
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:4491–4500
https://doi.org/10.1007/s12652-019-01640-4

ORIGINAL RESEARCH

Machine learning for quality control system

Gonçalo San‑Payo1 · João Carlos Ferreira2 · Pedro Santos1 · Ana Lúcia Martins3

Received: 30 November 2018 / Accepted: 9 December 2019 / Published online: 16 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In this work, we propose and develop a classification model to be used in a quality control system for clothing manufactur-
ing using machine learning algorithms. The system consists of using pictures taken through mobile devices to detect defects
on production objects. In this work, a defect can be a missing component or a wrong component in a production object.
Therefore, the function of the system is to classify the components that compose a production object through the use of a
classification model. As a manufacturing business progresses, new objects are created, thus, the classification model must
be able to learn the new classes without losing previous knowledge. However, most classification algorithms do not support
an increase of classes, these need to be trained from scratch with all . Thus. In this work, we make use of an incremental
learning algorithm to tackle this problem. This algorithm classifies features extracted from pictures of the production objects
using a convolutional neural network (CNN), which have proven to be very successful in image classification problems. We
apply the current developed approach to a process in clothing manufacturing. Therefore, the production objects correspond
to clothing items

Keywords Quality control · Incremental learning · Image classification · Defect detection system

1 Introduction

Computer vision problems can be applied to quality control
tasks, more precisely in defect detection and classification.
There are many quality control systems of manufacturing
processes that can be improved with the right use of machine
learning algorithms, such as mobile phone cover glass pro-
duction in Li et al. (2014), fabric production in Chan and
Pang (2000), etc. Many machine learning algorithms can

be used for image classification problems, but most of them
have a fixed number of classes, and the algorithms cannot
learn new classes incrementally. This can be a problem for
applications and processes where new data and classes are
created because it would require training the algorithm again
from scratch with the old and new data together. The pre-
sent work addresses this issue as it plays a major part in the
proposed system. Quality control is a key factor in all major
manufacturing businesses, as costumers and investors are
increasingly demanding for higher quality. It is vital for a
company to ensure that the number of defective products
is kept to a minimum. Otherwise, it can have a big impact
on the company’s sales and business. Most of the quality
control processes are still made by humans, and although
these processes have improved over the years, human-based
processes can lead to a few disadvantages. For example,
a human usually works approximately 8 hours a day, and
in some of those hours, the levels of concentration are not
always the same. These levels of concentration may vary
due to fatigue, lack of motivation and other factors that can
lead to unnoticed defects and, therefore, hurt the business.
A computer, however, can keep the same levels of “concen-
tration” throughout the day. In the textile industry, where

 * João Carlos Ferreira
 jcafa@iscte-iul.pt

 Gonçalo San-Payo
 goncalo.san-payo@inov.pt

 Pedro Santos
 pedro.santos@inov.pt

 Ana Lúcia Martins
 almartins@iscte-iul.pt

1 INOV Inesc Inovação-Instituto de novas tecnologias, Lisbon,
Portugal

2 Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR- IUL,
Lisbon, Portugal

3 Instituto Universitário de Lisboa (ISCTE-IUL), Bussiness
Research Unit (BRU-IUL), Lisbon, Portugal

http://orcid.org/0000-0002-6662-0806
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01640-4&domain=pdf

4492 G. San-Payo et al.

1 3

humans are responsible for the quality control processes,
only 70.

