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Abstract
Influence maximization is a classic optimization problem to find a subset of seed nodes in a social network that has a 
maximum influence with respect to a propagation model. This problem suffers from the overlap of seed nodes and the lack 
of optimal selection of seed nodes. Kempe et al. have shown that this problem is an NP-hard problem, and the objective 
function is submodular. Therefore, some heuristic and greedy algorithms have been proposed to find a near-optimal solu-
tion. However, the greedy algorithm may not satisfy the accuracy of a given solution and high time-consuming problem. To 
overcome these problems, the TI-SC algorithm is proposed for the problem of influence maximization. The TI-SC algorithm 
selects the influential nodes by examining the relationships between the core nodes and the scoring ability of other nodes. 
After selecting each seed node, the scores are updated to reduce the overlap in selecting the seed nodes. This algorithm has 
efficient performance in high Rich-Club networks. The Rich-Club phenomenon causes overlapping of the influence spread 
among the seed nodes in most of the other methods so that the TI-SC algorithm reduces this overlapping. Furthermore, the 
discovered communities with low expansion are not considered in the seed node selection phase, and this is useful for reduc-
ing computational overhead. Experimental results on both synthetic and real datasets show that the proposed TI-SC algorithm 
significantly outperforms the state-of-the-art algorithms in terms of efficiency in both small and large-scale datasets.

Keywords Social network · Viral marketing · Influence maximization · Seed node · Community detection

1 Introduction

Social Network Analysis (SNA) studies the structure and infor-
mation flow in the social network. The social network is a set of 
nodes and links with a specific type of relationships and interac-
tions, such as friendship, like or dislike, love, etc. One of the 
most important issues in social networks is the investigation of 
finding influential nodes. If an influential node is identified indi-
vidually without considering the position of other influential 
nodes in the network, it is defined an influential spreader detec-
tion problem (Berahmand et al. 2018, 2019). However, identify-
ing the set of influential nodes with regard to the topological 
effects of these nodes in relation to each other is called the 
influence maximization problem (Samadi and Bouyer 2019). 

An example of the applications of influence maximization is 
viral marketing. Viral marketing through social networks has 
now become imperative for maximizing the awareness of a new 
product and increase their revenue. In viral marketing, select-
ing the most influential people is more important. The goal of 
influence maximization is to find the best influential people that 
maximize diffusion. Diffusion is a process in which informa-
tion on the network spread from a node to other nodes. In the 
diffusion process, complete influence time is very important. 
The complete influence time is the time duration that it takes 
to achieve complete influence (Ni et al. 2017).

. Due to their application in business, researchers have 
attracted influence maximization problem in recent years. 
Domingos and Richardson introduced the influence maxi-
mization problem for viral marketing (Domingos and Rich-
ardson 2001). Later on, Kempe et al. (2003) developed and 
formulated the influence maximization. According to their 
formulation, k seed nodes in a social network graph has best 
influence maximization if their influence spreading, the 
number of the activated nodes, is maximized based on the 
diffusion models of node activation. They considered two 
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activation model, independent cascade, and linear threshold 
models (Domingos and Richardson 2001). As an example, 
influence maximization results from this fact that a commer-
cial company provides a free sample of the product to a set 
of influential individuals to reach large advertising in a cas-
cade manner. In both models, each node has two active and 
inactive states. In an active state, the intended node adopts 
a new product, idea, or information, while the inactive node 
does not adopt a new product, idea, or information. Each 
node in the independent cascade model has the probabil-
itypuv that correspond to the probability of extending of a 
node influences to other nodes. The activation process is 
done only once time for each node. If node v is not activated 
by node u, it will not try to activate u in later steps. The 
existence of a single chance of node activation is one of the 
features of this model. In the linear threshold model, each 
edge e ∈ E contains an influence weight. Each node v ∈ V  
has a threshold limit �v , which is selected with a uniform 
distribution within the range [0,1]. Each edge (u, v) has an 
influence weight (u, v)[0,1]. The total weights of all input 
edges v are at most 1. Each inactive node v will be added to 
the total active nodes if 

∑
u∈St−1∩N

in(v) w(u, v) > 𝜃v . It means 
that the total weights of the active neighbors is larger than 
�v . The influence maximization problem is an NP-hard and 
submodular for both IC and LT models. Kempe et al. proved 
that the function of the influence under both IC and LT mod-
els is monotone and submodular concerning the number of 
seed nodes (Kempe et al. 2003).

Recently, the community-based influence maximization 
algorithms are studied (Banerjee et al. 2019a, b; Bozorgi et al. 
2017; Chen et al. 2014; Hosseini-Pozveh et al. 2017; Huang 
et al. 2019; Qiu et al. 2019; Shang et al. 2017; Wang et al. 
2010). First a community detection algorithm is performed 
for extracting dense parts of network (Berahmand and Bouyer 
2019). In the second phase, the proper seeds is selected from 
suitable communities. However, the existing community-based 
influence maximization algorithms demonstrate several major 
drawbacks: (a) They have no effective methods to reduce the 
search space the for selecting seed nodes in the large networks, 
(b) They suffer from the problems of the overlap of seed nodes, 
(c) They do not consider the role of core nodes in the influ-
ence spread. So, to solve these problems, this paper proposes 
a new algorithm, called TI-SC, to solve the problem of influ-
ence maximization under the IC model, with an emphasis on 
the time efficiency and spreading ability. The new algorithm 
is much more efficient in terms of time and influence spread. 
It can be categorized in community-based influence maximi-
zation methods. The TI-SC algorithm limits and controls the 
influence spread computation in discovered communities. It 
inspires the scoring criteria from the real world. The proposed 
algorithm can easily run in networks with millions of nodes and 
edges and solve the problem of traditional influence maximi-
zation algorithms. TI-SC algorithm comprises four phases: 1. 

Community detection, 2. Merge of communities, 3. Selecting 
the first influential node (seed node), and 4. Updating the scor-
ing criteria. In the first step of TI-SC algorithm the Louvain 
algorithm is used for detecting communities. After the com-
munity detection process, if there is relationship between the 
core nodes of communities, these communities merges. In the 
next step, the first seed node is selected according to the abil-
ity scoring of other nodes. Also, according topological struc-
ture of communities reduce the search space for selecting seed 
nodes. Finally, In this step, update scoring criteria to choose the 
remaining seed nodes.

To sum up, our major contributions in this algorithm are:

1. We study influence maximization problem under the 
background of community structure and reduce search 
space for selecting seed node.

2. We propose the scoring ability of other node which 
reduce the overlap of seed node.

3. We merge communities that have a similar information 
diffusion structure by the relationship between core 
nodes.

4. The experiment result on the synthetic and real-world 
networks show that the proposed algorithm TI-SC per-
forms better than the base algorithms in term of influ-
ence spread. The TI-SC algorithm is more time-efficient 
than base algorithms.

The rest of the paper is organized as follows. Section 2 
contains a valuable review of the literature, Sect. 3 provides 
a detailed description of the proposed method, Sect. 4 deals 
with the experimental evaluation for the proposed algorithm, 
and Sect. 5 draws the conclusion of the present study.

