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Abstract
With the rapid development of high-throughput technologies, systems biology is now embracing a great opportunity made 
possible by the increased accumulation of data available online. Biological data analytics is considered as a critical means 
to contribute to a better understanding on such data through extraction of the latent features, relationships and the associated 
mechanisms. Therefore, it is important to evaluate how to involve data analytics from both computational and biological 
perspectives in practice. This paper has investigated interaction relationships in the proteomics area, which provide insights 
of the critical molecular processes within infection mechanisms. Specifically, we focused on host–pathogen protein–protein 
interactions, which represented the primary challenges associated with infectious diseases and drug design. Accordingly, a 
novel framework based on data analytics and machine learning techniques is detailed for analyzing these areas and we will 
describe the analytical results from host–pathogen protein–protein interactions (HP-PPI). Based on this framework, which 
serves as a pipeline solution for extracting and learning from the raw proteomics data, we have firstly evaluated several models 
from literature using different analytic technologies and performance measurements. An unsupervised deep learning model 
based on stacked denoising autoencoders, is subsequently proposed to capture higher level feature regarding the sequence 
information in the framework. The achieved performance indicates a superior capability of the unsupervised deep learning 
model in dealing with the host–pathogen protein interactions scenario among all of these models. The results will further 
help to enrich a theoretical and technical foundation for analyzing HP-PPI networks.

Keywords Protein interactions networks · Deep learning · Data analytics

1 Introduction

Given the high volume and variety of data, many researches 
are being conducted in data analytics to predict and uncover 
information and knowledge concerning related domains, 
including computer vision, economics, online resources and 
bioinformatics. Based on the availability of data, computa-
tional biology methods, including omics fields, biomedical 
imaging, and biological signal processing (Min et al. 2017), 
have grown in importance, with pilot studies having been 
previously conducted in areas such as genomics and prot-
eomics areas (Greene et al. 2014), and biomedical medicine 
and imaging areas (Savage 2014).

Proteomics is an important branch of system biology in 
the post-genomics era, with data analytics playing a vital 
role in understanding and predicting biological knowledge 
for proteins. Proteomics research focuses on utilising exist-
ing experimental data related to the protein interactions 
in order to elucidate high-fidelity interaction networks for 
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future biological experiments. Predicting protein–protein 
interactions remains an active research area in bioinformat-
ics (Qi et al. 2010). Among the protein interactions, intra-
species protein–protein interactions (PPI) are one type of 
interactions observed within the same species. Besides 
these interactions, we are motivated to study inter-species 
PPIs to reveal interactions between proteins from different 
species. Specifically, host–pathogen (HP) interactions are 
considered as key infection processes at the molecular level 
with the associated infectious diseases representing major 
worldwide health concerns, which have caused millions of 
illnesses annually.

There has been an accumulation of experimentally veri-
fied PPI data generated through in vitro methods, including 
small-scale biochemical, biophysical, and genetic experi-
ments, as well as large-scale methods, such as yeast-two-
hybrid analysis. However, these methods are time consuming 
and require substantial biomedical resources. Additionally, 
many of the methods exhibit high false positive rates, and 
the occasional large number of potential interactions hinders 
the deployment of some in vitro methods.

Here, we will describe the development of a new method 
for HP-PPI prediction. Since host–pathogen protein–pro-
tein interactions reveal substantial information concerning 
HP-specific infection mechanisms, a better understanding 
on HP-PPIs and the application of computational meth-
ods to promote their prediction will assist in vitro experi-
mental design. This study provides the following research 
contributions:

– Design of a detailed workflow framework for applying 
data analytics through curation of the large HP-PPI data-
sets: multiple databases need substantial reviews, and 
data processing including different aspects and stages 
has to be involved.

– Development of an unsupervised deep learning model is 
designed to handle the HP-PPI datasets, and the compari-
son against various supervised machine learning models 
indicates that our model achieves a best performance: the 
HP-PPI datasets present both small and large scales, and 
a highly skewed ratio between different classes exhibits 
a significant challenge for model learning.

Furthermore, the technical contribution from this study 
includes the framework implementation, which deals with 
the processes of data curation, data representation, and data 
storage, as well as the implemented machine learning mod-
els. The framework has detailed a complete life cycle for HP-
PPI prediction task, in which our experimental performance 
emphasizes the potential improvement of recently promis-
ing deep learning models and data analytics techniques. In 
this study, our deep learning based model has also benefited 
from the utilization of graphic processing unit (GPU) as the 

primary computing resources, which facilitates a faster train-
ing speed of the underlying unsupervised learning model.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work, Section 3 presents the frame-
work associated with the HP-PPI deep learning model, Sec-
tion 4 discusses the HP-PPI dataset curation process and 
provides a brief introduction to the supervised machine 
learning model, Section 5 presents a detailed results analy-
sis and discussion, and Section 6 evaluates the results and 
pinpoints future HP-PPI research directions.