2 State of art

Quality control using machine learning techniques has been
a hot research topic for a few years. Many techniques were
used in this research topic, such as: Fourier analysis (Chan
and Pang 2000), Gabor filters (Kumar and Pang 2002), neu-
ral networks (Celik et al. 2014). Additional work regard-
ing the topic of quality control and defect detection can be
found in Kumar (2008). Our objective is to develop a quality
control system that detects defects in clothes. This system
classifies the components of a clothing item and checks if
they are correct, therefore our problem can be considered as
an image classification problem. In more recent years, deep
learning techniques have achieved state-of-the-art results
in image classification problems with the development of a
handful of neural network architectures in Krizhevsky et al.
(2012), in Simonyan and Zisserman (2014), in He et al.
(2016), in Howard et al. (2017), in Pratt et al. (1991). Most
of the CNNs take a long time to train even on last-generation
GPUs. However, there is a way to use the knowledge of a
CNN gained when trained in a large dataset, like the Ima-
geNet, and adapt it to a similar classification problem. This is
called transfer learning, which consists of using a CNN with
the parameters, weights and biases obtained when trained
in a large dataset, use the first layers for feature extraction
and replace the last layers (fully-connected layers) use for
classification with new layers adapted to the desire classi-
fication task. This way there is only a need to train the new
layers, which will save time and resources in Utgoff (1989).
Incremental learning is the ability of an algorithm to gain
knowledge with new unseen data. Many common classifica-
tion algorithms have been adapted to this kind of learning,
such as: decision trees in Lakshminarayanan et al. (2014),
random forests (Polikar et al. 2001) and neural networks

(Krizhevsky and Hinton 2009). Nalbach et al. (2018) also
use a similar approach to quality assurance. Bray and Car-
penter (2018) use also machine learning approach for image
and a similar approach in Heleno et al. (2002) in a Machine
Vision Quality Control System for Industrial and Ryu et al.
(2010) in automatic quality control based on image. Zhu
et al. (2011) also applied machine learning in agriculture
for product quality and Kim (2019) in classification using a
neural network approach.

3 Methodology

The purpose of the QCSCM is to detect defects on cloth-
ing items. This is achieved by using a classification model
supporting incremental learning. This classification cation
model can, however, be easily adapted to other contexts.
The requirements of the system are as follows: (1) A system
capable of detecting defects on clothing items using pic-
tures. The system outputs a binary classification, defect or
no defect, based on the classification of the clothing items
components. (2) A mobile application to take pictures of
the clothing items to be used by the quality control officers
to perform their quality control tasks. The system is fed by
the quality control officer using the mobile application. (3)
Increase the speed of the quality control processes and the
percentage of detected defects. For the system to be useful,
it should improve the performance of the quality control pro-
cesses. (4) The ability of the system to learn from new data
as new components of clothing items are created. The sys-
tem must learn new classes maintaining its previous knowl-
edge. The quality control officer creates new data using the
mobile application and feed the system in a collaborative
way. A clothing item is made up by a set of components,
such as buttons, pockets, stamps, etc. Therefore, a defect can
be a wrong component or a missing component. Consider-
ing the requirements and the types of defect, the QCSCM
architecture was defined in Fig. 1. Using a client-server

Fig. 1 QCSCM general archi-
tecture

4493Machine learning for quality control system

1 3

model approach, the QCSCM consists of a mobile applica-
tion and a server. We called Defect Detection Server (DD
Server). The mobile application is used to take pictures of
the clothing items, and the DD Server is responsible for
detecting the defects making use of the classification model
and finally, register the defects. To improve the QCSCM
performance a user feedback approach was also defined. The
responsibility of the quality control in the factory lies with a
group of factory workers called quality control officers. The
function of the quality control officers is to detect defects
on the clothing items, register them and decide whether to
send the clothing item back to the manufacturing process,
remove the clothing item from production, or continue to
the next production step. A clothing item is sent back to
the manufacturing process if a repairable defect is detected
and is removed from production if an unrepairable defect is
detected. To execute their function the quality control offic-
ers use the mobile application to take pictures of the clothing
items and create bounding boxes around the components
that compose a clothing item. This information is sent to
the DD Server that crops the content of the bounding boxes
to create the images of the components. These images of
the components are classified by the classification model,
and the results are compared with the product data-sheet to
see if there is a defect or not. Finally, the classifications of
components are sent back to the mobile application be- ing
used by the quality control officer. A product data sheet is
an information associated with each model produced by the
clothing factory. The product data sheets are defined by the
clothing factory every time a new clothing item model is
created. The information present in the product data-sheet
information consists of a list of specifications and compo-
nents that compose a clothing item The responsibility of
creating images of the components to train the classification

model also relies on the quality control officers. The quality
control officer can also create more images by confirming or
correcting the classifications it received from the DD Server,
this is the user feedback feature. In Fig. 2 we defined a use
case diagram that explains the actions the quality control
officer performs using the mobile application.

