897) introduced the 
regression into statistical domain. In Fama et al. (1969), 
used event study methodology in the multivariate regression 
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model to study the effect of new information on asset prices. 
In recent years, Ganesh (2018) presented individual regres‑
sion method to predict the PM2.5 concentration. Krishnamur‑
thy (2019) using support vector regression to calculate the 
Lyapunov exponents of short time series.

In the multivariate regression model, it is vital for us to 
estimate unknown parameters based on given observations. 
The multivariate least squares estimation is the most widely 
used estimation method, generalized by Aitken (1935) and 
developed by Watson (1967). Besides, the multivariate least 
absolute estimation (Gentle 1977; Bilodeau and Brenner 
1999), maximum likelihood estimation (Anderson 1951) and 
least distance estimation (Bai et al. 1990) are other common 
methods of point estimation. However, those methods do not 
consider the relationships among the response variables. In 
order to take the relationships into consider, Breiman and 
Friedman (1997) proposed the restrained multivariate least 
squares estimation by canonical analysis, and Jhun and Choi 
(2009) presented the bootstrapping least distance estimation 
in the multivariate regression model.

Note that explanatory variables and the response variables 
in traditional regression model are assumed to be observed 
precisely. However, the observations are unable to be precise 
in some cases. For example, the data of the factories’ carbon 
emission or the social benefit of factories during some time 
are collected in an imprecise way. How do we model those 
imprecise data? Liu (2012) suggested to employ uncertainty 
theory to model the imprecisely observed data given by the 
domain experts. Uncertainty theory was founded by Liu 
(2007) and developed by Liu (2009) based on normality, 
duality, subadditivity, and product axioms in order to deal 
with the belief degree with human uncertainty. The regres‑
sion model based on uncertainty theory is called uncer‑
tain regression model. And in uncertain regression model, 
those imprecisely observed data are regarded as uncertain 
variables. It is an important topic to estimate the unknown 
parameters in the uncertain regression model. On the one 
hand, for the uncertain multiple regression model including 
only one response variable, many scholars have proposed 
lots of methods such as the least squares estimation (Yao 
and Liu 2018), the least absolute deviations estimation (Liu 
and Yang 2019), and the maximum likelihood estimation 
(Lio and Liu 2019). In addition, Lio and Liu (2018) explored 
the interval estimation to predict response variables. On the 
other hand, if the uncertain regression model includes more 
than one response variable, we call it multivariate uncer‑
tain regression model. Song and Fu (2018) applied the least 
squares estimation in multivariate uncertain regression 
model where only the observed data of response variables 
are imprecise. In this paper, we aim to study multivariate 
uncertain regression model where the observed data of both 
explanatory variables and response variables are imprecise. 

Our work mainly includes parameters estimation, residual 
analysis, forecast value and confidence interval.

The rest of the paper is organized as follows: In Sect. 2, 
we propose the multivariate uncertain regression model and 
estimate the parameters in the model. In Sect. 3, we analyze 
the residual based on those estimations. In Sect. 4, confi‑
dence interval is suggested to forecast the response variables 
when new explanatory variables are given. In Sect. 5, we 
provide an example to show the application of the multivari‑
ate uncertain regression model. At last, some conclusions 
are made in Sect. 6.

2  Multivariate uncertain regression model

Assume (x1, x2,… , xp) is a vector of explanatory variables 
and (y1, y2,… , yq) is a vector of response variables. The 
functional relationships between yj and x1, x2,… , xp are 
assumed to be expressed by the multivariate regression 
model

where � j = (�0j, �1j,… , �pj)
T are vectors of unknown param‑

eters and �j are disturbance terms for j = 1, 2, … , q.
In traditional model, we assume that both (x1, x2, … , xp) 

and (y1, y2,… , yq) are precisely observational. However, the 
observations we can obtain are imprecise in some cases. And 
thus, those observations should be characterized as uncer‑
tain variables. Assume that we have the observed data of 
x1, x2,… , xp and y1, y2,… , yq as follows,

where x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq are uncertain vari‑
ables with uncertainty distributions �i1,�i2,… ,�ip,�i1, 
�i2,… ,�iq for i = 1, 2,… , n , respectively. For simplicity, 
denote