2  Related work

As PPIs offer insights into molecular interactions and dis-
ease genes identification (Masood et al. 2018) for a spe-
cific species, such as yeast (Ito et  al. 2001), biological 
experiments are being carried out to reveal or determine the 
interaction-specific relationships between proteins. In this 
regard, HP-PPIs could further assist revealing the informa-
tion concerning infection pathways and providing additional 
insight from the interactions between host and pathogens 
(Chen et al. 2016).

However, a database targeting HP-PPI data does not 
exist yet. A previous review (Chen et al. 2016) detailed the 
research vision for HP-PPIs and it highlighted the impor-
tance of database construction. Several databases, including 
HPIDB (Kumar and Nanduri 2010), PATRIC (Wattam et al. 
2013), PHISTO (Tekir et al. 2013), VirHostNet (Navratil 
et al. 2009) and VirusMentha (Calderone et al. 2014), rep-
resent the most relevant PPI repositories. Owing to these 
earlier research efforts, these databases provide well sorted 
and experimentally verified HP-PPI information. Neverthe-
less, these manually updated databases currently represent 
only a small quantity of all PPIs.

There have been several recent studies on host–pathogen 
protein–protein interactions (Kshirsagar et al. 2013a, 2015; 
Schleker et al. 2015; Kshirsagar et al. 2013b), with each test-
ing a biological hypothesis that ‘similar pathogens target the 
same critical biological processes in the host’ through the 
use of learning models. These studies constructed a com-
mon structure using the pathway information to compute 
the similarities between different types of pathogens, with 
human considered as the primary host. One of these stud-
ies constructed a pairwise level multi-task model to com-
bine two different tasks. A potential solution for combining 
more tasks in the multi-task model has been proposed in 
Kshirsagar et al. (2013b), where the term ‘Task’ describes a 
computational model used to predict interactions between a 
specific pathogen and host.

Since supervised machine learning models have been 
widely applied for diverse topics of biological data, such 
as the decision tree for lung carcinoma cancer prediction 
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model (Varadharajan et al. 2018) and an lung cancer diag-
nosis system based on support vector machine (Prabuku-
mar et al. 2019), the traditional supervised machine learn-
ing models have been utilized to facilitate PPI research. A 
previous study used two pathogen-human datasets as source 
tasks and a third one as a target task to build a transfer learn-
ing model. Two other studies described extreme learning 
machine (ELM) models, which aimed at obtaining faster 
training speeds and higher degrees of accuracy (You et al. 
2014, 2013). Such a model was deployed via using a bal-
anced intra-species PPI dataset. Additionally, one method 
using Naïve Bayes classification model was described in 
Zhang et al. (2012) and the results for a comprehensive study 
and prediction of PPIs on yeast and humans via three-dimen-
sional structural information were presented. The algorithm 
(PrePPI) uses Bayesian statistics to derive relationships 
between structural information and other functional clues. 
This method yields over 30,000 high-confidence interactions 
for yeast and over 300,000 for humans (Zhang et al. 2012).

Given the potential in utilizing computational models, 
especially machine learning models, to facilitate the HP-PPI 
task, possible solutions have been widely discussed in Sen 
et al. (2016) and Soyemi et al. (2018). Without position-
ing verified databases and specific pathogens, a collection 
of traditional machine learning models has been assessed, 
including support vector machine, decision tree, Naïve 
Bayes and so on. Deep learning models, which have shown 
great power in protein structure prediction task (Gao et al. 
2019; Panda and Majhi 2018), have also been included as 
very important categories of machine learning models for 
prediction of HP-PPIs. However, a comprehensive frame-
work with detailed artefacts to illustrate data analytics and 
machine learning models for HP-PPIs is still needed. Mean-
while, how to leverage deep learning model to improve the 
performance comparing with traditional machine learning 
models is also lacking.

Regarding the protein information related to host and 
pathogen species, we mainly focus on protein sequences 
in this paper, which can be fetched from Uniprot database 
(UniProt et al. 2008). Since there is a limited amount of pro-
tein structure information and domain information, protein 
sequences information is also the most abundant information 
available. Nevertheless, the protein sequence information is 
the raw information, which is important to the subsequent 
distinct levels of protein structure and model learning. These 
biological data have allowed the researchers to achieve 
diverse implementations of encoding scheme (Shen et al. 
2007; Dagher et al. 2019). The Uniprot database provides 
verified details for both hosts and pathogens.

Taking both verified updated databases and the protein 
sequence information, these data empower the construction 
of a ‘gold-standard dataset’, which includes positive and 
negative HP-PPIs, for researchers facilitating data analytics 

involving similarity reduction and data sampling. Herein, 
positive HP-PPIs define the physical contacts between pro-
teins from host and pathogen, which activates the protein 
functions. Conversely, the negative HP-PPIs indicates that 
the proteins functions are inactivated accordingly. Normally, 
experimentally verified HP-PPIs from databases only pro-
vide the positive HP-PPIs; however, negative HP-PPIs are 
required for the consideration of supervised machine learn-
ing models.