A product data sheet is information associated to each
model produced by the clothing factory. The product data
sheets are defined by the clothing factory every time a new
clothing item model is created. The information present in
the product data sheet information consists of a list of speci-
fications and components that compose a clothing item

The responsibility of creating images of the components
to train the classification model also relies on the quality
control officers. The quality control officer can also create
more images by confirming or correcting the classifications
it received from the DD Server, this is the user feedback
feature. In Fig. 2 we defined a use case diagram that explains
the actions the quality control officer performs using the
mobile application.

3.1 Defect detection server

The first main component of the QCSCM is the DD Server
responsible for feeding the classification model with images
of the clothing items components. The DD Server must per-
form the following tasks:

1. Pre-process the images of the components it receives
from the mobile application used by the quality control
officers. This task of preprocessing the images consists
of cropping the bounding boxes of the pictures taken
by the quality control officers creating images of the
components. These images of the components are then

Fig. 2 Use case diagram of the
quality control officer actions
using the mobile application

4494 G. San-Payo et al.

1 3

resized and, in case of training, new images are created
using data augmentation techniques. The pre-processing
task is necessary so that the classification model can
perform its tasks.

2. Predict the classes of the components. In this second
task, the classification model present in the DD server
predicts the classes of the components it received from
the quality control officers.

3. Compare the results with the product data sheet and save
the results. After the classifications are made the DD
server performs the third task of comparing the results
with the product data sheet. If the identified components
match with the ones present on the product data sheet it
means no defect was detected and nothing needs to be
registered. If they do not match, it means a defect has
been detected and the DD Server performs the defect
registration.

4. Store pictures of the components and train the classifi-
cation model with new data. This fourth and final task
is only performed if a quality control officer selects the
option of using the pictures to train the classification
model. The DD Server after cropping the bounding
boxes of the pictures taken by the quality control offic-
ers, saves the content of the bounding boxes (images of
the components) along with the corresponding labels
in a database. If enough images of the components are
stored in the database, the training of the classification
model is performed.

3.1.1 Image database

When a quality control officer sends pictures of clothing
items with bounding boxes around the components and
selects the option, in the mobile application, of using the
pictures to train the classification model, the images of the
components of the clothing items need to be stored. In this
section we describe the image database represented in Fig. 1
as a module of the DD Server.

After the pictures of the clothing items and processed and
the images of the components are created, the DD Server
saves the images according to their classes. Each class has an
associated directory where all images corresponding to that
class are stored. The names of the directories serve as labels
for the images when the classification model is trained.

This image database allows the creation of the dataset that
is used to train the classification model. Every time the clas-
sification model needs to be trained, the DD Server loads the
images and labels from the image database and feeds them
to the classification model.

The image database also contains a list of the classes and
the number of new images available from each class. This
list is used to check if there are enough images to train the
classification model and it is also sent to the quality control

officers when they want to label the components of the cloth-
ing items using the mobile application.

3.1.2 Defect registration

The defect registration is represented in Fig. 1 as a module of
the DD Server. It is performed after the classification model
classifies the components that are sent to the DD Server and
after the results of the classification are compared with the
product data sheet to check if there are defects. In case of
a positive defect detection, the type of the defect, missing
component or wrong component, also needs to be registered.
For example, let’s assume we have a clothing item that is
supposed to have three black buttons and one silver zipper,
but the classification model returns two black buttons and
one silver zipper. In this case the DD Server would register
the defect as missing component along with the components
that are missing, in this case a black button.

