
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:4889–4908
https://doi.org/10.1007/s12652-020-01760-2

ORIGINAL RESEARCH

TI‑SC: top‑k influential nodes selection based on community detection
and scoring criteria in social networks

Hamid Ahmadi Beni1 · Asgarali Bouyer1

Received: 25 June 2019 / Accepted: 1 February 2020 / Published online: 11 February 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Influence maximization is a classic optimization problem to find a subset of seed nodes in a social network that has a
maximum influence with respect to a propagation model. This problem suffers from the overlap of seed nodes and the lack
of optimal selection of seed nodes. Kempe et al. have shown that this problem is an NP-hard problem, and the objective
function is submodular. Therefore, some heuristic and greedy algorithms have been proposed to find a near-optimal solu-
tion. However, the greedy algorithm may not satisfy the accuracy of a given solution and high time-consuming problem. To
overcome these problems, the TI-SC algorithm is proposed for the problem of influence maximization. The TI-SC algorithm
selects the influential nodes by examining the relationships between the core nodes and the scoring ability of other nodes.
After selecting each seed node, the scores are updated to reduce the overlap in selecting the seed nodes. This algorithm has
efficient performance in high Rich-Club networks. The Rich-Club phenomenon causes overlapping of the influence spread
among the seed nodes in most of the other methods so that the TI-SC algorithm reduces this overlapping. Furthermore, the
discovered communities with low expansion are not considered in the seed node selection phase, and this is useful for reduc-
ing computational overhead. Experimental results on both synthetic and real datasets show that the proposed TI-SC algorithm
significantly outperforms the state-of-the-art algorithms in terms of efficiency in both small and large-scale datasets.

Keywords Social network · Viral marketing · Influence maximization · Seed node · Community detection

1 Introduction

Social Network Analysis (SNA) studies the structure and infor-
mation flow in the social network. The social network is a set of
nodes and links with a specific type of relationships and interac-
tions, such as friendship, like or dislike, love, etc. One of the
most important issues in social networks is the investigation of
finding influential nodes. If an influential node is identified indi-
vidually without considering the position of other influential
nodes in the network, it is defined an influential spreader detec-
tion problem (Berahmand et al. 2018, 2019). However, identify-
ing the set of influential nodes with regard to the topological
effects of these nodes in relation to each other is called the
influence maximization problem (Samadi and Bouyer 2019).

An example of the applications of influence maximization is
viral marketing. Viral marketing through social networks has
now become imperative for maximizing the awareness of a new
product and increase their revenue. In viral marketing, select-
ing the most influential people is more important. The goal of
influence maximization is to find the best influential people that
maximize diffusion. Diffusion is a process in which informa-
tion on the network spread from a node to other nodes. In the
diffusion process, complete influence time is very important.
The complete influence time is the time duration that it takes
to achieve complete influence (Ni et al. 2017).

. Due to their application in business, researchers have
attracted influence maximization problem in recent years.
Domingos and Richardson introduced the influence maxi-
mization problem for viral marketing (Domingos and Rich-
ardson 2001). Later on, Kempe et al. (2003) developed and
formulated the influence maximization. According to their
formulation, k seed nodes in a social network graph has best
influence maximization if their influence spreading, the
number of the activated nodes, is maximized based on the
diffusion models of node activation. They considered two

 * Asgarali Bouyer
 a.bouyer@azaruniv.ac.ir; asgar.bouyer@gmail.com

 Hamid Ahmadi Beni
 h.ahmadi@azaruniv.ac.ir

1 Azarbaijan Shahid Madani University, Tabriz, Iran

http://orcid.org/0000-0002-4808-2856
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-01760-2&domain=pdf

4890 H. A. Beni, A. Bouyer

1 3

activation model, independent cascade, and linear threshold
models (Domingos and Richardson 2001). As an example,
influence maximization results from this fact that a commer-
cial company provides a free sample of the product to a set
of influential individuals to reach large advertising in a cas-
cade manner. In both models, each node has two active and
inactive states. In an active state, the intended node adopts
a new product, idea, or information, while the inactive node
does not adopt a new product, idea, or information. Each
node in the independent cascade model has the probabil-
itypuv that correspond to the probability of extending of a
node influences to other nodes. The activation process is
done only once time for each node. If node v is not activated
by node u, it will not try to activate u in later steps. The
existence of a single chance of node activation is one of the
features of this model. In the linear threshold model, each
edge e ∈ E contains an influence weight. Each node v ∈ V
has a threshold limit �v , which is selected with a uniform
distribution within the range [0,1]. Each edge (u, v) has an
influence weight (u, v)[0,1]. The total weights of all input
edges v are at most 1. Each inactive node v will be added to
the total active nodes if

∑
u∈St−1∩N

in(v) w(u, v) > 𝜃v . It means
that the total weights of the active neighbors is larger than
�v . The influence maximization problem is an NP-hard and
submodular for both IC and LT models. Kempe et al. proved
that the function of the influence under both IC and LT mod-
els is monotone and submodular concerning the number of
seed nodes (Kempe et al. 2003).

Recently, the community-based influence maximization
algorithms are studied (Banerjee et al. 2019a, b; Bozorgi et al.
2017; Chen et al. 2014; Hosseini-Pozveh et al. 2017; Huang
et al. 2019; Qiu et al. 2019; Shang et al. 2017; Wang et al.
2010). First a community detection algorithm is performed
for extracting dense parts of network (Berahmand and Bouyer
2019). In the second phase, the proper seeds is selected from
suitable communities. However, the existing community-based
influence maximization algorithms demonstrate several major
drawbacks: (a) They have no effective methods to reduce the
search space the for selecting seed nodes in the large networks,
(b) They suffer from the problems of the overlap of seed nodes,
(c) They do not consider the role of core nodes in the influ-
ence spread. So, to solve these problems, this paper proposes
a new algorithm, called TI-SC, to solve the problem of influ-
ence maximization under the IC model, with an emphasis on
the time efficiency and spreading ability. The new algorithm
is much more efficient in terms of time and influence spread.
It can be categorized in community-based influence maximi-
zation methods. The TI-SC algorithm limits and controls the
influence spread computation in discovered communities. It
inspires the scoring criteria from the real world. The proposed
algorithm can easily run in networks with millions of nodes and
edges and solve the problem of traditional influence maximi-
zation algorithms. TI-SC algorithm comprises four phases: 1.

Community detection, 2. Merge of communities, 3. Selecting
the first influential node (seed node), and 4. Updating the scor-
ing criteria. In the first step of TI-SC algorithm the Louvain
algorithm is used for detecting communities. After the com-
munity detection process, if there is relationship between the
core nodes of communities, these communities merges. In the
next step, the first seed node is selected according to the abil-
ity scoring of other nodes. Also, according topological struc-
ture of communities reduce the search space for selecting seed
nodes. Finally, In this step, update scoring criteria to choose the
remaining seed nodes.

To sum up, our major contributions in this algorithm are:

1. We study influence maximization problem under the
background of community structure and reduce search
space for selecting seed node.

2. We propose the scoring ability of other node which
reduce the overlap of seed node.

3. We merge communities that have a similar information
diffusion structure by the relationship between core
nodes.

4. The experiment result on the synthetic and real-world
networks show that the proposed algorithm TI-SC per-
forms better than the base algorithms in term of influ-
ence spread. The TI-SC algorithm is more time-efficient
than base algorithms.

The rest of the paper is organized as follows. Section 2
contains a valuable review of the literature, Sect. 3 provides
a detailed description of the proposed method, Sect. 4 deals
with the experimental evaluation for the proposed algorithm,
and Sect. 5 draws the conclusion of the present study.

2 Related work

The problem of influence maximization has been studied
based on the two important LT and IC models (Kempe et al.
2003). Even though some new models have been provided
with regard to these two models in recent years. The IC model
was first suggested and explored by Kempe et al. (2003). In
an independent cascade model, each edge (u,v)∈ E includes
the influence probability p(u,v) ∈ [0,1]. The influence prob-
ability represents the possibility of activation. The attempt for
activation in the IC model is made once; that is, if the node v
could not activate the node u, it does not have another chance
to activate this node u once again. The termination condition
is that no other nodes are activated at time t, and no changes
are made in the set of active nodes. The proposed IC model by
Kempe deals with positive beliefs and opinions, whereas the
IC-N and IC-OC models are based on positive and negative
opinions (Ma et al. 2015; Wang et al. 2016). The key differ-
ence in diffusion between IC model with IC-N and IC-OC is

4891TI‑SC: top‑k influential nodes selection based on community detection and scoring criteria…

1 3

that in standard IC model, with adding a new node to the seed
set of influential nodes, the influence power of the seed set is
increased. Nevertheless, in IC-N and IC-OC diffusion model,
blocking a node with negative opinion may also help to influ-
ence spread. Other researchers suggested the LAIC model as
another development of IC (Liu et al. 2012). For the LAIC
model, when a node u is activated in step t, it activates inac-
tive neighbors at step t + �t with the probability PuvP

lat
u

(
�t
)
 ,

which �t is the delay effect and Plat
u

 is a distributed delay. The
DICM model introduced for dynamic networks (Wang 2016).
The only difference between IC and the DICM models is that
the activated nodes can retry to activate an inactive node at
a given time.

