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Abstract
The mortality rate of breast cancer can be reduced by early diagnosis and treatment. The computer-aided diagnosis (CAD) 
systems can effectively help physicians identify the early stage of breast cancer. The primary tool for such systems is mam-
mograms. Usually, these images lack high quality. Furthermore, due to the irregular shape of masses, their size variability, 
and the apparent similarity of the masses and other dense regions of the breast tissue, it is difficult to detect and diagnose 
the masses. Although many image processing techniques have been presented for diagnosis of breast masses, they have not 
been quite successful, and this problem has been retained as a challenge yet. In this paper, a method for classifying breast 
tissues into normal and abnormal (i.e., cancerous) is proposed, which is based on a deep learning approach. It mainly con-
tains a new convolutional neural network (CNN) and a decision mechanism. After a preprocessing phase, a block around 
each pixel is fed into a trained CNN to determine whether the pixel belongs to normal or abnormal tissues. This results in 
a binary map for the input suspicious tissue. Afterward, as a decision mechanism, a thresholding technique is applied to a 
central block on the produced binary map to label it. The new architecture of the CNN, the training scheme of the network, 
employing the CNN for classifying the pixels of the suspicious regions rather than the entire input, exerting an effective 
decision mechanism on the output of the CNN and the learning of the model parameters, helped us achieve superior results 
compared to state-of-the-art methods by reaching 95 and 94.68 percent for AUC and accuracy, respectively.

Keywords Deep learning · Convolutional neural network · Breast tissue classification · Computer-aided diagnosis · 
Mammogram

1 Introduction

Breast cancer is a fatal disease that originates in breast tissue. 
It could affect women more often, though men may also be 
affected (Wajid and Hussain 2015). According to the Ameri-
can Cancer Society (2011), almost one out of every nine 
women is estimated to develop breast cancer. Early diag-
nosis and treatment can significantly reduce the mortality 
rate (Buciu and Gacsadi 2011). However, interpretation of 
mammograms, as a primary tool for the breast cancer diag-
nosis, is challenging because of the subtle nature of mam-
mographic abnormalities, poor quality of mammograms, 
the rarity of expert radiologists, and boredom for constru-
ing large numbers of images in limited time (Chakraborty 
et al. 2012). The computer-aided diagnostic systems can help 
the specialists greatly to recognize the early stages of breast 
cancer. Mammography has been shown as the most effective 
and reliable tool to diagnose breast cancer at an initial stage 
(Davies and Dance 1990; Lau and Bischof 1991; Siddiqui 
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et al. 2005). On mammograms, dense breast tissue, such as 
breast masses or tumors, look white and hence in healthy 
women with dense breasts mammogram is not a reliable 
tool for cancer diagnosis (American College of Radiology 
2013). The irregular shape of masses, their size variability, 
and complexity of the breast tissue make it difficult to sepa-
rate the mass from other dense regions of the breast tissue. 
Also, sometimes the size of the lesion is too small to be 
seen by experts. Many methods have been proposed to deal 
with these challenges. However, the accuracy of breast mass 
detection still needs improvement. Some samples of normal 
and abnormal breast tissues are shown in Fig. 1. A brief 
overview of different existing methods is provided in Sect. 2.

In this paper, we propose a deep feature-based scheme 
that principally contains a convolutional neural network 
(CNN) and a decision mechanism to classify breast tissues 
into normal and abnormal. We have a preprocessing phase 
which eliminates irrelevant information from the image 
and enhances the contrast of the mammogram. Then, a new 
architecture for a block-based CNN is presented. This net-
work is trained on a large number of normal and abnormal 
blocks from the images of the training set. In the test phase, 
the suspicious regions of the images, we call each of them a 
region of interest (ROI), are extracted and fed into the CNN. 
Afterward, the CNN classifies the pixels of each ROI into 
normal and abnormal with labels ‘0’ and ‘1’ to generate a 
binary map. In the next stage, an efficient decision mecha-
nism based on a thresholding technique is applied to the 
central block of the resulted binary map to label the inputted 
ROI. The appropriate size of the block and the threshold 
parameter are experimentally determined using the train-
ing data, and the best values are applied in the test phase. 
Unlike many methods that employ rescaling the image for 
feeding to CNN, the ROIs in the proposed method are not 
rescaled to preserve the quality of the image. Furthermore, 
many existing approaches exploit CNN to classify the ROIs, 
whereas we employ a new CNN to classify the pixels of 
the ROIs first. Afterward, classified ROIs are assigned to 
another stage by applying an effective decision mechanism 

on the output of the CNN. The obtained results show the 
superiority of the proposed algorithm compared to state-of-
the-art methods.

The rest of this paper is organized as follows. A brief 
overview of the existing techniques is supplied in Sect. 2. 
The different stages of our proposed method, including 
preprocessing, processing data by CNN, and a decision 
mechanism are described in Sect. 3. After introducing the 
database, in Sect. 4, the proposed method is compared with 
other mammogram classification methods. Furthermore, 
the influential model parameters are varied in the proposed 
framework, and their effects are examined in the results. 
Besides, the effect of preprocessing, investigating a CNN-
based procedure instead of the thresholding-based way, the 
environment of simulations and computation time are pre-
sented in this section. Finally, Sect. 5 concludes the paper 
with a direction for future research.

2  Literature review

In the literature, several types of research have been intro-
duced for the detection and diagnosis of masses in mam-
mograms. In a bunch of studies, low-level or medium-level 
features such as margin or the shape of masses are extracted 
(Cristianini et al. 2002) first. Then, the features are pre-
sented into different kinds of classifiers to categorize masses. 
Moayedi et al. (2010) employ the contourlet transform to 
gain its coefficients as features and performed a classifica-
tion based on the Support Vector Machine (SVM) family. In 
Buciu and Gacsadi (2011), directional features are extracted 
after filtering the images by Gabor wavelets and eventu-
ally, Proximal Support Vector Machines (PSVM) are used 
to classify them. Agrawal et al. (2014) use saliency-based 
segmentation, namely GBVS (Harel et al. 2007) to extract 
the suspicious regions in mammograms. Then, a large num-
ber of features are extracted from the segmented areas, and 
subsequently, 154 features are selected to be classified by 
an SVM classifier (Chang and Lin 2011). Feature extraction 

Fig. 1  Instances of breast tis-
sues. The top row represents 
samples for the normal case, 
while the bottom row illustrates 
samples for the abnormal breast 
tissues
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based on curvelet transform and moment theory is exerted 
in Dehahbi et al. (2015) to describe the images. Next, a 
K-Nearest Neighbor (K-NN) classifier is used to distinguish 
between normal and abnormal breast tissues. In our previ-
ous work (Tavakoli et al. 2017) a supervised discriminative 
dictionary learning approach is applied on DSIFT (Dense 
Scale Invariant Feature Transform) features. Meanwhile, a 
linear classifier is simultaneously learned with the dictionary 
to classify the sparse representations.

