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Abstract
In this work, we propose and develop a classification model to be used in a quality control system for clothing manufactur-
ing using machine learning algorithms. The system consists of using pictures taken through mobile devices to detect defects 
on production objects. In this work, a defect can be a missing component or a wrong component in a production object. 
Therefore, the function of the system is to classify the components that compose a production object through the use of a 
classification model. As a manufacturing business progresses, new objects are created, thus, the classification model must 
be able to learn the new classes without losing previous knowledge. However, most classification algorithms do not support 
an increase of classes, these need to be trained from scratch with all . Thus. In this work, we make use of an incremental 
learning algorithm to tackle this problem. This algorithm classifies features extracted from pictures of the production objects 
using a convolutional neural network (CNN), which have proven to be very successful in image classification problems. We 
apply the current developed approach to a process in clothing manufacturing. Therefore, the production objects correspond 
to clothing items

Keywords Quality control · Incremental learning · Image classification · Defect detection system

1 Introduction

Computer vision problems can be applied to quality control 
tasks, more precisely in defect detection and classification. 
There are many quality control systems of manufacturing 
processes that can be improved with the right use of machine 
learning algorithms, such as mobile phone cover glass pro-
duction in Li et al. (2014), fabric production in Chan and 
Pang (2000), etc. Many machine learning algorithms can 

be used for image classification problems, but most of them 
have a fixed number of classes, and the algorithms cannot 
learn new classes incrementally. This can be a problem for 
applications and processes where new data and classes are 
created because it would require training the algorithm again 
from scratch with the old and new data together. The pre-
sent work addresses this issue as it plays a major part in the 
proposed system. Quality control is a key factor in all major 
manufacturing businesses, as costumers and investors are 
increasingly demanding for higher quality. It is vital for a 
company to ensure that the number of defective products 
is kept to a minimum. Otherwise, it can have a big impact 
on the company’s sales and business. Most of the quality 
control processes are still made by humans, and although 
these processes have improved over the years, human-based 
processes can lead to a few disadvantages. For example, 
a human usually works approximately 8 hours a day, and 
in some of those hours, the levels of concentration are not 
always the same. These levels of concentration may vary 
due to fatigue, lack of motivation and other factors that can 
lead to unnoticed defects and, therefore, hurt the business. 
A computer, however, can keep the same levels of “concen-
tration” throughout the day. In the textile industry, where 
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humans are responsible for the quality control processes, 
only 70.

2  State of art

Quality control using machine learning techniques has been 
a hot research topic for a few years. Many techniques were 
used in this research topic, such as: Fourier analysis (Chan 
and Pang 2000), Gabor filters (Kumar and Pang 2002), neu-
ral networks (Celik et al. 2014). Additional work regard-
ing the topic of quality control and defect detection can be 
found in Kumar (2008). Our objective is to develop a quality 
control system that detects defects in clothes. This system 
classifies the components of a clothing item and checks if 
they are correct, therefore our problem can be considered as 
an image classification problem. In more recent years, deep 
learning techniques have achieved state-of-the-art results 
in image classification problems with the development of a 
handful of neural network architectures in Krizhevsky et al. 
(2012), in Simonyan and Zisserman (2014), in He et al. 
(2016), in Howard et al. (2017), in Pratt et al. (1991). Most 
of the CNNs take a long time to train even on last-generation 
GPUs. However, there is a way to use the knowledge of a 
CNN gained when trained in a large dataset, like the Ima-
geNet, and adapt it to a similar classification problem. This is 
called transfer learning, which consists of using a CNN with 
the parameters, weights and biases obtained when trained 
in a large dataset, use the first layers for feature extraction 
and replace the last layers (fully-connected layers) use for 
classification with new layers adapted to the desire classi-
fication task. This way there is only a need to train the new 
layers, which will save time and resources in Utgoff (1989). 
Incremental learning is the ability of an algorithm to gain 
knowledge with new unseen data. Many common classifica-
tion algorithms have been adapted to this kind of learning, 
such as: decision trees in Lakshminarayanan et al. (2014), 
random forests (Polikar et al. 2001) and neural networks 

(Krizhevsky and Hinton 2009). Nalbach et al. (2018) also 
use a similar approach to quality assurance. Bray and Car-
penter (2018) use also machine learning approach for image 
and a similar approach in Heleno et al. (2002) in a Machine 
Vision Quality Control System for Industrial and Ryu et al. 
(2010) in automatic quality control based on image. Zhu 
et al. (2011) also applied machine learning in agriculture 
for product quality and Kim (2019) in classification using a 
neural network approach.

