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Abstract
High-performance cloud computing has recently become the focus of much interest. Extensive research has shown that sched-
uling and load balancing are among the key aspects of performance optimization. The allocation of a set of requests into a set 
of computing resources, which is considered as an NP-hard problem, aims to distribute efficiently the load within the cloud 
architecture. To resolve this problem, the last decade has seen a growing trend towards using hybrid approaches to combine 
the advantages of different algorithms. In this paper, we propose a hybrid fuzzy ant colony optimization algorithm (FACO) 
for virtual machine scheduling to guarantee high-efficiency in a cloud environment. The proposed fuzzy module evaluates 
historical information to calculate the pheromone value and select a suitable server while keeping an optimal computing 
time. The experimental work presented in this study provides one of the first investigations into how to choose the optimal 
parameters of ant colony optimization algorithms using the Taguchi experimental design. We have simulated the proposed 
algorithm through the Cloud Analyst and CloudSim simulators by applying different cloud configurations to evaluate the 
performance of the proposed algorithm. Our findings highlight how response time and processing time are improved com-
pared to the Round Robin algorithm, Throttled algorithm and Equally Spread Current Execution Load algorithm, especially 
in the case of a high number of nodes. FACO algorithm could be applied to define efficient cloud architecture adapted to 
high-performance applications.

Keywords  Ant colony optimization · Fuzzy logic · Cloud computing · Load balancing · Scheduling · Taguchi DOE

1  Introduction

Cloud computing corresponds to programs and services that 
run on a distributed network based on virtualized infrastruc-
ture and accessed using common Internet protocols and net-
working standards. It is an efficient and economical model 
for provisioning different types of services. Cloud comput-
ing is based on two main concepts including abstraction 
that is based on the idea of pooling physical resources and 
virtualization (Sosinsky 2011). The virtualization technique 
is based on the concept of sharing and abstraction of mate-
rial resources. Thus, a physical machine can host multiple 
virtual machines (VMs) and can be used by several users at 
the same time. Virtualization relies on a central operating 

system called a host system. This technology has different 
benefits such as energy efficiency, optimization of infrastruc-
ture costs, and the possibility to migrate a virtual machine 
from one server to another almost instantly (Mijumbi et al. 
2016). The last decade has seen a rapid development of 
Cloud applications in many industries because of their 
economic and technical advantages (Arunarani et al. 2019; 
Routaib et al. 2014). Particularly, this paradigm is character-
ized by its elasticity, which allows suppliers to immediately 
adjust storage capacity and computing resources to users’ 
requirements (Tamilvizhi and Parvathavarthini 2019).

However, networks and the Internet’s exponential growth 
has made classical administration techniques inadequate. In 
particular, Cloud services providers have to deal with new 
challenges in the areas of scheduling and load balancing of 
a strongly complex and widely extended network. Firstly, 
the scheduling policy plays a critical role in Cloud archi-
tecture. In the case of inappropriate scheduling strategy, the 
performance decreases (Arunarani et al. 2019). Secondly, 
load balancing is a technique of dispatching the workload 
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on servers to avoid overloaded nodes. Regarding the high 
number of virtual machines of a Cloud architecture, the main 
challenge faced by many researchers is the definition of an 
efficient load balancing strategy (Shetty and Shetty 2019).

Commonly, load balancing algorithms are classified into 
two groups: static algorithms and dynamic algorithms. Static 
algorithms are characterized by their simple operating con-
cept, which reduces their turnaround time. However, their 
applications are limited to a few specific cases. Dynamic 
algorithms are more suitable for networks with many nodes 
and queries. Several attempts have been made to develop 
efficient load balancing algorithms adapted to Cloud archi-
tecture. However, the millions of virtual machines in the 
Cloud require intelligent and autonomous management tech-
niques to ensure load balancing in data centers (Mikaeeli 
Mamaghani and Jabraeil Jamali 2019).

Recently, many research studies have shown an increased 
interest in the applications of meta-heuristic algorithms to 
improve load balancing policies (Xu et al. 2017). Since its 
introduction by Dorigo et al. (2006), the ant colony algo-
rithm was applied to solve several NP-hard problems. This 
algorithm is an approach inspired by the behavior of ants in 
finding the optimal paths from the nest to the food. The ants 
work as a group based on an indirect method of communica-
tion facilitated by pheromone. The premature convergence 
probability of the system is minor.

In this paper, we implement a hybrid fuzzy ACO algo-
rithm to optimize three objectives, including response time, 
processing time, and load balancing. We propose a hybrid 
FACO algorithm which includes two novel contributions. 
The first contribution is the definition of a fuzzy module 
dedicated to pheromone evaluation, which aims to improve 
the general performance of the ACO algorithm. Our results 
show that the proposed fuzzy controller presents better pro-
cessing time compared to the classical pheromone prob-
ability calculation. The second contribution is the identi-
fication of the optimal ACO parameters using the Taguchi 
experimental design (Taguchi et al. 2005). To the best of 
our knowledge, few studies have investigated the applica-
tion of Taguchi experience design to evaluate the interaction 
between key performance indicators (KPI) and the values of 
ACO parameters. The different simulations conducted in the 
Cloud Analyst simulator confirmed the effectiveness of the 
proposed FACO algorithm compared to previous algorithms 
such as Round Robin.

