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Abstract
We investigate the effects of the social influence in determining the behavior of agents in a social network in the context of 
an election. In particular, we concentrate our attention on how the structure of a social network can be manipulated in order 
to determine the outcome of an election. We consider an election with m candidates and n voters, each one with her own 
ranking on the candidates. Voters are part of a social network and the information that each voter has about the election is 
limited to what her friends are voting. We consider an iterative elective process where, at each round, each voter decides her 
vote strategically, based on what her neighbors voted in the previous round and her ranking. Thus, a voter may decide to vote 
for a candidate different from her favorite to avoid the election of a candidate she dislikes. Following Sina et al. (Adapting 
the social network to affect elections. In: Proceedings of the 2015 International Conference on Autonomous Agents and 
Multiagent Systems, pp 705–713, 2015) we investigate how a central organization that knows rankings of all the voters and 
can manipulate the structure of the social network can determine the outcome of the election by creating new connections 
among voters. Our main result is an algorithm that, under mild conditions on the social network topology and on the vot-
ers’ rankings, is able to compute a limited number of links to be added to the social network in order to make our designed 
candidate the winner of the election. Our results can be seen as another indication that who controls social media can have 
a great influence on our lives by strategically determining what information we are exposed to.

1 Introduction

In last years the influence that social media have on our 
choices and our everyday life is getting more and more rel-
evant (Tambini 2018). For example, it is quite common to 
choose restaurants, hotels or holiday destinations by looking 
how other users rate these places on social sites as Yelp, 
TripAdvisor, or also Facebook. The spirit of these services 
is that you can take advantage of the experience of the com-
munity in taking your decisions. However, our choices will 
be strictly intertwined not only to what our friends did or 
thought, but also on which data the social media decided to 
show or conceal. By carefully selecting the information to 
present to the agents, an agency controlling the social media 
can innescate information cascades that can significantly 
change the decisions of the agents.

In this work we address the problem of the social media 
manipulability from a social choice theory point of view. We 
consider a setting where n voters (the members of a social 
network) have to elect a winner among m candidates. Voters 
are arranged in a graph, describing the social relationships 
existing among them. Voters are then involved in an iterative 
voting session (Meir 2017), in which at each time step they 
vote for their preferred candidate, depending on what others 
voted in the previous step. Clearly, at each time step they 
have the chance to revise their decision and vote for a differ-
ent candidate, depending on the results of the previous steps.

Specifically, in this work, in order to understand to which 
extent the social media can influence our choices by decid-
ing which information voters are exposed to, we consider 
the setting proposed in Sina et al. (2015), in which each 
voter has her personal ranking on the candidates, and she 
is exposed to limited information about the election, con-
sisting only of the choices made by her neighbors in the 
network (and, possibly, a poll). Voters are then assumed to 
behave strategically, in the sense that at each step they decide 
their vote in response to what their neighbors voted in the 
previous step in order to optimize their personal welfare. 
Thus, a voter may decide to vote for a candidate that is not 
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her favourite, as long as her vote can lead, according to her 
limited view of the election (restricted to her neighborhood 
and the poll), to an outcome that she would prefer to the 
current outcome.

 Sina et al. (2015) investigated to what extent a cen-
tral entity that has global knowledge on the voters’ rank-
ings and the control of the social network (e.g., the social 
media owner or manager) may influence the outcome of the 
election process, by manipulating the view of the voters 
through the addition/deletion of links in the social network. 
In particular, they focus only on the addition case, since this 
operation is less invasive and can be realized without aris-
ing suspects in the voters. We remark that this scenario is 
very relevant and realistic, since current technology would 
already allow the social media managers to implement this 
kind of manipulation (e.g., Facebook’s friend suggestions).

Unfortunately, the results in Sina et al. (2015) address the 
issue only partially. Indeed, they design a polynomial time 
algorithm that, given the social network, the voters’ rankings 
and a designated candidate w, compute a set of links that a 
central designer may add to the network in order to have that 
w will be voted by the majority of voters. This interesting 
result has the drawback that the number of added links is 
extremely large and this makes the algorithm infeasible in 
real settings. However, computing the minimum number of 
links to add in order to make the desired candidate to win, 
is a computationally hard problem, even in simpler settings 
(Bredereck and Elkind 2017).

To address these issues, Sina et al. (2015) proposed an 
alternative heuristic that works in two phases: first, it influ-
ences a subset of voters, by adding links to the social net-
work in order to modify their view so that they “autono-
mously” decide to vote for our designated winner w, and 
then, it stabilizes the neighbors of the voters influenced in 
the previous phase and have them voting for their favorite 
candidates. Clearly, the heuristics may fail if it does not find 
enough nodes to influence and stabilize in order to have w 
the winner of the election.

Sina et al. (2015) proved experimentally that their heu-
ristic adds only a limited number of links. However, it tends 
to have a quite large failure rate. The main problem is given 
by the fact that the heuristic does not stabilize neighbors 
of stabilized nodes: thus, due to the added links, they may 
become unstable, and this can activate cascading behaviors 
with severe effects on the outcome of the election (The prob-
lem has been acknowledged also in Sina et al. (2015), and 
a fix is proposed that significantly increases the number of 
added links).

1.1  Our contributions

In this work we present a novel algorithm to compute the set 
of links to be added to the social network in order to have 

the designated candidate w win the election. Our algorithm 
works under mild conditions on the network structure and 
on the voters’ rankings. Moreover, it adds a limited number 
of links (comparable to the heuristics in Sina et al. (2015)).

As the heuristic in Sina et al. (2015), our algorithm works 
in two phases. In the influence phase we look for a voter u 
that may be influenced to vote for the designated candidate 
w, and we add links between u and nodes that are voting for 
w or for a candidate that u dislikes. These nodes are cho-
sen among the ones that have not been influenced yet. This 
phase is repeated until w obtains the majority of the votes. 
Thus, if all the non-influenced voters vote for their favorite 
candidates (we take care of this hypothesis in the stabiliza-
tion phase), then w will win the election. Notice that, since 
we are following the same approach proposed in Sina et al. 
(2015), in this phase we are adding no more links than their 
heuristic does.

The stabilization phase aims to guarantee that all the non-
influenced nodes continue to vote for their favorite candi-
dates and it is the crux of our algorithm. We partition the 
nodes to stabilize in three sets: the superseeds, the seeds, 
and the remaining nodes. Our algorithm adds only 4 links 
per node to stabilize a superseed node and at most 2 links 
per node to stabilize all the remaining nodes. We prove that 
this is the minimum number of links that have to be added 
to stabilize all these nodes.

Our algorithm works under a set of mild conditions: the 
main requirement is that there are sufficiently many voters that 
do not rank w as the worst candidate (since these voters can 
be never induced to vote for w), and they have a limited neigh-
borhood (otherwise the available links may be not sufficient 
to change their minds). There are also other technical require-
ments, but they concern only a limited number of nodes and 
they can be easily satisfied whenever the number of voters is 
large enough. We notice that our algorithm’s working condi-
tions are more restrictive than the ones of the algorithm in 
Sina et al. (2015), but it adds a much smaller number of links.

Finally, in Sect. 5 we present results of extensive experi-
ments that we run to validate our algorithm and compare it 
to the heuristic presented in Sina et al. (2015). Our experi-
ments show that our algorithm adds a number of links that 
is slightly greater than their heuristic but it never fails, while 
the heuristic failed in about the 25% of our simulations.

1.2  Related works

There is a large literature on iterative voting, that allows 
agents to update several times their vote during the elec-
tion process (Meir et al. 2010; Lev and Rosenschein 2012; 
Grandi et al. 2013; Meir et al. 2014). All these works focus 
on conditions necessary to guarantee that strategic voters 
converge to an equilibirum in an iterative election process: 
specifically, they consider the issue under different votes’ 
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aggregation rules, such as Plurality and Borda rules, or by 
restricting the set of voters’ initial rankings. However, these 
works do not consider the effect that social influence could 
have on voters’ actions, i.e., in these works every voter has 
complete knowledge of votes of every other agents.

In the last years there is an increasing literature focusing on 
the election manipulation problem, i.e., on how social media 
can be used as a powerful tool for subverting the result of an 
election. One of the first works along this research line ana-
lyzed the resistance to bribery of a special aggregation rule 
based on cp-nets (Maran et al. 2013). Moreover, Auletta et al. 
(2017) showed that in an election setting with only two candi-
dates where voters are influenced by a (weighted) majority of 
their neighbors, it is always possible for a manipulator to lead a 
minority (if it is large enough) to become a majority, regardless 
of the topology of the underlying social relationships. Similarly, 
in Auletta et al. (2018) it has been proved that in a similar set-
ting, a manipulator can be able to lead a bare majority to con-
sensus. Interestingly, these results cannot be easily extended to 
more than two candidates (Auletta et al. 2019b). Other forms 
of manipulation are considered in (Bredereck and Elkind 2017; 
Ferraioli and Ventre 2017; Grandi and Turrini 2016): in par-
ticular, Bredereck and Elkind (2017) considered the case that a 
manipulator may add edges in the relationship network, just as 
we do in this paper. Finally, in (Wilder and Vorobeychik 2018), 
a more complex voting setting is considered, similar to the one 
considered in this work, with more than two candidates and a 
plurality aggregation rule. Note however that in all these works 
players are not strategic and they may change their rankings as 
effect of their neighbors’ influence; in our work, instead, the 
rankings cannot change, but the expressed votes may be adapted 
because of a strategic voting behavior.