Moreover, Tosin et al. (2018) develop the curvelet trans-
form to extract shape features from the ROIs while texture 
features are extracted using the Local Binary Pattern (LBP) 
algorithm. The K-NN algorithm also is employed to classify 
the extracted features. In Jen and Yu (2015), the breast image 
is segmented by a thresholding technique. After applying 
gray-level quantization on the segmented breast image, five 
first-order statistical intensities and gradients features are 
extracted from a suspicious ROI. Then, feature difference 
matrices are created from the extracted features, and prin-
cipal component analysis (PCA) (Pearson 1901) is used to 
help the determination of feature weights. In the method 
presented by Khuzi et al. (2009), after a preprocessing stage, 
three segmentation methods namely local threshold (Cheng 
et al. 2006), k-mean (Cheng et al. 2006), and Otsu (Otsu 
1979) are checked to extract intended ROIs. Afterward, 
textural features of ROIs are extracted by using gray level 
co-occurrence matrices (GLCM). Finally, a decision tree 
employs these features to detect masses. GLCM is also used 
for feature extraction in the method proposed by Ancy and 
Nair (2017) where an SVM model performs mammograms 
classification. A CAD system, based on extracting features 
using exact Gaussian–Hermite moments, is introduced in 
Eltoukhy et al. (2018).

The obtained feature vector is presented to K_NN, 
random forests, and AdaBoost classifiers to differenti-
ate between normal and abnormal lesions. The authors in 
Chakraborty et al. (2018) present a multiresolution analysis 
of tissue pattern orientation to categorize masses. Although 
a wide range of traditional features seems to make good 
descriptions of an image, a considerable gap exists between 
these features and cognitive behaviors of physicians (Doi 
2007).

Therefore, strategies should be based on how radiologists 
look at medical images. To judge whether a medical image is 
normal or abnormal, physicians combine different levels of 
knowledge with previous experience in similar tasks. How-
ever, it seems complicated to identify the hierarchical sense 
of mass images and information processing of the human 
brain by traditional features and related methods (Jiao et al. 
2015). Deep learning (Nielsen 2015) is a machine learning 
paradigm that tries to mimic the human brain by transfer-
ring semantic information from lower levels to higher lev-
els. Deep learning has been playing a significant role in the 

academic society and has caused an immense change in the 
field of big data and artificial intelligence (Jiao et al. 2015). 
A type of deep architecture that is particularly applicable in 
the field of image processing is the CNN (Nielsen 2015) that 
consists of two primary layers, which are the convolutional 
layer and the pooling layer. The convolutional layer calcu-
lates the output of the neurons that are connected to the local 
area at the input by sharing weights and biases and the pool-
ing layer subsamples the output of the convolutional layer 
and decreases the dimensionality of the data (Ertosun and 
Rubin 2015). CNN can automatically learn suitable image 
features for different applications more efficiently compared 
to hand-crafted features utilized by traditional machine 
learning approaches (Ertosun and Rubin 2015).

Many methods use CNN to detect abnormal areas in 
mammographic images (Jiao et al. 2015; Ertosun and Rubin 
2015; Jaffar 2017; Abbas 2016; Bay et al. 2006; Guo et al. 
2010; Schmidhuber 2015; Qiu et al. 2016; Lo et al. 2002; 
Zhang et al. 2018). Jiao et al. (2015) extract two groups 
of deep features from two different layers called high-level 
and middle-level features. Then, intensity information and 
extracted deep features are combined by a decision mecha-
nism. After that, the outcomes of classifiers based on dif-
ferent features are jointly analyzed to characterize the types 
of test images. Ertosun and Rubin (2015) propose a system 
with two modules called classification engine and localiza-
tion engine. A deep CNN classifies mammograms to con-
taining a mass or not. Then, a regional probabilistic approach 
based on a deep learning network localizes the mass within 
the image. In Jaffar (2017), images are first resized, and 
then a CNN is used for extraction of features, and finally, an 
SVM classifies the features. Another deep learning-based 
approach in Abbas (2016), extracts two descriptors; speed-
up robust features (SURF) (Bay et al. 2006) and local binary 
pattern variance (LBPV) (Guo et al. 2010) from each mass. 
These descriptors are transformed into deep invariant fea-
tures (DIFs) (Schmidhuber 2015) in a supervised and unsu-
pervised manner through a multilayer deep-learning archi-
tecture. A fine-tuning step completes the determination of 
the features, and the final decision is made via a soft-max 
linear classifier. The method in Qiu et al. (2016), utilizes 
an eight-layer deep learning network for automatic feature 
extraction and a multiple layer perceptron (MLP) classifier 
for feature categorization. The MLP classifier generates 
a classification score to predict the likelihood of an ROI 
depicting a malignant mass. Lo et al. (2002) designed a mul-
tiple circular path convolution neural network (MCPCNN) 
for the analysis of tumor and tumor-like structures. In this 
way, each suspected tumor area is divided into sectors, and 
the defined mass features for each sector is computed inde-
pendently. These sector features are used on the input layer 
and coordinated by convolution kernels of different sizes. In 
Zhang et al. (2018), a nine-layer CNN is proposed. In this 



5358 N. Tavakoli et al.

1 3

method, three activation functions, moreover, six pooling 
techniques are compared and eventually, the results show the 
combination of a parametric rectified linear unit (ReLU) and 
a rank-based stochastic pooling performs the best.