2  Related work

The problem of influence maximization has been studied 
based on the two important LT and IC models (Kempe et al. 
2003). Even though some new models have been provided 
with regard to these two models in recent years. The IC model 
was first suggested and explored by Kempe et al. (2003). In 
an independent cascade model, each edge (u,v)∈ E includes 
the influence probability p(u,v) ∈ [0,1]. The influence prob-
ability represents the possibility of activation. The attempt for 
activation in the IC model is made once; that is, if the node v 
could not activate the node u, it does not have another chance 
to activate this node u once again. The termination condition 
is that no other nodes are activated at time t, and no changes 
are made in the set of active nodes. The proposed IC model by 
Kempe deals with positive beliefs and opinions, whereas the 
IC-N and IC-OC models are based on positive and negative 
opinions (Ma et al. 2015; Wang et al. 2016). The key differ-
ence in diffusion between IC model with IC-N and IC-OC is 
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that in standard IC model, with adding a new node to the seed 
set of influential nodes, the influence power of the seed set is 
increased. Nevertheless, in IC-N and IC-OC diffusion model, 
blocking a node with negative opinion may also help to influ-
ence spread. Other researchers suggested the LAIC model as 
another development of IC (Liu et al. 2012). For the LAIC 
model, when a node u is activated in step t, it activates inac-
tive neighbors at step t + �t with the probability PuvP

lat
u

(
�t
)
 , 

which �t is the delay effect and Plat
u

 is a distributed delay. The 
DICM model introduced for dynamic networks (Wang 2016). 
The only difference between IC and the DICM models is that 
the activated nodes can retry to activate an inactive node at 
a given time.

In the linear threshold model, each edge (u, v) ∈ E has 
the influence weight w(u, v) ∈ [0, 1] , which is also shown 
with wuv . These weights for each v ∈ V  are as follows: ∑

u∈Nin(v) w(u, v) ≤ 1 , where Nin(v) is the input neighbors of 
node v. Each node v has a threshold �v , which is uniformly 
selected from the interval [0,1]. With regard to the initial 
activation set S0 , the active random set St for t > 1 is gener-
ated as follows: All activated nodes in step t will remain 
active. The node v is activated if the total weight of the 
active neighbors is at least greater than �v . In other words, ∑

u∈St−1∩N
in(v) w(u, v) > 𝜃v , then, v includes in the set St . Ruan 

et al. developed a new model based on the linear threshold 
model (Ruan et al. 2015). Moreover, other researcher pro-
vided the DLTM model for dynamic networks(Wang 2016).

In recent years, the issue of influence maximization has 
been studied in two categories: greedy-based methods and 
heuristic methods. Heuristic methods can be examined in 
several sub-sections, including topological-based methods 
and community detection methods. We discuss these sec-
tions with more details below.

2.1  Greedy algorithm‑based methods

The greedy algorithm has been put forward by Kempe et al. 
so that each node is initially added to the seed set, then k 
influential nodes with maximum diffusion are selected using 
the Monte Carlo simulation (Kempe et al. 2003). Although 
the greedy algorithm guarantees optimal approximation. If 
the set s∗ has more than k members that maximize f-value, 
we have the following relation for f(s):

However, the greedy algorithm is inefficient because it 
spends a lot of computational time to choose influential nodes. 
In the following, the CELF algorithm presented to improve 
the greedy algorithm and used lazy evaluations for improve-
ment (Leskovec et al. 2007). Lazy evaluation is 700 times fast 
in the influence maximization problem due to avoid of unnec-
essary evaluations. However, the CELF algorithm has a high 

(1)f (s) ≥
(
1 −

1

e

)
f (s∗)

running time due to the use of Monte Carlo simulation. So, the 
CELF++ algorithm improved lazy evaluation for the influ-
ence maximization problem (Goyal et al. 2011a). This is the 
modified CELF algorithm that targets decreasing the number 
of the quantifications of diffusion in computation. However, 
Memory usage in this algorithm is low, but it doesn’t guaran-
tee approximation. The NewGreedyIC algorithm presented to 
improve the greedy algorithm (Chen et al. 2009). This algo-
rithm generates G′ graph R times for each graph G, so that 
each edge with the probability 1-p is eliminated, and each 
edge with p probability remains in the graph. Then, it calcu-
lates the available nodes from each node and chooses k influ-
ential node. So, the NewGreedyIC algorithm is much faster 
than the greedy algorithm but its influence spread is less than 
the greedy algorithm. The staticGreedy algorithm developed 
to improved the Greedy algorithm that keeps submodularity 
property during the selection of the seed nodes, which entails 
two static snapshot and greedy selection (Cheng et al. 2013). 
Also, the StaticGreedyDU algorithm was proposed, which is 
2-7 times faster than the staticGreedy algorithm. The running 
time of the StaticGreedy algorithm depends on the number of 
seed nodes. The LUGreedy algorithm is based on uncertainty 
that this algorithm uses a parametric space � = xe∈E

[
le, re

]
 for 

the probable influence on the edges (Chen et al. 2016). So, 
this algorithm with uniform sampling and adaptive sampling 
methods to effectively reduce the uncertainty on parameters 
and improve the robustness of the influence maximization 
task but parameter uncertainty may greatly affect influence 
maximization performance.

2.2  Heuristic methods

Heuristic methods are based on two topology-based and 
community detection methods.

2.2.1  Topology‑based methods

Topology-based algorithms are faster than greedy algorithms. 
Some topology-based method gives special importance for a 
node’s degree in selecting k-influential nodes (Samadi and 
Bouyer 2019). For example, The High-Degree algorithm 
arranges nodes by a degree in descending order and selects 
k nodes with the highest degree as the influential ones (Chen 
et al. 2009). However, this algorithm does not have acceptable 
performance, and it is not suitable for an influence maximiza-
tion problem. So, the Distance algorithm is a distance-based 
algorithm to find influential nodes (Chen et al. 2009). With 
regard to this algorithm, the graph nodes are arranged ascend-
ingly based on the mean distance, and then k influential nodes 
are chosen. As such, this algorithm does not perform well 
at running time and influence spread. In the following, the 
singleDiscount and DegreeDiscount algorithms presented to 
improve the High-Degree algorithm (Chen et al. 2009). In the 
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singleDiscount algorithm, k influential node is chosen accord-
ing to the degree of a node that degree of each node is reduced 
by the number of seed nodes in the neighbor of the node. Con-
sequently, the running time of the SingleDiscount algorithm 
is much shorter than that of algorithm Distance, and also the 
influence spread is longer than that of algorithm Distance, but 
the performance of the SingleDiscount algorithm is needed 
to improve the influence spread. In the DegreeDiscount algo-
rithm, k influential nodes are chosen according to degree dis-
count and seed nodes in the neighborhood node. As such, 
algorithm DegreeDiscount has a low running time, but it does 
not guarantee approximation. The k-core algorithm was pre-
sented with respect to inner shells (Kitsak et al. 2010). Using 
this algorithm, core and periphery nodes are initially detected 
in the graph. According to the hypothesis of this algorithm, 
nodes in the core enjoy a higher influence spread. Hence, 
algorithm k-core has a low running time, but this algorithm 
has a low influence spread. The SIMPATH algorithm pre-
sented to improved the CELF algorithm (Goyal et al. 2011b). 
This algorithm contributes to the counting of simple paths in 
order to calculate the influence path; however, counting all the 
simple paths is an NP-hard problem. Therefore, the parameter 
η is used to limit influence computations in the neighborhood 
of the node. However, memory usage and running time in this 
algorithm are low, but it does not guarantee approximation. In 
the following, the MIA algorithm is another method that uses 
the structure of a graph, such as a tree, to determine influence 
and prevent the Monte Carlo simulation (Wang et al. 2012). 
It also uses a tree structure and criterion θ to calculate local 
influence. However, memory usage in this algorithm is high, 
but the running time is very low. IRIE algorithm hat has been 
developed by Jung et al. is more appropriate than the MIA 
algorithm in terms of runtime and optimal use of memory 
(Jung et al. 2012). Lawyer proposed a measure, named the 
expected force that is a node property derived from local 
topology (Lawyer 2015). The CI algorithm presented based 
on localization measures (Morone et al. 2016). This algo-
rithm calculates the influence spread for each node in radius 
l. It is useful for the Spars graph, but the parameter l may 
greatly affect influence maximization performance. Li et at. 
developed a new method to measure the importance of a node 
using its location in a network and dynamic activities (Li et al. 
2018). The LIR algorithm presented to avoid the Rich-Club 
Phenomenon (Liu et al. 2017). According to this algorithm, 
influential nodes are selected using the degree of neighbor 
nodes. However, this algorithm is very fast, but it does not 
guarantee approximation. The HybridRank algorithm pre-
sented based on two centralities of eigenvector and coreness 
(Ahajjam and Badir 2018). However, it should be noted in the 
HybridRank algorithm that if the node with the highest HC is 
in the neighborhood of the seed node, it avoids selecting that 
node as the next seed. The MATI algorithm is an extension of 
the SIMPATH algorithm (Rossi et al. 2018). It is an influence 