More in general, there is an intense research on how to 
model the effects that social pressure can have on people’s 
choices: original models derive from sociological and eco-
nomical studies (Bindel et al. 2015; Alon et al. 2012; Has-
sanzadeh et al. 2013); on top of these, many other models 
have been proposed (Bhawalkar et al. 2013; Simon and Apt 
2015; Auletta et al. 2016a, 2019a; Bilò et al. 2018; Acar et al. 
2017), trying to consider more complex aspects, such as the 
co-evolution of choices and relationships, the presence of both 
positive and negative influences, and the evolution of the rela-
tionships. Some of these models also inspired the one consid-
ered in Sina et al. (2015) and in this work. However, we stress 
that no of these papers investigate on whether and how social 
influence can be used in order to manipulate an election.

2  Model and definitions

We consider an election with a set of candidates of size m 
and a set of voters of size n. Voters lie on nodes of a social 
network G = (V ,E) . In this paper we assume that the social 

network is directed but it can be easily seen that our algo-
rithm works also on undirected networks.

We say that the neighborhood of a node u represents 
the u’s view of the election. Each voter u has a preference 
order, or ranking, ≻u over the candidates such that, for any 
two candidates c, c′ , we say that c ≻u c

′ if u prefers c to c′ . 
Moreover, voter u is said to be a supporter of the candidate c 
if u prefers c to every other candidate. For every candidate c, 
we denote by ����[c] the set of supporters of c. Sometimes 
we assume that a poll exists, reporting to all the voters the 
number of supporters for each candidate within a random 
sample of voters.

The election process. The election process works in 
rounds. At round 0 each voter announces to all its neigh-
bors the candidate she supports (i.e., the first candidate in 
her preference list). At round i ≥ 1 each voter considers the 
votes announced by her neighbors in round i − 1 and the poll, 
strategically chooses the candidate to vote and announce it to 
all her neighbours. Observe that a voter u can decide to vote 
for a candidate c different from the candidate that she sup-
ports (see below for details about how this choice is done).

The winner of the election at round i is the candidate 
that received the majority of votes in that round. If mul-
tiple candidates received the same number of votes, a tie-
breaking rule is adopted. Given two candidates c, c′ , we say 
that c > c′ if c would win the tie-break against c′ . The pro-
cess is repeated until an equilibrium is reached, i.e., a round 
of the election in which no voter changes the vote that she 
expressed in the previous round. Note that that this dynamics 
is known to converge only under opportune conditions (Meir 
et al. 2017). However, we prove that for all the networks in 
which our manipulation algorithm returns an outcome, the 
dynamics above will surely converges to an equilibrium.

We are now ready to describe how the voters choose who 
vote at each round. We assume that voters are strategic and 
at each round they declare the vote that best-responds to the 
votes expressed by their neighbors in the previous round 
with respect to their ranking. Thus, a voter changes her vote 
only if, according to her view, her vote is crucial to deter-
mine the election of a candidate she likes more of the current 
winner. The following definition describes formally when a 
node u has an incentive to change her vote.

Definition 1 A node u is (c1, c2)-crucial in round i if c1 is the 
candidate that is voted by the majority of neighbors of u at 
round i − 1 (in case of ties, the one that wins the tie-break), 
and c2 is a candidate with c2 ≻u c1 , and one of the following 
two conditions hold: (i) c1 and c2 received the same number 
of votes among the neighbors of u; (ii) c2 received one vote 
less than c1 and c2 > c1 (i.e., c2 wins a tie-break against c1).

Clearly, if node u is (c1, c2)-crucial in round i, then she 
will decide to vote for c2 to support an outcome she prefers 
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to the current one. If, instead, u is not crucial, i.e., she cannot 
influence the outcome of the election in her neighborhood, 
then she confirms the vote expressed in the previous round.

3  The manipulation algorithm

In this section we present our manipulation algorithm. The 
algorithm takes in input the social network G = (V ,E) , the 
list of candidates M, the preference lists of all the voters 
{≻u}u∈V , and the designated winner w and returns a set of 
edges to add to the social network in order to guarantee that 
w will be the winner of the election. Following the approach 
presented in Sina et al. (2015), our algorithm works in two 
phases.

Influence phase. We start by running the first two rounds 
(rounds 0 and 1) of the election on the graph G. Let ��� be 
the set of nodes that voted for w in the round 1, but they 
are not supporters of w. Observe that these nodes voted for 
w since this was the best response to what their neighbors 
announced in round 0. That is, they were (c, w)-crucial in 
round 1, where c is a candidate that they like less than w.

Even if we assume that all supporters of w will always 
vote for this candidate, and that voters in ��� never change 
their minds after round 1, there may still be insufficient votes 
to guarantee that w will win the election. If this is the case, 
then we have to induce other nodes to vote for w. To this aim 
we follow the same approach as in Sina et al. (2015), and we 
implement the following algorithm.1

1 Here, in order to make simpler our analysis, we present a basic 
version of our algorithm, in which we do not constrain the order in 
which nodes are processed to make them vote for candidate w at 
round 1. Anyway, we may include here the different optimizations 
introduced in Sina et al. (2015), with the goal to minimize both the 
number of nodes processed in this phase and the number of links that 
have been added. For example, one may prefer to process nodes with 
a low degree first (since they need less links to be “influenced”), or 
one may prefer to process node that are supporters of the candidate 
different from w that is currently winning the election (since, this 
reduce the gap between w and the current winner by two units and not 
just one).

An affectable node as searched by the above algorithm 
consists of a node u ∉ ��� such that:

• u does not support w;
• there is a candidate c such that w ≻u c;
• there is a set Mw of w’s supporters and a set Mc of unaf-

fected c’s supporters that are not adjacent to u and such 
that if we add links from u to all the nodes in Mw ∪Mc 
then u in round 1 will be (c, w)-crucial, but not (c, c�)
-crucial for every c′ ≻u w.

If such a node is found, we add new links to the social net-
work between u and the nodes in Mw ∪Mc . Let G′ be the 
resulting graph. By running again the first two rounds of the 
election on graph G′ , we have that, by hypothesis, node u 
will vote for w. We then add u to ��� and iterate the proce-
dure until we added sufficiently many nodes to ��� so that 
w would be the winner of the election with the votes by her 
supporters and by voters in ���.

Let A be the set of links added by Algorithm 1 and let 
G� = (V ,E ∪ A) be the resulting graph. We will next formally 
prove that, when running the election process on G′ , every 
node u ∈ ��� will vote for w at round 1 and it will confirm 
her vote in all the successive rounds, as long as all the non-
affected notes vote for the candidates they support. Then the 
following lemma holds.

Lemma 1 Assume we run the election process on the social 
network G� = (V ,E ∪ A) returned by the Influence Phase. If 
we suppose that at each round of the election all the nodes 
v ∈ V⧵��� vote for their favorite candidates, then every 
node u ∈ ��� votes for w at every round of the election.

Proof It is easy to see that, by construction of G′ , each node 
u ∈ ��� votes for w at round 1 of the election.
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Thus, we have only to prove that they will confirm this 
vote in all the following rounds.

Observe that, by hypothesis, every non-affected node 
v ∈ V⧵��� votes for her own favorite candidate (i.e., the 
same candidate she announced in the preliminary phase) in 
all the rounds of the election and w is the unique candidate 
that can increase the votes received by the neighbors of u in 
round i ≥ 1 . Hence, either u is still (c, w)-crucial, or w is the 
current winner and u’s vote cannot change the outcome of 
the election. In the first case, we have that u will vote for w 
at round i + 1 . In the second case, since u cannot influence 
the result of the election, she will confirm her vote for w at 
round i + 1 .   ◻

This lemma assumes that non-affected nodes permanently 
vote for the candidates they support. However, these nodes 
could decide to change their votes to react to changes in their 
own view, and this could have destructive cascading effects 
with respect to our manipulation aim. Consider for exam-
ple the network in Fig. 1, and assume that node p, q, r, s 
have preference d ≻p w ≻p d , w ≻q d ≻q d , c ≻r w ≻r d and 
d ≻s c ≻s w , respectively, whereas nodes xi and zi support 
candidate d and w, respectively. Moreover, assume that the 
tie-breaking rule is c > d > w.

It is then immediate to see that votes by q, r, s oscillate at 
each round by passing from, respectively, w, c, d to, respec-
tively, d, w, c.

Thus, we have to run a Stabilization Phase in which we 
add other links to the social network to stabilize non-affected 
nodes and have them voting for the candidates they support.