Most methods utilize CNNs for feature extraction and 
then perform classification by traditional machine learning 
approaches such as SVM (Jiao et al. 2015; Jaffar 2017), MLP 
(Qiu et al. 2016), Neural Network (NN) (Guan and Loew 
2017), and so on. In this paper, CNN is employed for clas-
sifying all pixels of a suspicious region to obtain a binary 
map first. Then, the resulted binary maps are labeled by a 
threshold-based decision mechanism. Moreover, we apply a 
CNN-based approach rather than the threshold-based tech-
nique for the classification task and analyze the outcomes 
of the two paths. Unlike some methods (Ertosun and Rubin 
2015), which use well known pre-designed CNNs, we per-
formed a variety of experiments to find the appropriate CNN 
architecture for our work. Moreover, many existing schemes 
(Ertosun and Rubin 2015; Jaffar 2017; Abbas 2016; Qiu 
et al. 2016; Zhang et al. 2018; Guan and Loew 2017) down 
sample or resize the input image to reduce the computa-
tional complexity of the CNN, which decreases the quality 
of mammograms. To overcome this problem, we consider a 
window around each pixel of the breast tissue as the CNN 
input. Therefore, not only the image quality is preserved, 
but also a large number of input blocks for training the CNN 
are generated. We will show that the preprocessing stage, 
including contrast enhancement and pectoral muscle sup-
pression, significantly improves the performance, in contrast 
to some methods (Ertosun and Rubin 2015; Abbas 2016; 
Guan and Loew 2017) that are lacking this step.

3  Proposed method

The block diagram of our proposed method is shown in 
Fig. 2. The proposed method consists of three main steps: 
(a) preprocessing, (b) classifying the pixels of the inputted 

suspicious region (ROI) by a CNN, and (c) Assigning a sin-
gle label of ‘normal’ or ‘abnormal’ to each ROI by a deci-
sion mechanism.

The image preprocessing eliminates irrelevant areas from 
the image and enhances the contrast of the mammogram. In 
the second stage, CNN is trained by random blocks selected 
from normal and abnormal tissues of the training set. In the 
test phase, the trained CNN is employed to classify the sus-
picious regions (ROIs) pixels of the test images. Therefore, 
a binary map for each ROI is obtained. In the third stage, the 
ROIs based on their binary maps are classified into normal 
or abnormal breast tissues. In the following, we explain all 
the mentioned steps in detail.

3.1  Pre‑processing

Due to random block selection from the entire image in the 
network training phase, we need to delete irrelevant areas 
from the image to supply more accurate results. Based on 
the experiments we performed, preprocessing significantly 
increases the accuracy of the results. To eliminate the back-
ground area in mammogram images, such as high-intensity 
rectangular label, tape artifact, noise, etc. the preprocess-
ing technique is essential (Narain Ponraj et al. 2011). Also, 
pectoral muscle in the upper corner of a breast has a similar 
intensity as dense structures in breast tissue such as abnor-
mal masses, fibro-glandular disc (in a Medio Lateral Oblique 
(MLO) view of a mammogram) (Maitra et al. 2012). Moreo-
ver, mammograms are grayscale images with poor contrast. 
Using contrast enhancement techniques makes intensities 
of pixels have better distribution in the image histogram. 
Therefore, similar to our previous work (Tavakoli et al. 
2017), the pre-processing stage includes four main steps: 
(1) breast region extraction, (2) pectoral muscle suppression, 
(3) mask creation, and (4) contrast enhancement. In the fol-
lowing, we explain each of the mentioned steps.

Fig. 2  The diagram of the proposed method
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3.1.1  Breast region extraction

To identify the breast object, we employ Otsu’s thresholding 
method (Otsu 1979) to find the adaptive threshold to corre-
sponding to each image. To find more precise boundaries of 
the breast region, we modify Otsu’s threshold by multiplying 
t0 by a constant value, 0 < 𝛼′ < 1 , and calculate tf = �

�
× to 

as the final threshold to binarize mammograms. Then a flat, 
disk-shaped structuring element with a radius of two pixels 
is used to dilate the image. After that, the largest disjoint 
component in the binary image is selected as the breast 
region. This resulting mask (Fig. 3d) is then multiplied by 
the original image, and thus, the breast region is extracted 
(Fig. 3e). The effect of this process at each step is shown in 
Fig. 3.

3.1.2  Pectoral muscle suppression

We remove the pectoral muscle region from mammograms 
according to the method proposed in Jen and Yu (2015). 
To specify the location of the muscle, the orientation of the 
breast is first determined by a method explained in Jen and 
Yu (2015). In this method, at least four horizontal refer-
ence lines are considered at intervals of 1.4 or 1.8 image 
width depicted as dotted lines in Fig. 4a that pass across 
both sides of the breast contour at eight cross points ((xi, yi ) 
where 1 ≤ i ≤ 8 ). If the four points of the cross (i.e. ( xi, yi ) 
for 5 ≤ i ≤ 8 ) are placed on a vertical line, the pectoral mus-
cle is on the same side as the four points. If there is no 
vertical permutation of cross points, we get the slope of the 
straight-line L called ‘s ’ passing through two upper cross 
points on a non-vertical contour curve as seen in Fig. 4a. 
If the slope s is greater than zero, the breast orientation is 
specified as the right of the image; vice versa, if it is less 
than zero the pectoral muscle is assessed as left of the image.

To remove pectoral muscle, after finding the breast orien-
tation, the contrast of the image is enhanced by using gamma 
correction equalization (Jen and Yu 2015). Next, a modi-
fied Otsu’s thresholding method is applied to the enhanced 
image to obtain a binary image. Then, dilation and erosion 

operations are applied to the binary image, and finally, 
according to the breast orientation, the candidate compo-
nent in the upper corner of the image is eliminated from the 
original image. Figure 5. displays the output of this step in 
a typical example.

3.1.3  Mask creation

To train the CNN in the proposed method, it is necessary 
to determine the labels of normal and abnormal blocks as a 
ground-truth. Also, in the test set, this information is used 
to compare the predicted results with targets. In the database 
used for experiments, the abnormality in a mammogram is 
specified via both the center coordinates of the lesion and 
a radius of its expansion. In the proposed method, a mask 
is created for each image based on this knowledge. In this 
mask, the background pixels, the foreground pixels (i.e., 
pixels related to the healthy tissue of the breast) and the 
abnormal pixels are characterized by black, white, and gray 
colors respectively. The sample of the resulted mask can be 
seen in Fig. 7.