maximization algorithm under both the linear threshold and 
independent cascade modes. Therefore, the MATI algorithm 
is much faster than the SIMPATH algorithm. The HO central-
ity is derived by two factors and one topology factor. Activity 
rank and spread rank are important in the HO centrality (Xin 
et al. 2019). Activity rank and spread rank are factors in the 
HO centrality that characterize the activity level and spread 
ability, respectively.

2.2.2  Community detection‑based methods

In community-based algorithms, community detection is 
performed as the first step to the influence maximization 
problem. The CGA algorithm presented on mobile social 
networks, which involves two steps: 1. Detection of com-
munities using information diffusion, 2. Dynamic program-
ming (Wang et al. 2010). This algorithm provides approxi-
mation guarantees for influence maximization. Moreover, 
this algorithm is more than an order of magnitudes faster 
than the Greedy algorithm for finding top-K influential 
nodes on a large real-world mobile social network. But this 
algorithm does not limit the search space for seed nodes. 
Other researcher presented the CIM algorithm that this 
algorithm contains three steps. 1. Community detection is 
detected by the similarity criterion of communities. 2. Gen-
erating candidate nodes. 3. Selecting final seed nodes (Chen 
et al. 2014). This algorithm efficiently selects the number 
of seeds to maximize influence spreads. However, in this 
algorithm, the search space for seed nodes selection is not 
efficiently limited. Borgs et al. used community detection 
and the red–black tree to find influential nodes (Borgs et al. 
2014). This algorithm does not efficiently select the num-
ber of seeds to maximize influence spreads. Moreover, this 
algorithm has a low running time. Hosseini-Pozveh et al. 
developed a community detection-based algorithm with 
three steps: 1. Community detection, 2. Selection of the 
seed nodes, and 3. Identification of the target set (Hosseini-
Pozveh et al. 2017). Shang et al. provided the CoFIM algo-
rithm that first examines diffusion and influence among the 
communities, and then explores diffusion within each com-
munity (Shang et al. 2017). Thus, it is much more efficient 
in terms of both time and memory usage, but this algorithm 
suffers from the overlap of seed nodes. The CI2 algorithm 
suggested based on the new DCM model, which chooses 
influential nodes based on the graph structure (Bozorgi et al. 
2017). Seed nodes are optimally selected in this algorithm, 
but the search space for seed nodes selection is not limited. 
Other researcher proposed the ComBIM algorithm (Baner-
jee et al. 2019a). With regard to this algorithm, the com-
munity budget is determined according to the value of each 
node. Then, based on the budget transfer in each community 
and the degree of nodes in the community, the influential 
node is selected. Therefore, this algorithm is very fast, but 
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the parameter budget may greatly affect influence maximi-
zation and running time performance. The CTIM algorithm 
presented to improve the Greedy algorithm (Huang et al. 
2019). The algorithm initially uses the Comprehensive 
Latent Variable model to obtain favorite topics and distri-
bution of the community members from each user. Then, it 
uses favorite topics to gain influence power in each com-
munity. It also computes the user to influential user power 
using the community-to-community influential power and 
distribution of the members of each user’s community. Next, 
it chooses k influential nodes using the Divide-and-conquer 
algorithm. The PHG algorithm presented to improve the 
Greedy algorithm (Qiu et al. 2019). This algorithm finds 
key nodes in each community to construct a candidate set 
by detecting community structure. The search space for seed 
nodes selection is not limited in this algorithm. Therefore, 
the running time increases as the candidate nodes increase. 
Other researcher suggest an original approach to influence 
maximization using a fuzzy-logic based model and commu-
nity detection (Atif et al. 2019). This algorithm is efficient 
and scalable, but accuracy is still an issue.

3  The proposed method

In this section, we present a detailed description of our 
proposed algorithm (TI-SC) that has 4 phases: (a) commu-
nity detection, (b) community merging, (c) selecting the 
primary seed node, and d) updating the scoring criteria. 
An Overview of the TI-SC algorithm is shown in Fig. 1.

3.1  Community detection

Detecting the structure of the community helps to solve 
the influence maximization problem. A community is a 
group of nodes that are strongly linked to each other (Gmati 
et al. 2018). Social networks are composed of several large 
and small communities. Discovered communities play a 
determinant role in the influence maximization problem. 

Communities cause the seed nodes with maximum diffusion 
are chosen for each social network. In the first step of TI-SC 
algorithm for each graph G = (V ,E) , the Louvain algorithm 
is used for detecting communities C =

{
C1,C2,C3,… ,Cn

}
 . 

Algorithm Louvain [1] is one of the optimal algorithms that 
attempt to maximize the modularity function using Eq. (2). 
The algorithm is implemented in two steps:

1. At first, it uses the modularity function ΔQ for obtaining 
communities for each graph.

where 
∑

in is the sum of all the weights of the links 
inside the community i, 

∑
tot represents the sum of all 

the weights of the links to nodes in the community i, ki 
is the total weight of the nodes i, ki,in indicates the total 
weight of the link from the node i to the nodes within C, 
and m is the total weight of all the links in the network.

2. Then, it combines the obtained communities with each 
other to maximize the modularity function. These steps 
continue until the algorithm achieves the maximum 
value of the modularity function, and other communi-
ties do not change.