This study is an extended version of Ragmani et al. (2019) 
with a further method and results discussion. The remainder 
of the paper is organized as follows. Section 2 and section 3 
review the related works and the main concepts of this study. 
Section 4 describes our approach to modeling the studied 
system. In Section 5 the FACO load-balancing algorithm is 
presented, and Section 6 highlights the simulations and key 
findings. Section 7 concludes the paper.

2 � Related works

Load balancing and scheduling in cloud computing have 
been widely examined in the literature, and several poli-
cies have been proposed to improve the efficiency and 
performance of applications and services. This section 
introduces various points of view adopted by researchers. 
Shetty and Shetty (2019) investigated the administration of 
the millions of simultaneous requests from users and intro-
duced a modified central load balancer (MCLB) algorithm 
where the load is balanced among all the available virtual 
machines. This algorithm aims to avoid the overloading 
and under loading of virtual machines.

Seghir and Khababa (2018) focus on the QoS-aware 
Cloud service design question and came up with a hybrid 
genetic algorithm (HGA) to deal with it. The suggested 
algorithm merges two phases to achieve the evolutionary 
process search, which combines the genetic algorithm 
stage and the fruitfly optimization stage. The authors have 
applied the Taguchi DOE to describe the parameter set-
tings of the introduced HGA. The experimental results 
establish that the introduced algorithm exceeds the sim-
ple genetic algorithm and the simple fruit fly optimization 
algorithm. In Zahoor et al. (2018), the authors indicate 
that Cloud and Fog computing offer on-demand comput-
ing resources that contribute to an appropriate solution to 
resolve smart grid hurdles. They proposed a cloud-fog-
based model for resource administration in the smart grid. 
This strategy presents various good features including 
flexibility, cost, and energy-saving, scalability, and agility.

Yu et  al. (2016) introduced a two-stage policy to 
improve the efficiency of task scheduling and limit need-
less task allocation. The proposed stochastic load balanc-
ing strategy tries to avoid resource overloading with vir-
tual machine migration and reducing the total migration 
overhead. Gao et al. (2013) proposed an effective strategy 
for optimizing the resources used as well as improving the 
quality of service within the Cloud computing environ-
ment. The proposed methodology is based on the defini-
tion of a dynamic and efficient workload balancing policy 
inspired by ACO algorithms.

Zhang et  al. (2017) implemented a solution, called 
CBMinDia, that relies on grouping methods for the place-
ment of VMs within the different data centers. The pro-
posed algorithm is based on the characteristic of two 
approximations and is more suitable in the case of large 
data centers (DC). The algorithm is based on the exploi-
tation of the information relating to the density and the 
current capacity of the network. The experiments carried 
out by the authors demonstrate that the proposed algo-
rithm is more efficient in the case of clustered data center 
distribution. Concerning the virtual machine partition, the 
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authors defined a more efficient algorithm by introducing 
the concept of Half Communication Model based on the 
definition of two parameters which are approximate outer 
traffic (AOT) and approximate inner traffic (AIT). Those 
parameters are used for selecting a suitable node in order 
to optimize intra-DC and inter-DC traffic. The approach 
adopted by the authors made simplified the VMs allocation 
which induces an improvement in efficiency by a factor 
of three.

Bui et al. (2017) applied the concept of the non-cooper-
ative game for the definition of a policy of virtual machine 
scheduling that guarantees an optimal load balancing state. 
The model proposed by the authors makes it possible to cal-
culate the gain of the game by relying on load balancing 
parameters and waste resources. The strategy defined by the 
authors relies on a distribution indexing of virtual machines 
within physical machines according to the load state of the 
physical devices.

Boveiri et  al. (2019) introduced a high-performance 
method based on the Max-Min Ant System (MMAS). This 
approach is a variation in the family of ACO algorithms. The 
authors aimed to manipulate the priority values of requests 
to improve the robustness and efficiency in the multiproces-
sor task-graph scheduling problem. Gao and Wu (2015) pro-
posed an effective strategy for optimizing the resources used 
as well as improving the quality of service within the Cloud 
computing environment. The contribution of this study lies 
in the description of a load balancing algorithm inspired by 
an ACO algorithm. The operating parameters of the pro-
posed algorithm were strongly adapted to the case of Cloud 
computing by defining improved pheromone functions.