The solution of the minimization problem

is the least squares estimate of � in the multivariate regres‑
sion model (1). Denote the optimal solution by

(1)

⎛⎜⎜⎜⎝

y1
y2
⋮

yq

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

f1(x1, x2,… , xp��1
)

f2(x1, x2,… , xp��2
)

⋮

fp(x1, x2,… , xq��q)

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

�1
�2
⋮

�q

⎞⎟⎟⎟⎠

x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq
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�
�
1
�
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⋯ �q

�
=

⎛⎜⎜⎜⎝

�01 �02 ⋯ �0q
�11 �12 ⋯ �1q
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⎞⎟⎟⎟⎠
.

(2)min
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n∑
i=1

q∑
j=1

E
[
(̃yij − fj (̃xi1, x̃i2,… , x̃ip|� j))

2
]
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Then the fitted regression model is

Theorem  1 Suppose the imprecisely observed data x̃i1, 
x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n are independent 
uncertain variables. And assume those uncertain variables 
x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq have regular uncertainty dis-
tributions �i1,�i2,… ,�ip,�i1,�i2, … ,�iq, i = 1, 2,… , n , 
respectively. Then the least squares estimate of

in the multivariate linear regression model

is the solution of the following problem:

where

�∗ =
�
�∗

1
�∗

2
⋯ �∗

q

�
=

⎛
⎜⎜⎜⎜⎝
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01
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11
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pq

⎞
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.

(3)

⎛
⎜⎜⎜⎝

y1
y2
⋮

yq

⎞
⎟⎟⎟⎠
=

⎛
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1
)
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2
)
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q
)
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.
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+
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�
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i=1

q∑
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∫
1

0

(
�−1
ij
(�) − �0j

−

p∑
k=1

�kj�
−1
ik

(�, �kj)

)2

d�

𝛶 −1
ik

(𝛼, 𝛽kj) =

{
𝛷−1

ik
(1 − 𝛼), if 𝛽kj ≥ 0

𝛷−1
ik
(𝛼), if 𝛽kj < 0

for i = 1, 2,… , n, j = 1, 2,… , q and k = 1, 2,… , p.

Proof The least squares estimate of � in the linear regres‑
sion model is the optimal solution of the following problem,

Since x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n are inde‑
pendent, we can obtain that ỹij − �0j −

∑p

k=1
�kjx̃ik have the 

inverse uncertainty distributions

for i = 1, 2,… , n, j = 1, 2,… , q , respectively. Thus,

i = 1, 2,… , n, j = 1, 2,… , q . Therefore, the least squ‑
ares estimate of � in the multivariate linear regression 

model is the solution of the minimization problem,

The theorem is proved.   ◻

Theorem  2 Suppose the imprecisely observed data x̃i1, 
x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n are independent 
uncertain variables. And assume those uncertain variables 
x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq have regular uncertainty dis-
tributions �i1,�i2,… ,�ip,�i1,�i2, … ,�iq, i = 1, 2,… , n , 
respectively. Then the least squares estimate of

in the multivariate asymptotic regression model
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is the optimal solution of the following problem:

Proof The least squares estimate of � in the asymptotic 
regression model is actually the optimal solution of the 
minimization problem,

Since x̃i, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n are independent, we 
can obtain that ỹij − �0j + �1j exp (−�2jx̃i) have the inverse 
uncertainty distributions

for i = 1, 2,… , n, j = 1, 2,… , q , respectively. Thus,

i = 1, 2,… , n, j = 1, 2,… , q . Therefore, the least squares 
estimate of � in the multivariate asymptotic regression 
model is the solution of the minimization problem,