In the rest of the paper we assume that a non-affected 
node is stable in round i if she votes for her favorite candi-
date in this round and she is unstable otherwise.

Stabilization phase. We partition the set of non-affected 
nodes in three sets, B , ���� and ����� , defined as follows. 
���� is a set of 3m non-affected nodes such that, for each 
candidate c, there are three nodes in ���� supporting c sat-
isfying the following property: if u and v are supporters of 
the same candidate c in ���� , and w is a neighbor of both u 
and v, then w ∈ ��� ∪ ���� , i.e., either w is a node that has 
been affected in the influence phase, or it is one of the 3m 
nodes selected as seeds.

����� , instead, is a set of 2m non-affected nodes that is 
disjoint from ���� and such that for each candidate c there 

are two nodes in ����� supporting c and they are not adja-
cent to nodes in ���� ∪ ���.

B is the set of all remaining non-affected nodes.
The Stabilization Phase works in three rounds: we first 

stabilize the nodes in ����� , then we stabilize the nodes in 
B , and in the last round we stabilize the nodes in ����.

To stabilize a node u ∈ ����� we connect this node to 
four supporters of the candidate c that is supported by the 
majority of the neighbors of u (in case of tie, we consider 
the one that wins the tie-break). These four supporters must 
be chosen among the nodes in B . To stabilize a node u ∈ B 
we connect this node to at most two seeds. The selection of 
these seeds will be done through the Node Stabilization pro-
cedure that will be described in the next section. To stabilize 
a node u ∈ ���� we connect this node to at most two nodes 
in ����� , selected through the Node Stabilization procedure.

Let Σ be the set of links added in the Stabilization phase 
and let G�� = (V ,E ∪ A ∪ Σ) be the graph obtained after both 
Influence and Stabilization Phase have been correctly exe-
cuted. Then we have the following lemma.

Lemma 2 If we run en election on the social network 
G�� = (V ,E ∪ A ∪ Σ) , at each round every node u ∉ ��� is 
stable.

We defer the proof of this lemma to the next section, after 
we described the node Stabilization procedure.

Observe that Lemmas 1 and 2 prove that whenever our 
manipulation algorithm is correctly executed, then it returns 
a set of links to add to the social network that guarantee that 
the designated candidate will win the election. However, it 
may be the case that either in the influence phase or in the 
stabilization phase, we are unable to choose vertices with 
the desired properties. The following theorem describes the 
conditions under which this would not happen.

Theorem 1 Our manipulation algorithm returns a network 
G′′ such that the designated candidate w is the winner of the 
election in G′′ and the process stops in 2 rounds, as long as 
we can partition the nodes in G in two sets (L, R) such that:

• L  contains min

{
maxc{����[c]},

n

2

}
+ 1 − ����[w] 

nodes that do not support w;
• for every u ∈ L , there are max

c
����0[c] − ����0[w]

+2 ≤ d
u
+ 2  suppor te r s  o f  w  t ha t  a re  not 

in L and not in the neighborhood of u, and 
maxc ����0[c] − ����0[ĉ] + 2 ≤ du + 2 supporters of ĉ 
that are not in the neighborhood of u, for some ĉ such 
that w ≻u ĉ , where, for every c, ����i[c] is the number 
of neighbors of u that voted for c at round i;

r s

p

q

z1 x2

x1

x3

z2

Fig. 1  An instance on which manipulation fails without the stabiliza-
tion phase
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• for every candidate c there are in R three distinct subsets 
Sc, Tc,Uc such that: (i) Sc contains 3 supporters of c with 
disjoint neighborhood; (ii) Tc contains 2 supporters of c 
with no neighbors in S ∪ L ; (iii) Uc contains 4 support-
ers of c with no neighbors in T; where S =

⋃
c Sc and 

T =
⋃

c Tc.

We notice that the number of links added by our manipu-
lation algorithm cannot be larger than the one used by the 
heuristic proposed in Sina et al. (2015). Indeed, the two 
influence phases are equivalent (in particular, we can adopt 
in our algorithm the optimizations introduced in Sina et al. 
(2015)), but our stabilization procedure, as we will prove 
in Lemma 9, uses the minimum possible number of links.

4  Node stabilization

The Node stabilization procedure is the core of our stabiliza-
tion process. It takes in input a node u ∉ ��� and a subset 
of nodes S containing supporters of all the candidates, and 
returns at most two nodes in S such that if u is connected 
to these nodes then u will be stable in each round of the 
election.

Let us briefly describe the idea behind our approach. Let 
t be the candidate that u supports and let c∗

i
 be the candidate 

that is voted by the majority of neighbors of u in round i 
(in case of ties, c∗

i
 is the one that wins the tie-break). As 

an example, consider how we can have u to vote for t in 
round 1. This clearly occurs when u, according to her view, 
cannot influence the outcome of the election or when u is 
crucial to make t the winner. Suppose, instead, that there 
is a candidate c ≠ c∗

0
, t such that u is (c∗

0
, c)-crucial. In this 

case, u would vote for c instead of t. To avoid this situation, 

it is sufficient to add a link between u and a supporter of c∗
0
 

in S. Actually, as we will show later, there could be several 
candidates c, distinct from c∗

i
 , such that the addition of a 

link between u and a supporter of c causes u to vote for her 
favorite candidate at round i. We will call these candidates 
stabilizers for u in round i and we will denote by ��i the set 
of these stabilizers.

Thus, by adding a link between u and a node in S that is a 
supporter of a stabilizer in ��0 we have stabilized u for round 
1. However, since in round 1 the affected nodes changed 
their vote to w, it may be the case that u, if adjacent to 
some affected nodes, becomes (c∗

1
, c)-crucial in round 2, for 

some c ≠ t . In this case, u would change her vote in round 
2 and vote for c. Thus, we have to stabilize also nodes that 
could change their votes in round 2. We could use the same 
approach as above, i.e., to add a link between u and a sup-
porter of c∗

1
 in S. However, this approach may not work since 

this new link can make u again unstable in round 1. Indeed, 
suppose that u is (c∗

0
, c)-crucial in round 1 and (c∗

1
, c�)-crucial 

in round 2. If c∗
1
= c and we add a link between u and sup-

porters of both c∗
0
 and c∗

1
 , then u is still (c∗

0
, c)-crucial in round 

1 and she will remain unstable in this round. However, it is 
easy to see that we could stabilize u both in round 1 and 2 
by simply adding links between u and two supporters of c∗

1
.

In general, we call blocker for u a candidate whose sup-
porters cannot be used to stabilize u in round 2 because they 
would make the node unstable in round 1. We distinguish 
two cases: if u is not stable at round 1, then we will denote 
her set of blockers as ��0 ; otherwise we will denote it as ��1 . 
A formal definition of blockers is given later. We also prove 
that, whereas the addition of a single link between u and a 
supporter of a candidate c ∈ ��i is harmful, it is possible 
to stabilize u both at round 1 and 2 by simply adding links 
between u and two supporters of a candidate c ∈ ��i.

Thus, our Node Stabilization procedure works as 
described by Algorithm 2. 
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Roughly speaking, it first considers that u is not stable 
in round 1 (i.e., she does not vote for her favorite candidate 
t). In this case, if there is a candidate c ∈ ��0 such that the 
addition of a link between u and a supporter of c does not 
make u unstable in round 2, then we add this link. If such a 
candidate does not exist consider the candidate c∗

1
 that would 

win the round 2 of the election in the u’s view: if c∗
1
∉ ��0 

we add links between u and both a supporter of c∗
0
 and a 

supporter of c∗
1
 ; if c∗

1
∈ ��0 we add links between u and two 

supporters of c∗
1
.

Next, Algorithm 2 considers that u is stable in round 1 
(i.e., she votes for her favorite candidate t). In this case, if 
there is c ∈ ��1⧵��1 , then we add a link between u and a 
supporter of c; otherwise we add links between u and two 
supporters of c∗

1
.

In the rest of this section we give formal definitions of 
stabilizer and blocker sets, and we prove that the Node Sta-
bilization procedure correctly stabilizes node u adding the 
minimum number of links.

The set ��iof stabilizers for u in round i. Let us recall that, 
given a node u, we denote as c∗

i
 the candidate that is voted by 

the majority of the neighbors of u at round i (in case of ties, 
c∗
i
 is the one that wins the tie-break). For every candidate 

c, let ����i[c] be the number of neighbors of u that voted 
for c at round i. The set ��i of stabilizers for u in round i is 
defined as follows:

Definition 2 The set ��i , for i ∈ {0, 1} , contains all candi-
dates c satisfying at least one of the following properties:

• c = c∗
i
;

• ����i[c] = ����i[c
∗
i
] a n d  fo r  e a ch  c′  w i t h 

����i[c
�] = ����i[c

∗
i
] it occurs that either c > c′ or 

c ≻u c
′;

• ����i[c] = ����i[c
∗
i
] − 1 and for  each c′ wi th 

����i[c
�] = ����i[c

∗
i
] it occurs that c > c′ and c ≻u c

′ , 
whereas for each c′ with ����i[c�] = ����i[c

∗
i
] − 1 it 

occurs that either c > c′ or c ≻u c
′.