Another example using the same clothing item, the clas-
sification model returns three black buttons and a golden
zipper. In this case the DD Server would register the defect
as wrong component and register the mis- placed compo-
nent, in this case a golden zipper instead of a silver zipper.

Apart from the image database and the defect registration
the other main module of the DD Server is the classification
model. However, due to its important we decided to describe
the classification model in a separated section.

3.2 Mobile application

The reason of using a mobile application to take pictures
instead of a fixed camera is because this way allows the
quality control officers to walk around the factory and take
pictures of the clothing items in different production steps.

During the creation of new data to train the classification
model, after drawing bounding boxes around the relevant
components in the picture, the quality control officers must
label each component with the corresponding classes. The
classes can be chosen from a list of existing classes or, if
the object consists of class not present in the classification
model, the quality control officers can create a new class that
will be added to the list of existing classes.

During the defect detection process, after receiving the
pictures taken by the quality control officers, the DD server
sends back the results of the classification model—classi-
fied components—so that the quality control officers can
give feedback on the classifications made. This interaction
between the DD Server and the mobile application—user
feedback—allows the quality control officer to correct wrong
classifications made by the classification model of the DD
Server and con- firm the correct ones.

4495Machine learning for quality control system

1 3

After the corrections are made, the quality control officer
sends the information again to the DD Server and new
images are created to train the classification model.

3.3 Classification model

The proposed classification model is bundled inside the DD
Server and is divided in a feature extraction model and a
classifier with incremental learning abilities. Although in
this work we used the classification model to classify com-
ponents of clothing items, it can be adapted to other quality
control environments.

The feature extraction model consists of a pre-trained
InceptionResNET (a type of CNN model) that extracts
important features from the content of the images. After the
extraction, the features are classified by the classifier. We
used a modified version of the Mondrian forest algorithm
that supports incremental learning (Lakshminarayanan
et al. 2014). We chose this architecture for the classification
model, because by using the principles of transfer learning,
we can combine the benefits of using a CNN to extract rele-
vant information from an image with the ability of Mondrian
forest to learn incrementally.

The idea of using a feature extraction model in the clas-
sification model was to make sure that the classifier only
needs to process and classify relevant information and to
reshape the input of the classification model from a three-
dimensional array (an image) to a one-dimensional array that
can be fed to the classifier. We chose to use a CNN as the
feature extraction model because of the recent state-of-the-
art results of this type of neural networks when it comes to
image classification problems.

The function of the classifier is to classify the features
extracted from the feature extraction model. As any other
classification algorithm, the classifier present in the clas-
sification model needs to be trained with data relative to the
classes it wants to classify. However, our classifier must be
able to learn incrementally new classes and gain knowledge
from unseen data.

A Mondrian forest is a type of random forest that can
learn incrementally (Lakshminarayanan et al. 2014). The
input of the Mondrian forest is a one-dimensional array,
therefore, it is able to train with the feature arrays extracted
using the feature extraction model. In the next chapter we
detail how we developed the classification model and how
our classifier (Mondrian forest) behaves when classifying the
feature arrays extracted using different CNN architectures.

4 Experience

To choose which CNN to use in the final version of the clas-
sification model, we performed some experiments on some
of the architectures provided by the Keras library. The cho-
sen architectures were: VGG16,1 MobileNet-V1,2 Inception-
V3,3 ResNet504 and InceptionResnet-V25.

In order to set some baseline results and due to the lack
of real images of components of clothing items, we used
the Cifar-106 dataset (A. Krizhevsky and Hinton 2009) to
perform some experiments and check if the classification
model can perform well in an image classification problem.
The Cifar-10 dataset consists of 60,000 images in 10 classes,
with 6000 per class. Of these images, 50,000 are used for
training and 10,000 are used for test. Each image consists
in a 32 × 32 color image. The 10 classes are the following:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck.