Usually, a balanced dataset, with a nearly 1:1 ratio of 
positive and negative PPIs, is constructed for traditional 
model based learning techniques. However, for HP-PPIs, 
a dataset containing a 1:100 ratio is necessary to prevent 
a classifier biased towards inaccurate prediction based on 
a given biological scenario. With regard to these issues, a 
well-designed ratio is critical for constructions of an “HP-
PPIs gold-standard dataset”. A previous study described 
random sampling of pathogenic and host protein in order to 
curate a negative HP-PPI dataset (Chen et al. 2016). So far, 
there is still a big gap in linking these researches.

In the following sections, we will describe our frame-
work for HP-PPI dataset curation and propose a novel 
method, which achieves the state-of-the-art performance 
for prediction.

3  HP‑PPI framework

Given the large number of databases, data analytics 
and learning models can contribute to HP-PPI research. 
Although previous studies provided a technical workflow 
for PPI research from various perspectives (Zhang et al. 
2012; Kshirsagar et al. 2013a; You et al. 2013; Kshirsagar 
et al. 2013b; Schleker et al. 2015; Kshirsagar et al. 2015; 
Mei and Zhu 2015; You et al. 2014), a comprehensive and 
detailed framework for HP-PPI research involving data ana-
lytics, feature representation, and model learning does not 
exist currently.

The framework for HP-PPI presented here includes 
activities related to data collection and manipulation, fea-
ture representation, and a machine learning model. We also 
introduce a new model to be jointly implemented for this 
framework, which helps boosting the performance. Fig. 1 
depicts a brief structure of the framework.

Addressing HP-PPI research as a prediction task, we for-
mulated the framework according to different steps involving 
data collection, assessment of data redundancy, data sam-
pling, feature representation, and model learning. The frame-
work targets on collecting high-quality data by removing 
redundancies and homologous data, and sampling negative 
data to allow construction of a gold-standard dataset. The 
feature representation and model learning would represent 
the predictive aspects of the method.
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3.1  Data redundancy

Regarding the interdisciplinary nature of HP-PPI research, 
we have used multiple open-access databases to obtain 
protein–protein interactions data as well as the corre-
sponding features. These databases play important roles 
at different stages in the data analytics step.

Several database repositories across both academia and 
industry, which contain only experimentally verified and 
positive HP-PPI data, are taken into consideration to pre-
pare the protein interactions data for analyses. Addition-
ally, these HP-PPI database are manually updated. As a 
few examples herein, HPIDB (Kumar and Nanduri 2010), 
PATRIC (Wattam et al. 2013), PHISTO (Tekir et al. 2013), 
VirHostNet (Navratil et al. 2009) and VirusMentha (Calde-
rone et al. 2014) are several main repositories for HP-PPI 
research. Recently, Human Proteome Organization Prot-
eomics Standards Initiative (HUPO-PSI) has also created 
the PSI-MI XML format to facilitate storage of PPI data 
in a single, unified format. In this study, the HP-PPI data 
was collected using XML format from several database 
repositories. For exhaustive learning and prediction of HP-
PPI data, queries across several different database reposi-
tories is necessary to construct a positive HP-PPI datasets. 
Furthermore, the related protein information queried from 
Uniprot database is required to construct a negative HP-
PPI dataset.

Construction of these datasets considered two levels of 
data redundancy, which exist from these preliminary data-
base repositories. The first one is regarding the evaluation 
of redundancy. Since these various databases are maintained 
by different organizations, it is very likely that they con-
tain duplicated information. These duplication needs to be 
identified and removed. The second level concerns sequence 
redundancy, which is more meaningful. Mostly, the homol-
ogy relationship between different proteins needs to be con-
sidered, because the HP-PPI datasets contain the interaction 

pairs representing different pathogenic proteins interacting 
with the same host protein.

Sequence redundancy can be determined from various 
data sources and detected on different protein characteris-
tics. As included in Fig. 1, Uniprot (UniProt et al. 2008), 
Gene Ontology Consortium (Gene Ontology et al. 2015) 
and the human protein reference database (HPRD) (Goel 
et al. 2012) provide protein sequence, gene ontology (GO) 
and human interactome graph information, respectively. To 
avoid classifier bias, the introduction of clustering method 
on these data is necessary to construct a dataset that mini-
mizes the homology redundancy (Li and Godzik 2006). This 
is achieved by using the sequence information from Uniprot 
to obtain the protein clusters based on sequence similarity, 
which is as well termed as ‘CD-HIT’ (Li and Godzik 2006). 
Sequence redundancy represents the similarity between pro-
tein sequences and helps us to avoid the homology redun-
dancy during collection of high-quality data, whereas GO 
terms allow separation of proteins according to molecular 
function (F), cellular component (C) and biological process 
(P). A previous study subsequently used ‘G-Sesame’ (Du 
et al. 2009) to determine similarities between two individual 
GO terms, which represented the similarity between two 
proteins according to these different properties.