3  Methodology

The purpose of the QCSCM is to detect defects on cloth-
ing items. This is achieved by using a classification model 
supporting incremental learning. This classification cation 
model can, however, be easily adapted to other contexts. 
The requirements of the system are as follows: (1) A system 
capable of detecting defects on clothing items using pic-
tures. The system outputs a binary classification, defect or 
no defect, based on the classification of the clothing items 
components. (2) A mobile application to take pictures of 
the clothing items to be used by the quality control officers 
to perform their quality control tasks. The system is fed by 
the quality control officer using the mobile application. (3) 
Increase the speed of the quality control processes and the 
percentage of detected defects. For the system to be useful, 
it should improve the performance of the quality control pro-
cesses. (4) The ability of the system to learn from new data 
as new components of clothing items are created. The sys-
tem must learn new classes maintaining its previous knowl-
edge. The quality control officer creates new data using the 
mobile application and feed the system in a collaborative 
way. A clothing item is made up by a set of components, 
such as buttons, pockets, stamps, etc. Therefore, a defect can 
be a wrong component or a missing component. Consider-
ing the requirements and the types of defect, the QCSCM 
architecture was defined in Fig. 1. Using a client-server 

Fig. 1  QCSCM general archi-
tecture
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model approach, the QCSCM consists of a mobile applica-
tion and a server. We called Defect Detection Server (DD 
Server). The mobile application is used to take pictures of 
the clothing items, and the DD Server is responsible for 
detecting the defects making use of the classification model 
and finally, register the defects. To improve the QCSCM 
performance a user feedback approach was also defined. The 
responsibility of the quality control in the factory lies with a 
group of factory workers called quality control officers. The 
function of the quality control officers is to detect defects 
on the clothing items, register them and decide whether to 
send the clothing item back to the manufacturing process, 
remove the clothing item from production, or continue to 
the next production step. A clothing item is sent back to 
the manufacturing process if a repairable defect is detected 
and is removed from production if an unrepairable defect is 
detected. To execute their function the quality control offic-
ers use the mobile application to take pictures of the clothing 
items and create bounding boxes around the components 
that compose a clothing item. This information is sent to 
the DD Server that crops the content of the bounding boxes 
to create the images of the components. These images of 
the components are classified by the classification model, 
and the results are compared with the product data-sheet to 
see if there is a defect or not. Finally, the classifications of 
components are sent back to the mobile application be- ing 
used by the quality control officer. A product data sheet is 
an information associated with each model produced by the 
clothing factory. The product data sheets are defined by the 
clothing factory every time a new clothing item model is 
created. The information present in the product data-sheet 
information consists of a list of specifications and compo-
nents that compose a clothing item The responsibility of 
creating images of the components to train the classification 

model also relies on the quality control officers. The quality 
control officer can also create more images by confirming or 
correcting the classifications it received from the DD Server, 
this is the user feedback feature. In Fig. 2 we defined a use 
case diagram that explains the actions the quality control 
officer performs using the mobile application.

A product data sheet is information associated to each 
model produced by the clothing factory. The product data 
sheets are defined by the clothing factory every time a new 
clothing item model is created. The information present in 
the product data sheet information consists of a list of speci-
fications and components that compose a clothing item

The responsibility of creating images of the components 
to train the classification model also relies on the quality 
control officers. The quality control officer can also create 
more images by confirming or correcting the classifications 
it received from the DD Server, this is the user feedback 
feature. In Fig. 2 we defined a use case diagram that explains 
the actions the quality control officer performs using the 
mobile application.

3.1  Defect detection server

The first main component of the QCSCM is the DD Server 
responsible for feeding the classification model with images 
of the clothing items components. The DD Server must per-
form the following tasks:

1. Pre-process the images of the components it receives 
from the mobile application used by the quality control 
officers. This task of preprocessing the images consists 
of cropping the bounding boxes of the pictures taken 
by the quality control officers creating images of the 
components. These images of the components are then 

Fig. 2  Use case diagram of the 
quality control officer actions 
using the mobile application
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resized and, in case of training, new images are created 
using data augmentation techniques. The pre-processing 
task is necessary so that the classification model can 
perform its tasks.

2. Predict the classes of the components. In this second 
task, the classification model present in the DD server 
predicts the classes of the components it received from 
the quality control officers.