3.2  Merge of communities

After the community detection process, suppose that we 
have n communities C =

{
C1,C2,C3,… ,Cn

}
 , where for 

each community Ci =
(
Vc,Ec

)
 , v ∈ Vc , and e ∈ Ec , and v 

is the number of the nodes within the community Ci and e 
represents the number of the edges within the community Ci . 
Now, the k-core algorithm [13, 33] is used to determine each 
node position for each community Ci. This algorithm assigns 
integer Ks to each node, and each node position is deter-
mined by the successive layers in the graph. A small amount 
of Ks is defined for marginal nodes, and the core nodes have 
the largest value of Ks. In the k-core algorithm, the first-
order nodes are initially deleted and included in shell 1. Of 
course, when the first-order nodes are deleted, it is possible 
to create new first-order nodes so that these nodes are also 
included in the shell 1. Therefore, the Ks = 1 is assigned to 
the nodes in shell 1. Then, the second-order nodes are placed 
in shell 2, and Ks = 2 is allocated to the nodes in shell 2. 
However, in a case of deletion of the second-order nodes, 
new first- and second-order nodes may be created so that 
the new nodes are included in their shells. The same pro-
cedure continues for the remaining nodes so that all nodes 
of the graph are assigned to their Ks. The core nodes (with 

(2)

ΔQ =

�∑
in +2ki,in

2m
−

�∑
tot +ki

2m

�2
�

−

�∑
in

2m
−

�∑
tot

2m

�2

−

�
ki

2m

�2
�

TI-SC
algorithm

02 

03 

04 

Community detection 

Merge of communities 

Selection the first seed node 

Updating the scoring system 

01 

Fig. 1  Overview of the TI-SC algorithm
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highest Ks value) have the maximum influence compared to 
the margin nodes. If Vco =

{
vco1, vco2, vco3,… , vcon

}
 is the 

core nodes within the community; therefore, �
(
Vco

)
 repre-

sents the neighbors of the core nodes within a community.
Now, we examine the two communities Ci 

and Cj . The core nodes for these two commu-
n i t i e s  a r e    Vcoi =

{
vco1, vco2, vco3,… , vcon

}
 a n d 

Vcoj =
{
vco1, vco2, vco3,… , vcon

}
 . If �

(
Vcoi

)
= Vcoj (or vice 

versa �
(
Vcoj

)
= Vcoi ), the communities Ci and Cj become 

Ci ∪ Cj . In other words, if there is a relationship between 
the core nodes of the communities, the maximum influence 
spread will be observed among these communities. Moreo-
ver, such communities have a similar information diffusion 
structure. For this reason, these communities are combined.

Figure 2a, c depict an example of the two Ego-Facebook 
network and Santa Fe Institute Collaboration network before 
the merge of communities step so that nodes with similar 
colors show that the nodes are within the same community. 
As seen in Fig. 2, algorithm l has been used for discovering 
14 communities for the Ego-Facebook network and 7 com-
munities for Santa Fe Institute Collaboration network before 
the merge of communities step. Figure 2b, d indicate the 
merge of communities. Before the merge of communities 
step, four communities have been merged in the Ego-Face-
book network and Santa Fe Institute Collaboration network.

Algorithm 1: merge of the community (G)
Network G(V,E)Input:

Output: Union of community 
1: initialize  ;
// phase (i): community detection  
2: C={ // Using algorithm Louvain 
// phase (ii):union of communities
3:for each c  in C do
4:        find //Using algorithm k-core
5:end for
6: for each c  in C do
7:       for each c  in C do
8:             if Γ  | Γ then 
9:                        
10:                        
11:            else: 
12:
13:          end if 
14:     end for 
15:end for 
16:return : } 

Algorithm 1 has been provided for step 1,2 of the algo-
rithm TI-SC. This algorithm aims to achieve communities 
and a merge of communities. In line 1–2 of algorithm 1, 
communities are discovered via algorithm Louvain and the 

core nodes Vco for each ci community is chosen by algo-
rithm K-core in lines 3–4. Then, the neighborhood of the 
core nodes is compared in lines 6–12. If �

(
Vcoi

)
= Vcoj (or 

vice versa �
(
Vcoj

)
= Vcoi ), both communities are combined 

with regard to line 9.

3.3  Selection the first seed node

At this phase of the TI-SC algorithm, the first seed node 
is selected according to the scoring criteria that its idea is 
derived from the real world. In the real world, scores of 
people who are in the one-hop (first-level neighbors) and 
two-hop (second-level neighbors) environments of the per-
son A have high importance because the set of people who 
are in the one-hop and two-hop environments has a very 
high knowledge about person A. Therefore, other people 
who do not know person A trust the scores given by the set 
of one-hop and two-hop people, and so converge their scores 
to the scores given by set of one-hop and two-hop people. 
In social networks, as in the real world, it is very important 
to try to achieve the highest score, such as the presiden-
tial elections. Therefore, people in one-hop and two-hop 
levels tend to converge the scores of their neighborhood to 
their owns score. In the TI-SC algorithm, the score of each 
node u is calculated concerning the nodes in one-hop and 
two-hop distance from the node u. Moreover, it should be 
noted that each node in the one-hop and two-hop environ-
ments can only give one score to the intended node. Nodes 
with the greatest scores are chosen as the influential ones 
in the graph network. Accordingly, the node scoring crite-
ria is locally computed in each community by this phase. 
The node with the highest score is chosen as the first seed 
node. If Cc = {cc1, cc2,… , ccn } is the merge of communities 
through algorithm 1, v ∈ �cc

(u) shows neighbors of node u 
within the community cci . According to the following rela-
tion, each node v gives a score to the node u, if both of them 
is in the same community:

In addition, in the real world, individuals’ opinions 
depend on a random parameter. Therefore, p is considered as 
a random parameter, which is a random number with a uni-
form distribution between [0,1]. The environment N(1)

u
�N(1)

o
 

around node u is considered as the one-hop, which con-
tains only the set of nodes v as the scorer nodes. DN(1)

u
 is 

the total number of the edges inside N(1)
u
�N(1)

o
 environment 

and external edges from the environment N(1)
u
�N(1)

o
 . Then, 

the environment N(2)
u
�N(2)

o
 is considered all nodes around 

the set nodes v, except node u. DNN(1)
u

 is the total number 
of the edges in N(2)

u
�N(2)

o
 and the external edges from the 

(3)scorev→u = p

⎛⎜⎜⎝
�

N
(1)
u �N

(1)
o

DN(1)
u

�
N

(2)
u �N

(2)
o

DNN(2)
u

⎞⎟⎟⎠
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Fig. 2  The ego-Facebook network and Santa Fe Institute Collaboration network before and after the merge of communities step. Nodes with 
similar colors show that they are within the same community
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environment N(2)
u
�N(2)

o
 . If 𝛤cc

(u) > 1, then the Score for node 
u is defined as:

In Eq. 4, the given scores by each neighbor of node u 
are calculated for each v ∈ �cc

(u) . When the scores have 
been calculated for each node within the community, the 
node with the highest score in each community is chosen 
and included in a top-score array. Then, the influence spread 
�(top − score[i]) is calculated for each top-score array and 
the highest node with the maximum �(score_top[i]) is cho-
sen as the first seed node. In other words, it is formulated 
in Eq. 5.

(4)score =
∑

v∈�cc
(u)

scorev→u

(5)S = S ∪ {argmaxu∈V�S
{
�
(
scoretop[i]

)}

However, since there is a large number of communi-
ties in big datasets and the comparisons of the influence 
spread �(score_top[i]) are very time-consuming; thus, the 
criterion θ has been used to control and eliminate addi-
tional comparisons. Experiments conducted on different 
datasets showed that most of the nodes have very low 
influence spreading in communities. These nodes lengthen 
the arrays and cause high computational overhead. With 
regard to our experiments, these communities have a cer-
tain topological structure. According to this topological 
structure, the two criteria �,� , are defined. The criterion 
� is calculated according to the following relation:

Where nNC and nEC represent the number of nodes and 
edges in community ci , respectively. It is possible that 

(6)� =
nNC

nEC + 1

Fig. 3  The effect of two criteria �,� on the M-FO115 network. a 
Community detection step: the nodes with similar colors are in the 
same community. b The merge of communities, and c shows the red 

nodes in unsuitable communities with low influence spread, and blue 
nodes are in suitable communities for influence spread calculations 
(color figure online)
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nEC = 0 for some communities (just one node). The value 
of 1 is added to the denominator so that � does not proceed 
to the infinity. If 𝜑 > 𝜃 for the community ci, the nodes 
of the community ci are identified as the nodes with low 
influence spread and the community ci is not participated 
in the comparisons of influence spread of �

(
S ∪ vms

)
.