The theorem is proved.   ◻

Theorem  3 Suppose the imprecisely observed data x̃i1, 
x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n are independent 
uncertain variables. And assume those uncertain variables 
x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq have regular uncertainty dis-
tributions �i1,�i2,… ,�ip,�i1,�i2, … ,�iq, i = 1, 2,… , n , 
respectively. Then the least squares estimate of

in the multivariate Michaelis-Menten regression model

⎛
⎜⎜⎜⎝
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y2
⋮

yq
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ỹij − �0j + �1j exp (−�2jx̃i)

)2]
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� =

(
�11 �12 ⋯ �1q
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)

is the optimal solution of the following problem:

Proof The least squares estimate of � in the Michaelis‑
Menten regression model is the optimal solution of the 
minimization problem,

Since x̃i, ỹi1, ỹi2,… , ỹiq are independent, we can obtain that 

ỹij −
�1jx̃i

�2j + x̃i
 have the inverse uncertainty distributions

for i = 1, 2,… , n, j = 1, 2,… , q , respectively. Thus,

i = 1, 2,… , n, j = 1, 2,… , q . Therefore, the least squares 
estimate of � in the multivariate Michaelis‑Menten regres‑
sion model is the solution of the minimization problem,

The theorem is proved.   ◻

3  Multivariate residual analysis

In the regression model (1), there is a disturbance term 
� = (�1, �2,… , �q)

T . It is difficult to discover the distur‑
bance term � exactly since the term changes for each 
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observation. Thus, we are concerned about how to esti‑
mate � based on imprecisely observed data, x̃i1, x̃i2,… , 
x̃ip, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n.

Definition 1 Assume the fitted regression model is

and x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n are impre‑
cisely observed data. Then we call

the i‑th residual for each i (i = 1, 2,… , n).

Suppose that the disturbance term � = (�1, �2,… , �q)T 
is an uncertain vector. Then, for each j (j = 1, 2,… , q) , we 
use the average of the expected values of residuals, i.e.,

to estimate the expected values of the disturbance term �j , 
and

to estimate the variances. Then, we call

the vectors of the estimated expected values and estimated 
variances of disturbance term � , respectively.

Theorem  4 Suppose the imprecisely observed data x̃i1, 
x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n are independent 
uncertain variables. And assume those uncertain variables 
x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq have regular uncertainty dis-
tributions �i1,�i2,… ,�ip,�i1,�i2, … ,�iq, i = 1, 2,… , n , 
respectively. Let the fitted multivariate linear regression 
model be

⎛
⎜⎜⎜⎝

y1
y2
⋮

yq

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝
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ê1
ê2
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Then the vector of estimated expected values of the distur-
bance term � is

and the vector of estimated variances is

where

for i = 1, 2,… , n, j = 1, 2,… , q and k = 1, 2,… , p.

Proof Since the inverse uncertainty distributions of 
ỹij − �∗

0j
−
∑p

k=1
�∗
kj
x̃ik are

for i = 1, 2,… , n, j = 1, 2,… , q , respectively, Theorem 4 
holds immediately.   ◻

Theorem  5 Suppose the imprecisely observed data x̃i1, 
x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n are independent 

⎛
⎜⎜⎜⎝

y1
y2
⋮

yq

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

�∗
01
+
∑p

k=1
�∗
k1
xk

�∗
02
+
∑p

k=1
�∗
k2
xk

⋮

�∗
0q
+
∑p

k=1
�∗
kq
xk

⎞
⎟⎟⎟⎟⎠
.
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)
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𝛹−1
i2
(𝛼) − 𝛽∗
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𝛶 −1
ik

(𝛼, 𝛽∗
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⋮
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𝛹−1
iq
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0q
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𝛽∗
kq
𝛶 −1
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kq
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�
dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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1

0

�
𝛹−1
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−
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iq
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𝛶 −1
ik
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kq
) − êq
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dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝛶 −1
ik