We now prove that if u is unstable in round i + 1 and there 
exists a candidate c ∈ ��i we can stabilize u for this round by 
simply adding a link between u and a supporter of c.

Let us first make the following observation.

Observation 1 If ��i = {c∗
i
} or t ∈ ��i , and u is stable at 

round i, then u is stable in round i + 1.

Lemma 3 For i ∈ {0, 1} , let u ∉ ��� be stable in round i. 
If we add a link between u and at least one supporter of a 
candidate c ∈ ��i , then u will be stable also in round i + 1.

The claim holds even if a link between u and a supporter 
of a candidate d ≠ c is removed.

Proof By Observation  1, the Lemma holds if t ∈ ��i or 
��i = {c∗

i
} . Suppose, instead, that there is c ∈ ��i distinct 

from c∗
i
 and t ∉ ��i . Let v = ����i[c

∗
i
] . Since c∗

i
 is the winner 

of the election at round i, other candidates received no more 
than v votes. Let Ĝ be the graph before the link addition, 
and let G̃ be the graph obtained from Ĝ by adding the links 
between u and the selected stabilizers. We distinguish three 
cases, depending on the type of stabilizer we use.

Consider first the case in which we add links between u 
and at least one supporter of c∗

i
 . If we run the election on G̃ 

the number of votes received by c∗
i
 in the neighborhood of 

u will be at least v + 1 , while all the other candidates do not 
increase their votes. Thus, c∗

i
 is still the winner of the elec-

tion according to u’s view and there is no tie with other can-
didates. On the other hand, if there exists a candidate c with 
v votes, then it would be c∗

i
> c , otherwise c would have won 

the election in Ĝ . Hence, u cannot be crucial for the victory 
of any candidate c ≠ c∗

i
 , and thus she will confirm the vote 

expressed in the previous round. Since, by hypothesis u was 
stable in round i, she is stable even in round i + 1.

Consider now the case in which we add links between 
u and at least one supporter of a candidate c ∈ ��i with 
����i[c] = ����i[c

∗
i
] . In this case the number of votes 

received by c in the neighborhood of u in G̃ will be at least 
v + 1 . Since no other candidate increases her votes, c will 
get the majority of the votes in the neighborhood of v with 
no ties. Clearly, u is not crucial for all the candidates that 
received at most v − 1 votes. Moreover, if there is a candidate 
c′ with ����i[c�] = v , then, according to Definition 2, either 
c > c′ or c ≻u c

′ . Hence, u is not (c, c�)-crucial. Since u can-
not influence the outcome of the election, she will confirm 
the vote for t and thus she will be stable in round i.

Finally, consider the case in which we add links between 
u and at least one supporter of a candidate c ∈ ��i with 
����i[c] = ����i[c

∗
i
] − 1 . In this case the number of votes 

received by c in the neighborhood of u in G̃ will be at least v. 
Notice that all other candidates received at most v votes and, 
by Definition 2, for any candidate c′ with ����i[c�] = v it 
holds that c > c′ . Thus, c will be the winner of the election in 
u’s view. Consider now a candidate c′ ≠ c . If ����i[c�] = v 
in Ĝ , then this candidate still has v votes in G̃ and, by Def-
inition 2, c ≻u c

′ . If ����i[c�] = v − 1 in Ĝ , instead, then 
this candidate still has v − 1 votes in G̃ and, by Definition 2, 
either c > c′ or c ≻ c′ . Finally, if ����i[c�] < v − 1 then c′ has 
no possibility to win the election. Hence, u has no incentive 
in voting for c′ and thus she will confirm the vote for t.

The second part of the claim holds since in all the previ-
ous cases c would be the winner of the election even if a link 
between u and a candidate d ≠ c is removed.   ◻
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Next lemma proves that candidates in ��i are the only 
nodes whose supporters can “stabilize” u with a single link. 
This will be a fundamental insight to prove that our approach 
to node stabilization is optimal.

Lemma 4 For i ∈ {0, 1} , let u ∉ ��� be unstable in round 
i + 1 . If we add a link between u and a supporter of a can-
didate c ∉ ��i , then u will be still unstable in round i + 1.

Proof Let v = ����i[c
∗
0
] , i.e., the number of votes that c∗ 

takes at round i in the neighborhood of u in the original 
graph G.

Let us consider first the graph G′ achieved from G by add-
ing a link between u and at a supporter of c ∉ ��i such that 
����i[c] = ����i[c

∗
i
] . The number of votes of c in the neigh-

borhood of u in G′ becomes v + 1 . Since every other candi-
date does not increase her votes, c is the winner according 
to u. However, according to Definition 2, there is c′ such that 
����i[c

�] = ����i[c
∗
i
] and both c′ > c and c′ ≻u c . Hence, 

if u votes for c′ , then c′ will have the same number of votes 
as c and will beat c at the tie-break, resulting in this way a 
winner that u prefers with respect to the actual winner c. 
That is, u has an incentive for voting c′ in place of the can-
didate voted at round i. The claim then follows since c′ ≠ t . 
Indeed, since ��i is not empty, then t ≠ c∗

i
 . Moreover, since 

t ∉ ��i and, by definition, t ≻u c
∗
i
 , then it must be the case 

that ����i[t] < ����i[c
∗
i
].

Let us now consider the graph G′ achieved from G by 
adding a link between u and at a supporter of c ∉ ��i such 
that ����i[c] = ����i[c

∗
i
] − 1 . The number of votes of c in 

the neighborhood of u in G′ becomes v. According to Defi-
nition 2, either there is c′ such that ����i[c�] = ����i[c

∗
i
] 

and c′ > c , or there is c′ such that ����i[c�] = ����i[c
∗
i
] and 

c′ ≻u c , or there is c′ such that ����i[c�] = ����i[c
∗
i
] − 1 and 

c′ > c and c′ ≻u c . In the first case, we have that c∗
i
 wins the 

election even in G′ . Moreover, since ��i is not empty, then, 
according Observation 1 there is a candidate d ≠ t such that 
u has an incentive to vote for d in G, in order to make d the 
winner of the election in place of c∗

i
 . However, since the 

number of votes of d and of c∗
i
 does not change in G′ , then 

this should be true even in this new graph.
Suppose instead that c wins the tie-break against every 

candidate with exactly ����i[c∗i ] votes. Then c is the winner 
according to u. If there is c′ such that ����i[c�] = ����i[c

∗
i
] 

and c′ ≻u c , then, by voting for c′ , u makes c′ as the only 
candidate to have v + 1 votes, that is, a winner that u prefers 
with respect to the actual winner c. That is, u has an incen-
tive for voting c′ in place of the candidate voted at round i. 
Moreover, as above, we have that c′ ≠ t.

Suppose instead that c′ is favorite by u with respect to 
every candidate that take exactly v votes. Then it follows that 
there is c′ such that ����i[c�] = ����i[c

∗
i
] − 1 and c′ > c and 

c′ ≻u c . By voting for c′ , u makes c′ to have the same votes 
as c but to beat c (and thus everybody else) at the tie-break. 
Thus, u can make c′ a winner that she prefers with respect 
to the actual winner c. That is, u has an incentive for voting 
c′ in place of the candidate voted at round i. It is only left 
to prove that c′ ≠ t . Indeed, if ����i[t] = v − 1 , then, since 
t is favorite over every other candidate and t ∉ ��i , it must 
be the case that t < c∗ < c , where the last inequality follows 
from our hypothesis.

Finally, we consider the case that G′ achieved from G by 
adding a link between u and at a supporter of c ∉ ��i such 
that ����i[c] < ����i[c

∗
i
] − 1 . Hence, the number of votes 

that c takes in the neighborhood of u at most v − 1 . Since the 
other candidates take exactly the same votes as in G, then 
c∗
i
 wins the election even in G′ . Moreover, since ��i is not 

empty, according Observation 1 there is a candidate d ≠ t 
such that u has an incentive to vote for d in G, in order to 
make d the winner of the election in place of c∗

i
 . However, 

since the number of votes of d and of c∗
i
 does not change in 

G′ , then this should be true even in this new graph.   ◻

The set ��0 of blockers for a node u unstable in round 1.

Definition 3 Let u be a node unstable in round 1. Candidate 
c belongs to ��0 iff c ≠ c∗

0
 and one of the following proper-

ties holds:

• ����0[c] = ����0[c
∗
0
] and c ≻u c

∗
0
;

• ����0[c] = ����0[c
∗
0
] − 1 and both c > c∗

0
 and c ≻u c

∗
0
.

It immediately follows from the definition above that 
the addition of links between u and a supporter of c∗

0
 and a 

supporter of c ∈ ��0 , makes u (c∗
0
, c)-crucial in round 0, and 

consequently u will vote for c in round 1, and not for the 
candidate that she supports. However, the addition of a link 
between u and a supporter of both c∗

0
 and c ∉ ��0 guarantees, 

by definition of blockers, that u is stable in round 1. That is 
we have the following lemma.