3. Compare the results with the product data sheet and save 
the results. After the classifications are made the DD 
server performs the third task of comparing the results 
with the product data sheet. If the identified components 
match with the ones present on the product data sheet it 
means no defect was detected and nothing needs to be 
registered. If they do not match, it means a defect has 
been detected and the DD Server performs the defect 
registration.

4. Store pictures of the components and train the classifi-
cation model with new data. This fourth and final task 
is only performed if a quality control officer selects the 
option of using the pictures to train the classification 
model. The DD Server after cropping the bounding 
boxes of the pictures taken by the quality control offic-
ers, saves the content of the bounding boxes (images of 
the components) along with the corresponding labels 
in a database. If enough images of the components are 
stored in the database, the training of the classification 
model is performed.

3.1.1  Image database

When a quality control officer sends pictures of clothing 
items with bounding boxes around the components and 
selects the option, in the mobile application, of using the 
pictures to train the classification model, the images of the 
components of the clothing items need to be stored. In this 
section we describe the image database represented in Fig. 1 
as a module of the DD Server.

After the pictures of the clothing items and processed and 
the images of the components are created, the DD Server 
saves the images according to their classes. Each class has an 
associated directory where all images corresponding to that 
class are stored. The names of the directories serve as labels 
for the images when the classification model is trained.

This image database allows the creation of the dataset that 
is used to train the classification model. Every time the clas-
sification model needs to be trained, the DD Server loads the 
images and labels from the image database and feeds them 
to the classification model.

The image database also contains a list of the classes and 
the number of new images available from each class. This 
list is used to check if there are enough images to train the 
classification model and it is also sent to the quality control 

officers when they want to label the components of the cloth-
ing items using the mobile application.

3.1.2  Defect registration

The defect registration is represented in Fig. 1 as a module of 
the DD Server. It is performed after the classification model 
classifies the components that are sent to the DD Server and 
after the results of the classification are compared with the 
product data sheet to check if there are defects. In case of 
a positive defect detection, the type of the defect, missing 
component or wrong component, also needs to be registered. 
For example, let’s assume we have a clothing item that is 
supposed to have three black buttons and one silver zipper, 
but the classification model returns two black buttons and 
one silver zipper. In this case the DD Server would register 
the defect as missing component along with the components 
that are missing, in this case a black button.

Another example using the same clothing item, the clas-
sification model returns three black buttons and a golden 
zipper. In this case the DD Server would register the defect 
as wrong component and register the mis- placed compo-
nent, in this case a golden zipper instead of a silver zipper.

Apart from the image database and the defect registration 
the other main module of the DD Server is the classification 
model. However, due to its important we decided to describe 
the classification model in a separated section.

3.2  Mobile application

The reason of using a mobile application to take pictures 
instead of a fixed camera is because this way allows the 
quality control officers to walk around the factory and take 
pictures of the clothing items in different production steps.

During the creation of new data to train the classification 
model, after drawing bounding boxes around the relevant 
components in the picture, the quality control officers must 
label each component with the corresponding classes. The 
classes can be chosen from a list of existing classes or, if 
the object consists of class not present in the classification 
model, the quality control officers can create a new class that 
will be added to the list of existing classes.

During the defect detection process, after receiving the 
pictures taken by the quality control officers, the DD server 
sends back the results of the classification model—classi-
fied components—so that the quality control officers can 
give feedback on the classifications made. This interaction 
between the DD Server and the mobile application—user 
feedback—allows the quality control officer to correct wrong 
classifications made by the classification model of the DD 
Server and con- firm the correct ones.
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After the corrections are made, the quality control officer 
sends the information again to the DD Server and new 
images are created to train the classification model.

3.3  Classification model

The proposed classification model is bundled inside the DD 
Server and is divided in a feature extraction model and a 
classifier with incremental learning abilities. Although in 
this work we used the classification model to classify com-
ponents of clothing items, it can be adapted to other quality 
control environments.

The feature extraction model consists of a pre-trained 
InceptionResNET (a type of CNN model) that extracts 
important features from the content of the images. After the 
extraction, the features are classified by the classifier. We 
used a modified version of the Mondrian forest algorithm 
that supports incremental learning (Lakshminarayanan 
et al. 2014). We chose this architecture for the classification 
model, because by using the principles of transfer learning, 
we can combine the benefits of using a CNN to extract rele-
vant information from an image with the ability of Mondrian 
forest to learn incrementally.