3 � Background

3.1 � Ant colony optimization algorithms

The ant colony optimization approach is a section of meta-
heuristic algorithms based on the performance of ants colo-
nies during their mutual quest for food. Initially, ants move 
aimlessly in all directions searching the finest sources of 
food. After each journey, ants deposit a chemical substance 
called pheromone, detectable by other ants. After several 
round-trips between the feed sources and the nest, the accu-
mulation of pheromones on the straightest routes is enlarged 
while the pheromones previously deposed on the longer 
paths are evaporated (Gonzalez-Pardo et al. 2017). During 
trips, ants choose their new path according to a probability 
p based on the concentration rate of pheromone � . Finally, 
only the shortest paths will remain visible to the other ants. 
These conclusions inspired Dorigo et al. (2006) when setting 
up the ant colony optimization algorithm, which allowed the 
identification of optimal solutions to several combinatorial 

problems. Also, ACO algorithms are increasingly applied 
to continuous and multi-objective optimization issues. ACO 
algorithm includes two key stages: building local solutions 
and updating the pheromone trail. The ultimate solution is 
defined, step by step, based on probabilities that are calcu-
lated by exploiting the pheromones � and a heuristic value 
� (Arunarani et al. 2019). In the case of having several 
matrices of pheromones, it is essential to use an aggrega-
tion of the matrix of pheromone and heuristic function. The 
most commonly used functions are the weighted sum, the 
weighted product method, and random selection. The value 
of the weight coefficient may be static or dynamic (Gao et al. 
2013). The standard structure of the ACO algorithm is out-
lined in algorithm 1.

3.2 � Fuzzy logic controller

Fuzzy logic is currently attracting a great deal of interest 
from researchers, engineers and industry who need to auto-
mate decision making in their field and build artificial sys-
tems capable of performing the tasks usually supported by 
humans (Van Broekhoven and De Baets 2008). The fuzzy 
logic controller, as introduced by Mamdani and Assilian 
Mamdani and Assilian (1999) is presently considered as one 
of the most significant applications of the fuzzy set theory 
initiated by Zadeh (Li and Tong 2017; Masulli et al. 2013). 
This approach is based on the concept of the fuzzy set, which 
is a generalization of the ordinary set. The main feature of 
this theory is the definition of a membership function f a that 
takes the value of a degree from the interval [0, 1]. In other 
words, the membership function characterizes the level of 
truth in fuzzy logic. The membership function is defined by 
various graphical forms. In brief, a fuzzy set A is described 
as pairs:

Definition 1  Let X be a set. A fuzzy subset A of X is charac-
terized by a membership function f a ∶ X → [0, 1].

(1)((x, uA(x)),A = (x, uA(x)|x ∈ A, uA(x) ∈ [0, 1])
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Fuzzy logic controllers classically describe a non-lin-
ear mapping from the system’s state space to the control 
space. Therefore, the output of the fuzzy logic controller 
could be considered a non-linear control surface. The sub-
stantial advantage of fuzzy controllers is the establishment 
of the control system for problems that cannot be defined 
by accurate mathematical formulas. As depicted in Fig. 1, 
a fuzzy logic control includes:

–	 A Knowledge Base (KB) that consists of the informa-
tion exploited by the expert administrator in the form of 
linguistic control rules;

–	 A Fuzzification Interface that translates the crisp values 
of the input variables into fuzzy sets, which will be used 
in the fuzzy inference procedure;

–	 An Inference System that applies the fuzzy values pro-
duced by the Fuzzification Interface and the information 
included in Knowledge Base to accomplish the reasoning 
procedure;

–	 The Defuzzification Interface that receives the fuzzy 
action from the inference procedure and transforms it 
into crisp values to be used by the control variables (Cin-
golani and Alcalá-Fdez 2013).

The concept of fuzzy logic presents various features 
including the most straightforward aspect of its mathe-
matical model because fuzzy reasoning is considerably 
intuitive.

Definition 2  According to the usual definitions of fuzzy 
operators, we have the properties of commutativity, distrib-
utivity, and associativity of classical operators. However, 
there are two notable exceptions:

–	 In fuzzy logic, the law of excluded middle is contradicted 
: A ∪ A ≠ X;in other words u

A∪A
(x) ≠ 1;

–	 In fuzzy logic, an element can belong to A and non A 
simultaneously, in other words A ∩ A ≠ ⊘.

4 � Problem statement

The proposed algorithm tries to define the optimal configura-
tion for virtual machine placement in such a way to optimize 
resource utilization. The Table1 presents a comprehensive list 
of parameters and terminologies used throughout the paper.

Definition 3  Let A be a set of virtual machines created at a 
time t and B all the servers hosting virtual machines from 
set A. We note |A| and |B| in each case the number of virtual 
machines and the number of physical machines available at 
instant t.

As illustrated in Fig. 2, each physical machine bj is defined 
by a CPUj , a memory capacity Mj , a storage capacity Sj and 
bandwidth Bdj.

Definition 4  We note L the set of requests to be processed 
by the system and |L| the number of queries. Each query lk 
is represented by the location of the user who initiates the 
query, the size of the request and the frequency of the query.

