
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:3975–3987
https://doi.org/10.1007/s12652-019-01631-5

ORIGINAL RESEARCH

FACO: a hybrid fuzzy ant colony optimization algorithm for virtual
machine scheduling in high‑performance cloud computing

Awatif Ragmani1  · Amina Elomri1 · Noreddine Abghour1 · Khalid Moussaid1 · Mohammed Rida1

Received: 24 July 2019 / Accepted: 30 October 2019 / Published online: 13 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
High-performance cloud computing has recently become the focus of much interest. Extensive research has shown that sched-
uling and load balancing are among the key aspects of performance optimization. The allocation of a set of requests into a set
of computing resources, which is considered as an NP-hard problem, aims to distribute efficiently the load within the cloud
architecture. To resolve this problem, the last decade has seen a growing trend towards using hybrid approaches to combine
the advantages of different algorithms. In this paper, we propose a hybrid fuzzy ant colony optimization algorithm (FACO)
for virtual machine scheduling to guarantee high-efficiency in a cloud environment. The proposed fuzzy module evaluates
historical information to calculate the pheromone value and select a suitable server while keeping an optimal computing
time. The experimental work presented in this study provides one of the first investigations into how to choose the optimal
parameters of ant colony optimization algorithms using the Taguchi experimental design. We have simulated the proposed
algorithm through the Cloud Analyst and CloudSim simulators by applying different cloud configurations to evaluate the
performance of the proposed algorithm. Our findings highlight how response time and processing time are improved com-
pared to the Round Robin algorithm, Throttled algorithm and Equally Spread Current Execution Load algorithm, especially
in the case of a high number of nodes. FACO algorithm could be applied to define efficient cloud architecture adapted to
high-performance applications.

Keywords  Ant colony optimization · Fuzzy logic · Cloud computing · Load balancing · Scheduling · Taguchi DOE

1  Introduction

Cloud computing corresponds to programs and services that
run on a distributed network based on virtualized infrastruc-
ture and accessed using common Internet protocols and net-
working standards. It is an efficient and economical model
for provisioning different types of services. Cloud comput-
ing is based on two main concepts including abstraction
that is based on the idea of pooling physical resources and
virtualization (Sosinsky 2011). The virtualization technique
is based on the concept of sharing and abstraction of mate-
rial resources. Thus, a physical machine can host multiple
virtual machines (VMs) and can be used by several users at
the same time. Virtualization relies on a central operating

system called a host system. This technology has different
benefits such as energy efficiency, optimization of infrastruc-
ture costs, and the possibility to migrate a virtual machine
from one server to another almost instantly (Mijumbi et al.
2016). The last decade has seen a rapid development of
Cloud applications in many industries because of their
economic and technical advantages (Arunarani et al. 2019;
Routaib et al. 2014). Particularly, this paradigm is character-
ized by its elasticity, which allows suppliers to immediately
adjust storage capacity and computing resources to users’
requirements (Tamilvizhi and Parvathavarthini 2019).

However, networks and the Internet’s exponential growth
has made classical administration techniques inadequate. In
particular, Cloud services providers have to deal with new
challenges in the areas of scheduling and load balancing of
a strongly complex and widely extended network. Firstly,
the scheduling policy plays a critical role in Cloud archi-
tecture. In the case of inappropriate scheduling strategy, the
performance decreases (Arunarani et al. 2019). Secondly,
load balancing is a technique of dispatching the workload

 *	 Awatif Ragmani
	 ragmaniawatif@gmail.com

1	 LIMSAD Laboratory, Faculty of Sciences Ain Chock,
University Hassan II of Casablanca, 20100 Casablanca,
Morocco

http://orcid.org/0000-0002-1063-8644
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01631-5&domain=pdf

3976	 A. Ragmani et al.

1 3

on servers to avoid overloaded nodes. Regarding the high
number of virtual machines of a Cloud architecture, the main
challenge faced by many researchers is the definition of an
efficient load balancing strategy (Shetty and Shetty 2019).