3.1.4  Contrast enhancement

We utilize the Contrast Limited Adaptive Histogram Equali-
zation (CLAHE) (Pizer et al. 1987) algorithm to enhance 

Fig. 3  Breast region extraction, 
a original image, b the binary 
image, c the image dilation, d 
binary breast region extraction, 
e extracted breast region

Fig. 4  Determining breast orientation, a a breast contour, b a breast 
image (Jen and Yu 2015)
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the contrast of mammograms. This approach is a common 
technique for enhancing medical images (Wajid and Hus-
sain 2015). CLAHE divides an image into contextual blocks 
called tiles and then exploits histogram equalization (HE) 
(Pizer et al. 1987) to each tile. Afterward, it makes a his-
togram for each tile by using a specific number of bins and 
clips the histogram at a specified threshold. Then, it maps 
each region according to the new histogram results. This 
technique leads to artificial effects at tile boundaries. There-
fore, the bilinear interpolation method combines neighbor-
ing tiles. The contrast, particularly in homogeneous areas, 
can be limited to prevent reinforcing any noise that might 
exist in the image. The effect of the contrast enhancement 
algorithm, CLAHE, on mammograms, is shown in Fig. 7.

3.2  Processing data by convolutional neural 
network

This stage aims to classify pixels of suspicious regions of 
the image (ROIs) by a block-based CNN. First, the preproc-
essed images are randomly divided into training and test 
sets. The CNN is trained on several normal and abnormal 
random blocks taken from the training mammograms. In 
the test stage, like most of the existing methods (Moayedi 
et al. 2010; Buciu and Gacsadi 2011; Dehahbi et al. 2015; 
Tosin et al. 2018; Eltoukhy et al. 2018; Guan and Loew 
2017; Setiawan et al. 2015; Chougrad et al. 2018), the ROIs 
are extracted firstly from the test set. Afterward, To classify 
the ROI pixels, a block is considered around each pixel and 
fed to the trained CNN to determine the labels of central 
pixels. These labels form a binary map as the output of the 
CNN. In the next step, based on the binary map, it is decided 
whether an ROI is normal or abnormal. In the following, 
CNN architecture, network training, and test are explained 
in more detail.

3.2.1  Architecture of CNN

The new architecture of the network proposed in this paper is 
shown in Fig. 6. Four convolution layers are used for experi-
mentation with 32, 64, 128 and 256 filters and kernel sizes of 
7 × 7, 5 × 5, 3 × 3, and 3 × 3 respectively. The Rectified Lin-
ear Unit (ReLU) is used as the activation function. Moreo-
ver, Batch normalization (Ioffe and Szegedy 2015) approach 
which accelerates training network speed, is applied after the 
convolution layers. Both the weights and biases are initial-
ized randomly by Glorot and Bengio’s method (Glorot and 
Bengio 2010). Then, the stochastic gradient descent (SGD) 
(Bottou 2010) is employed to minimize the cross-entropy 
over the training set. The batch size for the SGD function 
is set to 64 with a momentum of 0.8. The last convolutional 
layer is followed by a max-pooling layer with a kernel size of 
2. Afterward, a regularization technique, namely “dropout,” 
is used in the fully-connected layer by setting the probability 
to 0.5. Overfitting can be reduced by using dropout to pre-
vent complex co-adaptations on the neurons (Hinton et al. 
2012). Then, a flatten layer exploited to create a single long 
feature vector for the fully-connected layer with 128 hidden 
neurons. In the end, another fully connected layer with one 
neuron and sigmoid function is applied for classification.

3.2.2  Network training

To train the block-based CNN, normal and abnormal blocks 
are selected from the labeled mammograms and fed to the 
CNN. In mammography images, abnormal regions are minor 
parts of the image as opposed to normal regions. This means 
that by a purely random selection of training blocks, the 
majority of the selected blocks would belong to the nor-
mal tissues. This unbalanced distribution of training blocks 
would reduce the learning performance of the network. In 
the proposed method, blocks with b × b pixels that are ran-
domly selected from normal and abnormal tissues of the 
mammogram are used as CNN inputs for network training 
(Fig. 7). To avoid the problem of having unbalanced training 
data, in the selection of training samples for CNN, 50% of 

Fig. 5  Pectoral muscle elimina-
tion, a enhanced image by 
gamma correlation, b the 
obtained binary image by using 
modified Otsu’s threshold-
ing, c removing the candidate 
component in the corner of the 
binary image, d Pectoral muscle 
elimination from the original 
image



5361Detection of abnormalities in mammograms using deep features  

1 3

blocks are randomly selected from normal tissues, and the 
other 50% are extracted from abnormal tissues. The selection 
is made based on the available ground truth of the images 
and generated masks of mammograms in Sect. 3.1.3. Also, 
‘0’ and ‘1’ labels are assigned to the central pixels of the 
normal and abnormal blocks, respectively as targets.

3.2.3  Network testing

As mentioned earlier, suspicious regions as ROIs are 
selected in the test stage from the test set to examine the 
trained CNN. For this purpose, q × q squares surrounding 
the centers of tumorous masses are taken as abnormal ROIs 
and the same size squares also randomly selected inside 
breast tissues as normal ROIs to contain all normal tissue 
types equally (fatty, fatty–glandular, and dense–glandular) 
(Moayedi et al. 2010; Buciu and Gacsadi 2011; Dehahbi 
et al. 2015; Tosin et al. 2018; Eltoukhy et al. 2018; Guan 

and Loew 2017; Setiawan et al. 2015; Chougrad et al. 2018). 
Figure 1 illustrates five samples per class (case). To clas-
sify the pixels of testing ROIs, a block with the size of b 
× b pixels around each pixel is considered and fed into the 
trained network. The learned block-based CNN assigns ‘0’ 
or ‘1’ label to each block center. Accordingly, a binary map 
with the same size of each ROI is resulted (Fig. 8). The 

Fig. 6  The architecture of the proposed network

Fig. 7  The training of the network in the proposed scheme

Fig. 8  The testing phase of the proposed system
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intensity values of zero and one in the binary map in Fig. 8 
show the pixels that the CNN detects normal and abnormal 
respectively. This output of the CNN is post-processed by a 
decision mechanism introduced in the next section to deter-
mine if each ROI is normal or not.