Each server bj is identified by the location within data cent-
ers, memory, storage, CPU, and bandwidth. Each VM ai has a 
cost depending on the data center, which hosts the server. Each 
request lk is supported by a virtual machine ai.

Because this study is conducted via the simulation platform 
Cloud Analyst (Wickremasinghe et al. 2010), the description 
of the studied problem is partially influenced by the archi-
tecture of the simulator. The allocation of virtual machines 
to servers is provided by two algorithms. The first algorithm 
concerns a dynamic scheduling policy and the second algo-
rithm is a load balancing strategy that applies the ACO algo-
rithm and fuzzy logic concept. The scheduling algorithm is 
adjusted dynamically according to the constraints of the load 
balancing target to avoid any imbalance within the cloud. We 
define two variables xij which will be equal to 1 if the machine 
i is assigned to the server j and zero otherwise, and yj which 
specifies if the server j is working or not.

where

(2)
m∑

j=1

nj∑

i=1

xij × CPUi ≤

m∑

j=1

yj × CPUj

(3)
m∑

j=1

nj∑

i=1

xij × storagei ≤

m∑

j=1

yj × storagej

(4)
m∑

j=1

nj∑

i=1

xij × memoryi ≤

m∑

j=1

yj × memoryj

Fig. 1   The basic structure of fuzzy logic controller (Cingolani and 
Alcalá-Fdez 2013)
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(5)
m∑

i=1

nj = |A|,m = |B| (6)
∑

i

xij = 1

Table 1   Summary of notation Parameter Definition

� The influence factor of the pheromone
� The influence factor of cost
� The influence factor of the queue of user’s requests
� Evaporation ratio
� Weight of the CPU
� Weight of the memory
� Weight of the storage
� Weight of the bandwidth
Numants Number of ants generated by the algorithm
MaxIterations Maximum number of iterations
Total cloudlets The waiting queue request of a given virtual machine
Total cost Includes transfer cost and virtual machine cost charged by virtual machine 

i to handle a user request r
SNR Signal to noise ratio used by Taguchi concept to evaluate each input factor
DOE Design of experiments which is an approach to problem solving
bj A physical machine
lk A user’s request
ai A virtual machine
|A| The number of VMs
|B| The number of computing nodes
� , � , � , and � The weight of the CPU, the memory, the storage, and the bandwidth

Fig. 2   The proposed cloud computing architecture (Ragmani et al. 2017)
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Constraints (2), (3), and (4) ensure that the capacity of 
VMs placed on a server bj is less than the capacity of the 
server. The constraint (6) guarantees the fact that the virtual 
machine ai is assigned to a unique server of bj.

The algorithm of virtual machine scheduling and load 
balancing attempts to assign each user’s request to a suit-
able server while improving the balance of the load within 
the cloud architecture. In this paper, we use four features of 
resources which are CPU, memory, storage, and bandwidth. 
We defined the load balancing indicator (LBI) to measure 
the ratio of resource utilization as shown in equation (7). The 
parameters � , � , � , and � are used to set respectively the weight 
of the CPU, the memory, the storage, and the bandwidth. Thus 
the system’s administrator could adapt the different weights 
regarding the technical characteristics of the user’s requests.

Subject to

The total cost includes the cost of the virtual machine and 
the cost of data transferred from one location to another.

As described in equations (2) to (7), we can observe that the 
studied problem has to respect multiple constraints. This 
case study investigates the optimal virtual machine alloca-
tion. In other words, the solution is a set of pairs (ai, bj) 
where ai is a virtual machine in charge of processing the 
user’s request lk and bj is the server which hosts the vir-
tual machine ai . The combinatorial optimization problem is 
defined by a set of variables x1, x2, x3,⋯ , xn and a set of con-
straints y1, y2, y3,⋯ , ym attached to different variables and 
the objective function f(x). In our case study, the problem 
is to identify all the possible combinations represented by:

where c is any possible solution (ai, bj) answering yi con-
straints that meet memory, CPU, storage and bandwidth 
requirements.

C is commonly called a solution space where each pair is 
considered a potential solution. In other words, solving the 
problem corresponds to the identification of the best solution 
coptimal ∈ C which minimizes the objective function f. Given 
the complexity of solving combinatorial problems, several 
algorithms have been developed to reduce the response time 
and the identification of the optimal solution process. Let n be 

(7)

LBI =

m∑

j=1

(
� ×

(
CPUj

CPUmaxj

)
+ � ×

(
Memoryj

Memorymaxj

)

+� ×

(
Storagej

Storagemaxj

)
+ � ×

(
Bandwidthj

Bandwidthmaxj

))

(8)� + � + � + � = 1

(9)TotalCost = TransferCost + VirtualMachineCost

(10)C = {c = (a1, b1), (a2, b3),⋯ , (ai, bj),⋯ , (an, bm)}

the number of VMs to be assigned to the m servers placed in 
different data centers in the Cloud environment. The problem 
to be solved is to minimize the total VMs cost while optimizing 
the load balancing state as shown in equation (11).

where d could take values between 0 and 1. The case of 
d = 0 induces the minimization of the cost and d = 1 rep-
resents the case of optimizing the system load without any 
impact on the VMs cost.