We created a python script using several libraries such
as: Google TensorFlow, Keras, Numpy and OpenCV, to
train the classifier on features extracted from the Cifar-10
dataset using each of the selected CNN architectures in an
incremental fashion, first we trained it with 5 classes and
the we added classes progressively until the classifier was
trained for all 10 classes of the dataset and measured the
accuracy. The number of Mondrian trees of Mondrian forest

Table 1 Comparison of CNNs features classified with Mondrian for-
est

Num-
ber of
classes

Inception Resnet InceptionResnet MobileNet VGG16

5 0.85 0.86 0.91 0.79 0.77
6 0.80 0.81 0.87 0.71 0.69
7 0.77 0.79 0.85 0.68 0.67
8 0.75 0.77 0.84 0.67 0.64
9 0.74 0.76 0.83 0.65 0.62
10 0.72 0.76 0.83 0.63 0.60

1 CNN model architecture created by VGG (Visual Geometry Group,
University of Oxford) for the ILSVRC-2014 contest.
2 MobileNetV1 from Google is a CNN model particularly useful for
mobile and embedded vision applications.
3 CNN model that is the first runner up for image classification in
ILSVRC-15.
4 CNN model that won the first place in the ILSVRC-15 classifica-
tion competition with top-5 error rate of 3.57%
5 State of the art CNN model architecture combining ResNet and
Inception features.
6 The CIFAR-10 dataset (Canadian Institute For Advanced Research)
is a collection of images that are commonly used to train machine
learning and computer vision algorithms.

4496 G. San-Payo et al.

1 3

was set to 100. We used this number of trees because it is a
common value used in decision forests (Lakshminarayanan
et al. 2014).

As the Table 1 and Fig. 3 show, for all CNN architec-
tures, the accuracy decreases when new classes are added.
The InceptionResnet shows the best results, followed by
the Resnet and the Inception. Furthermore, the classifier
trains faster on the InceptionResnet features than on the
Resnet or Inception features, this is because the Incep-
tionResnet returns a feature array of size 1536, which is
smaller than the 2048 size array of both the Resnet and
Inception. Although the training of the classifier with the
features of the VGG16 and MobileNet was significantly
faster than the training with the InceptionResNet features,

the accuracies were much worst. Taking these results into
account we chose to use the InceptionResnet CNN as our
feature extraction model in the following experiments.

In the original implementation of the Mondrian for-
est when initialising the model, a series of data related
parameters must be defined, such as, the number of classes
of the data, the training and test data and its correspond-
ing labels. In the implementation developed in the present
work, these parameters are also defined, but after each
training session, the number of classes used in that session
is saved in the model so that the model can accommodate
the new classes. To see how the classifier performed after
the modifications we made to the original implementation
of the Mondrian forest, we experimented training the clas-
sifier incrementally with new classes and training the clas-
sifier with new classes from scratch. After the experiments

Fig. 3 Comparison of CNNs features classified with Mondrian forest
(applied to Test dataset)—graph

Table 2 Confusion matrix—
Class legend: 1. zipper-white; 2.
zipper-silver; 3. zipper-black; 4.
button-grey; 5. button-black; 6.
button-bronze; 7. button-white;
8. button-yellow; 9. button-blue,
10. button-red; 11. belt buckle-
gold; 12. belt buckle-silver; 13.
belt buckle-black; 14. pocket-
yellow; 15. pocket-red; 16.
stamp1; 17. stamp2; 18. stamp3

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 19 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 14 0 0 5 1 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 20 0 0 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0
8 0 0 1 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 21 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

Table 3 Comparison of classification model accuracies trained from
scratch and trained incrementally

Number of classes Total training Incre-
mental
training

5 0.91 0.91
6 0.88 0.87
7 0.86 0.85
8 0.86 0.84
9 0.86 0.83
10 0.85 0.83

4497Machine learning for quality control system

1 3

we compared the accuracies of both training methods in
Tables 2 and 3.