3.2  Data sampling and representation

Following the collection of positive protein–protein inter-
actions from various database repositories, the negative 
protein–protein interactions are also essential to build the 
supervised machine learning model. In this paper, we used a 
random sampling method to generate a negative PPI dataset.

As a result of the data analysis, we have obtained a HP-
PPI dataset indicating only the identities of interacting 
proteins between host and pathogen. To input information 
related to each unique protein interaction into a learning 
model, feature representation is required, which includes 

Fig. 1  A brief illustration of 
HP-PPI framework
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sequence, gene ontology, interactome graph, and gene 
expression information. Additional to aforementioned sev-
eral databases, i.e. Uniprot, Gene Ontology Consortium and 
HPRD, Gene Expression Omnibus (GEO) (Barrett et al. 
2013) provide gene expression data, which include micro-
array, next-generation sequencing (NGS) and other forms of 
high-throughput functional genomics data.

Since sequence information includes most information 
of the corresponding protein and is protein specific, in this 
study, we primarily use sequence information for feature rep-
resentation, as described in previously researches (Kshirsa-
gar et al. 2013a, b, 2015; Schleker et al. 2015; Mei and Zhu 
2015; You et al. 2014, 2013; Zhang et al. 2012).

For different protein properties, it is required to represent 
the properties into a numerical form. In the past, numerous 
studies related to feature representation have been conducted 
for sequence information (Kshirsagar et al. 2013b; Shen 
et al. 2007; Guo et al. 2008; Davies et al. 2008; Du et al. 
2009). The feature representation remains a hot and ongoing 
research area for bioinformatics researchers.

As sequence information allow unique information to be 
imported into the learning model, in this paper, we primarily 
discuss the feature representation with sequence informa-
tion. The unique information include the different types of 
amino acids in different combination and various lengths. 
As said in ‘The amino acid sequence of a protein deter-
mines its three-dimensional structure’ (Berg et al. 2002), 
it also provides a widely adopted view that knowledge of 
the sequence information would be adequately feasible to 
represent a protein.

There are different strategies to categorize the amino 
acids types, which would thus introduce different feature 
representation methods. One is based on the differences 
in their electrostatic and hydrophobic properties. These 
20 types of amino acids can be subsequently categorized 
into seven groups as shown in Fig. 2. Alternative strategy 
is based on their physicochemical properties. It typically 
considers the amino acids from seven corresponding physi-
cal and chemical characteristics, such as hydrophobicity, 

volumes of side chains and so on (Shen et al. 2007; Guo 
et al. 2008).

Since the main goal is to build a supervised learning 
model for learning the dataset with supervised learning 
model for prediction, these positive interactions represent 
a higher quality and less bias dataset based on various well-
maintained and manually updated HP-PPI database reposi-
tories. A brief introduction about data curation and feature 
representation methods for selected HP-PPI tasks for several 
infectious diseases is presented in Sect. 4.

3.3  Model learning

While HP-PPI dataset has been built, in this paper, we 
consider to deploy both the supervised and unsupervised 
machine learning models to learn and predict HP-PPIs based 
on the curated dataset. In addition to improve the perfor-
mance by introducing new learning models, there have been 
studies focusing on incorporating more processing and more 
training on data, including data augmentation and newly 
developed strategy to obtain extended kernel functions 
for classification, given a dataset in areas such as cancer, 
which may benefit HP-PPIs prediction as well (Chaudhari 
et al. 2019; Wang et al. 2019). Moreover, interpretability 
is required in some kinds of analytics tasks, such as brain 
diseases analysis (Tomasiello 2019), to enhance the trans-
parency of the model and retain the performance at the same 
time.

In this study, we primarily focus on building machine 
learning model for the binary classification task to infer the 
interaction relationship of HP-PPIs dataset with high perfor-
mance. Especially, the benefit of introducing unsupervised 
deep learning model will be identified and discussed further.

Although supervised machine learning model is consid-
ered as the dominant classification model, the unsupervised 
deep learning model is introduced in this work to build a 
complementary feature representation, which also helps tun-
ing multi-layer supervised model. As for learning models 
for comparison, we have simultaneously built several clas-
sic supervised machine learning models, including support 
vector machine (SVM), extreme learning machine (ELM) 
and Naïve Bayes Model, among others.

4  Learning HP‑PPI

To evaluate the feasibility of the framework discussed in 
section 3, we present a detailed practice in this section. Spe-
cifically, two HP-PPI database repositories, PATRIC and 
PHISTO, were used for construction of the HP-PPI data-
sets. The benefit from these two databases is that, the hosted 
positive data are manually extracted and uploaded based on 
biological literature.
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Table 1 shows statistics associated with the bacterium 
pathogen species used for construction of our datasets and 
used for model learning. After the data redundancy analy-
sis, we have identified that, these three different bacterium 
pathogen species were retained containing the enough sam-
ples for model training and also in the best interest of infec-
tious diseases for human. These datasets are correspond-
ing to Clostridium difficile, Escherichia coli, and Bacillus 
anthracis in our study, as shown in Table 1, with the positive 
protein pairs numbers decreasing after redundancy analyses. 
Here, Clostridium difficile is the primary cause of the inflam-
mation of the colon, Escherichia coli causes both minor and 
severe intestines illness and Bacillus anthracis is the etio-
logic agent of anthrax.