5 � Proposed FACO algorithm

We chose to improve an ACO algorithm to solve the problem 
of scheduling and load balancing in the cloud system. This 
decision is motivated by the capabilities of the ACO algorithm 
to find high-quality solutions while maintaining a low comput-
ing time. The implementation of an ACO algorithm requires 
the identification of the pheromone formulation and the data 
that will be used to calculate the pheromone values. In our 
case, the pheromone allows the evaluation of the adaptability 
of a selected server bj to receive a VM ai based on its technical 
capacity, cost, and heuristic information. The heuristic part 
is updated after each successful assignment of a VM ai to a 
server bj . The implemented Ant Class describes the process 
of the proposed FACO algorithm including the update of the 
pheromone and the fuzzy module dedicated to the evaluation 
of the quality of the destination node(see Algorithm 2).

The FACO makes it possible to reduce the computing 
time by replacing the calculation of the pheromone value 
by a fuzzy evaluation. The calculation of the pheromone is 
assigned to a fuzzy controller that receives as inputs the val-
ues of memory, storage, CPU and bandwidth. This module 
delivers as output a pheromone value that can be high which 
will attract the next ants or medium or low.

For each iteration, some ants look for the best configura-
tion, which guarantees an optimal response time and the 
best load balancing level. Each ant has to visit all available 
nodes. At the end of each iteration, the identified solution is 
compared to the previous one to keep the optimal path and 
routes passed by the ants. Then, the pheromone values are 
updated by the evaporation ratio. The algorithm repeats this 
process until the end condition is reached or the optimal 
solution is found.

In brief, the proposed FACO algorithm includes two 
significant steps. The first step is to identify the local solu-
tion that corresponds to an optimal allocation of the virtual 
machine and the second step corresponds to the update of 

(11)

min f =min (d × LBI+

(1 − d) ×

n∑

i=1

(xij) ×
Totalcosti

maxTotalcost

)
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the pheromones matrix by emphasizing servers that are still 
available and avoid unavailable servers. After each iteration, 
the ants update the matrix of pheromones and the probability 
values. At the beginning of the algorithm, the ants are dis-
tributed randomly (Gendreau and Potvin 2010). Then after 
each step, the ants apply each a probabilistic function to 
select the next location to move on it. The calculation of the 
probability for an ant k, placed in the node s to move to node 
d is done according to the following equation:

where �(s, d) is the pheromone value calculated using fuzzy 
module, �(s, d) = 1∕totalcost , �(s, d) = 1∕totalCloudlets , � 
is the influence factor of the pheromone, � is the influence 
factor of cost, and � is the influence factor of the queue of 
user’s requests.

(12)Pk(s, d) =
[�(s,d)]� [�(s,d)]� [�(s,d)]�∑
k[�(s,d)]

� [�(s,d)]� [�(s,d)]�

5.1 � Pheromone trials

In the beginning, the entire edges have an identical amount 
of pheromone. Then, the value of the pheromone is updated 
after each passage of the ants according to the quality of the 
solution. The novelty of our algorithm is to calculate the 
value of the pheromone of each solution using the fuzzy 
logic concept (Cingolani and Alcalá-Fdez 2013). The qual-
ity of each solution is evaluated via a fuzzy logic module. In 
general, the pheromone can increase or decrease according 
to the quality of the current solution compared to the previ-
ous solution. In other words, if the technical characteris-
tics that include the available storage, memory, bandwidth 
and the CPU of the new solution are better, the pheromone 
increases and in the opposite case the pheromone decreases.

As described in Table 2, the proposed fuzzy logic mod-
ule applies ten (If-Then) rules to evaluate the quality of the 
pheromone to be dropped. To define the membership func-
tion for the memory, bandwidth, CPU, and storage we apply 
triangular functions due to its practical aspect (see Fig. 3). 
The fuzzy set for inputs is {low, medium, high}. The applied 
output function is Gaussian and the fuzzy set for the output 
pheromone is {low, medium, good} (see Fig. 4).

In brief, the ant that constructs the best solution will get 
a higher quantity of pheromone. Furthermore, the proposed 
algorithm applies a procedure for the calculation of the rate 
of evaporation of the pheromone trail as depicted in equa-
tion 13. This rate is used to encourage the ants to explore 
new paths and to avoid early convergence. Indeed, an early 
convergence could impact negatively the workload within 
the cloud system.

where � is the pheromone evaporation ratio and 0 < 𝜌 ≤ 1.