Moreover, communities are not updated. The value of 
θ has been set in the experiments section. Figure 3 depicts 
the effect of the two criteria �,� in the fire forest model. 
Communities have been specified with the Louvain algo-
rithm in Fig. 3a, in which the nodes with similar colors 
are in the same community. Figure 3b indicates the merge 
of communities in the fire forest model. Figure 3c por-
trays the effect of the two criteria �,� . Red nodes are in 
the communities that are not suitable for influence spread 
and cause computational overhead. Blue nodes are suitable 
for calculations of influence spread. As seen in Fig. 3c, 
numerous red nodes (nodes with low influence) are in the 
network that only causes computational overhead in the 
influence spread process. Consequently, these red nodes 
are ignored by the TI-SC algorithm that has significant 
improvement in the running time of the algorithm.

Based on the above discussion for phase 3, we have 
proposed Algorithm 2 for choosing the first seed node. In 
algorithm 2, a set of seed nodes are defined as an array, 
titled S in line 1. If the condition 𝜑 < 𝜃 is established in 
line 3, it is participated in the comparisons of influence 
spread, and the score calculation is performed for it. For 
line 4–12, the Score is calculated for each node u in the 
community cci , and the score calculated for each node u in 
the community cci is added to the SC array. In line 13-18, 
the maximum score is calculated for each community cci . 
In line 19, the node with the maximum score for each 
community is added to the top-score array. In line 22–30, 

the influence spread is calculated for each node in the top-
score array via the Monte-Carlo simulation and R = 1000. 
In line 28, the amount of influence spread calculated for 
each node in the top-score array and it is added to the Inf 
array. Then, in line 31-36, the maximum influence spread 
is selected from the top-score array. Len (Inf) is the length 
of the Inf array. In line 37, a node with maximum influence 
spread is added to the seed set.

3.4  Updating the scoring criteria

In the real world, if the person A chooses the individual B 
as the most influential and important person via scoring, 
he/she definitely given a lower priority to the individual 
C as the next important person. When the seed node is 
selected, some changes should be made in the scoring cri-
teria for choosing the next seed nodes. Assume that node 
v is a neighborhood of the first seed node. In this case, 
node v gives lower scores to its other neighborhood nodes 
for choosing the second, third, and… seed nodes. Since 
it gives higher priority to the first seed node, therefore 
it rationally gives a lower score to other its neighbors in 
the next steps. Accordingly, each node v is recorded its 
scores for the seed node, and it should update its scoring 
criteria to choose the remaining seed nodes. There is a 
weak relationship between the selection of the next seed 
nodes and Eq. (3). The algorithm TI-SC solves the prob-
lem of the Rich-Club phenomenon well. The Rich Club 
phenomenon causes overlapping of the influence spread 
among the seed nodes so that the algorithm TI-SC reduces 
the overlapping. In other words, if a node is selected as a 
seed node, it means that all one-hope and two-hope nodes 
do not potential to choose as seed nodes due to assign low 
scores by their neighbors.

Table 1  Summary of real-world 
datasets and Synthetic networks

Dataset DBLP Amazon Ego-Facebook Email M-Fo115 M-Fo120

Node 317 k 335 k 4 k 1 k 10 k 10 k
Edge 1 M 926 k 88 k 5 k 23 k 25 k
Max Degree 343 549 1045 71 155 229
Min Degree 1 1 1 1 1 1
Max community size 22,263 12,369 548 209 1315 1645
Min community size 5 13 19 25 2 2
Parameter θ 0.7 0.4 0.09 0.3 0.4 0.3
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At this step, the seed node does not give a score to any 
of its neighboring nodes. If v ∈ �S(S) are the neighbors 
of the seed set, then the scores that each node v gives to 
u ∈ � (v)∕S is updated by Eq. 7 as follows:

Algorithm 2: Select first seed (G)
}:Input

Output: Select first seed 
// SC  is list of Score for each node in community.
// Score_top is list of max score.
// Inf is list of Influence for each node with max score.
//S is seed set.
1: initialize  ;
2:for each c  in C do
3:     if 
4:         for each  in  do 
5:                if =1:
6:                           ∑ ∑
7:                           
8:               end if
9:               if >1:
10:                         ∑
11:                         
12:             end if 
13:             for each  in SC do 
14:                         
15:                         if :
16:                                
17:                         end if
18:             end for 
19: //u is node with max score in the community.
20:             end for
21:end for
22:for each in do
23:      for j=1 to R do
24:              count⟵0      
25:              simulate diffusion process on graph G with Score_top
26:               ⟵the number of activate nodes after the diffusion ends
27:               
28:             ⁄
29:        end for
30: end for
31:for i in do
32:     f
33:     if :
34:          
35:     end if
36:end for
37: //  is node with max . 
38: return S

In Eq. 7, it should be noted that if a seed node exists in 
the environment N(1)

u
�N(1)

o
 and N(2)

u
�N(2)

o
 , then the value of 

(7)

scorev→u

= p

⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎝

�

N
(1)
u �N

(1)
o

DN(1)
u

−
1∑

N
(1)
u �N

(1)
o

DN
(1)
u +

∑
N
(2)
u �N

(2)
o

DNN
(2)
u

⎞
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DNN(2)
u

 and DN(1)
u

 in the equation are 0. After updating each 
node in the community ci, the node with the highest score in 
each community is selected. Then, the influence spread of 
�
(
S ∪ vms

)
 for each community is calculated by the Monte 

Carlo simulation and R = 1000, and the node vms with the 
highest v �

(
S ∪ vms

)
 is identified as seed among all commu-

nities and is added to the S set. However, since the process 
of seed selection is very time-consuming, the parameters θ 
and � is used to eliminate additional comparisons. 

community, the influence spread of the node with the high-
est score is calculated along with the set S using the Monte 
Carlo simulation and R = 1000. In line 17, the value of Iucci 
obtained for each community is compared, and the node u 
with the highest value of Iucci is identified as the seed node 
and is added to the S set.

Fig. 4  Influence spreads of different algorithms on the DBLP

Algorithm 3: Update scoring criteria (G)
S, }:Input

Output: Seed set
1:for j=1 to k do
2:          for each in do
3:                if
4:                  for each  in  do
5: ∑

∑ ∑
∑

6:                          
7:                  end for
8:                  for each  in SC do 
9:                         
10:                       if :
11:                           
12:                       end if
13:                end for
14: I u // u is node with max score.
15:               end if
16:      end for  
17:
18:end for
19:return S

Algorithm 3 is provided with regard to the above dis-
cussion for step 4 of the algorithm TI-SC, which aims to 
update the scoring criteria and choose the seed nodes. S 
and Cc = {cc1, cc2,… , ccn } are the inputs of the algorithm 3, 
which is initially |S| = 1 and the obtained seed node from 
algorithm 2 are included to S. According to experimen-
tal evaluations, k is set to value 30 in line 1. Line 2–16 is 
implemented for each cci community, so that if the condi-
tion φ < θ is established in line 3, it will be participated in 
the comparisons of influence spread, and the score updates 
will be performed for it. In line 4–13, the score is updated 
for each community, and the node with the maximum score 
is chosen for each community. Then, in line 14 for each cci 
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3.5  Analyzing of time complexity

In the analyzing of time complexity, n is the number of 
nodes in the network, m is the number of edges in the net-
work, n′ is the number of nodes in communities which are 
not identified as the low influential nodes spread; And these 
communities are participated in comparing and selecting 
the influential spreaders for �

(
S ∪ vms

)
 , and k is the num-

ber of seed nodes. For the TI-SC algorithm, the time com-
plexity is separately computed in four parts: At first, the 
time complexity of Louvain algorithm is O(n log n) . At the 
second, the time complexity of community merging step is 
O(m). For selecting the first seed node, the required com-
putational time is O(Rn) where R denotes the number of 
Monte Carlo simulations. Fourth, the time complexity of 
updating the scoring criteria and selecting another seed node 
is O

(
(k − 1)Rn�

)
 . Consequently, the total time complexity  

is: O(n log n + m + Rn + (k − 1)Rn�) ≈ O(m).