Lemma 5 Let |��0| > 1 and t ∉ ��0 . If two links are added 
between u and supporters of c∗

0
 and c, respectively, then u 

will be stable in round 1 if and only if c ∉ ��0.

Interestingly, to stabilize node u in round 1 we can also 
add links between u and two supporters of the same candi-
date c ∈ ��0.

Lemma 6 If links are added between u and two supporters 
of c ∈ ��0 , then u is stable in round 1.

Proof Let ����0[c∗0] = v , let Ĝ be the graph before the link 
addition, and let G̃ be the graph obtained from Ĝ by adding 
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links between u and two supporters of c. Since c ∈ ��0 , c 
received in Ĝ either v or v − 1 votes among the neighbors 
of u.

Consider first the case in which ����0[c] = v . The num-
ber of votes received by c in the neighborhood of u in G̃ 
becomes v + 2 , while all the other candidates receive the 
same votes as in Ĝ . Thus, c will be the winner in G̃ and she 
receives at least two votes more than any other candidate. 
Since her victory is indisputable, then u will vote for her 
favorite candidate.

Consider now the case in which ����0[c] = v − 1 . Since 
c ∈ ��0 , it must be that c > c∗

0
 . The number of votes received 

by c in the neighborhood of u in G̃ becomes v + 1 , while all 
the other candidates receive the same votes as in Ĝ . Hence, c 
is the winner of round 1 in G̃ . Moreover, the outcome of the 
election cannot change regardless of the candidate c′ voted 
by u, since either ����0[c�] < v + 1 or ����0[c�] = v + 1 and 
c > c∗

0
≥ c� . Hence, u will vote for her favorite candidate.  

 ◻

The set ��1of blockers for a node ustable in round 1.

Definition 4 Let u be stable in round 1. Candidate c belongs 
to ��1 iff c ≠ c∗

0
 and one of the following properties holds:

• ����0[c] = ����0[t] = ����0[c
∗
0
] , with c∗

0
≠ t and c > t , 

and there is a candidate c′ with ����0[c�] = ����0[c
∗
0
] , 

c′ > c , and c′ ≻u c;
• ����0[t] = ����0[c

∗
0
] − 1 , with t > c∗

0
 and c satisfies one 

of the following conditions:

– ����0[c] = ����0[c
∗
0
] , and there exists c′ s.t. 

����0[c
�] = ����0[c

∗
0
] , c′ > c , and c′ ≻u c;

– ����0[c] = ����0[c
∗
0
] − 1 , c > t , and there is c′ s.t. 

����0[c
�] = ����0[c

∗
0
] and c′ ≻u c;

– ����0[c] = ����0[c
∗
0
] − 1 , c > t , and there is c′ s.t. 

����0[c
�] = ����0[c

∗
0
] − 1 , c′ > c and c′ ≻u c;

• ��0 contains only c∗
0
 and c satisfies one of the following 

conditions:

– c ≠ c∗ and ����0[c] = ����0[c
∗
0
];

– ����0[c] = ����0[c
∗
0
] − 1 , c > c∗

0
 and c∗

0
≻u c;

– c ≠ t , ����0[c] = ����0[c
∗
0
] − 1 , c∗

0
> c and c ≻u c

∗
0
;

– c ≠ t , ����0[c] = ����0[c
∗
0
] − 2 , c > c∗

0
 and c ≻u c

∗
0
.

Next lemma proves that the addition of a link between u 
and a supporter of c ∈ ��1 can be harmful, whereas the addi-
tion of a link with a supporter of c ∉ ��1 is not.

Lemma 7 Assume that ��0 = {c∗
0
} or t ∈ ��0 . If a link is 

added between u and a supporter of a candidate c. Then u 
will be stable in round 1 if and only if c ∉ ��1.

Proof Let us start with the “only if” direction. That is, 
assume that a link is added between u and a supporter of a 
candidate c ∈ ��1 . Let ����0[c∗0] = v . First note that, since 
��1 is not empty, then it must be the case that c∗

0
≠ t . We dis-

tinguish two cases baded on ��0 being empty or not.
If ��0 is not empty, then it must be the case that t ∈ ��0 , 

and thus either ����0[t] = v or ����0[t] = v − 1 and t > c∗
0
 . 

Let us consider these cases separately.
If ����0[t] = v , then, by definition of ��1 , ����0[c] = v , 

c > t , and there is c′ such that ����0[c�] = v , c′ > c , and 
c′ ≻u c . Consider the graph G′ achieved from G by adding 
a link between u and a supporter of c. The number of votes 
of c in the neighborhood of u in G′ becomes v + 1 , whereas 
it does not change for every other candidate. Hence, c is the 
winner in G′ . However, if u votes for c′ , then c′ will receive 
the same number of votes as c, and, since c′ > c , it will be a 
winner that is preferred with respect to the actual winner c. 
Then, u has an incentive for voting c′ in place of the candi-
date voted at step 0. The claim follows since c′ ≠ t , because 
c′ > c > t by hypothesis.

If ����0[t] = v − 1 , then, by definition of ��0 , we have that 
t > c∗

0
 . Moreover, by definition of ��1 , either ����0[c] = v or 

����0[c] = v − 1 . If ����0[c] = v , then it must be the case 
that there is c′ such that ����0[c�] = v , c′ > c , and c′ ≻u c . 
Consider the graph G′ achieved from G by adding a link 
between u and a supporter of c. The number of votes of c 
in the neighborhood of u in G′ becomes v + 1 , whereas it 
does not change for every other candidate. Hence, c is the 
winner in G′ . However, if u votes for c′ , then c′ will receive 
the same number of votes as c, and, since c′ > c , it will be a 
winner that is preferred with respect to the actual winner c. 
Then, u has an incentive for voting c′ in place of the candi-
date voted at step 0. The claim follows since c′ ≠ t , because 
����0[c

�] = v > ����0[t] by hypothesis. If ����0[c] = v − 1 , 
then it must be the case that c > t , and there is c′ such that 
either ����0[c�] = v and c′ ≻u c , or ����0[c�] = v , c′ > c , 
and c′ ≻u c . Let us first assume that the former conditions 
on c′ hold. Consider the graph G′ achieved from G by add-
ing a link between u and a supporter of c. The number of 
votes of c in the neighborhood of u in G′ becomes v, whereas 
it does not change for every other candidate. Hence, since 
c > t > c∗

0
 , then c is the winner in G′ . However, if u votes 

for c′ , then c′ will receive more votes than c, and it will be a 
winner that is preferred with respect to the actual winner c. 
Then, u has an incentive for voting c′ in place of the candi-
date voted at step 0. The claim follows since c′ ≠ t , because 
c′ > c > t by hypothesis.

Assume now that ����0[c�] = v , c′ > c , and c′ ≻u c . 
Consider the graph G′ achieved from G by adding a link 
between u and a supporter of c. The number of votes of c in 
the neighborhood of u in G′ becomes v, whereas it does not 
change for every other candidate. Hence, since c > t > c∗

0
 , 

then c is the winner in G′ . However, if u votes for c′ , then c′ 
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will receive the same number of votes as c, and, since c′ > c , 
it will be a winner that is preferred with respect to the actual 
winner c. Then, u has an incentive for voting c′ in place of 
the candidate voted at step 0. The claim follows since c′ ≠ t , 
because c′ > c > t by hypothesis.

Consider now the case that ��0 is empty. In this case, 
����0[c] ∈ {v, v − 1, v − 2} . If ����0[c] = v , then c ≠ c∗

0
 . 

Moreover, since c∗
0
 win the election, c∗

0
> c , and, since P′

0
 is 

empty, then c∗
0
≻u c . Consider the graph G′ achieved from G 

by adding a link between u and a supporter of c. The number 
of votes of c in the neighborhood of u in G′ becomes v + 1 , 
whereas it does not change for every other candidate. Hence, 
c is the winner in G′ . However, if u votes for c∗

0
 , then c∗

0
 will 

receive the same number of votes as c, and, since c∗
0
> c , it 

will be a winner that is preferred with respect to the actual 
winner c. Then, u has an incentive for voting c∗

0
 in place of 

the candidate voted at step 0. The claim follows since c∗
0
≠ t , 

as showed above.
If ����0[c] = v − 1 , then we distinguish two cases 

depending on who wins the tie-break between c and c∗
0
 . If 

c > c∗
0
 , then, by definition of ��1 , it must be the case that 

c∗
0
≻u c . Consider the graph G′ achieved from G by adding a 

link between u and a supporter of c. The number of votes of 
c in the neighborhood of u in G′ becomes v, whereas it does 
not change for every other candidate. Hence, since c > c∗

0
 , 

then c is the winner in G′ . However, if u votes for c∗
0
 , then c∗

0
 

will receive more votes than every other candidate, and thus 
it will be a winner that is preferred with respect to the actual 
winner c. Then, u has an incentive for voting c∗