In the linear threshold model, each edge (u, v) ∈ E has
the influence weight w(u, v) ∈ [0, 1] , which is also shown
with wuv . These weights for each v ∈ V are as follows: ∑

u∈Nin(v) w(u, v) ≤ 1 , where Nin(v) is the input neighbors of
node v. Each node v has a threshold �v , which is uniformly
selected from the interval [0,1]. With regard to the initial
activation set S0 , the active random set St for t > 1 is gener-
ated as follows: All activated nodes in step t will remain
active. The node v is activated if the total weight of the
active neighbors is at least greater than �v . In other words, ∑

u∈St−1∩N
in(v) w(u, v) > 𝜃v , then, v includes in the set St . Ruan

et al. developed a new model based on the linear threshold
model (Ruan et al. 2015). Moreover, other researcher pro-
vided the DLTM model for dynamic networks(Wang 2016).

In recent years, the issue of influence maximization has
been studied in two categories: greedy-based methods and
heuristic methods. Heuristic methods can be examined in
several sub-sections, including topological-based methods
and community detection methods. We discuss these sec-
tions with more details below.

2.1 Greedy algorithm‑based methods

The greedy algorithm has been put forward by Kempe et al.
so that each node is initially added to the seed set, then k
influential nodes with maximum diffusion are selected using
the Monte Carlo simulation (Kempe et al. 2003). Although
the greedy algorithm guarantees optimal approximation. If
the set s∗ has more than k members that maximize f-value,
we have the following relation for f(s):

However, the greedy algorithm is inefficient because it
spends a lot of computational time to choose influential nodes.
In the following, the CELF algorithm presented to improve
the greedy algorithm and used lazy evaluations for improve-
ment (Leskovec et al. 2007). Lazy evaluation is 700 times fast
in the influence maximization problem due to avoid of unnec-
essary evaluations. However, the CELF algorithm has a high

(1)f (s) ≥
(
1 −

1

e

)
f (s∗)

running time due to the use of Monte Carlo simulation. So, the
CELF++ algorithm improved lazy evaluation for the influ-
ence maximization problem (Goyal et al. 2011a). This is the
modified CELF algorithm that targets decreasing the number
of the quantifications of diffusion in computation. However,
Memory usage in this algorithm is low, but it doesn’t guaran-
tee approximation. The NewGreedyIC algorithm presented to
improve the greedy algorithm (Chen et al. 2009). This algo-
rithm generates G′ graph R times for each graph G, so that
each edge with the probability 1-p is eliminated, and each
edge with p probability remains in the graph. Then, it calcu-
lates the available nodes from each node and chooses k influ-
ential node. So, the NewGreedyIC algorithm is much faster
than the greedy algorithm but its influence spread is less than
the greedy algorithm. The staticGreedy algorithm developed
to improved the Greedy algorithm that keeps submodularity
property during the selection of the seed nodes, which entails
two static snapshot and greedy selection (Cheng et al. 2013).
Also, the StaticGreedyDU algorithm was proposed, which is
2-7 times faster than the staticGreedy algorithm. The running
time of the StaticGreedy algorithm depends on the number of
seed nodes. The LUGreedy algorithm is based on uncertainty
that this algorithm uses a parametric space � = xe∈E

[
le, re

]
 for

the probable influence on the edges (Chen et al. 2016). So,
this algorithm with uniform sampling and adaptive sampling
methods to effectively reduce the uncertainty on parameters
and improve the robustness of the influence maximization
task but parameter uncertainty may greatly affect influence
maximization performance.

2.2 Heuristic methods

Heuristic methods are based on two topology-based and
community detection methods.

2.2.1 Topology‑based methods

Topology-based algorithms are faster than greedy algorithms.
Some topology-based method gives special importance for a
node’s degree in selecting k-influential nodes (Samadi and
Bouyer 2019). For example, The High-Degree algorithm
arranges nodes by a degree in descending order and selects
k nodes with the highest degree as the influential ones (Chen
et al. 2009). However, this algorithm does not have acceptable
performance, and it is not suitable for an influence maximiza-
tion problem. So, the Distance algorithm is a distance-based
algorithm to find influential nodes (Chen et al. 2009). With
regard to this algorithm, the graph nodes are arranged ascend-
ingly based on the mean distance, and then k influential nodes
are chosen. As such, this algorithm does not perform well
at running time and influence spread. In the following, the
singleDiscount and DegreeDiscount algorithms presented to
improve the High-Degree algorithm (Chen et al. 2009). In the

4892 H. A. Beni, A. Bouyer

1 3

singleDiscount algorithm, k influential node is chosen accord-
ing to the degree of a node that degree of each node is reduced
by the number of seed nodes in the neighbor of the node. Con-
sequently, the running time of the SingleDiscount algorithm
is much shorter than that of algorithm Distance, and also the
influence spread is longer than that of algorithm Distance, but
the performance of the SingleDiscount algorithm is needed
to improve the influence spread. In the DegreeDiscount algo-
rithm, k influential nodes are chosen according to degree dis-
count and seed nodes in the neighborhood node. As such,
algorithm DegreeDiscount has a low running time, but it does
not guarantee approximation. The k-core algorithm was pre-
sented with respect to inner shells (Kitsak et al. 2010). Using
this algorithm, core and periphery nodes are initially detected
in the graph. According to the hypothesis of this algorithm,
nodes in the core enjoy a higher influence spread. Hence,
algorithm k-core has a low running time, but this algorithm
has a low influence spread. The SIMPATH algorithm pre-
sented to improved the CELF algorithm (Goyal et al. 2011b).
This algorithm contributes to the counting of simple paths in
order to calculate the influence path; however, counting all the
simple paths is an NP-hard problem. Therefore, the parameter
η is used to limit influence computations in the neighborhood
of the node. However, memory usage and running time in this
algorithm are low, but it does not guarantee approximation. In
the following, the MIA algorithm is another method that uses
the structure of a graph, such as a tree, to determine influence
and prevent the Monte Carlo simulation (Wang et al. 2012).
It also uses a tree structure and criterion θ to calculate local
influence. However, memory usage in this algorithm is high,
but the running time is very low. IRIE algorithm hat has been
developed by Jung et al. is more appropriate than the MIA
algorithm in terms of runtime and optimal use of memory
(Jung et al. 2012). Lawyer proposed a measure, named the
expected force that is a node property derived from local
topology (Lawyer 2015). The CI algorithm presented based
on localization measures (Morone et al. 2016). This algo-
rithm calculates the influence spread for each node in radius
l. It is useful for the Spars graph, but the parameter l may
greatly affect influence maximization performance. Li et at.
developed a new method to measure the importance of a node
using its location in a network and dynamic activities (Li et al.
2018). The LIR algorithm presented to avoid the Rich-Club
Phenomenon (Liu et al. 2017). According to this algorithm,
influential nodes are selected using the degree of neighbor
nodes. However, this algorithm is very fast, but it does not
guarantee approximation. The HybridRank algorithm pre-
sented based on two centralities of eigenvector and coreness
(Ahajjam and Badir 2018). However, it should be noted in the
HybridRank algorithm that if the node with the highest HC is
in the neighborhood of the seed node, it avoids selecting that
node as the next seed. The MATI algorithm is an extension of
the SIMPATH algorithm (Rossi et al. 2018). It is an influence

maximization algorithm under both the linear threshold and
independent cascade modes. Therefore, the MATI algorithm
is much faster than the SIMPATH algorithm. The HO central-
ity is derived by two factors and one topology factor. Activity
rank and spread rank are important in the HO centrality (Xin
et al. 2019). Activity rank and spread rank are factors in the
HO centrality that characterize the activity level and spread
ability, respectively.