4  Experimental results and analysis

We first introduce the datasets, baseline methods, and eval-
uation metrics, then conduct experiments to evaluate our 
methods about the scope of information propagation on 
these datasets.

4.1  Dataset

In order to verify whether the TI-SC algorithm is better than 
other compared baseline methods, we use both real networks 
and synthetic networks to evaluate the performance.

4.1.1  Real‑world networks

We first evaluate the performance of our community-based 
influence maximization algorithm on four real-world data-
sets. The largest datasets (Amazon, DBLP) contains 300 
thousand nodes and about 1 million edges. Two other data 
(Ego-Facebook, Email) are in medium size. Three datasets 
(Amazon, DBLP, and Ego-facebook) are downloaded from 
the SNAP website,1 and the Email dataset is downloaded 
from the KONECT website.2 Table 1 summaries the statisti-
cal properties of these datasets.

• DBLP The DBLP online library is a large list of papers 
in computer science(Yang and Leskovec 2015). The data-

set provides a co-authorship network among research 
workers. If two authors have collaborated on at least one 
paper, an edge is created between them that this edge is 
undirected. The network consists of 317 K nodes and 1 M 
edges.

• Amazon The Amazon dataset was collected by crawl-
ing the Amazon website (Yang and Leskovec 2015). If a 
product i is frequently co-purchased with product j, then 
the network contains an undirected edge between them. 
The network contains 335 K nodes and 926 K edges.

• Ego-Facebook This dataset consists of “friends’ lists” 
from Facebook (Leskovec and Mcauley 2012). The data-
set includes profiles, circles, and ego networks, and it 
contains 4 K nodes and 88 K edges.

• Email The email dataset is a network of University at 
Rovira i Virgili (URV), including faculty, researchers, 
technicians, managers, administrators, and graduate stu-
dents (Guimera et al. 2003). Each edge represents that at 
least one email was sent. The network contains 1 K nodes 
and 5 K edges.

4.1.2  Synthetic networks

We also evaluate the performance of our TI-SC algorithm 
through synthetic networks. We use the forest fire model 
(Barabási and Albert 1999) to synthetic networks, due to its 
following advantages:

1. Existing the community structures in the forest fire 
model: This model can generate networks with config-
urable ground truth community structure.

2. Power-law degree distribution: The forest fire model 
generates networks whose degree follows a power-law 
distribution. The power-law distribution is a common 
property shared by most real-world networks, making 
our results more practicable. In the Forest Fire model, 
the network becomes denser with increasing mean 
degree; in other words, the larger the network grows, 
the smaller the network diameter.

A random graph M-Fo115 generated from the forest 
fire model with connecting probability 0.115 that it con-
tains 10 K nodes and 23 K edges and also a random graph 
M-Fo120 generated from the forest fire model with con-
necting probability 0.120 that it contains 10 K nodes and 
29 K edges.

4.2  Baseline algorithms

We compare the performance of our TI-SC algorithm with 
six baseline algorithms, which include three state-of-the-
art algorithms having been successfully applied on large-
scale networks and one node centrality based heuristic 

1 http://snap.stanf ord.edu/data/.
2 http://konec t.cc/.

http://snap.stanford.edu/data/
http://konect.cc/
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algorithms. We do not use the general greedy algorithm due 
to its extremely low time efficiency in handling large-scale 
networks.

K-core algorithm The k-core algorithm was presented 
with respect to inner shells(Ahajjam and Badir 2018). 
With regard to this algorithm, core and periphery nodes are 
detected in the graph. According to the hypothesis of the 
algorithm, nodes in the core mostly have higher influence 
spread than others.

DegreeDiscount In the DegreeDiscount algorithm, k 
influential nodes are chosen according to the equation 
dv − 2tv −

(
dv − tv

)
tvp , where dv and tv respectively are the 

degree of the node v and the number of the seed nodes in 
the neighborhood of the node v (Chen et al. 2009). P is the 
influence probability from the node u to node v.

Collective Influence (CI) algorithm The CI algorithm pre-
sented based on localization measures (Morone et al. 2016). 
In the first step of this algorithm, the value of 
CIl(i) =

�
ki − 1

�∑
j∈�B(i,l)

�
kj − 1

�
 is calculated for each 

node, where ki is the degree of the node i, and ∂ B(i, l) is a 
circle with radius l and its center is the node i. With regard 
to the values obtained for each node in the graph, the max-
heap tree is created in the second step. In the third step, the 
node with the maximum value (root node) of the max-heap 
tree is eliminated. Then, the heapify algorithm is called to 
reconfigure. In the fourth step, the CI score for neighbors of 
the eliminated node is updated, and the second to fourth 
steps of algorithm proceed as long as the value of 

�(l, q) = (
∑

i CIl(i)

N(K)
)
1∕(l + 1) equals 1. (K) is the mean degree.

LIR The algorithm LIR was presented to avoid the Rich-
Club Phenomenon (Liu et  al. 2017). According to this 

Fig. 5  Influence spreads of different algorithms on the Ego-facebook

Fig. 6  Influence spreads of different algorithms on the Amazon

Fig. 7  Influence spreads of different algorithms on the Email

Fig. 8  Influence spreads of different algorithms on the M-FO115
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algorithm, the relation LI
�
vi
�
=
∑

vj∈N(vi)
Q
�
dj − di

�
 is first 

computed for each node, where di is the degree of node vi, 
and N

(
vi
)
 is neighbors of node vi. Then, nodes with LI = 0 

are arranged descendingly based on their degree. Hence, k 
influential nodes with LI = 0 are chosen. It should be noted 
that in the LIR algorithm, the number of the nodes with 
LI = 0 in two Email and Ego-facebook datasets was 6 and 5, 
respectively. We need at least 30 nodes with LI = 0 with 
regard to the number of seed nodes. Therefore, if the number 
of the nodes with LI = 0 is less than required number (e.g. 
30 nodes), it may need the other required influential nodes 
with LI = 1 in the LIR algorithm. Needless to say that the 
nodes with LI = 1 are more important than the nodes with 
LI = 0.

PHG The PHG algorithm presented to improved the 
Greedy algorithm (Qiu et al. 2019). First, this algorithm 
finds key nodes in each community to construct a candi-
date set by detecting community structure. Second, it finds 
the most potential influence nodes from a candidate set by 
combing the influence weight of nodes. Finally, it greedily 
selects the nodes with maximization marginal gain.

High Degree The High-Degree algorithm arranges the 
nodes descendingly by degree, and selects k nodes with the 
highest degree as the influential ones (Chen et al. 2009).