We used relatively small datasets that included 56 and 
168 pairs of positive HP-PPIs in this paper, meanwhile, the 
large size dataset with 6073 pairs of positive HP-PPIs was 
also exploited. ‘CD-HIT’ was utilised to remove protein 
pairs with high homology information and as a result, the 
column under ‘CD-HIT Redundancy Removal’ indicates the 
final positive protein pairs statistics.

4.1  Feature representation

To avoid a large amount of missing data, we mainly used 
sequence information to represent protein properties, with 
Auto Covariance (AC) algorithm (Guo et al. 2008) as the 
first step of features representation methodology.

As one of the popular feature representation algorithms, 
AC is capable of transforming numerical vectors to uniform 
matrices based on sequence information. The representing 
matrices are having a same dimension after AC transforma-
tion regardless of protein sequence length. The steps of AC 
algorithm for sequence information is listed below.

– Considering there are 20 different kinds of amino acids 
and each kind of amino acids exhibits 7 different phys-
icochemical properties, a normalized matrix is acquired 
to present these information. Sequence information is 
subsequently translated into numerical values according 
to this matrix.

– Given a max distance value D, we represent the numeri-
cal sequence information into a uniform matrix by fol-
lowing equation: 

d is the distance between two amino acids and it ranges 
from 1 to D. fi,j represents the corresponding jth value of 
ith amino acid and N is the length of the protein sequence. 
It calculates the auto cross covariance relationship within 
the sequence information, and represents the numerical 
sequence information to a scalar with D ∗ 7 length. In this 
study, D = 30 and the length of each vector was set to 210 
for each protein, resulting in a pair-wise feature vector of 
420 dimensions for each HP-PPI pair.

Mostly, the AC feature is fed into the following model 
for learning. However, in host–pathogen–protein interac-
tions scenario, a highly skewed ratio between different 
classes and different scales of datasets are observed. As 
the unsupervised deep learning model helps to construct 
higher level features and initiate a deep neural network in 
a better state, we are motivated to build an unsupervised 
deep learning model based on stacked denoising autoen-
coders to achieve a boost performance comparing with 
traditional models. The following sections will discuss the 
details.

4.2  HP‑PPI dataset statistics

The ratio of positive and negative pairs was set at 1:100 
to align with experiment scenarios, which was normally 
considered to yield less bias in predictions (Table 1).

We further evaluated the learning models by 10-fold 
cross validation after dividing the HP-PPI datasets into 
training and test datasets. Details are listed in Table 2.

(1)

AC(d, j) =
1

N − d

N−d∑

i=1

(
fi,j −

1

N

N∑

i=1

fi,j

)

∗

(
fi+d,j −

1

N

N∑

i=1

fi,j

)

Table 1  Processing of HP-PPI 
dataset

Species Positive pairs Manual redun-
dancy

CD-HIT redundancy 
removal

Ratio 1:100

Clostridium difficile 56 53 52 5252
Escherichia coli 168 104 98 9898
Bacillus anthracis 6073 3138 3035 306535

Table 2  Statistics of HP-PPI dataset

Species Training size Test size

Clostridium difficile 4545 707
Escherichia coli 8181 1717
Bacillus anthracis 275427 31108
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4.3  Learning models

We deployed a deep learning model as our primary model 
for model learning and prediction. Meanwhile, several gen-
eral supervised learning models were also implemented 
for comparison, including a linear-kernel support vec-
tor machine (SVM), ELM, naïve Bayes and decision tree 
models.

4.3.1  Support vector machine

SVMs (Cortes and Vapnik 1995) aim to achieve minimal 
structural risk to achieve optimal performance. It has been 
successfully applied to many real world problems. In our 
study, SVM was designed to classify the interaction rela-
tionship according to a given dataset of HP-PPIs denoted 
as {xi, yi} , i = 1, 2, ..., N , where xi ∈ Rn , and yi ∈ {+1,−1}.

4.3.2  Extreme learning machine

An ELM allows high degrees of accuracy, and also mini-
mizes the running time required to train the classification 
model. ELM (Huang et al. 2006) is considered to bring these 
advantages with its operation based on the Moore–Penrose 
definition of this model.

Given (xi, yi) , where xi = [xi1, xi2, ..., xin]
T and yi = [yi1, yi2, 

..., yim] , the learning procedure is presented below with a 
hidden neuron layer, L: 

STEP 1 Fix the input weight wi and bias bi , i = 1,...,L
STEP 2 Calculate the hidden neurons output H
STEP 3 Update � according to � = H∗Y  , where H∗ is the 

Moore–Penrose generalized inverse of the hidden neu-
ron output, and Y is the matrix yi

4.3.3  Naïve Bayes model

Naïve Bayes model is a member of a family of simple proba-
bilistic classifiers based on Bayes’ theorem (Zhang 2004; 
Wikipedia 2017b) and was derived from conditional prob-
ability theory.