2.2.2 Community detection‑based methods

In community-based algorithms, community detection is
performed as the first step to the influence maximization
problem. The CGA algorithm presented on mobile social
networks, which involves two steps: 1. Detection of com-
munities using information diffusion, 2. Dynamic program-
ming (Wang et al. 2010). This algorithm provides approxi-
mation guarantees for influence maximization. Moreover,
this algorithm is more than an order of magnitudes faster
than the Greedy algorithm for finding top-K influential
nodes on a large real-world mobile social network. But this
algorithm does not limit the search space for seed nodes.
Other researcher presented the CIM algorithm that this
algorithm contains three steps. 1. Community detection is
detected by the similarity criterion of communities. 2. Gen-
erating candidate nodes. 3. Selecting final seed nodes (Chen
et al. 2014). This algorithm efficiently selects the number
of seeds to maximize influence spreads. However, in this
algorithm, the search space for seed nodes selection is not
efficiently limited. Borgs et al. used community detection
and the red–black tree to find influential nodes (Borgs et al.
2014). This algorithm does not efficiently select the num-
ber of seeds to maximize influence spreads. Moreover, this
algorithm has a low running time. Hosseini-Pozveh et al.
developed a community detection-based algorithm with
three steps: 1. Community detection, 2. Selection of the
seed nodes, and 3. Identification of the target set (Hosseini-
Pozveh et al. 2017). Shang et al. provided the CoFIM algo-
rithm that first examines diffusion and influence among the
communities, and then explores diffusion within each com-
munity (Shang et al. 2017). Thus, it is much more efficient
in terms of both time and memory usage, but this algorithm
suffers from the overlap of seed nodes. The CI2 algorithm
suggested based on the new DCM model, which chooses
influential nodes based on the graph structure (Bozorgi et al.
2017). Seed nodes are optimally selected in this algorithm,
but the search space for seed nodes selection is not limited.
Other researcher proposed the ComBIM algorithm (Baner-
jee et al. 2019a). With regard to this algorithm, the com-
munity budget is determined according to the value of each
node. Then, based on the budget transfer in each community
and the degree of nodes in the community, the influential
node is selected. Therefore, this algorithm is very fast, but

4893TI‑SC: top‑k influential nodes selection based on community detection and scoring criteria…

1 3

the parameter budget may greatly affect influence maximi-
zation and running time performance. The CTIM algorithm
presented to improve the Greedy algorithm (Huang et al.
2019). The algorithm initially uses the Comprehensive
Latent Variable model to obtain favorite topics and distri-
bution of the community members from each user. Then, it
uses favorite topics to gain influence power in each com-
munity. It also computes the user to influential user power
using the community-to-community influential power and
distribution of the members of each user’s community. Next,
it chooses k influential nodes using the Divide-and-conquer
algorithm. The PHG algorithm presented to improve the
Greedy algorithm (Qiu et al. 2019). This algorithm finds
key nodes in each community to construct a candidate set
by detecting community structure. The search space for seed
nodes selection is not limited in this algorithm. Therefore,
the running time increases as the candidate nodes increase.
Other researcher suggest an original approach to influence
maximization using a fuzzy-logic based model and commu-
nity detection (Atif et al. 2019). This algorithm is efficient
and scalable, but accuracy is still an issue.

3 The proposed method

In this section, we present a detailed description of our
proposed algorithm (TI-SC) that has 4 phases: (a) commu-
nity detection, (b) community merging, (c) selecting the
primary seed node, and d) updating the scoring criteria.
An Overview of the TI-SC algorithm is shown in Fig. 1.

3.1 Community detection

Detecting the structure of the community helps to solve
the influence maximization problem. A community is a
group of nodes that are strongly linked to each other (Gmati
et al. 2018). Social networks are composed of several large
and small communities. Discovered communities play a
determinant role in the influence maximization problem.

Communities cause the seed nodes with maximum diffusion
are chosen for each social network. In the first step of TI-SC
algorithm for each graph G = (V ,E) , the Louvain algorithm
is used for detecting communities C =

{
C1,C2,C3,… ,Cn

}
 .

Algorithm Louvain [1] is one of the optimal algorithms that
attempt to maximize the modularity function using Eq. (2).
The algorithm is implemented in two steps:

1. At first, it uses the modularity function ΔQ for obtaining
communities for each graph.

where
∑

in is the sum of all the weights of the links
inside the community i,

∑
tot represents the sum of all

the weights of the links to nodes in the community i, ki
is the total weight of the nodes i, ki,in indicates the total
weight of the link from the node i to the nodes within C,
and m is the total weight of all the links in the network.

2. Then, it combines the obtained communities with each
other to maximize the modularity function. These steps
continue until the algorithm achieves the maximum
value of the modularity function, and other communi-
ties do not change.

3.2 Merge of communities

After the community detection process, suppose that we
have n communities C =

{
C1,C2,C3,… ,Cn

}
 , where for

each community Ci =
(
Vc,Ec

)
 , v ∈ Vc , and e ∈ Ec , and v

is the number of the nodes within the community Ci and e
represents the number of the edges within the community Ci .
Now, the k-core algorithm [13, 33] is used to determine each
node position for each community Ci. This algorithm assigns
integer Ks to each node, and each node position is deter-
mined by the successive layers in the graph. A small amount
of Ks is defined for marginal nodes, and the core nodes have
the largest value of Ks. In the k-core algorithm, the first-
order nodes are initially deleted and included in shell 1. Of
course, when the first-order nodes are deleted, it is possible
to create new first-order nodes so that these nodes are also
included in the shell 1. Therefore, the Ks = 1 is assigned to
the nodes in shell 1. Then, the second-order nodes are placed
in shell 2, and Ks = 2 is allocated to the nodes in shell 2.
However, in a case of deletion of the second-order nodes,
new first- and second-order nodes may be created so that
the new nodes are included in their shells. The same pro-
cedure continues for the remaining nodes so that all nodes
of the graph are assigned to their Ks. The core nodes (with

(2)

ΔQ =

�∑
in +2ki,in

2m
−

�∑
tot +ki

2m

�2
�

−

�∑
in

2m
−

�∑
tot

2m

�2

−

�
ki

2m

�2
�

TI-SC
algorithm

02

03

04

Community detection

Merge of communities

Selection the first seed node

Updating the scoring system

01

Fig. 1 Overview of the TI-SC algorithm

4894 H. A. Beni, A. Bouyer

1 3

highest Ks value) have the maximum influence compared to
the margin nodes. If Vco =

{
vco1, vco2, vco3,… , vcon

}
 is the

core nodes within the community; therefore, �
(
Vco

)
 repre-

sents the neighbors of the core nodes within a community.
Now, we examine the two communities Ci

and Cj . The core nodes for these two commu-
n i t i e s a r e Vcoi =

{
vco1, vco2, vco3,… , vcon

}
 a n d

Vcoj =
{
vco1, vco2, vco3,… , vcon

}
 . If �

(
Vcoi

)
= Vcoj (or vice

versa �
(
Vcoj

)
= Vcoi), the communities Ci and Cj become

Ci ∪ Cj . In other words, if there is a relationship between
the core nodes of the communities, the maximum influence
spread will be observed among these communities. Moreo-
ver, such communities have a similar information diffusion
structure. For this reason, these communities are combined.

Figure 2a, c depict an example of the two Ego-Facebook
network and Santa Fe Institute Collaboration network before
the merge of communities step so that nodes with similar
colors show that the nodes are within the same community.
As seen in Fig. 2, algorithm l has been used for discovering
14 communities for the Ego-Facebook network and 7 com-
munities for Santa Fe Institute Collaboration network before
the merge of communities step. Figure 2b, d indicate the
merge of communities. Before the merge of communities
step, four communities have been merged in the Ego-Face-
book network and Santa Fe Institute Collaboration network.

Algorithm 1: merge of the community (G)
Network G(V,E)Input:

Output: Union of community
1: initialize ;
// phase (i): community detection
2: C={ // Using algorithm Louvain
// phase (ii):union of communities
3:for each c in C do
4: find //Using algorithm k-core
5:end for
6: for each c in C do
7: for each c in C do
8: if Γ | Γ then
9:
10:
11: else:
12:
13: end if
14: end for
15:end for
16:return : }

Algorithm 1 has been provided for step 1,2 of the algo-
rithm TI-SC. This algorithm aims to achieve communities
and a merge of communities. In line 1–2 of algorithm 1,
communities are discovered via algorithm Louvain and the

core nodes Vco for each ci community is chosen by algo-
rithm K-core in lines 3–4. Then, the neighborhood of the
core nodes is compared in lines 6–12. If �

(
Vcoi

)
= Vcoj (or

vice versa �
(
Vcoj

)
= Vcoi), both communities are combined

with regard to line 9.