4.3  Evaluation metrics

Similar to other state-of-the-art algorithms (Chen et al. 
2009; Cheng et al. 2013; Goyal et al. 2011b; Liu et al. 2017; 
Wang et al. 2012), we use two metrics to evaluate the per-
formance of our algorithm.

• Influence spread Given seed set, influence spread is 
defined as the number of expected active nodes with the 
Monte-Carlo simulation in IC and LT models. It is used 
to evaluate the accuracy of an influence maximization 
algorithm. Algorithm with Higher influence spread value 
has more accurate than others. We repeat 1000 Monte-
Carlo simulations to compute the influence spread for any 
given seed set.

• Running time Running time is defined as the time for 
selecting k seed nodes. In our experiments, k is set to 30.

4.4  Experiment setup

• Diffusion model we use the Independent cascade 
model. The propagation probability from node u to v is 
puv = 0.01 . The influence spread value is computed by 
repeating 1000 Monte-Carlo simulations.

• Experimental environment The experiments are car-
ried out on a computer with 2.5 GHz Intel core i5 CPU-

Fig. 9  Influence spreads of different algorithms on the M-FO120

Fig. 10  Running time of different algorithms on four real-world data-
sets (k = 30)

Fig. 11  Running time of different algorithms on two synthetic net-
works (k = 30)
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3230 M and 16 GB memory. All codes are programmed 
in python and the programs are in single process and 
single thread.

4.5  Result

4.5.1  Influence spread

We first compare the influence spread of different algorithms 
on four real-world datasets where the x-axis represents the 
number of seed nodes while the y-axis represents the over-
all influence spread. From the results of the four real-world 
datasets, we see that our TI-SC algorithm always outper-
forms other compared methods in terms of influence spread. 
The k-core algorithm shows the worst performance on all 
networks. The High Degree and DegreeDiscount methods, 
though performs well on some datasets, cannot provide any 

performance guarantee. For example, Figs. 4 and 5 show 
that their influence spread values is weak in datasets DBLP 
and Ego-Facebook. It shows the significant gaps of influence 
spread value between DegreeDiscount and TI-SC algorithms 
in Fig. 4. On the DBLP dataset, the influence spread value 
(k = 10) of DegreeDiscount is 72.342, while the TI-SC algo-
rithm is 91.529. It is revealed that the TI-SC has better per-
formance than PHG and DegreeDiscount in Fig. 5. On the 
Ego-Facebook dataset, the influence spread value (k = 30) of 
DegreeDiscount and PHG is 367.86 and 375.1619, respec-
tively. However, this values is 382.8219 for the TI-SC algo-
rithm. In addition, Fig. 6 represents that TI-SC, High Degree 
and DegreeDiscount algorithms exhibit the same influence 
spread value. When k is small (e.g., k ≤ 15), we see in Fig. 6 
that the influence spread values of the LIR algorithm are 
the same with TI-SC, High Degree, and DegreeDiscount 
algorithms. In Fig. 7, it is obvious that the influence spread 

Table 2  Impact of θ criterion 
on the influence spread and 
runtime of the TI-SC algorithm 
on the Ego-facebook dataset

θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05 θ = 0.07 θ = 0.09 θ = 0.1 θ = 0.3

K = 1 144.27 144.845 144.059 142.35 141.183 144.1639 144.737 142.8589
K = 5 180.184 178.936 188.668 264.5589 271.9869 271.1339 269.2329 269.4199
K = 10 182.184 184.715 207.0699 296.842 307.7399 307.353 306.0139 310.2455
K = 15 187.137 188.126 219.0189 314.9919 327.047 330.084 328.945 333.8794
K = 20 191.435 192.594 226.0495 335.054 343.476 350.479 346.294 352.8541
K = 25 192.785 196.4559 234.8455 348.275 359.856 363.6139 364.3159 373.3629
K = 30 197.354 197.8149 240.8655 359.0039 373.803 378.575 375.4241 382.8219
Time 2050.615 2448.113 4809.297 2108.5239 33,061.842 40,016.797 53,393.106 88,789.59

Table 3  Impact of θ criterion 
on the influence spread and 
runtime of the TI-SC algorithm 
on M-FO115 dataset

θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.72 θ = 0.75 θ = 0.8 θ = 0.85 θ = 0.9

K = 1 3.0009 3.0639 3.1029 3.0539 3.0219 3.0679 3.0159 3.0589
K = 5 12.5979 12.7609 12.8559 12.9049 12.7689 12.8929 12.7369 12.9399
K = 10 24.7119 24.8859 25.0919 25.1939 25.2679 24.9099 24.7379 24.9129
K = 15 36.2759 35.8269 35.969 36.2459 36.027 36.2399 36.086 35.78
K = 20 46.3229 46.3589 46.4419 46.2069 46.4719 46.2059 46.4309 46.2749
K = 25 56.7859 56.5099 56.2279 56.6669 56.3589 56.4669 56.5179 56.6559
K = 30 66.138 65.6179 65.96 65.52 65.5689 64.063 64.25 65.635
Time 150.895 186.839 239.028 2310.73 2808.07 5911.179 9884.32 11,343.446

Table 4  Impact of θ criterion 
on the influence spread and 
runtime of the TI-SC algorithm 
on M-FO120 data set

θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.85 θ = 0.9

K = 1 4.2619 4.0459 4.3929 4.3119 4.1209 4.5289 4.3509 4.2719
K = 5 18.3809 19.0639 18.8359 19.0449 18.7429 18.8329 18.8069 19.0669
K = 10 34.7759 34.928 34.69 35.1829 34.912 34.6629 34.8219 35.0169
K = 15 49.1719 48.7619 49.5279 49.4729 48.9129 49.1149 48.8859 49.6009
K = 20 64.3309 64.168 62.8949 63.277 63.6429 63.095 63.701 63.777
K = 25 77.3089 77.0329 77.4969 78.3599 76.9019 77.0889 76.7269 76.9319
K = 30 91.1279 90.4819 90.9419 91.5889 90.9769 90.7679 90.5119 90.3059
Time 274.572 285.959 297.124 468.906 2774.493 7538.773 12,092.164 13,864.680
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values of DegreeDiscount, CI and PHG algorithms are lower 
than our TI-SC algorithm. For example, on the Email data-
set with k = 30, the TI-SC algorithm achieves an influence 

spread value of 42.9783, while the value of DegreeDiscount, 
CI and PHG are 41.1737, 41.2561 and 41.0019, correspond-
ingly. Overall, from the results on the real-world networks, 

Fig. 12  Impact of θ parameter on the influence spread and runtime of the TI-SC algorithm in k = 30
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our TI-SC algorithm shows its effectiveness in finding top 
influential seed nodes as compared with the state-of-the-art 
algorithms. Furthermore, the DegreeDiscount and CI meth-
ods have the second and third best performance, respectiv
ely.

We compare the influence spread of different algorithms 
on two synthetic networks. It is obvious in Fig. 8 that the 
influence spread values of TI-SC algorithm are best. Fig-
ure 9 shows that TI-SC, High Degree and DegreeDiscount 
algorithms exhibit the same influence spread value.

4.5.2  Running time metric

Figures 10 and 11 shows the running time of different algo-
rithms on the four real-world datasets and two synthetic 
networks. The running time is the time of selecting k = 30 

seed nodes. As mentioned above, The DegreeDiscount, High 
Degree, LIR, and k-core, though run fast, but cannot provide 
any performance guarantee in terms of influence spread. 
The worst running time is for the PHG algorithm. From the 
results, we see in Fig. 11 that the TI-SC algorithm is very 
competitive in its time efficiency, requiring less than some 
second on most datasets.