Commonly, load balancing algorithms are classified into
two groups: static algorithms and dynamic algorithms. Static
algorithms are characterized by their simple operating con-
cept, which reduces their turnaround time. However, their
applications are limited to a few specific cases. Dynamic
algorithms are more suitable for networks with many nodes
and queries. Several attempts have been made to develop
efficient load balancing algorithms adapted to Cloud archi-
tecture. However, the millions of virtual machines in the
Cloud require intelligent and autonomous management tech-
niques to ensure load balancing in data centers (Mikaeeli
Mamaghani and Jabraeil Jamali 2019).

Recently, many research studies have shown an increased
interest in the applications of meta-heuristic algorithms to
improve load balancing policies (Xu et al. 2017). Since its
introduction by Dorigo et al. (2006), the ant colony algo-
rithm was applied to solve several NP-hard problems. This
algorithm is an approach inspired by the behavior of ants in
finding the optimal paths from the nest to the food. The ants
work as a group based on an indirect method of communica-
tion facilitated by pheromone. The premature convergence
probability of the system is minor.

In this paper, we implement a hybrid fuzzy ACO algo-
rithm to optimize three objectives, including response time,
processing time, and load balancing. We propose a hybrid
FACO algorithm which includes two novel contributions.
The first contribution is the definition of a fuzzy module
dedicated to pheromone evaluation, which aims to improve
the general performance of the ACO algorithm. Our results
show that the proposed fuzzy controller presents better pro-
cessing time compared to the classical pheromone prob-
ability calculation. The second contribution is the identi-
fication of the optimal ACO parameters using the Taguchi
experimental design (Taguchi et al. 2005). To the best of
our knowledge, few studies have investigated the applica-
tion of Taguchi experience design to evaluate the interaction
between key performance indicators (KPI) and the values of
ACO parameters. The different simulations conducted in the
Cloud Analyst simulator confirmed the effectiveness of the
proposed FACO algorithm compared to previous algorithms
such as Round Robin.

This study is an extended version of Ragmani et al. (2019)
with a further method and results discussion. The remainder
of the paper is organized as follows. Section 2 and section 3
review the related works and the main concepts of this study.
Section 4 describes our approach to modeling the studied
system. In Section 5 the FACO load-balancing algorithm is
presented, and Section 6 highlights the simulations and key
findings. Section 7 concludes the paper.

2 � Related works

Load balancing and scheduling in cloud computing have
been widely examined in the literature, and several poli-
cies have been proposed to improve the efficiency and
performance of applications and services. This section
introduces various points of view adopted by researchers.
Shetty and Shetty (2019) investigated the administration of
the millions of simultaneous requests from users and intro-
duced a modified central load balancer (MCLB) algorithm
where the load is balanced among all the available virtual
machines. This algorithm aims to avoid the overloading
and under loading of virtual machines.

Seghir and Khababa (2018) focus on the QoS-aware
Cloud service design question and came up with a hybrid
genetic algorithm (HGA) to deal with it. The suggested
algorithm merges two phases to achieve the evolutionary
process search, which combines the genetic algorithm
stage and the fruitfly optimization stage. The authors have
applied the Taguchi DOE to describe the parameter set-
tings of the introduced HGA. The experimental results
establish that the introduced algorithm exceeds the sim-
ple genetic algorithm and the simple fruit fly optimization
algorithm. In Zahoor et al. (2018), the authors indicate
that Cloud and Fog computing offer on-demand comput-
ing resources that contribute to an appropriate solution to
resolve smart grid hurdles. They proposed a cloud-fog-
based model for resource administration in the smart grid.
This strategy presents various good features including
flexibility, cost, and energy-saving, scalability, and agility.

Yu et al. (2016) introduced a two-stage policy to
improve the efficiency of task scheduling and limit need-
less task allocation. The proposed stochastic load balanc-
ing strategy tries to avoid resource overloading with vir-
tual machine migration and reducing the total migration
overhead. Gao et al. (2013) proposed an effective strategy
for optimizing the resources used as well as improving the
quality of service within the Cloud computing environ-
ment. The proposed methodology is based on the defini-
tion of a dynamic and efficient workload balancing policy
inspired by ACO algorithms.