3.3  Decision mechanism

To assign a single label to each ROI, a decision mechanism 
is performed here. For this purpose, we consider a block in 
the center of the obtained binary map as seen in Fig. 9c, d. 
Then ROI labeling is done based on a threshold value, called 
‘α.’ If the number of abnormal pixels in the central block 
(with the size of h × h ) exceeds the threshold of α, that ROI 
will be labeled as abnormal. Otherwise, it will be labeled as 
healthy breast tissue.

4  Experimental results

In our experiments, 70% of the dataset, 145 normal and 70 
abnormal mammograms, were used as the training data, and 
the remaining 30% including 64 normal and 30 abnormal 
mammograms, were used for testing the method. To over-
come the shortage of breast images for training CNN, we 
trained our CNN on blocks. Hence, we elicit 450,000 normal 
and 450,000 abnormal 64 × 64-pixel blocks (b = 64) from 
training mammogram set while 30,000 blocks from each 
class are randomly selected to train the CNN. To investigate 
the ROIs of the test set, the square areas with the size of 
128 × 128 pixels are extracted (q = 128). The extracted ROI 
is fed into the CNN in the form of the blocks (with the size 
of 64 × 64 pixels) around each pixel. Consequently, a binary 
map, with the size of the ROI (128 × 128 pixels), is resulted 

as the output of the CNN. To decide on the central block size 
( h ) and the threshold parameter (α) in the decision mecha-
nism stage, we performed several experiments on training 
data (Fig. 10) and chose h = 32 and α = 0.6. Finally, a label 
was assigned to each ROI as normal or abnormal.

4.1  Dataset

The mammograms used in this experiment are taken from 
the mini mammography database of MIAS (Suckling et al. 
1994) that is available online (2019). This database has 
322 mammograms in Medio Lateral Oblique view that the 
actual size of all images is 1024 × 1024 pixels and has been 
digitized with 50-micron pixel. Also, they are held as 8-bit 
gray-scale images with 256 different gray levels. The dataset 
includes 209 normal and 113 abnormal mammograms. In 
terms of types of breast tissue, images are classified into 
three groups of fatty, fatty-glandular, and dense-glandular. 
Also, Masses in abnormal cases are categorized into five 
classes: Calcification, Circumscribed masses, Speculated 
masses, Ill-defined masses, and Architectural distortion. 
Furthermore, the severity of abnormality can be malignant 
or benign. The locations of mass centers and their radius 
determine a ground truth for each image of the dataset.

4.2  Evaluation methodology

Four different measures, including Accuracy, Sensitivity, 
Specificity, and Area Under Curve (AUC), have been used to 
evaluate the performance of the proposed framework. These 
standard evaluation criteria are represented in Table 1. In 
this table, True Positive (TP) defines the number of accu-
rately classified ROIs, which are abnormal. True Negative 
(TN) specifies the number of accurately classified normal 

Fig. 9  Samples of input mam-
mograms ROIs considering the 
central block on their resulted 
binary maps, a abnormal ROIs, 
b normal ROIs, c binary maps 
of the abnormal ROIs with the 
central block, d binary maps of 
normal ROIs with the central 
block
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ROIs. The other two counterparts, False Positive (FP) and 
False Negative (FN) respectively represent the number of 
inaccurately classified ROIs, which are normal or abnor-
mal. Also, Trues (Ts) and Falses (Fs) are the numbers of all 
abnormal and normal ROIs used in the testing stage.

AUC is the most usual measure to assess overall discrimi-
nation. It is a number between zero and one that shows the 
area under the Receiver Operating Curve (ROC). An AUC 

value of 0.5 indicates a random prediction (poor discrimi-
nation), and a value of 1 is ideal for a predictor (excellent 
discrimination). In the figure of the ROC curve, the vertical 
and horizontal axes are True Positive Rate (TP-rate) and 
False Positive Rate (FP-rate). TP-rate (sensitivity) measures 
the proportion of actual positives that are correctly identi-
fied, and FP-rate is the proportion of all negatives that still 
yield positive test outcomes. A larger area under this curve 
stands for better classification performance.

4.3  Effects of model parameters

In this section, the parameters of the decision mechanism 
stage are varied on the training data to assess their effects on 

Fig. 10  The curves of a ROC, b sensitivity, c specificity and d accuracy for different value of dimensions h of the central block on the training 
data

Table 1  Standard evaluation 
criteria

Specificity TN

TN + FP

Sensitivity TP

TP + FN
=

TP

Ts

Accuracy TP + TN

TP + FP + FN + TN
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the final results. To better illustrate the process of changing 
the indicators by variations of the parameters, the graph of 
each of the metrics is drawn in Fig. 10. We set the param-
eters in such a way that the best results were achieved for the 
diagnosis task on the training data. Initially, the suspicious 
regions (ROIs) of the training set are elicited in the same 
manner explained in Sect. 3.2.3 to feed into the CNN and 
their binary maps are generated. Parameter h that shows the 
dimensions of the central block of a binary map (Sect. 3.3), 
is evaluated in three different sizes of 16, 32, and 64 pixels. 
The AUC values attain 0.9675, 0.9702 and 0.9424 for sizes 
16, 32 and 64 pixels of h respectively (Fig. 10a). Also, the 
threshold parameter α, that the ROI labeling is applied based 
on it, is changed between 0 and 1. If the number of abnor-
mal pixels in the central block of the binary map exceeds 
the threshold of α, the ROI will be recognized as abnormal 
breast tissue; otherwise, it will be normal. Figure 10 shows 
when α increases step by step, both of the specificity, and 
accuracy, usually increase too. But the sensitivity criterion 
remains constant or decreases. Furthermore, a larger area 
under the ROC curve (close to 1) stands for better classifi-
cation performance. Therefore, after performing different 
experiments and according to the obtained results of Table 2, 
we set α = 0.6 and h = 32 for the proposed system to gain our 
best results.