4.5.3  Impact of � factor

According to Table 1, the value of the factor θ has been 
determined in each data set, which has a significant effect on 
the computational overhead reduction. If the θ-value is set 
with a large value, it increases the computational overhead, 
and if the θ-value is set to a very small value, computational 
overhead and influence spread will be decreased. Therefore, 
an appropriate value should be set for this parameter. This 
study demonstrates the impact of the factor θ on the compu-
tations. The results are analyzed only on the three M-FO115, 
M-FO120, and Ego-Facebook data sets.

According to Tables 2, 3, and 4, θ-values affected the 
influence spread calculations. As mentioned above, the 
nodes within communities with a �-value greater than θ are 
known as the nodes with low influence spread, and they are 
not involved in selecting the influence spread �

(
S ∪ vms

)
 . 

Moreover, these communities is filtered and not updated. K 
in Tables 2, 3, and 4 displays the number of the seed nodes, 
and the numbers in the columns θ represent the influence 
spread in the number of different seeds with regard to dif-
ferent values of θ.

Based on the obtained results in Table 2, when the θ-values 
are small, low influence spread is provided in the number 
of different seeds; however, the algorithm is run relatively 
fast. For example, the algorithm runtime is 2050.615 when 
θ = 0.02,  which is an acceptable runtime for the TI-SC algo-
rithm; however, the influence spread of the nodes is low. 
This means that when the value of θ is very small, communi-
ties with influential nodes are eliminated from the influence 
spread calculations which consequently declines the influence 
spread. Therefore, the θ -value should be set to an appropriate 
value to tradeoff runtime and influence spread metrics. In the 
value of θ = 0.3, the TI-SC algorithm provides the maximum 
influence spread in a majority of K-values; however, the runt-
ime of the TI-SC algorithm will prolong at this value of θ. 
For instance, for the Ego-Facebook dataset, an appropriate 
value of θ can be set to 0.05. Table 3 illustrates that when the 
values of θ increases, the influence spread will be remained 
constant at different K-values. However, as seen in the Time 
line, when θ-values increase, the time also increases. This 
means that there are many communities with little influential 
nodes that increase computational overhead, whereas they do 
not affect the increase of influence spread. Therefore, θ = 0.4 

Fig. 13  The number of edges that connect two seeds on four real-
world datasets

Fig. 14  The number of edges that connect two seeds on two synthetic 
networks
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is the best value for the M-FO115 dataset in this experiment to 
balance the runtime and influence spread. The runtime equals 
to 150.895 at θ = 0.4, providing that its influence spread is 
approximately the same with the influence spread of differ-
ent K-values in different seeds. As seen in Table 4, when the 
values of θ increase, the influence spread remains constant 
in different K-values. However, when θ-values increase, the 
time also increases. Therefore, the best value for the M-FO120 
dataset is θ = 0.3 in order to balance between runtime and 
influence spread.

Figure 12 depicts the impact of θ-values on the influence 
spread and runtime of the TI-SC algorithm in Ego-facebook, 
M-FO115, and M-Fo120 datasets at K = 30. Figure 12a, b 
respectively portray the impact of θ-value on the influential 
spread and runtime of the TI-SC algorithm in the Ego-face-
book data set. As shown in the figures, when θ increases, the 
time and influence spread will be increased. The maximum 
influence spread and runtime will be at θ = 0.3, whereas the 
minimum runtime and influence spread will be at θ = 0.02. 
Figure 12c, d respectively depict the impact of θ on the 
influence spread and runtime of the TI-SC algorithm in the 
M-FO115 data set. As shown in Fig. 12d, the runtime of the 
TI-SC algorithm increases for large values of θ. Based on 
Fig. 12c, there is no difference in the influence spread for 
different values of θ, and the influence spread in different 
θs differs a few percent. Figure 12e, f show the impact of θ 
on the influence spread and runtime of the TI-SC algorithm 
in the M-FO120 data set. As shown in Fig. 12f, the runt-
ime of the TI-SC algorithm also increases with the increase 
of θ-values. The lowest runtime is obtained at θ = 0.3 and 
the highest runtime is belonged to θ = 0.9. According to 
Fig. 12e, there is no significant difference in the influential 
spread for different values of θ, and the influence spread in 
different θs differs a few percent.

4.5.4  Rich‑Club phenomenon

The effect of Rich-Club phenomenon is shown in Figs. 13 
and 14. Figure 13 display the number of edges that connect 
seeds in real-world networks (rich-club phenomenon). For 
instance, there are 23 edge between the selected seeds by 
the TI-SC algorithm on the DBLP dataset. It is obvious that 
the lowest Rich-Club coefficient is belonged to the TI-SC 
algorithm. There also exist 18 edge between the selected 
seeds by the TI-SC algorithm on the Amazon dataset that 
the TI-SC has the best result but K-core algorithm has the 
worst tolerance. In addition, in Ego-Facebook dataset, there 
are 28 edge between the selected seeds for our algorithm. 
Like Amazon, the K-core is the worst algorithm but TI-SC 
is the best method. In the Email dataset, the TI-SC algorithm 
and other algorithms is not large. However, the performance 

of our algorithm and DegreeDiscount algorithm are very 
close in terms of influence spread. Consequently, the TI-SC 
algorithm efficiently tolerates the rich-club problem in com-
parison to other methods. The main disadvantages of the 
TI-SC is that its performance is remarkably not better than 
other algorithms in the networks with low Rich-Club coef-
ficient. In such a network, all algorithms nearly has same 
performance.

In Fig. 14, we show the number of edges that connect 
seeds in synthetic networks. There are 22 edge between the 
selected seeds by the TI-SC algorithm on the M-FO115 and 
M-FO120 datasets that HighDegree algorithm is the worst 
algorithm but the TI-SC method is the best.

5  Conclusions

In this paper, we proposed an efficient community-based 
algorithm combined with a scoring measure for selecting 
top-K influential nodes. The proposed TI-SC algorithm 
consists of four steps: 1. Community detection, 2. Merge 
of communities, 3. Computing scoring criteria Selection of 
the first influential node, and 4. Updating scoring criteria. 
TI-SC algorithm solved the influence maximization in near-
linear time complexity. Due to the filtering and reduction 
process in the updating phase, this algorithm has fast con-
vergence to an optimized set of K seed nodes. The proposed 
algorithm is evaluated based on the independent cascade 
model. In the TI-SC algorithm, a scoring criteria inspired 
by the real-world has been used to calculate the influence 
spread of each node. To avoid the thousands of additional 
comparisons for influence computations, we have reduced 
the search space, which improves the runtime compared 
to similar algorithms. In the TI-SC algorithm, the scoring 
criterion reduces the overlap of seed nodes, and this leads 
to the selection of K-node with optimal influence spread. 
The most important implications of the TI-SC algorithm in 
the real-world is to find politically influential nodes with a 
scoring criterion, help to design an efficient advertisement 
strategy and a better immunization strategy. Since the real 
world social networks usually has higher Rich Club coeffi-
cient, our proposed algorithm remarkably outperforms other 
algorithms. The experimental results on both large-scale and 
medium-scale real-world networks and also two synthetic 
networks indicate that our algorithm is considerably more 
efficient than other algorithms in terms of influence spread 
and runtime metrics. We believe that the proposed algorithm 
can provide a deep insight into future studies of influence 
maximization.
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