0
 in place of 

the candidate voted at step 0. The claim follows since c∗
0
≠ t , 

as showed above.
If If c > c∗

0
 , then, by definition of ��1 , it must be the case 

that c ≠ t and c ≻u c
∗
0
 . Consider the graph G′ achieved from 

G by adding a link between u and a supporter of c. The num-
ber of votes of c in the neighborhood of u in G′ becomes v, 
whereas it does not change for every other candidate. How-
ever, since c∗

0
> c , then c∗

0
 is the winner in G′ . However, if u 

votes for c, then c will receive the same number of votes as 
c∗
0
 , and, since c > c∗

0
 , it will be a winner that is preferred with 

respect to the actual winner c∗
0
 . Then, u has an incentive for 

voting c ≠ t in place of the candidate voted at step 0.
Finally, if ����0[c] = v − 2 , then, by definition of ��1 , it 

must be the case that c ≠ t , c < c∗
0
 and c ≻u c

∗
0
 . Consider the 

graph G′ achieved from G by adding a link between u and 
a supporter of c. The number of votes of c in the neighbor-
hood of u in G′ becomes v − 1 , whereas it does not change 
for every other candidate. Since the set of candidates that 
takes most votes is not changed, then c∗

0
 is the winner in 

G′ . However, if u votes for c, then c will receive the same 
number of votes as c∗

0
 , and, since c > c∗

0
 , it will be a winner 

that is preferred with respect to the actual winner c∗
0
 . Then, 

u has an incentive for voting c ≠ t in place of the candidate 
voted at step 0.

Consider now the “if” part. That is, assume that a link has 
been added between u and a supporter of a candidate c ∉ ��1 . 
If c = c∗

0
 , then the claim follows from Lemma 3. Otherwise 

let ����0[c∗0] = v . Consider first the case that c ≠ c∗
0
= t . 

Consider the graph G′ achieved from G by adding a link 
between u and a supporter of c. We distinguish three cases. 
If ����0[c] = v , then the number of votes of c in the neigh-
borhood of u in G′ becomes v + 1 , whereas it does not change 
for every other candidate. Hence, c is the winner in G′ . How-
ever, if u votes for t, then t will receive the same number of 
votes as c, and, since t = c∗

0
> c , it will be a winner that is 

preferred with respect to the actual winner c. Then, u has an 
incentive for voting t.

If ����0[c] = v − 1 and c > t , then the number of votes 
of c in the neighborhood of u in G′ becomes v, whereas 
it does not change for every other candidate. Hence, since 
c > t = c∗

0
 , then c is the winner in G′ . However, if u votes 

for t, then t will receive more votes than c, and, it will be a 
winner that is preferred with respect to the actual winner c. 
Then, u has an incentive for voting t.

If ����0[c] < v − 1 or ����0[c] = v − 1 and t > c , then 
the number of votes of c in the neighborhood of u in G′ 
becomes at most v, whereas it does not change for every 
other candidate. Then, either the set of candidates that take 
more votes does not change, or still c∗

0
= t win the tie-break 

against all of them. Since there is no possible winner that u 
would like more than c∗

0
 and voting for the candidate voted 

at step 0 does not affect the outcome of the election, u will 
continue to vote for t.

Suppose now that t ≠ c∗
0
 , but ����0[t] = v . We consider 

first the case that ����0[c] < v . Let G′ be the graph achieved 
from G by adding a link between u and a supporter of c. The 
number of votes of c in the neighborhood of u in G′ becomes 
at most v, whereas it does not change for every other candi-
date. Hence, the winner of the election will be either c∗

0
 (if 

����0[c] < v − 1 or c∗
0
> c ) or c. However, if u votes for t, 

then t will receive more votes than both c∗
0
 and c, and, it will 

be a winner that is preferred with respect to the actual win-
ner. Then, u has an incentive for voting t.

Suppose, instead, that ����0[c] = v . Let G′ be the graph 
achieved from G by adding a link between u and a supporter 
of c. The number of votes of c in the neighborhood of u in 
G′ becomes v + 1 , whereas it does not change for every other 
candidate. Hence, c is the winner in G′ . We distinguish two 
cases based on who wins the tie-break between c and t. If 
t > c and u votes for t, then t will receive the same votes as 
c, and thus it will be a winner that is preferred with respect 
to the actual winner c. Then, u has an incentive for voting t.

If, instead, c > t , then by definition of ��1 it must be the 
case that for every c′ either ����0[c�] < v or ����0[c�] = v 
and either c > c′ or c ≻u c

′ . Thus, if u votes for t or some 
other candidate c′ such that either ����0[c�] < v , or 
����0[c

�] = v and c > c′ , then the winner of the election 
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does not change. If instead u votes for a candidate c′ such 
that ����0[c�] = v and c′ > c , then c′ becomes a winner, 
which is, since c ≻u c

′ , less preferred than the actual winner. 
Thus, u cannot change the winner of the election in G′ in one 
that she prefers more than the actual winner, and thus she 
will vote at step 1 for the same candidate as the one voted at 
step 0, that is her preferred candidate t.

Consider now the case that ����0[t] = v − 1 . If t ∈ ��0 , 
then it must be the case that t > c∗

0
 . We consider first the case 

that ����0[c] < v − 1 . Let G′ be the graph achieved from G 
by adding a link between u and a supporter of c. The number 
of votes of c in the neighborhood of u in G′ becomes at most 
v − 1 , whereas it does not change for every other candidate. 
Hence, the winner of the election will be c∗

0
 . However, if 

u votes for t, then t will receive the same number of votes 
as c∗

0
 , and, since t > c∗

0
 , it will be a winner that is preferred 

with respect to the actual winner. Then, u has an incentive 
for voting t.

Suppose, instead, that ����0[c] = v − 1 . Let G′ be the 
graph achieved from G by adding a link between u and a 
supporter of c. The number of votes of c in the neighborhood 
of u in G′ becomes v, whereas it does not change for every 
other candidate. Hence, the winner of the election will be 
either c∗

0
 (if c∗

0
> c ) or c. We distinguish two cases based on 

who wins the tie-break between c and t. If t > c and u votes 
for t, then t will receive the same votes as both c and c∗

0
 , and 

thus, since both t > c∗
0
 and t > c , it will be a winner that is 

preferred with respect to the actual winner. Then, u has an 
incentive for voting t.

If, instead, c > t , then by definition of ��1 it must 
be the case that for every c′ either ����0[c�] < v − 1 , 
or ����0[c�] = v − 1 and either c > c′ or c ≻u c

′ , or 
����0[c

�] = v and c ≻u c
′ Thus, if u votes for t or some 

other candidate c′ such that either ����0[c�] < v − 1 , or 
����0[c

�] = v − 1 and c > c′ , then the winner of the election 
does not change. If instead u votes for a candidate c′ such 
that ����0[c�] = v , or ����0[c�] = v − 1 and c′ > c , then c′ 
becomes a winner, which is, since c ≻u c

′ , less preferred 
than the actual winner. Thus, u cannot change the winner 
of the election in G′ in one that she prefers more than the 
actual winner, and thus she will vote at step 1 for the same 
candidate as the one voted at step 0, that is her preferred 
candidate t.

Finally, we consider the case that ����0[c] = v . By defi-
nition of ��1 it must be that for every c′ either ����0[c�] < v 
or ����0[c�] = v and either c > c′ or c ≻u c

′ . Thus, if u 
votes for some candidate c′ such that either ����0[c�] < v , 
or ����0[c�] = v and c > c′ , then the winner of the elec-
tion does not change. If instead u votes for a candidate c′ 
such that ����0[c�] = v and c′ > c , then c′ becomes a win-
ner, which is, since c ≻u c

′ , less preferred than the actual 
winner. Thus, u cannot change the winner of the election in 
G′ in one that she prefers more than the actual winner, and 

thus she will vote at step 1 for the same candidate as the one 
voted at step 0, that is her preferred candidate t.

Suppose now that t ∉ {c∗
0
} ∪ ��0 . Note that this implies 

that ��0 is empty, i.e., there is no candidate such that, if 
u votes for her, then it becomes a candidate preferred 
to c∗

0
 . Specifically, we have that for every c′ such that 

����0[c
�] = v , we have that c∗

0
≻u c , whereas for every 

c′ such that ����0[c�] = v − 1 we have that either c∗
0
> c 

or c∗
0
≻u c . Moreover, in this case we have, by definition 

of ��1 , that ����0[c] < v . We consider first the case that 
����0[c] < v − 2 . Let G′ be the graph achieved from G by 
adding a link between u and a supporter of c. The number 
of votes of c in the neighborhood of u in G′ becomes at most 
v − 2 , whereas it does not change for every other candidate. 
Hence, the winner of the election will be c∗

0
 . Moreover, since 

the set of candidates with v or v − 1 votes does not change 
and ��0 is empty, then u cannot change the winner of the 
election in G′ in one that she prefers more than the actual 
winner, and thus she will vote at step 1 for the same candi-
date as the one voted at step 0, that is her preferred candidate 
t.