3.3 Selection the first seed node

At this phase of the TI-SC algorithm, the first seed node
is selected according to the scoring criteria that its idea is
derived from the real world. In the real world, scores of
people who are in the one-hop (first-level neighbors) and
two-hop (second-level neighbors) environments of the per-
son A have high importance because the set of people who
are in the one-hop and two-hop environments has a very
high knowledge about person A. Therefore, other people
who do not know person A trust the scores given by the set
of one-hop and two-hop people, and so converge their scores
to the scores given by set of one-hop and two-hop people.
In social networks, as in the real world, it is very important
to try to achieve the highest score, such as the presiden-
tial elections. Therefore, people in one-hop and two-hop
levels tend to converge the scores of their neighborhood to
their owns score. In the TI-SC algorithm, the score of each
node u is calculated concerning the nodes in one-hop and
two-hop distance from the node u. Moreover, it should be
noted that each node in the one-hop and two-hop environ-
ments can only give one score to the intended node. Nodes
with the greatest scores are chosen as the influential ones
in the graph network. Accordingly, the node scoring crite-
ria is locally computed in each community by this phase.
The node with the highest score is chosen as the first seed
node. If Cc = {cc1, cc2,… , ccn } is the merge of communities
through algorithm 1, v ∈ �cc

(u) shows neighbors of node u
within the community cci . According to the following rela-
tion, each node v gives a score to the node u, if both of them
is in the same community:

In addition, in the real world, individuals’ opinions
depend on a random parameter. Therefore, p is considered as
a random parameter, which is a random number with a uni-
form distribution between [0,1]. The environment N(1)

u
�N(1)

o

around node u is considered as the one-hop, which con-
tains only the set of nodes v as the scorer nodes. DN(1)

u
 is

the total number of the edges inside N(1)
u
�N(1)

o
 environment

and external edges from the environment N(1)
u
�N(1)

o
 . Then,

the environment N(2)
u
�N(2)

o
 is considered all nodes around

the set nodes v, except node u. DNN(1)
u

 is the total number
of the edges in N(2)

u
�N(2)

o
 and the external edges from the

(3)scorev→u = p

⎛⎜⎜⎝
�

N
(1)
u �N

(1)
o

DN(1)
u

�
N

(2)
u �N

(2)
o

DNN(2)
u

⎞⎟⎟⎠

4895TI‑SC: top‑k influential nodes selection based on community detection and scoring criteria…

1 3

Fig. 2 The ego-Facebook network and Santa Fe Institute Collaboration network before and after the merge of communities step. Nodes with
similar colors show that they are within the same community

4896 H. A. Beni, A. Bouyer

1 3

environment N(2)
u
�N(2)

o
 . If 𝛤cc

(u) > 1, then the Score for node
u is defined as:

In Eq. 4, the given scores by each neighbor of node u
are calculated for each v ∈ �cc

(u) . When the scores have
been calculated for each node within the community, the
node with the highest score in each community is chosen
and included in a top-score array. Then, the influence spread
�(top − score[i]) is calculated for each top-score array and
the highest node with the maximum �(score_top[i]) is cho-
sen as the first seed node. In other words, it is formulated
in Eq. 5.

(4)score =
∑

v∈�cc
(u)

scorev→u

(5)S = S ∪ {argmaxu∈V�S
{
�
(
scoretop[i]

)}

However, since there is a large number of communi-
ties in big datasets and the comparisons of the influence
spread �(score_top[i]) are very time-consuming; thus, the
criterion θ has been used to control and eliminate addi-
tional comparisons. Experiments conducted on different
datasets showed that most of the nodes have very low
influence spreading in communities. These nodes lengthen
the arrays and cause high computational overhead. With
regard to our experiments, these communities have a cer-
tain topological structure. According to this topological
structure, the two criteria �,� , are defined. The criterion
� is calculated according to the following relation:

Where nNC and nEC represent the number of nodes and
edges in community ci , respectively. It is possible that

(6)� =
nNC

nEC + 1

Fig. 3 The effect of two criteria �,� on the M-FO115 network. a
Community detection step: the nodes with similar colors are in the
same community. b The merge of communities, and c shows the red

nodes in unsuitable communities with low influence spread, and blue
nodes are in suitable communities for influence spread calculations
(color figure online)

4897TI‑SC: top‑k influential nodes selection based on community detection and scoring criteria…

1 3

nEC = 0 for some communities (just one node). The value
of 1 is added to the denominator so that � does not proceed
to the infinity. If 𝜑 > 𝜃 for the community ci, the nodes
of the community ci are identified as the nodes with low
influence spread and the community ci is not participated
in the comparisons of influence spread of �

(
S ∪ vms

)
.

Moreover, communities are not updated. The value of
θ has been set in the experiments section. Figure 3 depicts
the effect of the two criteria �,� in the fire forest model.
Communities have been specified with the Louvain algo-
rithm in Fig. 3a, in which the nodes with similar colors
are in the same community. Figure 3b indicates the merge
of communities in the fire forest model. Figure 3c por-
trays the effect of the two criteria �,� . Red nodes are in
the communities that are not suitable for influence spread
and cause computational overhead. Blue nodes are suitable
for calculations of influence spread. As seen in Fig. 3c,
numerous red nodes (nodes with low influence) are in the
network that only causes computational overhead in the
influence spread process. Consequently, these red nodes
are ignored by the TI-SC algorithm that has significant
improvement in the running time of the algorithm.

Based on the above discussion for phase 3, we have
proposed Algorithm 2 for choosing the first seed node. In
algorithm 2, a set of seed nodes are defined as an array,
titled S in line 1. If the condition 𝜑 < 𝜃 is established in
line 3, it is participated in the comparisons of influence
spread, and the score calculation is performed for it. For
line 4–12, the Score is calculated for each node u in the
community cci , and the score calculated for each node u in
the community cci is added to the SC array. In line 13-18,
the maximum score is calculated for each community cci .
In line 19, the node with the maximum score for each
community is added to the top-score array. In line 22–30,

the influence spread is calculated for each node in the top-
score array via the Monte-Carlo simulation and R = 1000.
In line 28, the amount of influence spread calculated for
each node in the top-score array and it is added to the Inf
array. Then, in line 31-36, the maximum influence spread
is selected from the top-score array. Len (Inf) is the length
of the Inf array. In line 37, a node with maximum influence
spread is added to the seed set.

3.4 Updating the scoring criteria

In the real world, if the person A chooses the individual B
as the most influential and important person via scoring,
he/she definitely given a lower priority to the individual
C as the next important person. When the seed node is
selected, some changes should be made in the scoring cri-
teria for choosing the next seed nodes. Assume that node
v is a neighborhood of the first seed node. In this case,
node v gives lower scores to its other neighborhood nodes
for choosing the second, third, and… seed nodes. Since
it gives higher priority to the first seed node, therefore
it rationally gives a lower score to other its neighbors in
the next steps. Accordingly, each node v is recorded its
scores for the seed node, and it should update its scoring
criteria to choose the remaining seed nodes. There is a
weak relationship between the selection of the next seed
nodes and Eq. (3). The algorithm TI-SC solves the prob-
lem of the Rich-Club phenomenon well. The Rich Club
phenomenon causes overlapping of the influence spread
among the seed nodes so that the algorithm TI-SC reduces
the overlapping. In other words, if a node is selected as a
seed node, it means that all one-hope and two-hope nodes
do not potential to choose as seed nodes due to assign low
scores by their neighbors.