As we can see in Fig. 4, the difference between the
two training methods is not big, with just a small drop,
of around 1–2%, in accuracy when trained incrementally
compared to training with all classes from scratch. These
results show that the classifier can be trained incrementally
in a satisfactory way, which is important for the QCSCM.

In this section we evaluate our proposed classification
model used in the QCSCM, ensuring that it fulfills the
propose of the present work.

In following evaluation and experiments we put our-
selves in the position of the quality control officers and
used the developed system, more precisely the mobile
application to take pictures of clothing items and create
bounding boxes of the components. The pictures were sent
to the DD Server that stored the images of the components
along with the labels in the image database creating a cus-
tom dataset. This dataset consists of around 2100 images
divided in 18 classes.

The classification model must be an efficient tool in order
to be a valid option for the QCSCM and for the quality con-
trol officers in their quality control processes. To measure
how efficient the classification model is, we calculated some
classification metrics using the custom dataset.

Previously, we used accuracy as the metric to evaluate
the incremental learning abilities of the classification model.
The results were promising, but the use of this metric can
be misleading sometimes. In this section, we evaluate the
performance of the classification model using more metrics.
The classification model was trained with all 18 classes of
the dataset we created.

Using the training set of the dataset and all 18 classes we
created a python script to train the classification model and
then evaluated the model using the test set. In Table 2 we
can see a confusion matrix describing the performance of
the classification model on the test set.

With the help of the confusion matrix it is possible to
calculate the precision, the recall and the F1-score. These
metrics allow a better interpretation of the classification
model performance. To calculate these metrics, we use the
scikit-learn library and the information shown in the confu-
sion matrix. The results of these calculations are present in
Table 4. As shown in this table, the metrics are high across
all classes except for class number four, which has a lower
recall, and class number seven, which has a lower precision.

In the case of class number four, which is button-grey, the
high precision and low recall implies that the classification
model does not classifies many things as button-grey, miss-
ing a lot of them. However, when it classifies an object as
button-grey it is very precise.

As for the case of class number seven, button-white, the
high recall but lower precision implies that the classification
model correctly classifies a significant proportion or even all
the white buttons as button-white. However, it also incor-
rectly classifies other classes as button-white.

These results show that the classification model found it
more difficult to distinguish the classes with similar char-
acteristics. Since the number images per class is quite bal-
ance, we can average the results of each class and get the
overall precision, recall and F1-score. The overall metrics,

Fig. 4 Total training vs incremental training—graph

Table 4 Precision, recall and F1-score

Class Precision Recall F1-score

1 0.90 0.90 0.90
2 0.90 0.86 0.88
3 0.96 1.00 0.98
4 0.93 0.67 0.78
5 1.00 0.95 0.98
6 1.00 1.00 1.00
7 0.81 1.00 0.90
8 0.95 0.95 0.95
9 0.92 1.00 0.96
10 1.00 1.00 1.00
11 1.00 1.00 1.00
12 0.95 1.00 0.98
13 1.00 0.95 0.98
14 1.00 1.00 1.00
15 1.00 1.00 1.00
16 1.00 1.00 1.00
17 1.00 1.00 1.00
18 1.00 1.00 1.00

Table 5 Evaluation metrics

Accuracy Precision Recall F1-score

96.09% 96.29% 96.04% 95.96%

4498 G. San-Payo et al.

1 3

converted to percentages, along with the accuracy of the
classification model is presented in Table 5.

4.1 QCSCM simulation

To further evaluate the classification model and to test the
QCSCM, we experimented the QCSCM by taking some
pictures of clothing items. Some of these pictures are pre-
sented here, where we can see how the QCSCM performed
on them.

To take these pictures, we installed the developed mobile
application in three mobile devices and created a simulated
environment over a period of 1 week. The three installed
mobile applications allowed us to put ourselves in the role
of quality control officers.

By installing the mobile applications in multiple devices
in the simulated environment we created, we were capable
creating more images to be used by the QC- SCM in a col-
laborative way. All of the installed mobile applications were
capable of connecting to the DD Server allowing a faster
creation of images and subsequently a better training of the
classification model.