The idea of using a feature extraction model in the clas-
sification model was to make sure that the classifier only 
needs to process and classify relevant information and to 
reshape the input of the classification model from a three-
dimensional array (an image) to a one-dimensional array that 
can be fed to the classifier. We chose to use a CNN as the 
feature extraction model because of the recent state-of-the-
art results of this type of neural networks when it comes to 
image classification problems.

The function of the classifier is to classify the features 
extracted from the feature extraction model. As any other 
classification algorithm, the classifier present in the clas-
sification model needs to be trained with data relative to the 
classes it wants to classify. However, our classifier must be 
able to learn incrementally new classes and gain knowledge 
from unseen data.

A Mondrian forest is a type of random forest that can 
learn incrementally (Lakshminarayanan et al. 2014). The 
input of the Mondrian forest is a one-dimensional array, 
therefore, it is able to train with the feature arrays extracted 
using the feature extraction model. In the next chapter we 
detail how we developed the classification model and how 
our classifier (Mondrian forest) behaves when classifying the 
feature arrays extracted using different CNN architectures.

4  Experience

To choose which CNN to use in the final version of the clas-
sification model, we performed some experiments on some 
of the architectures provided by the Keras library. The cho-
sen architectures were: VGG16,1 MobileNet-V1,2 Inception-
V3,3 ResNet504 and InceptionResnet-V25.

In order to set some baseline results and due to the lack 
of real images of components of clothing items, we used 
the Cifar-106 dataset (A. Krizhevsky and Hinton 2009) to 
perform some experiments and check if the classification 
model can perform well in an image classification problem. 
The Cifar-10 dataset consists of 60,000 images in 10 classes, 
with 6000 per class. Of these images, 50,000 are used for 
training and 10,000 are used for test. Each image consists 
in a 32 × 32 color image. The 10 classes are the following: 
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, 
truck.

We created a python script using several libraries such 
as: Google TensorFlow, Keras, Numpy and OpenCV, to 
train the classifier on features extracted from the Cifar-10 
dataset using each of the selected CNN architectures in an 
incremental fashion, first we trained it with 5 classes and 
the we added classes progressively until the classifier was 
trained for all 10 classes of the dataset and measured the 
accuracy. The number of Mondrian trees of Mondrian forest 

Table 1  Comparison of CNNs features classified with Mondrian for-
est

Num-
ber of 
classes

Inception Resnet InceptionResnet MobileNet VGG16

5 0.85 0.86 0.91 0.79 0.77
6 0.80 0.81 0.87 0.71 0.69
7 0.77 0.79 0.85 0.68 0.67
8 0.75 0.77 0.84 0.67 0.64
9 0.74 0.76 0.83 0.65 0.62
10 0.72 0.76 0.83 0.63 0.60

1 CNN model architecture created by VGG (Visual Geometry Group, 
University of Oxford) for the ILSVRC-2014 contest.
2 MobileNetV1 from Google is a CNN model particularly useful for 
mobile and embedded vision applications.
3 CNN model that is the first runner up for image classification in 
ILSVRC-15.
4 CNN model that won the first place in the ILSVRC-15 classifica-
tion competition with top-5 error rate of 3.57%
5 State of the art CNN model architecture combining ResNet and 
Inception features.
6 The CIFAR-10 dataset (Canadian Institute For Advanced Research) 
is a collection of images that are commonly used to train machine 
learning and computer vision algorithms.
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was set to 100. We used this number of trees because it is a 
common value used in decision forests (Lakshminarayanan 
et al. 2014).

As the Table 1 and Fig. 3 show, for all CNN architec-
tures, the accuracy decreases when new classes are added. 
The InceptionResnet shows the best results, followed by 
the Resnet and the Inception. Furthermore, the classifier 
trains faster on the InceptionResnet features than on the 
Resnet or Inception features, this is because the Incep-
tionResnet returns a feature array of size 1536, which is 
smaller than the 2048 size array of both the Resnet and 
Inception. Although the training of the classifier with the 
features of the VGG16 and MobileNet was significantly 
faster than the training with the InceptionResNet features, 

the accuracies were much worst. Taking these results into 
account we chose to use the InceptionResnet CNN as our 
feature extraction model in the following experiments.