(𝛼, 𝛽∗
kj
) =

{
𝛷−1

ik
(1 − 𝛼), if 𝛽∗

kj
≥ 0

𝛷−1
ik
(𝛼), if 𝛽∗

kj
< 0

�−1
ij
(�) − �∗

0j
−

p∑
k=1

�∗
kj
� −1
ik

(�, �∗
kj
)
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uncertain variables. And assume those uncertain variables 
x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq have regular uncertainty dis-
tributions �i1,�i2,… ,�ip,�i1,�i2, … ,�iq, i = 1, 2,… , n , 
respectively. Let the fitted multivariate asymptotic regres-
sion model be

Then the vector of estimated expected values of the distur-
bance term � is

and the vector of estimated variances is

Proof Since the inverse uncertainty distributions of 
ỹij − �∗

0j
+ �∗

1j
exp (−�∗

2j
x̃i) are

for i = 1, 2,… , n, j = 1, 2,… , q , respectively, Theorem 5 
holds immediately.   ◻

Theorem  6 Suppose the imprecisely observed data x̃i1, 
x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq, i = 1, 2,… , n are independent 
uncertain variables. And assume those uncertain variables 
x̃i1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq have regular uncertainty dis-
tributions �i1,�i2,… ,�ip,�i1,�i2, … ,�iq, i = 1, 2,… , n , 

⎛
⎜⎜⎜⎝

y1
y2
⋮

yq

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

𝛽∗
01
− 𝛽11 exp (−𝛽

∗
21
x)

𝛽∗
02
− 𝛽∗

12
exp (−𝛽∗

22
x)

⋮

𝛽∗
0q
− 𝛽∗

1q
exp (−𝛽∗

2q
x)

⎞
⎟⎟⎟⎠
,

𝛽∗
0j
> 0, 𝛽∗

1j
> 0, 𝛽∗

2j
> 0, j = 1, 2,… , q.

ê =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

n

�n

i=1 ∫
1

0

�
𝛹−1
i1
(𝛼) − 𝛽∗

01

+𝛽∗
11
exp (−𝛽∗

21
𝛷−1

i
(1 − 𝛼))

�
dx

1

n

�n

i=1 ∫
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0

�
𝛹−1
i2
(𝛼) − 𝛽∗
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+𝛽∗
12
exp (−𝛽∗
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𝛷−1

i
(1 − 𝛼))

�
dx

⋮

1

n

�n

i=1 ∫
1

0

�
𝛹−1
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(𝛼) − 𝛽∗

0q

+𝛽∗
1q
exp (−𝛽∗

2q
𝛷−1

i
(1 − 𝛼))

�
dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�̂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

n

�n

i=1 ∫
1

0

�
𝛹−1
i1
(𝛼) − 𝛽∗
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+𝛽∗
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exp (−𝛽∗

21
𝛷−1

i
(1 − 𝛼)) − ê1

�2
dx

1

n

�n

i=1 ∫
1

0

�
𝛹−1
i2
(𝛼) − 𝛽∗

02

+𝛽∗
12
exp (−𝛽∗

22
𝛷−1

i
(1 − 𝛼)) − ê2
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dx

⋮

1

n

�n

i=1 ∫
1

0

�
𝛹−1
iq
(𝛼) − 𝛽∗

0q

+𝛽∗
1q
exp (−𝛽∗

2q
𝛷−1

i
(1 − 𝛼)) − êq

�2

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�−1
ij
(�) − �∗

0j
+ �∗

1j
exp (−�∗

2j
�−1

i
(1 − �))

respectively. Let the fitted multivariate Michaelis–enten 
regression model be

Then the vector of estimated expected values of the distur-
bance term � is

and the vector of estimated variances is

Proof Since the inverse uncertainty distributions of 

ỹij −
�1jx̃i

�2j + x̃i
 are

for i = 1, 2,… , n, j = 1, 2,… , q , respectively, Theorem 6 
holds immediately.   ◻