Table 1 Summary of real-world
datasets and Synthetic networks

Dataset DBLP Amazon Ego-Facebook Email M-Fo115 M-Fo120

Node 317 k 335 k 4 k 1 k 10 k 10 k
Edge 1 M 926 k 88 k 5 k 23 k 25 k
Max Degree 343 549 1045 71 155 229
Min Degree 1 1 1 1 1 1
Max community size 22,263 12,369 548 209 1315 1645
Min community size 5 13 19 25 2 2
Parameter θ 0.7 0.4 0.09 0.3 0.4 0.3

4898 H. A. Beni, A. Bouyer

1 3

At this step, the seed node does not give a score to any
of its neighboring nodes. If v ∈ �S(S) are the neighbors
of the seed set, then the scores that each node v gives to
u ∈ � (v)∕S is updated by Eq. 7 as follows:

Algorithm 2: Select first seed (G)
}:Input

Output: Select first seed
// SC is list of Score for each node in community.
// Score_top is list of max score.
// Inf is list of Influence for each node with max score.
//S is seed set.
1: initialize ;
2:for each c in C do
3: if
4: for each in do
5: if =1:
6: ∑ ∑
7:
8: end if
9: if >1:
10: ∑
11:
12: end if
13: for each in SC do
14:
15: if :
16:
17: end if
18: end for
19: //u is node with max score in the community.
20: end for
21:end for
22:for each in do
23: for j=1 to R do
24: count⟵0
25: simulate diffusion process on graph G with Score_top
26: ⟵the number of activate nodes after the diffusion ends
27:
28: ⁄
29: end for
30: end for
31:for i in do
32: f
33: if :
34:
35: end if
36:end for
37: // is node with max .
38: return S

In Eq. 7, it should be noted that if a seed node exists in
the environment N(1)

u
�N(1)

o
 and N(2)

u
�N(2)

o
 , then the value of

(7)

scorev→u

= p

⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎝

�

N
(1)
u �N

(1)
o

DN(1)
u

−
1∑

N
(1)
u �N

(1)
o

DN
(1)
u +

∑
N
(2)
u �N

(2)
o

DNN
(2)
u

⎞
⎟⎟⎟⎠

�

N
(2)
u �N

(2)
o

DNN(2)
u

⎞
⎟⎟⎟⎠

4899TI‑SC: top‑k influential nodes selection based on community detection and scoring criteria…

1 3

DNN(2)
u

 and DN(1)
u

 in the equation are 0. After updating each
node in the community ci, the node with the highest score in
each community is selected. Then, the influence spread of
�
(
S ∪ vms

)
 for each community is calculated by the Monte

Carlo simulation and R = 1000, and the node vms with the
highest v �

(
S ∪ vms

)
 is identified as seed among all commu-

nities and is added to the S set. However, since the process
of seed selection is very time-consuming, the parameters θ
and � is used to eliminate additional comparisons.

community, the influence spread of the node with the high-
est score is calculated along with the set S using the Monte
Carlo simulation and R = 1000. In line 17, the value of Iucci
obtained for each community is compared, and the node u
with the highest value of Iucci is identified as the seed node
and is added to the S set.

Fig. 4 Influence spreads of different algorithms on the DBLP

Algorithm 3: Update scoring criteria (G)
S, }:Input

Output: Seed set
1:for j=1 to k do
2: for each in do
3: if
4: for each in do
5: ∑

∑ ∑
∑

6:
7: end for
8: for each in SC do
9:
10: if :
11:
12: end if
13: end for
14: I u // u is node with max score.
15: end if
16: end for
17:
18:end for
19:return S

Algorithm 3 is provided with regard to the above dis-
cussion for step 4 of the algorithm TI-SC, which aims to
update the scoring criteria and choose the seed nodes. S
and Cc = {cc1, cc2,… , ccn } are the inputs of the algorithm 3,
which is initially |S| = 1 and the obtained seed node from
algorithm 2 are included to S. According to experimen-
tal evaluations, k is set to value 30 in line 1. Line 2–16 is
implemented for each cci community, so that if the condi-
tion φ < θ is established in line 3, it will be participated in
the comparisons of influence spread, and the score updates
will be performed for it. In line 4–13, the score is updated
for each community, and the node with the maximum score
is chosen for each community. Then, in line 14 for each cci

4900 H. A. Beni, A. Bouyer

1 3

3.5 Analyzing of time complexity

In the analyzing of time complexity, n is the number of
nodes in the network, m is the number of edges in the net-
work, n′ is the number of nodes in communities which are
not identified as the low influential nodes spread; And these
communities are participated in comparing and selecting
the influential spreaders for �

(
S ∪ vms

)
 , and k is the num-

ber of seed nodes. For the TI-SC algorithm, the time com-
plexity is separately computed in four parts: At first, the
time complexity of Louvain algorithm is O(n log n) . At the
second, the time complexity of community merging step is
O(m). For selecting the first seed node, the required com-
putational time is O(Rn) where R denotes the number of
Monte Carlo simulations. Fourth, the time complexity of
updating the scoring criteria and selecting another seed node
is O

(
(k − 1)Rn�

)
 . Consequently, the total time complexity

is: O(n log n + m + Rn + (k − 1)Rn�) ≈ O(m).

4 Experimental results and analysis

We first introduce the datasets, baseline methods, and eval-
uation metrics, then conduct experiments to evaluate our
methods about the scope of information propagation on
these datasets.

4.1 Dataset

In order to verify whether the TI-SC algorithm is better than
other compared baseline methods, we use both real networks
and synthetic networks to evaluate the performance.

4.1.1 Real‑world networks

We first evaluate the performance of our community-based
influence maximization algorithm on four real-world data-
sets. The largest datasets (Amazon, DBLP) contains 300
thousand nodes and about 1 million edges. Two other data
(Ego-Facebook, Email) are in medium size. Three datasets
(Amazon, DBLP, and Ego-facebook) are downloaded from
the SNAP website,1 and the Email dataset is downloaded
from the KONECT website.2 Table 1 summaries the statisti-
cal properties of these datasets.

• DBLP The DBLP online library is a large list of papers
in computer science(Yang and Leskovec 2015). The data-

set provides a co-authorship network among research
workers. If two authors have collaborated on at least one
paper, an edge is created between them that this edge is
undirected. The network consists of 317 K nodes and 1 M
edges.

• Amazon The Amazon dataset was collected by crawl-
ing the Amazon website (Yang and Leskovec 2015). If a
product i is frequently co-purchased with product j, then
the network contains an undirected edge between them.
The network contains 335 K nodes and 926 K edges.

• Ego-Facebook This dataset consists of “friends’ lists”
from Facebook (Leskovec and Mcauley 2012). The data-
set includes profiles, circles, and ego networks, and it
contains 4 K nodes and 88 K edges.

• Email The email dataset is a network of University at
Rovira i Virgili (URV), including faculty, researchers,
technicians, managers, administrators, and graduate stu-
dents (Guimera et al. 2003). Each edge represents that at
least one email was sent. The network contains 1 K nodes
and 5 K edges.

4.1.2 Synthetic networks

We also evaluate the performance of our TI-SC algorithm
through synthetic networks. We use the forest fire model
(Barabási and Albert 1999) to synthetic networks, due to its
following advantages:

1. Existing the community structures in the forest fire
model: This model can generate networks with config-
urable ground truth community structure.

2. Power-law degree distribution: The forest fire model
generates networks whose degree follows a power-law
distribution. The power-law distribution is a common
property shared by most real-world networks, making
our results more practicable. In the Forest Fire model,
the network becomes denser with increasing mean
degree; in other words, the larger the network grows,
the smaller the network diameter.

A random graph M-Fo115 generated from the forest
fire model with connecting probability 0.115 that it con-
tains 10 K nodes and 23 K edges and also a random graph
M-Fo120 generated from the forest fire model with con-
necting probability 0.120 that it contains 10 K nodes and
29 K edges.

4.2 Baseline algorithms

We compare the performance of our TI-SC algorithm with
six baseline algorithms, which include three state-of-the-
art algorithms having been successfully applied on large-
scale networks and one node centrality based heuristic

1 http://snap.stanf ord.edu/data/.
2 http://konec t.cc/.

http://snap.stanford.edu/data/
http://konect.cc/

4901TI‑SC: top‑k influential nodes selection based on community detection and scoring criteria…

1 3

algorithms. We do not use the general greedy algorithm due
to its extremely low time efficiency in handling large-scale
networks.

K-core algorithm The k-core algorithm was presented
with respect to inner shells(Ahajjam and Badir 2018).
With regard to this algorithm, core and periphery nodes are
detected in the graph. According to the hypothesis of the
algorithm, nodes in the core mostly have higher influence
spread than others.

DegreeDiscount In the DegreeDiscount algorithm, k
influential nodes are chosen according to the equation
dv − 2tv −

(
dv − tv

)
tvp , where dv and tv respectively are the

degree of the node v and the number of the seed nodes in
the neighborhood of the node v (Chen et al. 2009). P is the
influence probability from the node u to node v.

Collective Influence (CI) algorithm The CI algorithm pre-
sented based on localization measures (Morone et al. 2016).
In the first step of this algorithm, the value of
CIl(i) =

�
ki − 1

�∑
j∈�B(i,l)

�
kj − 1

�
 is calculated for each

node, where ki is the degree of the node i, and ∂ B(i, l) is a
circle with radius l and its center is the node i. With regard
to the values obtained for each node in the graph, the max-
heap tree is created in the second step. In the third step, the
node with the maximum value (root node) of the max-heap
tree is eliminated. Then, the heapify algorithm is called to
reconfigure. In the fourth step, the CI score for neighbors of
the eliminated node is updated, and the second to fourth
steps of algorithm proceed as long as the value of

�(l, q) = (
∑

i CIl(i)

N(K)
)
1∕(l + 1) equals 1. (K) is the mean degree.