Zhang et al. (2017) implemented a solution, called
CBMinDia, that relies on grouping methods for the place-
ment of VMs within the different data centers. The pro-
posed algorithm is based on the characteristic of two
approximations and is more suitable in the case of large
data centers (DC). The algorithm is based on the exploi-
tation of the information relating to the density and the
current capacity of the network. The experiments carried
out by the authors demonstrate that the proposed algo-
rithm is more efficient in the case of clustered data center
distribution. Concerning the virtual machine partition, the

3977FACO: a hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in…

1 3

authors defined a more efficient algorithm by introducing
the concept of Half Communication Model based on the
definition of two parameters which are approximate outer
traffic (AOT) and approximate inner traffic (AIT). Those
parameters are used for selecting a suitable node in order
to optimize intra-DC and inter-DC traffic. The approach
adopted by the authors made simplified the VMs allocation
which induces an improvement in efficiency by a factor
of three.

Bui et al. (2017) applied the concept of the non-cooper-
ative game for the definition of a policy of virtual machine
scheduling that guarantees an optimal load balancing state.
The model proposed by the authors makes it possible to cal-
culate the gain of the game by relying on load balancing
parameters and waste resources. The strategy defined by the
authors relies on a distribution indexing of virtual machines
within physical machines according to the load state of the
physical devices.

Boveiri et al. (2019) introduced a high-performance
method based on the Max-Min Ant System (MMAS). This
approach is a variation in the family of ACO algorithms. The
authors aimed to manipulate the priority values of requests
to improve the robustness and efficiency in the multiproces-
sor task-graph scheduling problem. Gao and Wu (2015) pro-
posed an effective strategy for optimizing the resources used
as well as improving the quality of service within the Cloud
computing environment. The contribution of this study lies
in the description of a load balancing algorithm inspired by
an ACO algorithm. The operating parameters of the pro-
posed algorithm were strongly adapted to the case of Cloud
computing by defining improved pheromone functions.

3 � Background

3.1 � Ant colony optimization algorithms

The ant colony optimization approach is a section of meta-
heuristic algorithms based on the performance of ants colo-
nies during their mutual quest for food. Initially, ants move
aimlessly in all directions searching the finest sources of
food. After each journey, ants deposit a chemical substance
called pheromone, detectable by other ants. After several
round-trips between the feed sources and the nest, the accu-
mulation of pheromones on the straightest routes is enlarged
while the pheromones previously deposed on the longer
paths are evaporated (Gonzalez-Pardo et al. 2017). During
trips, ants choose their new path according to a probability
p based on the concentration rate of pheromone � . Finally,
only the shortest paths will remain visible to the other ants.
These conclusions inspired Dorigo et al. (2006) when setting
up the ant colony optimization algorithm, which allowed the
identification of optimal solutions to several combinatorial

problems. Also, ACO algorithms are increasingly applied
to continuous and multi-objective optimization issues. ACO
algorithm includes two key stages: building local solutions
and updating the pheromone trail. The ultimate solution is
defined, step by step, based on probabilities that are calcu-
lated by exploiting the pheromones � and a heuristic value
� (Arunarani et al. 2019). In the case of having several
matrices of pheromones, it is essential to use an aggrega-
tion of the matrix of pheromone and heuristic function. The
most commonly used functions are the weighted sum, the
weighted product method, and random selection. The value
of the weight coefficient may be static or dynamic (Gao et al.
2013). The standard structure of the ACO algorithm is out-
lined in algorithm 1.

3.2 � Fuzzy logic controller

Fuzzy logic is currently attracting a great deal of interest
from researchers, engineers and industry who need to auto-
mate decision making in their field and build artificial sys-
tems capable of performing the tasks usually supported by
humans (Van Broekhoven and De Baets 2008). The fuzzy
logic controller, as introduced by Mamdani and Assilian
Mamdani and Assilian (1999) is presently considered as one
of the most significant applications of the fuzzy set theory
initiated by Zadeh (Li and Tong 2017; Masulli et al. 2013).
This approach is based on the concept of the fuzzy set, which
is a generalization of the ordinary set. The main feature of
this theory is the definition of a membership function f a that
takes the value of a degree from the interval [0, 1]. In other
words, the membership function characterizes the level of
truth in fuzzy logic. The membership function is defined by
various graphical forms. In brief, a fuzzy set A is described
as pairs:

Definition 1  Let X be a set. A fuzzy subset A of X is charac-
terized by a membership function f a ∶ X → [0, 1].