4  Forecast value and confidence interval

In Sects. 2 and 3, we obtain the least squares estimate �∗ and 
the estimations of the expected value ê and the variance �̂2 
of disturbance term � based on imprecisely observed data 
(̃xi1, x̃i2,… , x̃ip, ỹi1, ỹi2,… , ỹiq), i = 1, 2,… , n . Based on the 
work, we are interested in forecasting the response vector for 
the new explanatory vector. Assume that x̃ = (̃x1, x̃2,… , x̃p)

T 
is a vector of new explanatory variables where x̃1, x̃2,… , x̃p 
are independent uncertain variables. Suppose those 
uncertain variables x̃1, x̃2,… , x̃p have regular uncertainty 

⎛
⎜⎜⎜⎝

y1
y2
⋮

yq

⎞
⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛽∗
11
x

𝛽∗
21
+ x

𝛽∗
12
x

𝛽∗
22
+ x

⋮

𝛽∗
1q
x

𝛽∗
2q
+ x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝛽∗
1j
> 0, 𝛽∗

2j
> 0, j = 1, 2,… , q.

ê =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

n

∑n
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∫ 1

0
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𝛹−1
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∫ 1
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�
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⋮

1
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∫ 1

0

�
𝛹−1
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(𝛼) −

𝛽∗
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𝛷−1
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⎟⎟⎟⎟⎟⎟⎠
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distributions �1,�2,… ,�p , respectively. Although the 
relationship between uncertain explanatory vector and the 
uncertain response vector may be complicated, it is still 
valuable and useful to apply linear regression model for the 
data. Suppose that the fitted linear regression model is

and the disturbance term � has the estimated expected value 
ê and variance �̂2 , and is independent of x̃1, x̃2, … , x̃p . Then 
the forecast uncertain vector of y = (y1, y2,… , yq)

T with 
respect to (̃x1, x̃2,… , x̃p) is determined by

For each j (j = 1, 2,… , q) , a single value of yj should be 
estimated from the forecast uncertain vector, and it is natural 
to define the forecast value of yj as

which is the expected value of the forecast uncertain variable 
ŷj . Then we write

as the forecast value of y.
Furthermore, in Eq. (4), if we assume that the distur‑

bances �1, �2,… , �q are identically distributed, but their 
expected values and variances differ across equation. 
Especially, if �1, �2,… , �q are normal uncertain variables 
N(ê1, �̂�1),N(ê2, �̂�2),… ,N(êq, �̂�q) , respectively, then the 
inverse uncertainty distributions of ŷj are determined by

where

and �−1
j
(�) are the inverse uncertainty distributions of �j , i.e.,

⎛
⎜⎜⎜⎝

y1
y2
⋮

yq

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

�∗
01
+
∑p

k=1
�∗
k1
xk

�∗
02
+
∑p

k=1
�∗
k2
xk

⋮

�∗
0q
+
∑p

k=1
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kq
xk

⎞
⎟⎟⎟⎟⎠

(4)ŷ =

⎛⎜⎜⎜⎝

ŷ1
ŷ2
⋮

ŷq

⎞⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

𝛽∗
01
+
∑p

k=1
𝛽∗
k1
�xk

𝛽∗
02
+
∑p

k=1
𝛽∗
k2
�xk

⋮

𝛽∗
0q
+
∑p

k=1
𝛽∗
kq
�xk

⎞
⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

𝜀1
𝜀2
⋮

𝜀q

⎞⎟⎟⎟⎠
.