4.4  Investigating a CNN‑based approach instead 
of the thresholding‑based technique in decision 
mechanism stage

In this section, the power of the diagnosis system is surveyed 
when CNN is exploited rather than the proposed decision 
mechanism stage. For this purpose, a second CNN includ-
ing four convolution layers with 32, 64, 128 and 256 filters 
is proposed where the size of each kernel is 3 × 3, and their 
activation function is the ReLU. Furthermore, the Batch Nor-
malization procedure (Ioffe and Szegedy 2015) is employed 
after the filters in convolution layers. The last convolutional 
layer is followed by a max-pooling layer with a kernel size 
of 2. After that, the dropout regularization technique (Hinton 

et al. 2012) is exerted by setting the probability to 0.3. Then, 
a flatten layer is utilized to form a single long feature vector 
for the next fully-connected layer with 128 hidden neurons. 
In the end, we use the dropout manner again by assigning 0.5 
to the probability. Afterward, another fully connected layer 
with one neuron and sigmoid function is applied for classifi-
cation. The adaptive learning rate method (Adadelta) (Zeiler 
2012) is employed as the optimizer, which adapts learning 
rates based on a moving window of gradient updates. The 
training process of this CNN is continued for 100 epochs and 
each epoch runs in 21 s. In the test stage, it takes 11.20 ms to 
label each ROI binary map into normal or abnormal.

The obtained results for the classification of the ROIs in 
this way are compared with the thresholding-based method. 
As seen in Table 3, the achieved results in the two methods 
are slightly different. As the sensitivity metric focuses on 
the existence of cancerous regions, it is a preferable index 
for performance evaluation of cancer detection methods. 
In other words, higher values mean more sensitivity of the 
approach to the existence of cancerous masses in medical 
applications. Therefore, we choose the thresholding-based 
path in the decision mechanism due to its higher sensitivity 
index.

4.5  Effect of preprocessing

In this final experiment, we validate the effectiveness of the 
preprocessing stage including the contrast enhancement and 
the elimination of pectoral muscle. To do so, we performed 
the same experiments once without contrast enhancement 
and another time without pectoral muscle suppression.

Table 2  Investigating the effects of model parameters; threshold parameter and dimensions of the central block on training data

The bold values indicate the best results obtained on the training data

‘α’ h = 16 h = 32 h = 64

Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Speci ficity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

0.6 94.28 93.10 93.49 95.71 93.79 94.42 85.71 88.96 87.90
0.7 92.86 94.48 93.95 91.42 94.48 93.49 82.85 93.79 90.23
0.8 91.42 94.48 93.49 85.71 97.93 93.95 72.85 96.55 88.84
0.9 87.14 96.55 93.49 78.57 98.62 92.09 57.14 97.93 84.65
1 71.42 99.31 90.23 64.28 1.00 88.37 0.30 1.00 77.21

Table 3  Comparison of two methods for the decision mechanism

The bold values indicate the best result for each metric

Decision mechanism Sensitivity Specificity Accuracy AUC 

Threshold-based 93.33 95.31 94.68 0.95
CNN-based 90.00 96.87 94.68 0.93
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The obtained results for each experiment are listed in 
Table 4. As seen, improving the image contrast has a greater 
impact on the efficiency of the method.

4.6  Computation time

Simulations in this study were carried out in Spyder inte-
grated development environment (IDE) in Python 3.6. 
All experiments were performed on a cluster node with 
4.00 GHz Intel Core i7 CPU and 32 GB RAM in windows 7.

The training phase is performed in offline mode. The 
stage of the CNN training is terminated after 150 epochs and 
the epoch takes 820 s (about 13.5 min) to run. In the testing 
phase, the computation time to evaluate each ROI by the 
trained CNN is 67 s. Besides, the decision mechanism based 
on thresholding takes 17.41 ms to label each binary map.

4.7  Performance comparison

As already mentioned, comparing the results of methods 
is performed based on four standard evaluation criteria in 
Table 2. The sensitivity criteria refer to the ability of the 
method to correctly identify those patients with breast can-
cer. The specificity metric refers to the ability of the test 
to identify the patients without the disease, and Accuracy 
correctly shows the capability to correctly recognize the 
checked patients (both with and without breast cancer). The 

performance of the proposed framework is compared at 
different aspects with the other state-of-the-art methods in 
Table 5, in which all, detection of abnormality is performed 
on the extracted ROIs in the form of the squares from the 
MIAS dataset. Our proposed method, with the presentation 
of a new architecture for a block-based CNN, took advan-
tage of deep features to classify the pixels of breast tissues. 
Also, it then employed an effective decision mechanism 
on the outputs of CNN to gain acceptable outcomes in the 
diagnosis of abnormality. Therefore, from the comparison 
in Table 5, our approach has better efficiency in important 
criteria, accuracy, and AUC by achieving 94.68 percent and 
0.95, respectively. In other metrics, specificity and sensitiv-
ity, we also reach satisfactory results that way we are the 
second-best in specificity metric by 95.31 percent, and we 
have about 4 percent difference in sensitivity criteria in the 
best way by 93.33 percent. These outcomes show the good 
ability of the system in detecting abnormal areas among cur-
rent frameworks.

5  Conclusion

In this paper, we proposed a new scheme based on deep 
features for classifying breast tissues as normal or abnormal. 
The proposed method consisted of three main parts, includ-
ing preprocessing, a CNN, and a decision mechanism. First, 

Table 4  Evaluating the 
impact of pre-processing on 
the outcomes of the proposed 
method

Methods Sensitivity Specificity Accuracy AUC 

Proposed method without contrast enhancement 80.00 84.37 82.97 0.82
Proposed method without pectoral muscle suppression 86.66 89.06 88.29 0.88
Proposed method with contrast enhancement and pecto-

ral muscle suppression
93.33 95.31 94.68 0.95

Table 5  Comparison of performance among different mass detection schemes in terms of sensitivity, specificity, accuracy, and area under curve 
(AUC) on MIAS dataset

The bold values show the superiority of the proposed method compared to others

Method Extracted features Sensitivity Specificity Accuracy AUC 

Khuzi et al. (2009) GLCM (Otsu segmentation) 70.00 100.00 – 0.84
Moayedi et al. (2010) Feature extraction based contourlet transform – – 85.90 –
Buciu and Gacsadi 

(2011)
Directional features using Gabor wavelets 97.56 60.86 84.37 0.79

Eltoukhy et al. (2018) Feature extraction using exact Gaussian-Hermite moments – – 90.56 0.88
Tosin et al. (2018) Feature extraction based curvelet transform and LBP algorithm 96.00 93.70 94.20 –
Dehahbi et al. (2015) Feature extraction based curvelet transform and moment theory – – 91.27 –
Lo et al. (2002) Feature extraction by a multiple circular path convolution neural network 