Given that X = (x1, x2, x3, ..., xn) , and xi represents the ith 
feature, Bayes’ model delivers the probability corresponding 
to the kth category yk:

The final prediction is based on the maximum probability 
assigned to yk:

(2)p(yk|X) =
p(yk) ∗ p(X|yk)

p(X)

(3)p(yk|X) = argmax{p(y1|X), p(y2|X), ..., p(ym|X)}

In the naïve Bayes model, the features are considered as 
independent between each other; therefore:

The naïve Bayes model used in this study is Gaussian naïve 
Bayes. Since we are dealing with continuous data, the data 
is assumed to distribute according to a Gaussian distribution. 
Computing �k and �2

k
 as the mean and variance, respectively, 

of X associated with yk , we use the following equation:

4.3.4  Decision tree

A decision tree is considered a non-parametric supervised 
model (Wikipedia 2017a). It renders a tree-like model capa-
ble of predicting an incoming instance based on learned 
decision rules from known data features. Decision trees are 
simple to understand and interpret, while it is also capable 
of handling both numerical and categorical data.

4.3.5  Stacked denoising autoencoder

Deep learning models have achieved good performance on 
both classification and regression tasks, suggesting their gen-
eralized utility for learning relationships from data (LeCun 
et al. 2015; Min et al. 2017; Yan et al. 2018; Gao et al. 2019; 
Panda and Majhi 2018). These models have shown that, deep 
learning models are capable of learning protein structure 
prediction task in a more efficient way, and can achieve bet-
ter performance than the other models.

In this study, we are motivated to introduce another group 
of unsupervised deep learning model, denoising autoencoder 
(dA), which represents features via a deep neural network. 
Denoising autoencoder (Vincent et al. 2008) is a training 
model used for unsupervised learning. It is motivated from 
general autoencoder and is capable of reconstructing origi-
nal input from corrupted input. Additionally, the denoising 
autoencoder could be stacked as stacked denoising autoen-
coders (SdA) to build a multi-layer network (LeCun et al. 
2015).

As a primary unsupervised learning model, a stacked 
denoising autoencoders can construct higher level features 
to allow for a better initial state in the deep learning model. 
Herein, we applied an SdA as the unsupervised model to 
learn from the curated datasets comprising three different 
bacterial species, whereas at the top layer, we choose logistic 
regression (LR) (Hilbe 2009) as our classification model. 
We subsequently fine-tuned the network to achieve better 

(4)p(yk) ∗ p(X|yk) = p(x1|yk)p(x2|yk)...p(xn|yk)

(5)p(xi|yk) =
1

√
2��2

k

e
−

(xi−�k )

2�2
k
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performance than simply training the network in two sepa-
rate stages (Chen et al. 2017).

Technically, we corrupted the input by adding small 
amounts of noise, in which both Gaussian noise and ‘mask’ 
noise are feasible. The integrated model is depicted in Fig. 3.

We applied this four-layer network to learn and predict 
from our curated datasets. It has a similar architecture as that 
of a previously described model (Chen et al. 2017); however, 
we fine-tuned the network following initial training using 
LR Layer. The architecture of this network is as follows: 
input layer (420 input nodes) → dA layer1 (210 neurons) → 
dA layer2 (210 neurons) → dA layer3 (210 neurons) → LR 
layer (1 output node).

In Fig. 4, we describe the details of construction of the 
denoising autoencoder layer. In Fig. 4, the Ẍ is the corrupted 
input data from X. For our experiments, we ended up with 
choosing only Gaussian noise as it achieved better perfor-
mance over Ẍ wit ‘mask’ noise. The encoding process and 
decoding process is given as:

The dA layer trains each layer as an individual component 
first, followed by output of the learned data, Y, to subsequent 
layers. The learned parameters, W, are maintained and will 

(6)
Y = W ∗ Ẍ + bx

X̃ = W � ∗ Y + bh

be applied to the entire network during subsequent fine-tun-
ing steps. Each layer is pre-trained using the same process.

The logistic regression layer is our final classification 
layer. For a binary classification problem, yi = 0, 1 , where i 
represents the ith example, the LR model returns the result 
according to the following:

Here, � represents the model parameters. The cost function 
applied in logistic regression model is:

After pre-training the different layers, we fine-tuned the 
overall network using a back propagation algorithm. In the 
next section, we will discuss our experiment evaluation 
results as well as the compiling environment.

5  Results and discussion

With the curated ‘HP-PPI gold-standard dataset’, we antici-
pate to evaluate and compare these learning models perfor-
mance. We applied and implemented the SdA, SVM, ELM, 
decision tree, naïve Bayes and also logistic regression based 
on ‘Tensorflow’ (Abadi et al. 2015), ‘libsvm’ (Chang and 
Lin 2011), ‘hpelm’ (Akusok et al. 2015) and ‘scikit-learn’ 
(Pedregosa et al. 2011).