𝜇j = 𝛽∗
0j
+

p∑
k=1

𝛽∗
kj
E[�xk] + êj

(5)� =

⎛⎜⎜⎜⎝

𝛽∗
01
+
∑p

k=1
𝛽∗
k1
E[�xk] + ê1

𝛽∗
02
+
∑p

k=1
𝛽∗
k2
E[�xk] + ê2

⋮

𝛽∗
01
+
∑p

k=1
𝛽∗
k1
E[�xk] + êq

⎞⎟⎟⎟⎠

�̂�−1
j
(𝛼) = 𝛽∗

0j
+

p∑
k=1

𝛽∗
kj
𝛶 −1
k

(𝛼, 𝛽kj) + 𝜙−1
j
(𝛼)

𝛶 −1
k

(𝛼, 𝛽kj) =

{
𝛷−1

k
(𝛼), if 𝛽kj ≥ 0

𝛷−1
k
(1 − 𝛼), if 𝛽kj < 0

for j = 1, 2,… , q, k = 1, 2,… , p , respectively. Then the 
uncertainty distributions �̂�j of ŷj can be obtained by �̂�−1

j
 , 

j = 1, 2,… , q , respectively.
For each j (j = 1, 2,… , q) , the forecast value �j is a point 

estimation of yj . However, it is not convincing to claim that 
the value of each component of uncertain vector y is always 
a precise value. In fact, the point estimates are hard to con‑
vince people that they are accurate. If the estimation is a 
range, like 3 ∼ 4 , it is more convincing. Although the value 
range is wider, the reliability is obviously higher. Thus, we 
propose the confidence interval to estimate y.

Taking � (e.g., 95% ) as a confidence level, we are inter‑
ested in finding the minimum values bj such that

j = 1, 2,… , q , respectively. Since

the � confidence intervals of yj are suggested as 
[�j − bj,�j + bj] , which can be abbreviated as �j ± bj , 
j = 1, 2,… , q , respectively. Denote

Then, the � confidence interval of y is written as

which represents the set

and we have a chance of � to cover y with our confidence 
interval.

5  Numerical example

In this section, we design a numerical example to show the 
estimation of unknown parameters, residual analysis, fore‑
cast value and confidence interval in multivariate uncertain 
regression model.

Consider the linear regression model

𝜙−1
j
(𝛼) = êj +

�̂�j

𝜋

(6)�̂�j(𝜇j + bj) − �̂�j(𝜇j − bj) ≥ 𝛼,

M{𝜇j − bj ≤ ŷj ≤ 𝜇j + bj} ≥ �̂�j(𝜇j + bj) − �̂�j(𝜇j − bj) ≥ 𝛼,

b =

⎛⎜⎜⎜⎝

b1
b2
⋮

bq

⎞⎟⎟⎟⎠
.

⎛⎜⎜⎜⎝

�1

�2

⋮

�q

⎞⎟⎟⎟⎠
±

⎛⎜⎜⎜⎝

b1
b2
⋮

bq

⎞⎟⎟⎟⎠

[� − b,� + b] = {x = (x1, x2,… , xq) ∈ ℜ
q ∶

�j − bj ≤ xj ≤ �j + bj, j = 1, 2,… , q}
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Denote

Suppose imprecisely observed data ̃xi1, x̃i2, x̃i3, x̃i4, ỹi1, ̃yi2, ỹi3 , 
i = 1, 2,… , 21 are independent uncertain variables, where 
x̃i1, x̃i2, x̃i3, x̃i4, ỹi1, ỹi2, ỹi3 have linear uncertainty distribu‑
tions, �i1,�i2,�i3,�i4,�i1,�i2,�i3 , respectively. See the 
data in Table 1.

First, we estimate the unknown parameters. That is, we 
should solve the following problem,

It follows from Theorem 1 that the equation (7) can be trans‑
formed to an equivalent form

⎛
⎜⎜⎝

y1
y2
y3

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

�01 + �11x1 + �21x2 + �31x3 + �41x4
�02 + �12x1 + �22x2 + �32x3 + �42x4
�03 + �13x1 + �23x2 + �33x3 + �43x4

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

�1
�2
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⎞
⎟⎟⎠
.

� =

⎛
⎜⎜⎜⎜⎜⎝

�01 �02 �03
�11 �12 �13
�21 �22 �23
�31 �32 �33
�41 �42 �43

⎞
⎟⎟⎟⎟⎟⎠

.