(MCPCNN)
– – – 0.89

Zhang et al. (2018) Feature extraction by convolutional neural network with a parametric recti-
fied linear unit (ReLU) and a rank-based stochastic pooling

93.40 94.60 94.00 –

Proposed Feature extraction by convolutional neural network 93.33 95.31 94.68 0.95



5366 N. Tavakoli et al.

1 3

a preprocessing stage was employed to prepare mammo-
grams for later stages. Then, a block-based CNN with new 
architecture was trained on the randomly selected normal 
and abnormal blocks from training images. After the training 
stage, the CNN could classify the pixels of each ROI into 
zero (for normal pixel) and one (for abnormal pixel). So that 
a binary map with the same size of the ROI results. Next, in 
the decision mechanism step, a central block was considered 
on the produced binary map that if the number of abnormal 
pixels in this central block exceeded a threshold, the ROI 
was labeled abnormal and vice versa. Several experiments 
on the training data found the suitable size of the central 
block on the binary map and the threshold parameter of this 
step, and the best values were adjusted by analyzing different 
curves. The new architecture of the CNN, the training way 
of the CNN, applying an efficient decision mechanism and 
the learning of the model parameters, led to good results in 
our work. The capability of this framework was investigated 
on the MIAS database with 209 normal and 113 abnormal 
mammograms so that the accuracy and Area Under Curve 
criteria in our method were achieved to 94.68% and 0.95 
respectively. In our future research, we will attempt to find 
a better alteration of CNN to help attain more descriptive 
features and design a decision mechanism for the reduction 
of false positive in the framework. Also, we would like to 
evaluate our scheme on other clinical databases for the sta-
bility test of abnormality detection.

References

Abbas Q (2016) DeepCAD: a computer-aided diagnosis system for 
mammographic masses using deep invariant features. Computers. 
https ://doi.org/10.3390/compu ters5 04002 8

Agrawal P, Vatsa M, Singh R (2014) Saliency-based mass detection 
from screening mammograms. Signal Processing 99:29–47

American Cancer Society (2011) Breast cancer facts and figures 2011–
2012. American Cancer Society Inc, Atlanta

American College of Radiology (2013) BI-RADS ATLAS Mammog-
raphy. Reporting System. https ://www.acr.org/-/media /ACR/
Files /RADS/BI-RADS/Mammo graph y-Repor ting.pdf Accessed 
13 June 2019.

Ancy CA, Nair LS (2017) An efficient CAD for detection of tumor in 
mammograms using SVM. In: Proceedings of ICCSP 2017 Inter-
national Conference on Communication and Signal Processing, 
Chennai, India.

Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust fea-
tures. In: Proceedings of the 9th European Conference on Com-
puter Vision, 3951, pp. 404–417, Graz, Austria.

Bottou L (2010) Large-scale machine learning with stochastic gradient 
descent. In: Proceedings of COMPSTAT’ 2010, Physica-Verlag 
HD, pp 177–186

Buciu I, Gacsadi A (2011) Directional features for automatic tumor 
classification of mammogram images. Biomed Signal Process 
Control 6(4):370–378

Chakraborty J, Rangayyan RM, Banik S, Mukhopadhyay S, Desau-
tels JEL (2012) Statistical measures of orientation of texture for 

the detection of architectural distortion in prior mammograms of 
interval cancer. J Electron Imaging 21(3):1–13

Chakraborty J, Midya A, Rabidas R (2018) Computer-aided detection 
and diagnosis of mammographic masses using multi-resolution 
analysis of oriented tissue patterns. Expert Syst Appl 99:168–179

Chang CC, Lin CJ (2011) LIB SVM: a library for support vector 
machines. ACM Trans Intell Syst Technol 2(3):1–27

Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN (2006) Approaches 
for automated detection and classification of masses in mammo-
gram. J Pattern Recogn Soc 39(4):646–668

Chougrad H, Zouaki H, Alheyane O (2018) Deep convolutional 
neural networks for breast cancer screening. Comput Methods 
Programs Biomed 157:19–30

Cristianini N, Shawe-Taylor J, Lodhi H (2002) Latent semantic ker-
nels. J Intell Inform Syst 18(2–3):127–152

Davies DH, Dance DR (1990) Automatic computer detection of 
clustered calcifications in digital mammograms. Phys Med Biol 
35(8):1111–1118

Dehahbi S, Barhoumi W, Zagrouba E (2015) Breast cancer diagno-
sis in digitized mammograms using curvelet moments. Comput 
Biol Med 64:79–90

Doi K (2007) Computer-aided diagnosis in medical imaging: his-
torical review, current status and future potential. Comput Med 
Imaging Graph 31(4):198–211

Eltoukhy MM, Elhoseny M, Hosny KM, Singh AK (2018) Computer 
aided detection of mammographic mass using exact Gaussian-
Hermite moments. J Ambient Intell Human Comput. https ://doi.
org/10.1007/s1265 2-018-0905-1

Ertosun MG, Rubin DL (2015) Probabilistic Visual Search for 
Masses Within Mammography Images using Deep Learning. 
In: Proceeding of BIBM 2015 IEEE International Conference 
on Bioinformatics and Biomedicine

Glorot X, Bengio Y (2010) Understanding the difficulty of training 
deep feed forward neural networks. Proc Int Conf Artif Intell 
Stat 9:249–256

Guan S, Loew M (2017) Breast Cancer Detection Using Transfer 
Learning in Convolutional Neural Networks. IEEE Applied 
Imagery Pattern Recognition Workshop (AIPR), USA. https ://
doi.org/10.1109/aipr.2017.84579 48

Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture clas-
sification using LBP variance (LBPV) with global matching. 
Pattern Recogn 43(3):706–719

Harel J, Koch C, Perona P (2007) Graph-based visual saliency. Adv 
Neural Inf Process Syst 19:545–552

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov 
RR (2012) Improving neural networks by preventing co-adap-
tation of feature detectors. arXiv :1207.0580