6 � Simulation and results analysis

The implementation of the FACO algorithm is achieved 
using the JAVA toolkit and the IDE applied for simulation 
is Eclipse luna. We use also Cloud Analyst to evaluate the 
performance of the FACO algorithm (Wickremasinghe et al. 
2010). This platform is a simulator developed based on the 
CloudSim framework by extending its main functionalities. 
This framework allows researchers to analyze the operation 
of large-scale Internet applications in the cloud and to adjust 
the optimal configuration for each use case. Cloud Analyst 
has several features such as flexibility, graphical outputs, 
repeatability, and low cost. The main concepts of the Cloud 
Analyst architecture are the cloud application services bro-
ker that controls the routing of traffic between user loca-
tions and data centers. In addition to the scheduling and 

(13)�s,d(t + 1) = (1 − �) × �s,d(t)
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load balancing strategies already configured, Cloud Ana-
lyst provides the ability to add a customized scheduling or 
load balancing policies. The proposed Ant Class and Fuzzy 
module of the FACO algorithm are developed in JAVA on 
a Windows platform.

6.1 � Optimization of FACO’s parameters

One of the key aspects of the efficiency of the ACO algo-
rithm is the definition of the parameters ( � , �,...) adapted to 
the case study. In our case, we applied the Taguchi orthogo-
nal array to identify the optimal combination of parameters 
among all possible combinations (Seghir and Khababa 
2018). This experimental approach has been introduced 
by Taguchi et al. (2005) as part of quality improvement. 
The strength of this approach is to evaluate the relation-
ship between inputs as the algorithm’s parameters (see 
Table 3) and outputs which are response time, processing 
time and total cost. The simulations are achieved in two 
stages. The Taguchi approach relies on the use of prede-
fined tables of experience which allow us to realize the 
optimal trials configurations. Among the most well-known 
Taguchi array, we note the tables L8(27) , L16(215) , L32(231) , 
L27(3

13) , L36(211 × 312) and L81(96 × 316) . For example, the 
L81(9

6 × 316) table handles up to six factors at nine levels 
and sixteen factors at three levels. As depicted in Table 3, 

we evaluate the influence of the five inputs factors ( �, �, � , 
Numants, Maxiterations ) on the output indicators (response time, 
processing time, total cost). we apply a L25 Taguchi array 
because we have five input factors and for each factor we 
choose five levels. The identification of the optimal param-
eters of the FACO algorithm is a complex process due to the 
infinite number of possible combinations and interactions 
between parameters (see Fig. 5).

To resolve this problem, we conducted several experi-
ments via the Cloud Analyst simulator by applying the 

Fig. 3   The membership functions of inputs variables

Fig. 4   The membership function of output variable



3983FACO: a hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in…

1 3

Taguchi DOE L25 . This approach contributes (i) to the 
improvement of the robustness of the product or process 
and (ii) to the optimization of the number of achieved 
experiments. For example, we achieve 25 trials instead of 
55 = 3215 trials. The functioning of the Taguchi concept is 
based on the notion of identifying influential factors among 
all the elements studied, which in our case is to determine 
the parameter that has the most influence on the performance 
of the FACO algorithm and to predict the best combination 
of appropriate values among all possible arrangements. The 
main phases of the Taguchi method are the determination 
of the influential factors and the choice of the experimental 
array which determines the number of experiments to be 
carried out as well as the value of each influential factor per 
trial. The Taguchi concept applies the signal-to-noise ratio 
(SNR) to examine the measurements recorded. The improve-
ments of outputs could be obtained by reducing the function 
defined in the formulation hereafter which corresponds to 
the smaller is the best:

where u: trial number; i: experiment number and Ni : Number 
of trials for the experiment, y: trials’ result.

During the trials defined by the Taguchi array L25 , we 
kept the same Cloud configuration and we modify the FACO 
parameter for each experiment. The applied scenario is 
based on the use of one user UB1 who initiates an average 
of 60 requests per hour of a size of 100 bytes per request, 
and three areas DC1, DC2 and DC3 regrouping respectively 
12 virtual machines. The achieved results are summarized 
in (see Table 4).

The graphical analysis achieved via Minitab 16 allows us 
to find out various conclusions such as the optimal configu-
ration per key performance indicator (KPI) to enhance one 
KPI such as response time or the three KPI which includes 
response time, processing time and total cost. As shown in 

(14)SNRi = −10 log
�∑Ni

u=1

y2
u

Ni

�

Fig. 6, 7, 8, the best combination of parameters could be 
achieved by keeping the highest level of each parameter. 
In other words, the proposed method allows the identifica-
tion of the values of the proposed FACO parameters accord-
ing to the expected objectives. Moreover, Taguchi analysis 
identifies the factor that has the greatest impact on the key 
performance indicator (see Tables 5, 6, 7). Thus, the number 
of ants’ parameters is the one that has the most influence on 
the response time and processing time while the � factor is 
the one that has the most influence on the value of the total 