(7)
min
�

21∑
i=1

3∑
j=1

E
[
(̃yij − �0j − �1jx̃i1 − �2jx̃i2 − �3jx̃i3

−�4jx̃i4)
2
]
.

where

for i = 1, 2,… , 21, j = 1, 2,… , 3 and k = 1, 2,… , 4 . Then 
we can obtain the least squares estimate

Thus, the fitted linear multivariate regression model is

min
�

21∑
i=1

3∑
j=1

∫
1

0

(
�−1
ij
(�) − �0j − �1j�

−1
i1

(�, �1j)

−�2j�
−1
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(�, �2j) − �3j�
−1
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(�, �3j) − �4j�
−1
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(�, �4j)
)2
d�

𝛶 −1
ik

(𝛼, 𝛽kj) =

{
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ik
(1 − 𝛼), if 𝛽kj ≥ 0

𝛷−1
ik
(𝛼), if 𝛽kj < 0
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⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

20.7786 15.8565 14.4941

1.1164 0.9178 1.2615

0.3080 0.5033 0.6114

0.9210 1.2423 1.4588

0.2032 0.2775 0.3950

⎞
⎟⎟⎟⎟⎟⎠

.

⎛⎜⎜⎝

y1
y2
y3

⎞⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

20.7786 15.8565 14.4941

1.1164 0.9178 1.2615

0.3080 0.5033 0.6114

0.9210 1.2423 1.4588

0.2032 0.2775 0.3950

⎞⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎝

1

x1
x2
x3
x4

⎞⎟⎟⎟⎟⎟⎠

.

Table 1  Imprecisely observed 
data where L(a, b) represents 
linear uncertain variable