(1)((x, uA(x)),A = (x, uA(x)|x ∈ A, uA(x) ∈ [0, 1])

3978	 A. Ragmani et al.

1 3

Fuzzy logic controllers classically describe a non-lin-
ear mapping from the system’s state space to the control
space. Therefore, the output of the fuzzy logic controller
could be considered a non-linear control surface. The sub-
stantial advantage of fuzzy controllers is the establishment
of the control system for problems that cannot be defined
by accurate mathematical formulas. As depicted in Fig. 1,
a fuzzy logic control includes:

–	 A Knowledge Base (KB) that consists of the informa-
tion exploited by the expert administrator in the form of
linguistic control rules;

–	 A Fuzzification Interface that translates the crisp values
of the input variables into fuzzy sets, which will be used
in the fuzzy inference procedure;

–	 An Inference System that applies the fuzzy values pro-
duced by the Fuzzification Interface and the information
included in Knowledge Base to accomplish the reasoning
procedure;

–	 The Defuzzification Interface that receives the fuzzy
action from the inference procedure and transforms it
into crisp values to be used by the control variables (Cin-
golani and Alcalá-Fdez 2013).

The concept of fuzzy logic presents various features
including the most straightforward aspect of its mathe-
matical model because fuzzy reasoning is considerably
intuitive.

Definition 2  According to the usual definitions of fuzzy
operators, we have the properties of commutativity, distrib-
utivity, and associativity of classical operators. However,
there are two notable exceptions:

–	 In fuzzy logic, the law of excluded middle is contradicted
: A ∪ A ≠ X;in other words u

A∪A
(x) ≠ 1;

–	 In fuzzy logic, an element can belong to A and non A
simultaneously, in other words A ∩ A ≠ ⊘.

4 � Problem statement

The proposed algorithm tries to define the optimal configura-
tion for virtual machine placement in such a way to optimize
resource utilization. The Table1 presents a comprehensive list
of parameters and terminologies used throughout the paper.

Definition 3  Let A be a set of virtual machines created at a
time t and B all the servers hosting virtual machines from
set A. We note |A| and |B| in each case the number of virtual
machines and the number of physical machines available at
instant t.

As illustrated in Fig. 2, each physical machine bj is defined
by a CPUj , a memory capacity Mj , a storage capacity Sj and
bandwidth Bdj.

Definition 4  We note L the set of requests to be processed
by the system and |L| the number of queries. Each query lk
is represented by the location of the user who initiates the
query, the size of the request and the frequency of the query.

Each server bj is identified by the location within data cent-
ers, memory, storage, CPU, and bandwidth. Each VM ai has a
cost depending on the data center, which hosts the server. Each
request lk is supported by a virtual machine ai.

Because this study is conducted via the simulation platform
Cloud Analyst (Wickremasinghe et al. 2010), the description
of the studied problem is partially influenced by the archi-
tecture of the simulator. The allocation of virtual machines
to servers is provided by two algorithms. The first algorithm
concerns a dynamic scheduling policy and the second algo-
rithm is a load balancing strategy that applies the ACO algo-
rithm and fuzzy logic concept. The scheduling algorithm is
adjusted dynamically according to the constraints of the load
balancing target to avoid any imbalance within the cloud. We
define two variables xij which will be equal to 1 if the machine
i is assigned to the server j and zero otherwise, and yj which
specifies if the server j is working or not.

where

(2)
m∑

j=1

nj∑

i=1

xij × CPUi ≤

m∑

j=1

yj × CPUj

(3)
m∑

j=1

nj∑

i=1

xij × storagei ≤

m∑

j=1

yj × storagej

(4)
m∑

j=1

nj∑

i=1

xij × memoryi ≤

m∑

j=1

yj × memoryj

Fig. 1   The basic structure of fuzzy logic controller (Cingolani and
Alcalá-Fdez 2013)