Training deep learning model on big datasets highly 
relies on specific structures, such as GPU/TPU/FPGA, to 
decrease the running time and finalise the parallel processing 
tasks. In this regard, our computing resources system is built 
upon ‘NVIDIA GTX 1080Ti’ GPU and 64GB RAM, which 
allowed efficient parallelization computing. The working 
operating system is Ubuntu 16.04. In this study, all frame-
work implementations were written in Python.

5.1  Primary results

To evaluate the performance and robustness of the models, 
experiments were conducted using 10-fold cross valida-
tion. The evaluation results are presented as the mean and 
variance in terms of precision, recall values, F1 score, and 
accuracy. It should be noted that the accuracy measurement 
might not fully reflect the performance of these models, 
because the datasets are highly skewed. However, we have 
reported these results for completeness. The precision value 
represents the fraction of retrieved information relevant 
to the result, whereas the recall value represents the ratio 
of successful retrievals by the learning model. These are 

(7)
P(yi = 1|xi) = h�(xi) = 1∕(1 + exp(−�T ∗ xi))

P(yi = 0|xi) = 1 − P(yi = 1|xi) = 1 − h�(xi)

(8)J(�) = −
∑

i

(yilog(h�(xi)) + (1 − yi)log(1 − h�(xi)))
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critical factors necessary to determine system performance, 
specifically on an imbalanced dataset.

Basic calculations of precision and recall values are as 
follows:

Here,“TP” represents the true positive number, “FP” is the 
false positive number and “FN” is the false negative number. 
The precision and recall values are further used to calcu-
late a harmonic average, which is subsequently termed as 
F1 score to provide a final measurement for a given model. 
Normally, the F1 score is ranging between 0 and 1. It reaches 
the best performance at 1 while worst at 0. The F1 score is 
calculated as follows:

We initially calculated precision and recall values for all 
of the models. Table 3 shows the statistics associated with 

(9)Precision =TP∕(TP + FP)

(10)Recall =TP∕(TP + FN)

(11)F1 = 2 ∗ Precision∕(Precision + Recall)

precision results, Table 4 for the recall results, Table 5 for 
the F1 results and Table 6 for the accuracy results. In these 
tables, ‘SVM’ refers to linear-kernel SVM, ‘ELM’ repre-
sents to extreme learning machine while ‘SdA’ is the stacked 
denoising autoencoders model, ‘Gaussian NB’ indicates 
Gaussian Naïve Bayes, ‘DT’ refers to decision tree model 
and ‘LR’ is logistic regression model.

According to these measurements, the SdA model 
achieved the best performance on F1 score as well as 
accuracy for HP-PPI prediction for Clostridium difficile, 
Escherichia coli and Bacillus anthracis. Specifically, 
the SdA model outperformed the LR model in terms of 
F1 score and accuracy, indicating that the unsupervised 
learning model presented a better feature learning capa-
bility and resulted in an improved predictive performance.

Although model performances on different datasets are 
varied, the SdA model retains the best performance among 
all the models.

Table 3  Precision result (%)

Species Gaussian NB LR SVM DT ELM SdA

Clostridium difficile 78.53 ± 11.37 97.50 ± 0 96.25 ± 5.73 84.88 ± 9.48 97.50 ± 5.0 100 ± 0.00
Escherichia coli 2.52 ± 0.55 50.30 ± 9.99 62.86 ± 14.95 49.16 ± 11.13 20.00 ± 40.00 87.00 ± 6.52
Bacillus anthracis 1.65 ± 0.04 92.48 ± 7.97 70.00 ± 45.83 60.25 ± 1.33 10.00 ± 30.00 92.49 ± 2.04

Table 4  Recall result (%)

Species Gaussian NB LR SVM DT ELM SdA

Clostridium difficile 100 ± 0 98.57 ± 4.29 98.57 ± 4.29 95.71 ± 6.54 94.29 ± 7.00 98.57 ± 4.29
Escherichia coli 71.76 ± 14.11 35.88 ± 10.00 29.41 ± 11.16 70.59 ± 10.85 1.18 ± 2.35 51.18 ± 8.34
Bacillus anthracis 79.83 ± 2.27 4.42 ± 1.28 0.39 ± 0.32 66.72 ± 2.90 0.03 ± 0.10 48.83 ± 2.86

Table 5  F1 result

Species Gaussian NB LR SVM DT ELM SdA

Clostridium difficile 0.8752  ± 0.307 0.9790 ± 0.0322 0.9723 ± 0.0340 0.8954 ± 0.0571 0.9559 ± 0.362 0.9923 ± 0.0230
Escherichia coli 0.486 ± 0.106 0.4097 ± 0.0899 0.3939 ± 0.1295 0.5775 ± 0.1126 0.222 ± 0.444 0.6382 ± 0.0649
Bacillus anthracis 0.323 ± 0.009 0.0841 ± 0.0238 0.0077 ± 0.0063 0.6330 ± 0.0175 0.006 ± 0.019 0.6387 ± 0.0278