i x̃i1 x̃i2 x̃i3 x̃i4 ỹi1 ỹi2 ỹi3

1 L(6, 7) L(18, 21) L(3, 4) L(25, 26) L(41, 44) L(43, 44) L(49, 50)

2 L(3, 4) L(17, 18) L(9, 10) L(21, 24) L(43, 44) L(45, 47) L(52, 53)

3 L(9, 10) L(12, 14) L(5, 6) L(18, 19) L(43, 45) L(42, 44) L(49, 51)

4 L(7, 8) L(15, 16) L(4, 5) L(20, 22) L(41, 43) L(41, 42) L(47, 48)

5 L(5, 6) L(13, 16) L(5, 6) L(27, 30) L(41, 43) L(42, 44) L(48, 51)

6 L(6, 7) L(13, 14) L(2, 3) L(19, 22) L(36, 38) L(35, 37) L(40, 42)

7 L(5, 6) L(15, 18) L(3, 4) L(22, 24) L(38, 40) L(38, 40) L(44, 46)

8 L(2, 3) L(12, 13) L(10, 11) L(27, 29) L(42, 43) L(44, 46) L(50, 52)

9 L(4, 5) L(13, 16) L(10, 11) L(20, 22) L(43, 45) L(45, 47) L(52, 53)

10 L(3, 4) L(18, 19) L(7, 8) L(18, 19) L(40, 41) L(41, 43) L(47, 48)

11 L(3, 4) L(14, 16) L(2, 3) L(31, 33) L(36, 38) L(37, 38) L(43, 44)

12 L(4, 5) L(19, 20) L(4, 5) L(29, 31) L(42, 43) L(43, 45) L(50, 51)

13 L(5, 6) L(19, 22) L(5, 6) L(24, 25) L(43, 45) L(45, 46) L(52, 53)

14 L(2, 3) L(20, 22) L(9, 10) L(23, 26) L(43, 45) L(47, 48) L(54, 55)

15 L(10, 11) L(16, 19) L(2, 3) L(24, 25) L(45, 47) L(45, 46) L(52, 54)

16 L(10, 11) L(12, 13) L(2, 3) L(21, 22) L(43, 44) L(40, 41) L(47, 48)

17 L(6, 7) L(14, 15) L(3, 4) L(25, 26) L(40, 41) L(39, 41) L(45, 46)

18 L(6, 7) L(18, 19) L(7, 8) L(25, 26) L(46, 47) L(48, 50) L(55, 57)

19 L(5, 6) L(13, 14) L(8, 9) L(30, 32) L(45, 47) L(47, 49) L(55, 56)

20 L(7, 8) L(18, 21) L(4, 5) L(26, 27) L(44, 47) L(46, 47) L(54, 55)

21 L(5, 6) L(17, 19) L(6, 7) L(27, 30) L(44, 46) L(44, 47) L(53, 55)
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It follows from Theorem 4 that we obtain the vectors of 
the estimated expected values and estimated variances of 
disturbance term, i.e.,

respectively. Now assume

is a new uncertain explanatory vector and x̃1, x̃2, x̃3, x̃4, 
�1, �2, �3 are independent. Then the forecast uncertain vec‑
tor of y = (y1, y2, y3)

T is

Hence, it follows from equation (5) that the forecast value 
of y is

In order to obtain confidence interval of y , we take a confi‑
dence level � = 95% and suppose �1, �2, �3 are normal uncer‑
tain variables N(ê1, �̂�1),N(ê2, �̂�2),N(ê3, �̂�3) , respectively. It 
follows from equation (6) that we can calculate

such that for each j (j = 1, 2, 3) , bj is the minimum value 
satisfying

where �̂�j is the uncertainty distribution of ŷj . Thus, the 95% 
confidence interval of the vector of the response variables 
y is

ê =

⎛
⎜⎜⎝

0.0000

0.0000

0.0000

⎞
⎟⎟⎠
, �̂2 =

⎛
⎜⎜⎝

2.3898

2.9500

3.8313

⎞
⎟⎟⎠
,

(̃x1, x̃2, x̃3, x̃4) ∼ (L(5, 7),L(16, 17),L(5, 6),L(24, 26))

⎛⎜⎜⎝

ŷ1
ŷ2
ŷ3

⎞⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

20.7786 15.8565 14.4941

1.1164 0.9178 1.2615

0.3080 0.5033 0.6114

0.9210 1.2423 1.4588

0.2032 0.2775 0.3950

⎞⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎝

1

�x1
�x2
�x3
�x4

⎞⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎝

𝜀1
𝜀2
𝜀3

⎞⎟⎟⎠
.

� =

⎛⎜⎜⎝

�1

�2

�3

⎞⎟⎟⎠
=

⎛⎜⎜⎝

42.7051

43.4379

50.0501

⎞⎟⎟⎠
.

b =

⎛⎜⎜⎝

b1
b2
b3

⎞⎟⎟⎠
=

⎛⎜⎜⎝

4.9540

5.4339

6.5106

⎞⎟⎟⎠

�̂�j(𝜇j + bj) − �̂�j(𝜇j − bj) ≥ 𝛼

⎛⎜⎜⎝

42.7051

43.4379

50.0501

⎞⎟⎟⎠
±

⎛⎜⎜⎝

4.9540

5.4339

6.5106

⎞⎟⎟⎠
.

6  Conclusions

This paper is aimed at studying the multivariate uncertain 
regression model that contains more than one response vari‑
ables and assumes both explanatory variables and response 
variables as uncertain variables since the observed data are 
imprecise in some cases. Based on those data, we estimate 
unknown parameters by the principle of least squares in the 
different multivariate regression model, such as multivariate 
linear regression model, multivariate asymptotic regression 
model and multivariate Michaelis‑Menten regression model. 
In order to analyze the disturbance terms in the model, we 
propose the concepts of residuals, and design the vectors 
of estimated expected values and variances of disturbance 
terms. Furthermore, it is significant to forecast the response 
variables when a set of new explanatory variables is given. 
In the future, we will try to take the relationships among the 
response variables into consider.
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