3979FACO: a hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in…

1 3

(5)
m∑

i=1

nj = |A|,m = |B| (6)
∑

i

xij = 1

Table 1   Summary of notation Parameter Definition

� The influence factor of the pheromone
� The influence factor of cost
� The influence factor of the queue of user’s requests
� Evaporation ratio
� Weight of the CPU
� Weight of the memory
� Weight of the storage
� Weight of the bandwidth
Numants Number of ants generated by the algorithm
MaxIterations Maximum number of iterations
Total cloudlets The waiting queue request of a given virtual machine
Total cost Includes transfer cost and virtual machine cost charged by virtual machine

i to handle a user request r
SNR Signal to noise ratio used by Taguchi concept to evaluate each input factor
DOE Design of experiments which is an approach to problem solving
bj A physical machine
lk A user’s request
ai A virtual machine
|A| The number of VMs
|B| The number of computing nodes
� , � , � , and � The weight of the CPU, the memory, the storage, and the bandwidth

Fig. 2   The proposed cloud computing architecture (Ragmani et al. 2017)

3980	 A. Ragmani et al.

1 3

Constraints (2), (3), and (4) ensure that the capacity of
VMs placed on a server bj is less than the capacity of the
server. The constraint (6) guarantees the fact that the virtual
machine ai is assigned to a unique server of bj.

The algorithm of virtual machine scheduling and load
balancing attempts to assign each user’s request to a suit-
able server while improving the balance of the load within
the cloud architecture. In this paper, we use four features of
resources which are CPU, memory, storage, and bandwidth.
We defined the load balancing indicator (LBI) to measure
the ratio of resource utilization as shown in equation (7). The
parameters � , � , � , and � are used to set respectively the weight
of the CPU, the memory, the storage, and the bandwidth. Thus
the system’s administrator could adapt the different weights
regarding the technical characteristics of the user’s requests.

Subject to

The total cost includes the cost of the virtual machine and
the cost of data transferred from one location to another.

As described in equations (2) to (7), we can observe that the
studied problem has to respect multiple constraints. This
case study investigates the optimal virtual machine alloca-
tion. In other words, the solution is a set of pairs (ai, bj)
where ai is a virtual machine in charge of processing the
user’s request lk and bj is the server which hosts the vir-
tual machine ai . The combinatorial optimization problem is
defined by a set of variables x1, x2, x3,⋯ , xn and a set of con-
straints y1, y2, y3,⋯ , ym attached to different variables and
the objective function f(x). In our case study, the problem
is to identify all the possible combinations represented by:

where c is any possible solution (ai, bj) answering yi con-
straints that meet memory, CPU, storage and bandwidth
requirements.

C is commonly called a solution space where each pair is
considered a potential solution. In other words, solving the
problem corresponds to the identification of the best solution
coptimal ∈ C which minimizes the objective function f. Given
the complexity of solving combinatorial problems, several
algorithms have been developed to reduce the response time
and the identification of the optimal solution process. Let n be

(7)

LBI =

m∑

j=1

(
� ×

(
CPUj

CPUmaxj

)
+ � ×

(
Memoryj

Memorymaxj

)

+� ×

(
Storagej

Storagemaxj

)
+ � ×

(
Bandwidthj

Bandwidthmaxj

))

(8)� + � + � + � = 1

(9)TotalCost = TransferCost + VirtualMachineCost

(10)C = {c = (a1, b1), (a2, b3),⋯ , (ai, bj),⋯ , (an, bm)}

the number of VMs to be assigned to the m servers placed in
different data centers in the Cloud environment. The problem
to be solved is to minimize the total VMs cost while optimizing
the load balancing state as shown in equation (11).

where d could take values between 0 and 1. The case of
d = 0 induces the minimization of the cost and d = 1 rep-
resents the case of optimizing the system load without any
impact on the VMs cost.

5 � Proposed FACO algorithm

We chose to improve an ACO algorithm to solve the problem
of scheduling and load balancing in the cloud system. This
decision is motivated by the capabilities of the ACO algorithm
to find high-quality solutions while maintaining a low comput-
ing time. The implementation of an ACO algorithm requires
the identification of the pheromone formulation and the data
that will be used to calculate the pheromone values. In our
case, the pheromone allows the evaluation of the adaptability
of a selected server bj to receive a VM ai based on its technical
capacity, cost, and heuristic information. The heuristic part
is updated after each successful assignment of a VM ai to a
server bj . The implemented Ant Class describes the process
of the proposed FACO algorithm including the update of the
pheromone and the fuzzy module dedicated to the evaluation
of the quality of the destination node(see Algorithm 2).