LIR The algorithm LIR was presented to avoid the Rich-
Club Phenomenon (Liu et al. 2017). According to this

Fig. 5 Influence spreads of different algorithms on the Ego-facebook

Fig. 6 Influence spreads of different algorithms on the Amazon

Fig. 7 Influence spreads of different algorithms on the Email

Fig. 8 Influence spreads of different algorithms on the M-FO115

4902 H. A. Beni, A. Bouyer

1 3

algorithm, the relation LI
�
vi
�
=
∑

vj∈N(vi)
Q
�
dj − di

�
 is first

computed for each node, where di is the degree of node vi,
and N

(
vi
)
 is neighbors of node vi. Then, nodes with LI = 0

are arranged descendingly based on their degree. Hence, k
influential nodes with LI = 0 are chosen. It should be noted
that in the LIR algorithm, the number of the nodes with
LI = 0 in two Email and Ego-facebook datasets was 6 and 5,
respectively. We need at least 30 nodes with LI = 0 with
regard to the number of seed nodes. Therefore, if the number
of the nodes with LI = 0 is less than required number (e.g.
30 nodes), it may need the other required influential nodes
with LI = 1 in the LIR algorithm. Needless to say that the
nodes with LI = 1 are more important than the nodes with
LI = 0.

PHG The PHG algorithm presented to improved the
Greedy algorithm (Qiu et al. 2019). First, this algorithm
finds key nodes in each community to construct a candi-
date set by detecting community structure. Second, it finds
the most potential influence nodes from a candidate set by
combing the influence weight of nodes. Finally, it greedily
selects the nodes with maximization marginal gain.

High Degree The High-Degree algorithm arranges the
nodes descendingly by degree, and selects k nodes with the
highest degree as the influential ones (Chen et al. 2009).

4.3 Evaluation metrics

Similar to other state-of-the-art algorithms (Chen et al.
2009; Cheng et al. 2013; Goyal et al. 2011b; Liu et al. 2017;
Wang et al. 2012), we use two metrics to evaluate the per-
formance of our algorithm.

• Influence spread Given seed set, influence spread is
defined as the number of expected active nodes with the
Monte-Carlo simulation in IC and LT models. It is used
to evaluate the accuracy of an influence maximization
algorithm. Algorithm with Higher influence spread value
has more accurate than others. We repeat 1000 Monte-
Carlo simulations to compute the influence spread for any
given seed set.

• Running time Running time is defined as the time for
selecting k seed nodes. In our experiments, k is set to 30.

4.4 Experiment setup

• Diffusion model we use the Independent cascade
model. The propagation probability from node u to v is
puv = 0.01 . The influence spread value is computed by
repeating 1000 Monte-Carlo simulations.

• Experimental environment The experiments are car-
ried out on a computer with 2.5 GHz Intel core i5 CPU-

Fig. 9 Influence spreads of different algorithms on the M-FO120

Fig. 10 Running time of different algorithms on four real-world data-
sets (k = 30)

Fig. 11 Running time of different algorithms on two synthetic net-
works (k = 30)

4903TI‑SC: top‑k influential nodes selection based on community detection and scoring criteria…

1 3

3230 M and 16 GB memory. All codes are programmed
in python and the programs are in single process and
single thread.

4.5 Result

4.5.1 Influence spread

We first compare the influence spread of different algorithms
on four real-world datasets where the x-axis represents the
number of seed nodes while the y-axis represents the over-
all influence spread. From the results of the four real-world
datasets, we see that our TI-SC algorithm always outper-
forms other compared methods in terms of influence spread.
The k-core algorithm shows the worst performance on all
networks. The High Degree and DegreeDiscount methods,
though performs well on some datasets, cannot provide any

performance guarantee. For example, Figs. 4 and 5 show
that their influence spread values is weak in datasets DBLP
and Ego-Facebook. It shows the significant gaps of influence
spread value between DegreeDiscount and TI-SC algorithms
in Fig. 4. On the DBLP dataset, the influence spread value
(k = 10) of DegreeDiscount is 72.342, while the TI-SC algo-
rithm is 91.529. It is revealed that the TI-SC has better per-
formance than PHG and DegreeDiscount in Fig. 5. On the
Ego-Facebook dataset, the influence spread value (k = 30) of
DegreeDiscount and PHG is 367.86 and 375.1619, respec-
tively. However, this values is 382.8219 for the TI-SC algo-
rithm. In addition, Fig. 6 represents that TI-SC, High Degree
and DegreeDiscount algorithms exhibit the same influence
spread value. When k is small (e.g., k ≤ 15), we see in Fig. 6
that the influence spread values of the LIR algorithm are
the same with TI-SC, High Degree, and DegreeDiscount
algorithms. In Fig. 7, it is obvious that the influence spread

Table 2 Impact of θ criterion
on the influence spread and
runtime of the TI-SC algorithm
on the Ego-facebook dataset

θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05 θ = 0.07 θ = 0.09 θ = 0.1 θ = 0.3

K = 1 144.27 144.845 144.059 142.35 141.183 144.1639 144.737 142.8589
K = 5 180.184 178.936 188.668 264.5589 271.9869 271.1339 269.2329 269.4199
K = 10 182.184 184.715 207.0699 296.842 307.7399 307.353 306.0139 310.2455
K = 15 187.137 188.126 219.0189 314.9919 327.047 330.084 328.945 333.8794
K = 20 191.435 192.594 226.0495 335.054 343.476 350.479 346.294 352.8541
K = 25 192.785 196.4559 234.8455 348.275 359.856 363.6139 364.3159 373.3629
K = 30 197.354 197.8149 240.8655 359.0039 373.803 378.575 375.4241 382.8219
Time 2050.615 2448.113 4809.297 2108.5239 33,061.842 40,016.797 53,393.106 88,789.59

Table 3 Impact of θ criterion
on the influence spread and
runtime of the TI-SC algorithm
on M-FO115 dataset

θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.72 θ = 0.75 θ = 0.8 θ = 0.85 θ = 0.9

K = 1 3.0009 3.0639 3.1029 3.0539 3.0219 3.0679 3.0159 3.0589
K = 5 12.5979 12.7609 12.8559 12.9049 12.7689 12.8929 12.7369 12.9399
K = 10 24.7119 24.8859 25.0919 25.1939 25.2679 24.9099 24.7379 24.9129
K = 15 36.2759 35.8269 35.969 36.2459 36.027 36.2399 36.086 35.78
K = 20 46.3229 46.3589 46.4419 46.2069 46.4719 46.2059 46.4309 46.2749
K = 25 56.7859 56.5099 56.2279 56.6669 56.3589 56.4669 56.5179 56.6559
K = 30 66.138 65.6179 65.96 65.52 65.5689 64.063 64.25 65.635
Time 150.895 186.839 239.028 2310.73 2808.07 5911.179 9884.32 11,343.446

Table 4 Impact of θ criterion
on the influence spread and
runtime of the TI-SC algorithm
on M-FO120 data set

θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.85 θ = 0.9

K = 1 4.2619 4.0459 4.3929 4.3119 4.1209 4.5289 4.3509 4.2719
K = 5 18.3809 19.0639 18.8359 19.0449 18.7429 18.8329 18.8069 19.0669
K = 10 34.7759 34.928 34.69 35.1829 34.912 34.6629 34.8219 35.0169
K = 15 49.1719 48.7619 49.5279 49.4729 48.9129 49.1149 48.8859 49.6009
K = 20 64.3309 64.168 62.8949 63.277 63.6429 63.095 63.701 63.777
K = 25 77.3089 77.0329 77.4969 78.3599 76.9019 77.0889 76.7269 76.9319
K = 30 91.1279 90.4819 90.9419 91.5889 90.9769 90.7679 90.5119 90.3059
Time 274.572 285.959 297.124 468.906 2774.493 7538.773 12,092.164 13,864.680

4904 H. A. Beni, A. Bouyer

1 3

values of DegreeDiscount, CI and PHG algorithms are lower
than our TI-SC algorithm. For example, on the Email data-
set with k = 30, the TI-SC algorithm achieves an influence

spread value of 42.9783, while the value of DegreeDiscount,
CI and PHG are 41.1737, 41.2561 and 41.0019, correspond-
ingly. Overall, from the results on the real-world networks,

Fig. 12 Impact of θ parameter on the influence spread and runtime of the TI-SC algorithm in k = 30

4905TI‑SC: top‑k influential nodes selection based on community detection and scoring criteria…

1 3

our TI-SC algorithm shows its effectiveness in finding top
influential seed nodes as compared with the state-of-the-art
algorithms. Furthermore, the DegreeDiscount and CI meth-
ods have the second and third best performance, respectiv
ely.