Suppose instead that ����0[c] ≥ v − 2 and c = t . Observe 
that, since we are assuming that ��0 is empty, then in this 
case either ����0[c] = v − 2 or ����0[c] = v − 1 and 
c∗
0
> c . Let G′ be the graph achieved from G by adding a 

link between u and a supporter of c. If ����0[c] = v − 2 , 
then the number of votes of c in the neighborhood of u in G′ 
becomes v − 1 , whereas it does not change for every other 
candidate. Hence, the winner of the election will be c∗

0
 . If u 

votes for c, then c will have the same number of votes as c∗
0
 . 

If c > c∗
0
 , then c = t become a winner that is preferred by u 

to the actual winner c∗
0
 . Then u has an incentive to vote c = t.

If c < c∗
0
 , then the winner of the election does not change. 

Moreover, since the votes taken by candidates different from 
c is the same as in G and ��0 is empty, then u cannot change 
the winner of the election in G′ in one that she prefers more 
than the actual winner by voting one of these candidates, and 
thus she will vote at step 1 for the same candidate as the one 
voted at step 0, that is her preferred candidate t.

If ����0[c] = v − 1 , then the number of votes of c in the 
neighborhood of u in G′ becomes v, whereas it does not 
change for every other candidate. However, since c∗

0
> c , the 

winner of the election will be c∗
0
 . If u votes for c, then c will 

have more votes than c∗
0
 , and, thus c = t become a winner 

that is preferred by u to the actual winner c∗
0
 . Then u has an 

incentive to vote c = t.
Consider now the case that ����0[c] ≥ v − 2 and c ≠ t . 

Let us first assume that ����0[c] = v − 2 . Then it must be 
that, by definition of ��1 , either c∗

0
> c or c∗

0
≻u c . Let G′ 

be the graph achieved from G by adding a link between u 
and a supporter of c. Then the number of votes of c in the 
neighborhood of u in G′ becomes v − 1 , whereas it does not 
change for every other candidate. Hence, the winner of the 
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election will still be c∗
0
 . If u votes for c, then c will have the 

same number of votes as c∗
0
 . If c > c∗

0
 , then c becomes a win-

ner that, since c∗
0
>≻u c , u likes less than the actual winner 

c∗
0
 . If c < c∗

0
 , then c∗

0
 still remains the winner of the election. 

Moreover, since the votes taken by candidates different from 
c is the same as in G and ��0 is empty, then u cannot change 
the winner of the election in G′ in one that she prefers more 
than the actual winner by voting one of these candidates, and 
thus she will vote at step 1 for the same candidate as the one 
voted at step 0, that is her preferred candidate t.

Finally, we assume that ����0[c] = v − 1 . Let G′ be the 
graph achieved from G by adding a link between u and a 
supporter of c. Then the number of votes of c in the neigh-
borhood of u in G′ becomes v, whereas it does not change 
for every other candidate. We distinguish two cases based on 
who win the tie-break between c and c∗

0
 . If c∗

0
> c , then, c∗

0
 is 

the winner of the election in G′ , and, by definition of ��1 , it 
must be that c∗

0
≻u c . If u votes for c, then c will have more 

votes than c∗
0
 , and thus it becomes a winner that u likes less 

than the actual winner c∗
0
 . Moreover, since the votes taken 

by candidates different from c is the same as in G and ��0 is 
empty, then u cannot change the winner of the election in G′ 
in one that she prefers more than the actual winner by vot-
ing one of these candidates, and thus she will vote at step 1 
for the same candidate as the one voted at step 0, that is her 
preferred candidate t.

If c > c∗
0
 , then, c is the winner of the election in G′ , 

and, by definition of ��1 , it must be that c ≻u c
∗
0
 . It then 

follows that, since ��0 is empty, c ≻u c
′ for every c′ such 

that ����0[c�] = v , and either c ≻u c
′ or c > c′ for every c′ 

such that ����0[c�] = v − 1 . If u votes for c or for a dif-
ferent candidate c′ such that either ����0[c�] < v − 1 or 
����0[c

�] = v − 1 and c > c′ , then the outcome of the elec-
tion does not change. If u instead votes for a candidate c′ 
such that either ����0[c�] = v or ����0[c�] = v − 1 and 
c′ > c , then c′ becomes a winner that, since c ≻u c

′ , u pre-
fers less than the actual winner c. Therefore u cannot change 
the winner of the election in G′ in one that she prefers more 
than the actual winner by voting one of these candidates, and 
thus she will vote at step 1 for the same candidate as the one 
voted at step 0, that is her preferred candidate t.   ◻

Finally, we prove that, as for the case of ��0 , the addition 
of links between u and two supporters of c ∈ ��1 is harmless.

Lemma 8 If ��0 = {c∗
0
} or t ∈ ��0 , and links are added 

between u and two supporters of a candidate c ∈ ��1 , then u 
is stable in round 1.

Proof Let ����0[c∗0] = v , let Ĝ be the graph before the link 
addition, and let G̃ be the graph obtained from Ĝ by adding 
links between u and two supporters of c. Since c ∈ ��1 , she 
received v, v − 1 or v − 2 votes among the neighbors of u.

The case in which ����0[c] = v is equal to the cor-
responding case in Lemma  6. Assume now that 
����0[c] = v − 1 . In this case c will be the winner of the 
election in G̃ since she receives v + 1 votes while all the 
other candidates receive the same votes as in Ĝ (at most v). 
We distinguish two cases depending on whether t ∈ ��0 or 
��0 = {c∗

0
}.

If t ∈ ��0 , by Definition 4, for every candidate c′ with 
����0[c

�] = v it holds that c > t > c∗
0
> c� . Hence, u is not 

(c, c�)-crucial and she will confirm the vote for t.
If ��0 = {c∗

0
} and c > c∗

0
 , then c > c∗

0
> c� for every c′ with 

����0[c
�] = v . As above, u cannot influence the outcome of 

the election, and she will confirm her vote for t.
If ��0 = {c∗

0
} and c∗

0
> c , by Definition 4, c ≻u c

∗
0
 . Moreo-

ver, since ��0 = {c∗
0
} , it must be the case that c ≻u c

∗
0
≻u c

� 
for every c′ with ����0[c�] = v . Thus, if u would vote for a 
candidate c′ such that either ����0[c�] < v or ����0[c�] = v 
and c > c′ , then her vote will not change the outcome of the 
election. Moreover, she would not vote for a candidate c′ 
such that ����0[c�] = v and c′ > c , since c ≻u c

′ . Thus, also 
in this case, u will confirm her vote for t.

Finally, suppose that ����0[c] = v − 2 . In this case it 
must be ��0 = {c∗

0
} . Thus, for every candidate c′ such that 

����0[c
�] = v we have that c > c∗

0
> c� and c ≻u c

∗
0
≻u c

� , and 
for every candidate c′ such that ����0[c�] = v − 1 we have 
that either c > c∗

0
> c� or c ≻u c

∗
0
≻u c

� . The number of votes 
received by c in the neighborhood of u in G̃ becomes v, while 
the other candidates receive the same votes as in Ĝ (at most 
v). Thus, since c > c∗

0
 , c is the winner in G̃ . Moreover, for 

each candidate c′ such that u is (c, c�)-crucial we have that 
c ≻u c

′ . Thus, u will confirm her vote for t.   ◻

Proof of correctness. We are now ready to prove that our 
Node Stabilization procedure correctly stabilizes node u.

Lemma 9 Let G̃ be the graph obtained when running the 
Node Stabilization procedure on node u ∉ ��� . If we run 
the election on G̃ , u will be stable both in rounds 1 and 2.

Moreover, no algorithm achieves this goal by adding less 
links to the social network.

Proof The proof that u will be stable in rounds 1 and 2 of 
the election in G̃ follows from Lemmas 3, 5, 6, 7, and 8. In 
the following we prove that our algorithm uses the minimum 
number of links to stabilize u.

Note that, whenever |��i| > 1 and t ∉ ��i for some 
i ∈ {0, 1} , by Observation 1 we need to add at least one link 
to stabilize u. Since our algorithm adds at most two links, we 
have only to prove that whenever we add two links, no other 
algorithm could stabilize u adding only one link.

There are two cases in which the Node Stabilization pro-
cedure adds two links to the graph. The first case is when in 
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G′ (the graph returned by the Influence phase), u is stable 
in round 1 and not stable in round 2 and ��1 ⊆ ��1 . Suppose 
that we could have u stable in both the rounds by simply 
adding a single link between u and a supporter of a candidate 
c. If c ∉ ��1 , then, by Lemma 4, u will not be stable in 2; if 
c ∈ ��1 , instead, c ∈ ��1 , and, by Lemma 7, u will be not 
stable in round 1. Hence, we have proven that in this case at 
least two links are necessary to stabilize u in both the rounds.

The second case in which the Node Stabilization pro-
cedure adds two links to the graph is when u is not sta-
ble in round 1 and the condition of Line 2 is not satisfied. 
As before, suppose that we could have u stable in both the 
rounds by simply adding a single link between u and a sup-
porter of a candidate c. If c ∉ ��0 , then, by Lemma 4, u is not 
stable in round 1; if c ∈ ��0 , instead, by hypothesis, u will be 
not stable in round 2. Hence, also in this case we have proven 
that at least two links are necessary to stabilize u in both the 
rounds.   ◻

We now are ready to prove Lemma 2.