Table 2   Fuzzy inference rules base for pheromone evaluation

Rule number Description

Rule 1 IF (Memory IS low) OR (Bandwidth IS low) THEN pheromone IS low
Rule 2 IF (Memory IS low) AND (Storage IS low) THEN pheromone IS low
Rule 3 IF (Memory IS low) AND (CPU IS low) THEN pheromone IS low
Rule 4 IF (Bandwidth IS high) AND (CPU IS high) THEN pheromone IS good
Rule 5 IF (Bandwidth IS high) AND (Memory IS high) THEN pheromone IS good
Rule 6 IF (Bandwidth IS high) AND (Storage IS high) THEN pheromone IS good
Rule 7 IF ((Bandwidth IS low) OR (Storage IS low)) OR (Memory IS low) THEN pheromone IS low
Rule 8 IF (Bandwidth IS high) AND (Memory IS medium) THEN pheromone IS medium
Rule 9 IF ((Memory IS medium) OR (Storage IS medium)) AND (CPU IS medium) THEN phero-

mone IS medium
Rule 10 IF ((Memory IS high) OR (Storage IS high)) AND (CPU IS high) THEN pheromone IS good

Fig. 5   Interaction Plot for Response time based on Taguchi analysis 
of the trials results

Table 3   Factors values per level

Level � � � Num
ants

Max
iterations

1 0.5 0.5 0.1 10 20
2 0.6 0.6 0.2 20 30
3 0.7 0.7 0.3 30 50
4 0.8 0.8 0.4 40 60
5 0.9 0.9 0.5 50 100
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cost. The results obtained from these analyses allow us to 
predict the optimal configuration to apply for the optimiza-
tion of our FACO algorithm. This configuration represents 
the combination applied during trial number 24 (see Table 4) 
which corresponds to � = 0.9 , � = 0.8 , � = 0.3 , antnum = 20 
, and Maxiterations = 20.

6.2 � Performance evaluation of FACO algorithm

As illustrated in Table 8, the second part of the simu-
lation embraces 5 trials that aim to validate the perfor-
mance of the proposed FACO algorithm. We conducted 
experiments on CloudSim and CloudAnalyst to evaluate 
the performance of our proposed algorithm. We examine 
the performance in terms of response time, processing 
time and total cost. The results obtained via the FACO 
algorithm were compared to the results obtained by other 
algorithms, such as Round Robin, which highlights the 
performance of the proposed algorithm. Referring to Fig-
ures 9, 10, 11, we note that the response time and process-
ing time achieved by the proposed FACO algorithm out-
perform the other algorithms in the case of a high number 
of nodes and requests. The values of the cost indicator are 

relatively close because the setting of FACO parameters 
(�, �, �,Numants,MaxIterations) were done in such a way to 
optimize the response time and the processing time. It 
remains possible to give an advantage to the cost if this 
is the objective of the system’s administrator. Thus, it has 
been demonstrated that response time and processing time 
could be relatively improved by applying a more efficient 

Table 4   Taguchi L
25

 experiment 
array and achieved simulation 
results

N
◦ Trial � � � Num

ants
Max

Iterations
Response 
time (ms)

Processing 
time (ms)

Total cost ($)

1 1 1 1 1 1 301.80 1.81 7 712.29
2 1 2 2 2 2 302.53 2.04 7 640.14
3 1 3 3 3 3 302.51 2.03 7 696.48
4 1 4 4 4 4 301.71 1.76 7 679.62
5 1 5 5 5 5 301.72 1.73 7 640.12
6 2 1 2 3 4 302.70 2.30 7 576.19
7 2 2 3 4 5 301.77 1.77 7 604.96
8 2 3 4 5 1 301.94 1.85 7 671.46
9 2 4 5 1 2 302.69 2.23 7 671.83
10 2 5 1 2 3 301.84 1.78 7 602.46
11 3 1 3 5 2 301.92 1.83 7 680.63
12 3 2 4 1 3 301.70 1.75 7 647.95
13 3 3 5 2 4 302.04 1.87 7 656.63
14 3 4 1 3 5 302.37 1.97 7 704.47
15 3 5 2 4 1 302.45 1.95 7 623.14
16 4 1 4 2 5 302.71 2.07 7 549.65
17 4 2 5 3 1 302.00 1.82 7 597.46
18 4 3 1 4 2 302.35 1.89 7 576.47
19 4 4 2 5 3 301.82 1.78 7 597.96
20 4 5 3 1 4 301.68 1.69 7 603.95
21 5 1 5 4 3 302.82 2.06 7 601.66
22 5 2 1 5 4 301.76 1.80 7 712.28
23 5 3 2 1 5 301.88 1.82 7 592.29
24 5 4 3 2 1 301.54 1.66 7 536.95
25 5 5 4 3 2 302.73 2.32 7 552.36

Fig. 6   Main Effects Plot for SN ratios for response time indicator
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load balancing strategy without a negative impact on the 
cost. To date, several studies confirmed the effectiveness 
of the meta-heuristic algorithm in improving the load bal-
ancing in the cloud environment. Table 9 shows the com-
parative view of the different load balancing algorithms.