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep 
network training by reducing internal covariate shift. In: Pro-
ceedings of the 32nd International Conference on Machine 
Learning, PMLR 37:448–456

Jaffar AM (2017) Deep Learning based computer aided diagnosis 
system for breast mammograms. Int J Adv Comput Sci Appl 
(IJACSA) 8(7):286–290

Jen Ch, Yu Sh (2015) Automatic detection of abnormal mam-
mograms in mammographic images. Expert Syst Appl 
42(6):3048–3055

Jiao Z, Gao X, Wang Y, Li J (2015) A deep feature based framework 
for breast masses classification. Neurocomputing 197:221–231

Khuzi AM, Besar R, Wan Zaki WMD, Ahmad NN (2009) Identifica-
tion of masses in digital mammogram using gray level co-occur-
rence matrices. Biomed Imaging Interv J 5(3):e17

Lau TK, Bischof WF (1991) Automated detection of breast 
tumors using the asymmetry approach. Comput Biomed Res 
24(3):273–295

https://doi.org/10.3390/computers5040028
https://www.acr.org/-/media/ACR/Files/RADS/BI-RADS/Mammography-Reporting.pdf
https://www.acr.org/-/media/ACR/Files/RADS/BI-RADS/Mammography-Reporting.pdf
https://doi.org/10.1007/s12652-018-0905-1
https://doi.org/10.1007/s12652-018-0905-1
https://doi.org/10.1109/aipr.2017.8457948
https://doi.org/10.1109/aipr.2017.8457948
https://arxiv.org/abs/1207.0580


5367Detection of abnormalities in mammograms using deep features  

1 3

Lo SCB, Li H, Wang Y, Kinnard L, Freedman MT (2002) A multiple 
circular path convolution neural network system for detection of 
mammographic masses. IEEE Trans Med Imaging 21(2):150–158

Maitra I, Nag S, Bandyopadhyay S (2012) Technique for preprocess-
ing of digital mammogram. Comput Methods Programs Med 
107(2):175–188

Moayedi F, Azimifar Z, Boostani R, Ketabi S (2010) Contourlet-based 
mammography mass classification using the SVM family. Comput 
Biol Med 40(4):373–383

Narain Ponraj D, Evangelin Jenifer M, Poongodi P, SamuelManoharan 
J (2011) A survey on the preprocessing techniques of mammo-
gram for the detection of breast cancer. J Emerg Trends Comput 
Inform Sci 2(12):656–664

Nielsen MA (2015) Neural networks and deep learning, vol 25. Deter-
mination Press, San Francisco, CA, USA

Otsu N (1979) A threshold selection method from gray-level histo-
grams. IEEE Trans Syst Man Cybern 9(1):62–66

Pearson K (1901) On lines and planes of closest fit to systems of points 
in space. Lond Edinb Dublin Philos Mag J Sci 2(11):559–572

Pizer SM, Amburn EP, Austin JD et al (1987) Adaptive histogram 
equalization and its variations. Comput Vis Graphics Image Pro-
cess 39(3):355–368

Qiu Y, Yan Sh, Tan M, Cheng S, Liu H, Zheng B (2016) Computer-
aided classification of mammographic masses using the deep 
learning technology: a preliminary study. In: Proceedings of SPIE 
9785, Medical Imaging: Computer-Aided Diagnosis.

Schmidhuber J (2015) Deep learning in neural networks: an overview. 
Neural Networks 61:85–117

Setiawan AS, Elysia Wesley J, Purnama Y (2015) Mammogram clas-
sification using law’s texture energy measure and neural networks. 
Procedia Comput Sci 59:92–97

Siddiqui MK, Anand M, Siddiqui PK, Anand MKJ, Mehrotra M, 
Sarangi R, Mathur N (2005) Biomonitoring of organochlorines 

in women with benign and malignant breast disease. Environ Res 
98(2):250–257

Suckling J, et al. (1994) The mammographic image analysis society 
digital mammogram database.In: Proceedings of International 
Workshop on Digital Mammography. Excerta Medica. Interna-
tional Congress Series 1069, pp 375–378.

Tavakoli N, Karimi M, Nejati M, Karimi N, Soroushmehr SMR, 
Samavi S, Najarian K (2017) Abnormality detection of mammo-
grams by discriminative dictionary learning on DSIFT descrip-
tors. 39th International Conference of the IEEE Engineering in 
Medicine and Biology Conference (EMBC), JeJu Island, S. Korea, 
July, pp 1740–1743

The Mini-MIAS Database of Mammograms. http://peipa .essex .ac.uk/
pix/mias Accessed 2019.

Tosin A, Morufat A, Omotayo O, Bolanle W, Olusayo O, Olatunde O 
(2018) Curvelet transform-local binary pattern feature extraction 
technique for mass detection and classification in digital mam-
mogram. CJAST 28(3):1–15

Wajid SK, Hussain A (2015) Local energy-based shape histogram fea-
ture extraction technique for breast cancer diagnosis. Expert Syst 
Appl 42(20):6990–6999

Zeiler MD (2012) ADADELTA: an adaptive learning rate method. 
arXiv :1212.5701

Zhang YD, Pan C, Chen X, Wang F (2018) Abnormal breast identifica-
tion by nine-layer convolutional neural network with parametric 
rectified linear unit and rank-based stochastic pooling. J Comput 
Sci 27:57–68

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://peipa.essex.ac.uk/pix/mias
http://peipa.essex.ac.uk/pix/mias
https://arxiv.org/abs/1212.5701

	Detection of abnormalities in mammograms using deep features
	Abstract
	1 Introduction
	2 Literature review
	3 Proposed method
	3.1 Pre-processing
	3.1.1 Breast region extraction
	3.1.2 Pectoral muscle suppression
	3.1.3 Mask creation
	3.1.4 Contrast enhancement

	3.2 Processing data by convolutional neural network
	3.2.1 Architecture of CNN
	3.2.2 Network training
	3.2.3 Network testing

	3.3 Decision mechanism

	4 Experimental results
	4.1 Dataset
	4.2 Evaluation methodology
	4.3 Effects of model parameters
	4.4 Investigating a CNN-based approach instead of the thresholding-based technique in decision mechanism stage
	4.5 Effect of preprocessing
	4.6 Computation time
	4.7 Performance comparison

	5 Conclusion
	References