We compare the influence spread of different algorithms
on two synthetic networks. It is obvious in Fig. 8 that the
influence spread values of TI-SC algorithm are best. Fig-
ure 9 shows that TI-SC, High Degree and DegreeDiscount
algorithms exhibit the same influence spread value.

4.5.2 Running time metric

Figures 10 and 11 shows the running time of different algo-
rithms on the four real-world datasets and two synthetic
networks. The running time is the time of selecting k = 30

seed nodes. As mentioned above, The DegreeDiscount, High
Degree, LIR, and k-core, though run fast, but cannot provide
any performance guarantee in terms of influence spread.
The worst running time is for the PHG algorithm. From the
results, we see in Fig. 11 that the TI-SC algorithm is very
competitive in its time efficiency, requiring less than some
second on most datasets.

4.5.3 Impact of � factor

According to Table 1, the value of the factor θ has been
determined in each data set, which has a significant effect on
the computational overhead reduction. If the θ-value is set
with a large value, it increases the computational overhead,
and if the θ-value is set to a very small value, computational
overhead and influence spread will be decreased. Therefore,
an appropriate value should be set for this parameter. This
study demonstrates the impact of the factor θ on the compu-
tations. The results are analyzed only on the three M-FO115,
M-FO120, and Ego-Facebook data sets.

According to Tables 2, 3, and 4, θ-values affected the
influence spread calculations. As mentioned above, the
nodes within communities with a �-value greater than θ are
known as the nodes with low influence spread, and they are
not involved in selecting the influence spread �

(
S ∪ vms

)
 .

Moreover, these communities is filtered and not updated. K
in Tables 2, 3, and 4 displays the number of the seed nodes,
and the numbers in the columns θ represent the influence
spread in the number of different seeds with regard to dif-
ferent values of θ.

Based on the obtained results in Table 2, when the θ-values
are small, low influence spread is provided in the number
of different seeds; however, the algorithm is run relatively
fast. For example, the algorithm runtime is 2050.615 when
θ = 0.02, which is an acceptable runtime for the TI-SC algo-
rithm; however, the influence spread of the nodes is low.
This means that when the value of θ is very small, communi-
ties with influential nodes are eliminated from the influence
spread calculations which consequently declines the influence
spread. Therefore, the θ -value should be set to an appropriate
value to tradeoff runtime and influence spread metrics. In the
value of θ = 0.3, the TI-SC algorithm provides the maximum
influence spread in a majority of K-values; however, the runt-
ime of the TI-SC algorithm will prolong at this value of θ.
For instance, for the Ego-Facebook dataset, an appropriate
value of θ can be set to 0.05. Table 3 illustrates that when the
values of θ increases, the influence spread will be remained
constant at different K-values. However, as seen in the Time
line, when θ-values increase, the time also increases. This
means that there are many communities with little influential
nodes that increase computational overhead, whereas they do
not affect the increase of influence spread. Therefore, θ = 0.4

Fig. 13 The number of edges that connect two seeds on four real-
world datasets

Fig. 14 The number of edges that connect two seeds on two synthetic
networks

4906 H. A. Beni, A. Bouyer

1 3

is the best value for the M-FO115 dataset in this experiment to
balance the runtime and influence spread. The runtime equals
to 150.895 at θ = 0.4, providing that its influence spread is
approximately the same with the influence spread of differ-
ent K-values in different seeds. As seen in Table 4, when the
values of θ increase, the influence spread remains constant
in different K-values. However, when θ-values increase, the
time also increases. Therefore, the best value for the M-FO120
dataset is θ = 0.3 in order to balance between runtime and
influence spread.

Figure 12 depicts the impact of θ-values on the influence
spread and runtime of the TI-SC algorithm in Ego-facebook,
M-FO115, and M-Fo120 datasets at K = 30. Figure 12a, b
respectively portray the impact of θ-value on the influential
spread and runtime of the TI-SC algorithm in the Ego-face-
book data set. As shown in the figures, when θ increases, the
time and influence spread will be increased. The maximum
influence spread and runtime will be at θ = 0.3, whereas the
minimum runtime and influence spread will be at θ = 0.02.
Figure 12c, d respectively depict the impact of θ on the
influence spread and runtime of the TI-SC algorithm in the
M-FO115 data set. As shown in Fig. 12d, the runtime of the
TI-SC algorithm increases for large values of θ. Based on
Fig. 12c, there is no difference in the influence spread for
different values of θ, and the influence spread in different
θs differs a few percent. Figure 12e, f show the impact of θ
on the influence spread and runtime of the TI-SC algorithm
in the M-FO120 data set. As shown in Fig. 12f, the runt-
ime of the TI-SC algorithm also increases with the increase
of θ-values. The lowest runtime is obtained at θ = 0.3 and
the highest runtime is belonged to θ = 0.9. According to
Fig. 12e, there is no significant difference in the influential
spread for different values of θ, and the influence spread in
different θs differs a few percent.

4.5.4 Rich‑Club phenomenon

The effect of Rich-Club phenomenon is shown in Figs. 13
and 14. Figure 13 display the number of edges that connect
seeds in real-world networks (rich-club phenomenon). For
instance, there are 23 edge between the selected seeds by
the TI-SC algorithm on the DBLP dataset. It is obvious that
the lowest Rich-Club coefficient is belonged to the TI-SC
algorithm. There also exist 18 edge between the selected
seeds by the TI-SC algorithm on the Amazon dataset that
the TI-SC has the best result but K-core algorithm has the
worst tolerance. In addition, in Ego-Facebook dataset, there
are 28 edge between the selected seeds for our algorithm.
Like Amazon, the K-core is the worst algorithm but TI-SC
is the best method. In the Email dataset, the TI-SC algorithm
and other algorithms is not large. However, the performance

of our algorithm and DegreeDiscount algorithm are very
close in terms of influence spread. Consequently, the TI-SC
algorithm efficiently tolerates the rich-club problem in com-
parison to other methods. The main disadvantages of the
TI-SC is that its performance is remarkably not better than
other algorithms in the networks with low Rich-Club coef-
ficient. In such a network, all algorithms nearly has same
performance.

In Fig. 14, we show the number of edges that connect
seeds in synthetic networks. There are 22 edge between the
selected seeds by the TI-SC algorithm on the M-FO115 and
M-FO120 datasets that HighDegree algorithm is the worst
algorithm but the TI-SC method is the best.

5 Conclusions

In this paper, we proposed an efficient community-based
algorithm combined with a scoring measure for selecting
top-K influential nodes. The proposed TI-SC algorithm
consists of four steps: 1. Community detection, 2. Merge
of communities, 3. Computing scoring criteria Selection of
the first influential node, and 4. Updating scoring criteria.
TI-SC algorithm solved the influence maximization in near-
linear time complexity. Due to the filtering and reduction
process in the updating phase, this algorithm has fast con-
vergence to an optimized set of K seed nodes. The proposed
algorithm is evaluated based on the independent cascade
model. In the TI-SC algorithm, a scoring criteria inspired
by the real-world has been used to calculate the influence
spread of each node. To avoid the thousands of additional
comparisons for influence computations, we have reduced
the search space, which improves the runtime compared
to similar algorithms. In the TI-SC algorithm, the scoring
criterion reduces the overlap of seed nodes, and this leads
to the selection of K-node with optimal influence spread.
The most important implications of the TI-SC algorithm in
the real-world is to find politically influential nodes with a
scoring criterion, help to design an efficient advertisement
strategy and a better immunization strategy. Since the real
world social networks usually has higher Rich Club coeffi-
cient, our proposed algorithm remarkably outperforms other
algorithms. The experimental results on both large-scale and
medium-scale real-world networks and also two synthetic
networks indicate that our algorithm is considerably more
efficient than other algorithms in terms of influence spread
and runtime metrics. We believe that the proposed algorithm
can provide a deep insight into future studies of influence
maximization.