Fig. 7   Main Effects Plot for SN ratios for processing time indicator

Fig. 8   Main Effects Plot for SN ratios for total cost indicator

Table 5   Factors effects ranking for response time indicator

Level � � � Num
ants

Max
Iterations

1 −49.60 −49.61 −49.60 −49.60 −49.60
2 −49.61 −49.60 −49.61 −49.60 −49.61
3 −49.60 −49.60 −49.60 −49.61 −49.60
4 −49.60 −49.60 −49.60 −49.61 −49.60
5 −49.60 −49.60 −49.61 −49.60 −49.60
Delta 0 0.01 0.01 0.02 0.01
Rank 5 3 4 1 2

Table 6   Factors effects ranking for processing time indicator

Level � � � Num
ants

Max
Iterations

1 −5.433 −6.047 −5.337 −5.348 −5.18
2 −5.902 −5.264 −5.888 −5.472 −6.249
3 −5.447 −5.532 −5.064 −6.357 −5.461
4 −5.323 −5.435 −5.749 −5.495 −5.449
5 −5.659 −5.488 −5.729 −5.093 −5.426
Delta 0.579 0.783 0.824 1.264 1.069
Rank 5 4 3 1 2

Table 7   Factors effects ranking for total cost indicator

Level � � � Num
ants

Max
Iterations

1 −77.70 −77.64 −77.69 −77.67 −77.65
2 −77.65 −77.66 −77.62 −77.61 −77.64
3 −77.69 −77.66 −77.64 −77.64 −77.65
4 −77.60 −77.66 −77.64 −77.64 −77.67
5 −77.61 −77.62 −77.65 −77.69 −77.64
Delta 0.1 0.04 0.06 0.07 0.03
Rank 1 4 3 2 5

Fig. 9   FACO Response time (ms) compared to others load balancing 
algorithms

Fig. 10   FACO Processing time (ms) compared to others load balanc-
ing algorithms
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7 � Conclusion

This paper proposes a FACO algorithm for virtual machine 
scheduling with load balancing adapted to cloud comput-
ing architecture. This study has identified that the ant col-
ony optimization approach has been used to resolve the 
load balancing issue due to its capacity to handle a high 
number of nodes. This paper introduces a hybrid fuzzy 
ant colony algorithm by including a fuzzy logic module to 

calculate the pheromone value and the Taguchi concept to 
optimize the ACO’s parameters. The experimental results 
achieved by the Cloud Analyst simulator confirmed that 
the FACO algorithm is more appropriate for handling large 
and distributed networks. The main contributions of the 
proposed solution are (i) the application of fuzzy logic 
to calculate the pheromones probability to minimize the 
computing time (ii) the use of Taguchi experience design 
for selecting the best ACO’s parameters to find the opti-
mal parameters’ combination. The applied FACO algo-
rithm includes a procedure of evaporation from the trial 
of pheromones to avoid earlier convergence towards non-
optimal solutions. The achieved simulations within the 
Cloud Analyst and CloudSim platforms showed that the 
proposed approach allows improving load balancing in the 
Cloud architecture while reducing response time by up to 
82%, the processing time by up to 90% and total cost by 
up to 9% depending on the applied scenario. Although 
the FACO algorithm outperforms the other algorithms, 
we aim to generalize the pheromone definition to encom-
passes other distributed systems. Our future work includes 
an evaluation of the FACO algorithm within a real and 
multi-cloud computing architecture.

Fig. 11   FACO Total cost ($) compared to others load balancing algo-
rithms

Table 8   FACO performance 
compared to Round Robin

Scenario Response time(ms) Processing time(ms)

FACO Round-Robin Improvement% FACO Round-Robin Improvement%

S1 301.54 338.90 12.39% 1.66 2.33 28.8%
S2 177.51 193.96 9.27% 2.45 20.30 87.9%
S3 54.37 99.46 82.93% 4.76 49.90 90.5%
S4 160.67 176.02 9.55% 27.35 42.68 35.9%
S5 74.21 102.13 37.62% 24.51 52.41 53.2%

Table 9   Comparative view of load balancing algorithms

Research paper Applied Algorithms Strength Considered feature General Improvement

(Bui et al. 2017) ACO, non-cooperative 
game, and Nash 
equilibrium

Taking into account customer 
and service provider

Virtual machines provision 
solution

A moderate improvement 
compared to conventional 
algorithms

(Yang and Zhuang 2010) ACO Minor premature conver-
gence probability

Resolving mobile agent 
routing

Improvement of time to find 
best solution by up to 32%

(Saffar et al. 2011) Bayesian networks 
based on ant colony 
optimization

A hybrid performed algo-
rithm including Bayesian 
network models, ACO and 
simulated annealing

Power loss and load balanc-
ing index

Load balancing index improve-
ment up to 41.51% and loss 
reduction up to 59.84%

FACO ACO and Fuzzy Logic Improved ACO’s parameters, 
simpler and faster to imple-
ment

Response time, processing 
time and load balancing 
index

Improvement of response time 
by up to 82% and processing 
time by up to 90%
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