Proof of Lemma 2 Let G′′ be the graph returned by the Sta-
bilization phase. In order to prove the Lemma we have only 
to show that in an election on G′′ every node u ∉ ��� will be 
stable both in rounds 1 and 2. In fact, by Lemma 1 we know 
that all the affected nodes vote for the designated candidate 
w in rounds i ≥ 2 . Hence, in round 3 all the nodes confirm 
the vote expressed in the previous round and the election 
stops.

We start considering a node u ∈ B . In this case, the claim 
follows from Lemma 9, as long as there are sufficiently many 
nodes in ���� to add the required links. However, the Stabili-
zation phase requires to add at most two links between u and 
nodes in ���� that are supporters of the same candidate and 
are not neighbors of u. Since ���� includes three support-
ers for each candidate with no common neighbors, we can 
always find the supporters required to stabilize u.

Consider now a node u ∈ ���� . In this case, to stabilize u 
we have to add at most two links between u and two nodes 
in ����� that are supporters of the same candidate c and are 
not adjacent to u. Since, by construction, ����� contains two 
supporters of each candidate that are not adjacent to seeds, 
we certainly find the supporters required to stabilize u.

Finally, consider a node u ∈ ����� . Observe that in the 
Stabilization phase we add only links between u and nodes 
in ���� . Since ���� contains 3 supporters of each candidate, 
then u will have at most 3 new neighbors in G′′ voting for 
each candidate c. Let c∗

0
 be the candidate that is supported 

by the majority of neighbors of u. We next show that if we 
add links from u to 4 supporters of c∗

0
 node u will be stable 

in round 1. Since u does not have neighbors in ��� , all her 
neighbors vote in round 1 for their favorite candidate, and 
thus u does not change her vote in successive rounds.

Consider, indeed, the graph G̃ obtained from G′ by add-
ing links between u and three supporters of each candidate 
c. Note that the view of u in G̃ is exactly the same as in G′ . 
In particular, c∗

0
 is still the candidate that is supported by 

the majority of neighbors of u and the best response for u 
in G̃ is the same as in G′ . Anyway, by Lemma 3 we have 
that it is sufficient to add a link (the fourth one) between u 
and a supporter of c∗

0
 , to stabilize u in round 1. Moreover, 

Lemma 3 also states that this property continues to hold if 
links between u and supporters of c ≠ c∗

0
 (that is, if less than 

3 seed nodes are connected to u during the seed stabilization 
phase) are removed or if further links are added between u 
and supporters of c∗

0
 (that is, if more than zero seed nodes 

supporting c∗
0
 are connected to u during the stabilization 

phase).   ◻

5  Experiments

We compared our algorithm against the heuristic proposed 
by Sina et al. (2015) on a real dataset. Specifically, we con-
sider the social network dataset “Facebook MHRW” (Gjoka 
et al. 2010), that contains a sample of the Facebook structure 
taken over about 900,000 nodes. For our tests, we sampled 
from this network 10 different graphs over 25,000 nodes, by 
running a BFS from ten different randomly selected nodes. 
For each of these graphs we assigned the preferences to 
its nodes according to three different approaches: (i) each 
voter is assigned a randomly selected preference list; (ii) 
each voter is assigned a randomly selected single-peaked 
preference list; (iii) we used a dataset of real preference lists 
available from PrefLib, that contains the results of surveys 
about sushi preferences, and assigned to each voter a random 
preference list among the ones in the dataset. In particular, 
for each graph we run 30 simulations with random prefer-
ence lists, 10 with random single-peaked preference lists, 
and 10 with real preference lists.

For each combination of graph and preference list we con-
sider a setting with 5 candidates, and we select as the desired 
candidate w to be the candidate that is ranked as 2nd, 3rd, 
4th, and 5th with respect to the number of supporters. Hence, 
in total we run our simulations on 4 × 50 × 10 = 2000 dif-
ferent settings. For each of these settings we run both our 
algorithm, and the heuristic provided by Sina et al. (2015).

We observe that our algorithm correctly computes a set 
of links such that their addition to the original graph, assures 
that the desired candidate w wins the election. We remark 
that on the same settings, the heuristic of Sina et al. (2015) 
fails in about 30% of the runs, by returning a set of links that 
is insufficient to make w the winner of the election.
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Next picture shows that this guarantee comes at a limited 
cost in term of the number of added links. Indeed, as showed 
in Fig. 2, the number of links added by our algorithm is in 
the same order of magnitude as the one added by Sina et al. 
(2015), even if slightly larger. We remark anyway that our 
code does not implement any of the optimizations that (Sina 

et al. 2015) adopts in the influence phase (even if, as stated 
above, this would be possible to do).

Next we evaluate the performances of our approach with 
respect to the parameters of the problem, namely the choice 
of w and the initial distribution of preferences.

Fig. 2  The number of added 
links with respect to the four 
different choice for the desired 
candidate w 

Fig. 3  Number of influenced nodes and added links w.r.t. to different choices of w and preference assignments
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We observe indeed that whenever the initial distribution 
of preferences is essentially random (both for randomly 
selected preference lists and for randomly selected single-
peaked preference lists) the results are more or less the same. 
The average number of nodes processed during the first 
phase goes from about 20 when the desired winner is the 
second most voted candidate in the initial ranking, to about 
125 when the desired winner is the less voted candidate in 
the initial ranking. Similarly, the average number of added 
links is always below 5000 in all the considered cases and 
it is less than 2000 when the desired winner is the second 
most voted candidate.

The scenario is completely different, instead, if one con-
siders real distributions. In fact, these may be very biased 
towards one candidate, and thus in these cases it could be 
very difficult to subvert the result of the election. This is 
exactly what we observed in our experiments: even when the 
desired winner was the second most voted candidate, it has 
been necessary to influence in average about 100 nodes and 
to add in average more than 5000 links. The manipulation 
becomes almost impossible when the desired candidate has 
an even worse ranking, since it would be necessary to add 
in average more the 130,000 links. Figure 3 highlights these 
observations.

6  Conclusions

In this paper we presented an algorithm to compute a set 
of edges to add to a social network in order to manipulate 
the outcome of an election and have a sponsored candidate 
to win. We proved that our algorithm adds the minimum 
number of edges and it works on mild conditions on the 
structure of the social network and on the preference lists 
of the voters.

We also run extensive experiments to validate perfor-
mances of our algorithm and compare to the algorithm pre-
sented in Sina et al. (2015). The experiments show that our 
algorithm adds a number of edges that is similar to their 
heuristic but it has a 100% success rate. We plan to run even 
more extensive experiments in even more realistic settings.

Our results can be seen as another indication that the con-
trol of social media is a great threat to our democracy since 
the controller has an extraordinary power in determining 
which information we are exposed to and can use this power 
to control and influence our crucial decisions. This threat 
was already highlighted by several works in the case that 
voters are myopic and they are simply influenced by their 
neighbors (and possibly by their own belief).

In this paper we enforce the message of Sina et al. (2015), 
by showing that manipulation can be often effective even 
if voters are instead strategic and they can decide to vote 
for a candidate different from their favourite. Clearly, we 

acknowledge that neither of these two extremal behaviors 
fully represents the real world: usually, people’s decisions 
depend on both the influence of their social relationships 
and by strategic considerations based on their limited view. 
Hence, it would be interesting to evaluate the extent at which 
these manipulability results extend to this more realistic 
environment.

Moreover, most of the works on the election manipulabil-
ity problem (including this one) make a lot of simplifying 
assumptions: e.g., voters’ knowledge is limited to their own 
neighborhood; they perfectly know their neighbors’ votes; 
they have a total order of candidates. In a real world set-
ting, some of these assumptions could not hold: e.g., polls 
can provide an aggregate information about the rest of the 
network; voters could have only incomplete information 
about their neighbors’ votes (i.e., received messages could 
be blurry or could be lost in the mess of information that 
one receives nowadays through social media). It would be 
an interesting direction to verify at which extent the manipu-
lability results hold when some of these assumptions are 
relaxed and voters are assumed to have limited rationality2, 
where the extent of limited rationality may depend on how 
much the voters know about the rest of the networks, how 
confident they are about the signals received by their neigh-
bors, or about their own choices.

The results presented in this paper can be seen a con-
tribution towards the fundamental step of drawing of the 
boundary of the manipulability of social networks. These 
results allow not only to establish when an intervention is 
necessary, but thay also suggest some form of intervention, 
such as constraining the network to be one robust against 
manipulation. Nevertheless, we highlight that other forms 
of intervention can be operated, even when it is not possible 
to work on the network topology: e.g., quarantining particu-
lar nodes (Aspnes et al. 2006), or including in the network 
special nodes working as monitors (Zhang et al. 2015; Amo-
ruso et al. 2017) are among the most effective proposal of 
intervention that have been recently suggested in literature.
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