In Fig. 5 it is possible to see some examples of correct
classifications. On the left, a picture of a shirt sleeve with
a bounding box around a component correctly labeled as
button-white. On the middle, a picture of part of a belt with
its buckle surrounded with a bounding box correctly clas-
sified as silver belt buckle. On the right, a picture of a polo
shirt with two bounding boxes correctly classified as white
buttons.

As the Fig. 5 also shows, the QCSCM can use the clas-
sification model to classify more than one component at a
time. The picture on the right has two bounding boxes cor-
rectly classified.

In the real quality control environment, the quality control
officers when receiving results such as the ones present in the
figures above, could confirm the results and create new images
for training with them. As for the DD Server, it would register
a defect in case of one being detected.

As seen in previously the classification model is not 100%
accurate, sometimes it makes wrong classifications of clothing
items components. Figure 6 shows some of these cases. On the
left, we can see a silver zipper mistakenly classified as a white
zipper. On the right, it is possible to see four bronze buttons,
three of them correctly classified but one incorrectly classified
as a black button.

Some important information can be retrieved from these
examples of incorrect classifications. In these examples the
classification incorrectly classified the components, however
the main characteristic of the components was correctly clas-
sified. In the case of the silver zipper, the component was
correctly classified as a zipper, but the color was incorrect.
The same for the buttons example, all of them were classi-
fied as buttons, but in one of them the color was incorrect.
This suggests that some class hierarchy and multi-label clas-
sification could improve the performance of the classifica-
tion model, since the are many components that shared some
characteristics.

As said before, when the quality control officer receives
incorrect results, he should make use of the user feedback fea-
ture of the QCSCM and correct wrong predictions made by
the classification model. This will help the classification model
improve its accuracy.

Fig. 5 Examples of correct classification

4499Machine learning for quality control system

1 3

5 Conclusion

The goal of the present work was to develop a system, that
makes use of an image classification model capable of learn-
ing new classes incrementally and increase its knowledge, to
help the quality control officers of a clothing factory in their
quality control processes.

Using a mobile application combined with a server
for central processing, the proposed QCSCM system is
deployed containing a classification model created using a
set of machine learning algorithms. This system can classify
objects that are part of clothing items, checking if the identi-
fied objects corresponds to the reference used on a certain
clothing item and also, it allows the use of machine learning
algorithms applications by multiple factory workers through
the use of a mobile application. At the moment, the system
is applied to the clothing manufacturing but others cases and
other type of productions lines can also be used.

This work also addresses transfer learning, but with a lit-
tle twist. Instead of replacing the last layers of a CNN with
new layers adapted to the new classes, it uses an independ-
ent and autonomous machine learning algorithm to classify
the features extracted from the CNN to learn new classes
incrementally.

In the current architecture of the classification model,
each different component of a clothing item corresponds
to a different class. The same is applied to other produced
objects. If the number of classes increases exponentially this
can lead to some drops in accuracy. Also, some classes of
objects can be more difficult to classify than others. Taking
this into account, the focus will be to create a class hierarchy
and multi-label classification to create a newer version of
the system. For example, the current classification model
classifies a black button and a blue button as two different
classes. In the future we will develop a classification model

that first classifies the more generic class, such as button,
zipper, pockets, etc., and then classifies its characteristics,
for example, color, size, etc. in order to reach the final clas-
sification for the object.

Funding This research has been supported by Portuguese National
funds through FITEC - Programa Interface, with reference CIT “INOV
- INESC Inovação - Financiamento Base”.