Table 6  Accuracy result (%)

Species Gaussian NB LR SVM DT ELM SdA

Clostridium difficile 99.70 ± 0.18 99.96 ± 0.06 99.94 ± 0.07 99.77 ± 0.13 99.90 ± 0.09 99.99 ± 0.04
Escherichia coli 71.88 ± 2.57 98.99 ± 0.18 99.13 ± 0.15 98.95 ± 0.37 98.98 ± 0.09 99.44 ± 0.07
Bacillus anthracis 52.57 ± 0.27 99.05 ± 0.01 99.01 ± 0.00 99.23 ±  0.03 99.01 ± 0.00 99.45 ± 0.03
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5.2  Area under the receiver operating characteristic 
(ROC) curve (AUC) Analysis

The results of receiver operating characteristic (ROC) and 
the area under ROC curve (AUC) value analysis are shown 
in Fig. 5, Fig. 6, Fig. 7 and Table. 7.

The ROC results illustrate the classification ability of 
binary HP-PPI prediction according to various discrimina-
tion thresholds. It was plotted based on different settings of 
TP rates against FP rates. The AUC value ranges between 
0 and 1 with higher values indicating a better classification 
performance.

Moreover, it is worth noting that ELM model achieves 
better AUC value on smaller datasets based on the com-
prehensive results from Table7. It achieves AUC values 
of 0.9997 for C. difficile and 0.9448 for E. coli. However, 
across all three tasks, the SdA model presents a more stable 
performance (0.9985 for C. difficile, 0.9431 for E. coli and 
0.9250 on B. anthracis). From Table 7, it is observed that the 
performance of SdA model on B. anthracis specie is much 

better than the others, including the followings from decision 
tree model (0.8314) and ELM model (0.8157).

5.3  Learning and convergence curves

Regarding learning and convergence curve, the related 
comparison results are presented in Fig. 8. The conver-
gence curve represents the relationship between the training 
epoch and global loss, with a lower global loss suggesting 
the closeness of the model to the optimal state.

Fig. 8 shows the convergence curves for logistic regres-
sion and SdA model, with pre-training step for the SdA 
model initially applied in the SdA layers, after which the 
output of the last SdA layer is used as input for the logistic 
regression layer. Our results indicated that the training itera-
tions needed for the SdA model for C. difficile and E. coli 
HP-PPI prediction were much less than those needed for 
training the LR model. Retaining the parameters from the 
pre-training step in the SdA layers improved the convergence 
speed and aided the efficient realization of the optimal state.

Table 7  AUC value

Species Gaussian NB LR SVM DT ELM SdA

Clostridium difficile 0.9985 ± 0.001 0.9991 ± 0.0026 0.9926 ± 0.0214 0.9776 ± 0.0326 0.9997 ±0.0005 0.9985 ± 0.0045
Escherichia coli 0.7182 ± 0.0756 0.9413 ± 0.0204 0.6462 ± 0.0559 0.8491 ± 0.0553 0.9448 ± 0.0276 0.9431 ± 0.0318
Bacillus anthracis 0.6607 ± 0.01 0.7675 ± 0.0125 0.5019 ± 0.0016 0.8314 ± 0.0145 0.8157 ± 0.0099 0.9250 ± 0.0112

Fig. 5  Learning models ROC Curve on Bacillus anthracis 
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Fig. 6  Learning models ROC curve on Clostridium difficile 

Fig. 7  Learning models ROC curve on Escherichia coli 
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6  Conclusion

In this study, we presented a comprehensive framework for 
HP-PPI prediction and described a SdA-based based deep 
learning model for HP-PPI datasets. The framework consid-
ered information derived from various data sources, and it 
applied a learning model to build a workflow-like system to 
predict HP-PPI. Comparison of the SdA model with other 
models indicated its superiority for this application.

A well-designed framework capable of utilizing open-
source resources is critical for HP-PPI specific research 
and promotes high-fidelity prediction results for biologists. 
This framework will facilitate the exploration and under-
standing of HP-PPI networks, and offer critical insights of 
infectious mechanisms between host and pathogen. Since 
data continues to accumulate rapidly, a suitable learning 
model for HP-PPI prediction is demanded. Here, we have 
evaluated curated datasets using several different super-
vised learning models. We have found that, the unsuper-
vised SdA model is optimal for the highly skewed and big 
datasets and is better at feature representation if compared 
to other models. Additionally, model convergence speed 
has benefited from the unsupervised learning technique 

and the usage of GPU. Our results suggested that, the deep 
learning model was capable of dealing with big HP-PPI 
datasets.

Our future research will continue to investigate the appli-
cation of data analytic techniques, including the mentioned 
data augmentation and new algorithms to deal with data 
processing, for HP-PPI prediction. This effort will also 
include the use of larger datasets with a higher degrees of 
dimensionality in feature representations, including broader 
use of GO data, interactome data and gene expression data.
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