In the original implementation of the Mondrian for-
est when initialising the model, a series of data related 
parameters must be defined, such as, the number of classes 
of the data, the training and test data and its correspond-
ing labels. In the implementation developed in the present 
work, these parameters are also defined, but after each 
training session, the number of classes used in that session 
is saved in the model so that the model can accommodate 
the new classes. To see how the classifier performed after 
the modifications we made to the original implementation 
of the Mondrian forest, we experimented training the clas-
sifier incrementally with new classes and training the clas-
sifier with new classes from scratch. After the experiments 

Fig. 3  Comparison of CNNs features classified with Mondrian forest 
(applied to Test dataset)—graph

Table 2  Confusion matrix—
Class legend: 1. zipper-white; 2. 
zipper-silver; 3. zipper-black; 4. 
button-grey; 5. button-black; 6. 
button-bronze; 7. button-white; 
8. button-yellow; 9. button-blue, 
10. button-red; 11. belt buckle-
gold; 12. belt buckle-silver; 13. 
belt buckle-black; 14. pocket-
yellow; 15. pocket-red; 16. 
stamp1; 17. stamp2; 18. stamp3

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 19 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 14 0 0 5 1 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 20 0 0 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0
8 0 0 1 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 21 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

Table 3  Comparison of classification model accuracies trained from 
scratch and trained incrementally

Number of classes Total training Incre-
mental 
training

5 0.91 0.91
6 0.88 0.87
7 0.86 0.85
8 0.86 0.84
9 0.86 0.83
10 0.85 0.83
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we compared the accuracies of both training methods in 
Tables 2 and 3.

As we can see in Fig. 4, the difference between the 
two training methods is not big, with just a small drop, 
of around 1–2%, in accuracy when trained incrementally 
compared to training with all classes from scratch. These 
results show that the classifier can be trained incrementally 
in a satisfactory way, which is important for the QCSCM.

In this section we evaluate our proposed classification 
model used in the QCSCM, ensuring that it fulfills the 
propose of the present work.

In following evaluation and experiments we put our-
selves in the position of the quality control officers and 
used the developed system, more precisely the mobile 
application to take pictures of clothing items and create 
bounding boxes of the components. The pictures were sent 
to the DD Server that stored the images of the components 
along with the labels in the image database creating a cus-
tom dataset. This dataset consists of around 2100 images 
divided in 18 classes.

The classification model must be an efficient tool in order 
to be a valid option for the QCSCM and for the quality con-
trol officers in their quality control processes. To measure 
how efficient the classification model is, we calculated some 
classification metrics using the custom dataset.

Previously, we used accuracy as the metric to evaluate 
the incremental learning abilities of the classification model. 
The results were promising, but the use of this metric can 
be misleading sometimes. In this section, we evaluate the 
performance of the classification model using more metrics. 
The classification model was trained with all 18 classes of 
the dataset we created.

Using the training set of the dataset and all 18 classes we 
created a python script to train the classification model and 
then evaluated the model using the test set. In Table 2 we 
can see a confusion matrix describing the performance of 
the classification model on the test set.

With the help of the confusion matrix it is possible to 
calculate the precision, the recall and the F1-score. These 
metrics allow a better interpretation of the classification 
model performance. To calculate these metrics, we use the 
scikit-learn library and the information shown in the confu-
sion matrix. The results of these calculations are present in 
Table 4. As shown in this table, the metrics are high across 
all classes except for class number four, which has a lower 
recall, and class number seven, which has a lower precision.

In the case of class number four, which is button-grey, the 
high precision and low recall implies that the classification 
model does not classifies many things as button-grey, miss-
ing a lot of them. However, when it classifies an object as 
button-grey it is very precise.

As for the case of class number seven, button-white, the 
high recall but lower precision implies that the classification 
model correctly classifies a significant proportion or even all 
the white buttons as button-white. However, it also incor-
rectly classifies other classes as button-white.

These results show that the classification model found it 
more difficult to distinguish the classes with similar char-
acteristics. Since the number images per class is quite bal-
ance, we can average the results of each class and get the 
overall precision, recall and F1-score. The overall metrics, 

Fig. 4  Total training vs incremental training—graph

Table 4  Precision, recall and F1-score

Class Precision Recall F1-score

1 0.90 0.90 0.90
2 0.90 0.86 0.88
3 0.96 1.00 0.98
4 0.93 0.67 0.78
5 1.00 0.95 0.98
6 1.00 1.00 1.00
7 0.81 1.00 0.90
8 0.95 0.95 0.95
9 0.92 1.00 0.96
10 1.00 1.00 1.00
11 1.00 1.00 1.00
12 0.95 1.00 0.98
13 1.00 0.95 0.98
14 1.00 1.00 1.00
15 1.00 1.00 1.00
16 1.00 1.00 1.00
17 1.00 1.00 1.00
18 1.00 1.00 1.00

Table 5  Evaluation metrics

Accuracy Precision Recall F1-score

96.09% 96.29% 96.04% 95.96%
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converted to percentages, along with the accuracy of the 
classification model is presented in Table 5.