References

Bray MA, Carpenter AE (2018) Quality control for high-throughput
imaging experiments using machine learning in cellprofiler. In:
Johnston P, Trask O (eds) High content screening. Methods in
molecular biology, vol 1683. Humana Press, New York

Celik H, Dulger L, Topalbekiroglu M (2014) Development of a
machine vision system: real-time fabric defect detection and clas-
sification with neural networks. J Text Inst 105(6):575–585

Chan C, Pang GK (2000) Fabric defect detection by fourier analysis.
IEEE Trans Ind Appl 36(5):1267–1276

Heleno P, Davies R, Correia (2002) EURASIP. J Adv Signal Process
2002:298501. https ://doi.org/10.1155/S1110 86570 22041 14

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 770–778

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T,
Andreetto M, Adam H (2017) Mobilenets: efficient convolutional
neural networks for mobile vision applications. arXiv preprint
arXiv :1704.04861

Kim H (2019) Multiple vehicle tracking and classification system with
a convolutional neural network. J Ambient Intell Human Comput.
https ://doi.org/10.1007/s1265 2-019-01429 -5

Krizhevsky A, Hinton G (2009) Learning multiple layers of features
from tiny images, University of Toronto

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification
with deep convolutional neural networks. Adv Neural Inf Process
Syst 1097–1105

Fig. 6 Examples of incorrect
classifications

https://doi.org/10.1155/S1110865702204114
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/s12652-019-01429-5

4500 G. San-Payo et al.

1 3

Kumar A (2003) Neural network based detection of local textile
defects. Pattern Recogn 36(7):1645–1659

Kumar A (2008) Computer-vision-based fabric defect detection: a sur-
vey. IEEE Trans Industr Electron 55(1):348–363

Kumar A, Pang GK (2002) Defect detection in textured materials using
gabor filters. IEEE Trans Ind Appl 38(2):425–440

Lakshminarayanan B, Roy DM, YW (2014) The efficient online ran-
dom forests. Advances in neural information processing systems,
Mondrian forests, pp 3140–3148

Li D, Liang LQ, Zhang WJ (2014) Effect inspection and extraction of
the mobile phone cover glass based on the principal components
analysis. Int J Adv Manuf Technol 73:9–12

Nalbach O, Linn C, Derouet M, Werth D, (2018) Predictive quality:
towards a new understanding of quality assurance using machine
learning tools. In: Abramowicz W., Paschke A (eds) Business
information systems. BIS, (2018) Lecture Notes in Business Infor-
mation Processing, vol 320. Springer, Cham

Polikar R, Upda L, Upda SS, Honavar V (2001) Learn++: an incremen-
tal learning algorithm for supervised neural networks. IEEE Trans
Syst Man Cybern part C (applications and reviews) 31(4):497–508

Pratt LY, Mostow J, Kamm CA, Kamm AA (1991) Direct transfer of
learned information among neural networks. AAAI 91:584–589

Ryu JY, Kim SW, Kim SU, Ha DH (2010) Automatic image quality
control system. In: Kim T, Vasilakos T, Sakurai K, Xiao Y, Zhao

G, Slezak D (eds) Communication and networking. FGCN 2010.
Communications in computer and information science, vol 120.
Springer, Berlin

Simonyan AK, Zisserman A (2014) Very deep convolutional networks
for large-scale image recognition, arXiv : 1409.1556

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D,
Vanhoucke V, Rabinovich A (2015) Going deeper with convolu-
tions. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 1–9

Utgoff PE (1989) Incremental induction of decision trees. Mach Learn
4(2):161–186

Zhu Y, Li S, Liu S, Yue E (2011) Design of agent-based agricultural
product quality control system. In: Li D, Liu Y, Chen Y (eds)
Computer and computing technologies in agriculture IV. CCTA
(2010) IFIP advances in information and communication technol-
ogy, vol 344. Springer, Berlin, Heidelberg

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1409.1556

	Machine learning for quality control system
	Abstract
	1 Introduction
	2 State of art
	3 Methodology
	3.1 Defect detection server
	3.1.1 Image database
	3.1.2 Defect registration

	3.2 Mobile application
	3.3 Classification model

	4 Experience
	4.1 QCSCM simulation

	5 Conclusion
	References