4907TI‑SC: top‑k influential nodes selection based on community detection and scoring criteria…

1 3

References

Ahajjam S, Badir H (2018) Identification of influential spreaders
in complex networks using HybridRank algorithm. Sci Rep
8:11932

Atif Y, Al-Falahi K, Wangchuk T, Lindström B (2019) A fuzzy logic
approach to influence maximization in social networks. J Ambi-
ent Intell Humaniz Comput 1–17

Banerjee S, Jenamani M, Pratihar DK (2019a) ComBIM: a commu-
nity-based solution approach for the budgeted influence maxi-
mization problem. Expert Syst Appl 125:1–13

Banerjee S, Jenamani M, Pratihar DK (2019b) Maximizing the
earned benefit in an incentivized social networking environ-
ment: a community-based approach. J Ambient Intell Humaniz
Comput 1–17

Barabási A-L, Albert R (1999) Emergence of scaling in random net-
works. Science 286:509–512

Berahmand K, Bouyer A (2019) A link-based similarity for improv-
ing community detection based on label propagation algorithm.
J Syst Sci Complex 32:737–758. https ://doi.org/10.1007/s1142
4-018-7270-1

Berahmand K, Bouyer A, Samadi N (2018) A new centrality measure
based on the negative and positive effects of clustering coeffi-
cient for identifying influential spreaders in complex networks
Chaos. Solitons Fractals 110:41–54

Berahmand K, Bouyer A, Samadi N (2019) A new local and multi-
dimensional ranking measure to detect spreaders in social net-
works. Computing 101:1711–1733

Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social
influence in nearly optimal time. In: Proceedings of the twenty-
fifth annual ACM-SIAM symposium on discrete algorithms.
SIAM, pp 946–957

Bozorgi A, Samet S, Kwisthout J, Wareham T (2017) Community-
based influence maximization in social networks under a com-
petitive linear threshold model. Knowl-Based Syst 134:149–158

Chen W, Wang Y, Yang S (2009) Efficient influence maximization
in social networks. In: Proceedings of the 15th ACM SIGKDD
international conference on knowledge discovery and data min-
ing. ACM, pp 199–208

Chen Y-C, Zhu W-Y, Peng W-C, Lee W-C, Lee S-Y (2014) CIM:
community-based influence maximization in social networks.
ACM Trans Intell Syst Technol 5:25

Chen W, Lin T, Tan Z, Zhao M, Zhou X (2016) Robust influence
maximization. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data min-
ing. ACM, pp 795–804

Cheng S, Shen H, Huang J, Zhang G, Cheng X (2013) Staticgreedy:
solving the scalability-accuracy dilemma in influence maximiza-
tion. In: Proceedings of the 22nd ACM international conference
on information and knowledge management. ACM, pp 509–518

Domingos P, Richardson M (2001) Mining the network value of
customers. In: Proceedings of the seventh ACM SIGKDD inter-
national conference on knowledge discovery and data mining.
ACM, pp 57–66

Gmati H, Mouakher A, Gonzalez-Pardo A, Camacho D (2018) A
new algorithm for communities detection in social networks
with node attributes. J Ambient Intell Humaniz Comput 1–13

Goyal A, Lu W, Lakshmanan LV (2011a) Celf ++: optimizing the
greedy algorithm for influence maximization in social networks.
In: Proceedings of the 20th international conference companion
on World wide web. ACM, pp 47–48

Goyal A, Lu W, Lakshmanan LV Simpath (2011b) An efficient algo-
rithm for influence maximization under the linear threshold
model. In: 2011 IEEE 11th international conference on data
mining. IEEE, pp 211–220

Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A (2003) Self-
similar community structure in a network of human interactions.
Phys Rev E 68:065103

Hosseini-Pozveh M, Zamanifar K, Naghsh-Nilchi AR (2017) A com-
munity-based approach to identify the most influential nodes in
social networks. J Inf Sci 43:204–220

Huang H, Shen H, Meng Z, Chang H, He H (2019) Community-based
influence maximization for viral marketing. Appl Intell, pp 1–14

Jung K, Heo W, Chen W (2012) Irie: scalable and robust influence
maximization in social networks. In: 2012 IEEE 12th international
conference on data mining. IEEE, pp 918–923

Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of
influence through a social network. In: Proceedings of the ninth
ACM SIGKDD international conference on knowledge discovery
and data mining. ACM, pp 137–146

Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE,
Makse HA (2010) Identification of influential spreaders in com-
plex networks. Nat Phys 6:888

Lawyer G (2015) Understanding the influence of all nodes in a network.
Sci Rep 5:8665

Leskovec J, Mcauley JJ (2012) Learning to discover social circles in
ego networks. In: Advances in neural information processing sys-
tems. pp 539–547

Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance
N (2007) Cost-effective outbreak detection in networks. In: Pro-
ceedings of the 13th ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, pp 420–429

Li X, Guo J, Gao C, Zhang L, Zhang Z (2018) A hybrid strategy for
network immunization. Chaos, Solitons Fractals 106:214–219

Liu B, Cong G, Xu D, Zeng Y (2012) Time constrained influence
maximization in social networks. In: 2012 IEEE 12th international
conference on data mining. IEEE, pp 439–448

Liu D, Jing Y, Zhao J, Wang W, Song G (2017) A fast and efficient
algorithm for mining top-k nodes in complex networks. Sci Rep
7:43330

Ma H, Zhu Y, Li D, Kim D, Liang J (2015) Improving the influence
under IC-N model in social networks. Discrete Math Algorithms
Appl 7:1550037

Morone F, Min B, Bo L, Mari R, Makse HA (2016) Collective influ-
ence algorithm to find influencers via optimal percolation in mas-
sively large social media. Sci Rep 6:30062

Ni Y, Shi Q, Wei Z (2017) Optimizing influence diffusion in a social
network with fuzzy costs for targeting nodes. J Ambient Intell
Humaniz Comput 8:819–826

Qiu L, Jia W, Yu J, Fan X, Gao W (2019) PHG: a three-phase algorithm
for influence maximization based on community structure. IEEE
Access 7:62511–62522

Rossi M-EG, Shi B, Tziortziotis N, Malliaros FD, Giatsidis C, Vazir-
giannis M (2018) MATI: an efficient algorithm for influence maxi-
mization in social networks. PLoS ONE 13:e0206318

Ruan Z, Iniguez G, Karsai M, Kertész J (2015) Kinetics of social con-
tagion. Phys Rev Lett 115:218702

Samadi N, Bouyer A (2019) Identifying influential spreaders based
on edge ratio and neighborhood diversity measures in complex
networks. Computing 101:1147–1175

Shang J, Zhou S, Li X, Liu L, Wu H (2017) CoFIM: a community-
based framework for influence maximization on large-scale net-
works. Knowl-Based Syst 117:88–100

Wang X-G (2016) A new algorithm for the influence maximization
problem in dynamic networks or traffic sensor networks. Multi-
media Tools Appl 75:4833–4844

Wang Y, Cong G, Song G, Xie K (2010) Community-based greedy
algorithm for mining top-k influential nodes in mobile social net-
works. In: Proceedings of the 16th ACM SIGKDD international
conference on knowledge discovery and data mining. ACM, pp
1039–1048

https://doi.org/10.1007/s11424-018-7270-1
https://doi.org/10.1007/s11424-018-7270-1

4908 H. A. Beni, A. Bouyer

1 3

Wang C, Chen W, Wang Y (2012) Scalable influence maximization for
independent cascade model in large-scale social networks. Data
Min Knowl Disc 25:545–576

Wang Q, Jin Y, Lin Z, Cheng S, Yang T (2016) Influence maximization
in social networks under an independent cascade-based model.
Phys A 444:20–34

Xin Y, Gao C, Wang Z, Zhen X, Li X (2019) Discerning influential
spreaders in complex networks by accounting the spreading het-
erogeneity of the nodes. IEEE Access 7:92070–92078

Yang J, Leskovec J (2015) Defining and evaluating network communi-
ties based on ground-truth. Knowl Inf Syst 42:181–213

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	TI-SC: top-k influential nodes selection based on community detection and scoring criteria in social networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Greedy algorithm-based methods
	2.2 Heuristic methods
	2.2.1 Topology-based methods
	2.2.2 Community detection-based methods

	3 The proposed method
	3.1 Community detection
	3.2 Merge of communities
	3.3 Selection the first seed node
	3.4 Updating the scoring criteria
	3.5 Analyzing of time complexity

	4 Experimental results and analysis
	4.1 Dataset
	4.1.1 Real-world networks
	4.1.2 Synthetic networks

	4.2 Baseline algorithms
	4.3 Evaluation metrics
	4.4 Experiment setup
	4.5 Result
	4.5.1 Influence spread
	4.5.2 Running time metric
	4.5.3 Impact of factor
	4.5.4 Rich-Club phenomenon

	5 Conclusions
	References