4.1  QCSCM simulation

To further evaluate the classification model and to test the 
QCSCM, we experimented the QCSCM by taking some 
pictures of clothing items. Some of these pictures are pre-
sented here, where we can see how the QCSCM performed 
on them.

To take these pictures, we installed the developed mobile 
application in three mobile devices and created a simulated 
environment over a period of 1 week. The three installed 
mobile applications allowed us to put ourselves in the role 
of quality control officers.

By installing the mobile applications in multiple devices 
in the simulated environment we created, we were capable 
creating more images to be used by the QC- SCM in a col-
laborative way. All of the installed mobile applications were 
capable of connecting to the DD Server allowing a faster 
creation of images and subsequently a better training of the 
classification model.

In Fig. 5 it is possible to see some examples of correct 
classifications. On the left, a picture of a shirt sleeve with 
a bounding box around a component correctly labeled as 
button-white. On the middle, a picture of part of a belt with 
its buckle surrounded with a bounding box correctly clas-
sified as silver belt buckle. On the right, a picture of a polo 
shirt with two bounding boxes correctly classified as white 
buttons.

As the Fig. 5 also shows, the QCSCM can use the clas-
sification model to classify more than one component at a 
time. The picture on the right has two bounding boxes cor-
rectly classified.

In the real quality control environment, the quality control 
officers when receiving results such as the ones present in the 
figures above, could confirm the results and create new images 
for training with them. As for the DD Server, it would register 
a defect in case of one being detected.

As seen in previously the classification model is not 100% 
accurate, sometimes it makes wrong classifications of clothing 
items components. Figure 6 shows some of these cases. On the 
left, we can see a silver zipper mistakenly classified as a white 
zipper. On the right, it is possible to see four bronze buttons, 
three of them correctly classified but one incorrectly classified 
as a black button.

Some important information can be retrieved from these 
examples of incorrect classifications. In these examples the 
classification incorrectly classified the components, however 
the main characteristic of the components was correctly clas-
sified. In the case of the silver zipper, the component was 
correctly classified as a zipper, but the color was incorrect. 
The same for the buttons example, all of them were classi-
fied as buttons, but in one of them the color was incorrect. 
This suggests that some class hierarchy and multi-label clas-
sification could improve the performance of the classifica-
tion model, since the are many components that shared some 
characteristics.

As said before, when the quality control officer receives 
incorrect results, he should make use of the user feedback fea-
ture of the QCSCM and correct wrong predictions made by 
the classification model. This will help the classification model 
improve its accuracy.

Fig. 5  Examples of correct classification
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5  Conclusion

The goal of the present work was to develop a system, that 
makes use of an image classification model capable of learn-
ing new classes incrementally and increase its knowledge, to 
help the quality control officers of a clothing factory in their 
quality control processes.

Using a mobile application combined with a server 
for central processing, the proposed QCSCM system is 
deployed containing a classification model created using a 
set of machine learning algorithms. This system can classify 
objects that are part of clothing items, checking if the identi-
fied objects corresponds to the reference used on a certain 
clothing item and also, it allows the use of machine learning 
algorithms applications by multiple factory workers through 
the use of a mobile application. At the moment, the system 
is applied to the clothing manufacturing but others cases and 
other type of productions lines can also be used.

This work also addresses transfer learning, but with a lit-
tle twist. Instead of replacing the last layers of a CNN with 
new layers adapted to the new classes, it uses an independ-
ent and autonomous machine learning algorithm to classify 
the features extracted from the CNN to learn new classes 
incrementally.

In the current architecture of the classification model, 
each different component of a clothing item corresponds 
to a different class. The same is applied to other produced 
objects. If the number of classes increases exponentially this 
can lead to some drops in accuracy. Also, some classes of 
objects can be more difficult to classify than others. Taking 
this into account, the focus will be to create a class hierarchy 
and multi-label classification to create a newer version of 
the system. For example, the current classification model 
classifies a black button and a blue button as two different 
classes. In the future we will develop a classification model 

that first classifies the more generic class, such as button, 
zipper, pockets, etc., and then classifies its characteristics, 
for example, color, size, etc. in order to reach the final clas-
sification for the object.
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