The FACO makes it possible to reduce the computing
time by replacing the calculation of the pheromone value
by a fuzzy evaluation. The calculation of the pheromone is
assigned to a fuzzy controller that receives as inputs the val-
ues of memory, storage, CPU and bandwidth. This module
delivers as output a pheromone value that can be high which
will attract the next ants or medium or low.

For each iteration, some ants look for the best configura-
tion, which guarantees an optimal response time and the
best load balancing level. Each ant has to visit all available
nodes. At the end of each iteration, the identified solution is
compared to the previous one to keep the optimal path and
routes passed by the ants. Then, the pheromone values are
updated by the evaporation ratio. The algorithm repeats this
process until the end condition is reached or the optimal
solution is found.

In brief, the proposed FACO algorithm includes two
significant steps. The first step is to identify the local solu-
tion that corresponds to an optimal allocation of the virtual
machine and the second step corresponds to the update of

(11)

min f =min (d × LBI+

(1 − d) ×

n∑

i=1

(xij) ×
Totalcosti

maxTotalcost

)

3981FACO: a hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in…

1 3

the pheromones matrix by emphasizing servers that are still
available and avoid unavailable servers. After each iteration,
the ants update the matrix of pheromones and the probability
values. At the beginning of the algorithm, the ants are dis-
tributed randomly (Gendreau and Potvin 2010). Then after
each step, the ants apply each a probabilistic function to
select the next location to move on it. The calculation of the
probability for an ant k, placed in the node s to move to node
d is done according to the following equation:

where �(s, d) is the pheromone value calculated using fuzzy
module, �(s, d) = 1∕totalcost , �(s, d) = 1∕totalCloudlets , �
is the influence factor of the pheromone, � is the influence
factor of cost, and � is the influence factor of the queue of
user’s requests.

(12)Pk(s, d) =
[�(s,d)]� [�(s,d)]� [�(s,d)]�∑
k[�(s,d)]

� [�(s,d)]� [�(s,d)]�

5.1 � Pheromone trials

In the beginning, the entire edges have an identical amount
of pheromone. Then, the value of the pheromone is updated
after each passage of the ants according to the quality of the
solution. The novelty of our algorithm is to calculate the
value of the pheromone of each solution using the fuzzy
logic concept (Cingolani and Alcalá-Fdez 2013). The qual-
ity of each solution is evaluated via a fuzzy logic module. In
general, the pheromone can increase or decrease according
to the quality of the current solution compared to the previ-
ous solution. In other words, if the technical characteris-
tics that include the available storage, memory, bandwidth
and the CPU of the new solution are better, the pheromone
increases and in the opposite case the pheromone decreases.

As described in Table 2, the proposed fuzzy logic mod-
ule applies ten (If-Then) rules to evaluate the quality of the
pheromone to be dropped. To define the membership func-
tion for the memory, bandwidth, CPU, and storage we apply
triangular functions due to its practical aspect (see Fig. 3).
The fuzzy set for inputs is {low, medium, high}. The applied
output function is Gaussian and the fuzzy set for the output
pheromone is {low, medium, good} (see Fig. 4).

In brief, the ant that constructs the best solution will get
a higher quantity of pheromone. Furthermore, the proposed
algorithm applies a procedure for the calculation of the rate
of evaporation of the pheromone trail as depicted in equa-
tion 13. This rate is used to encourage the ants to explore
new paths and to avoid early convergence. Indeed, an early
convergence could impact negatively the workload within
the cloud system.

where � is the pheromone evaporation ratio and 0 < 𝜌 ≤ 1.

6 � Simulation and results analysis

The implementation of the FACO algorithm is achieved
using the JAVA toolkit and the IDE applied for simulation
is Eclipse luna. We use also Cloud Analyst to evaluate the
performance of the FACO algorithm (Wickremasinghe et al.
2010). This platform is a simulator developed based on the
CloudSim framework by extending its main functionalities.
This framework allows researchers to analyze the operation
of large-scale Internet applications in the cloud and to adjust
the optimal configuration for each use case. Cloud Analyst
has several features such as flexibility, graphical outputs,
repeatability, and low cost. The main concepts of the Cloud
Analyst architecture are the cloud application services bro-
ker that controls the routing of traffic between user loca-
tions and data centers. In addition to the scheduling and

(13)�s,d(t + 1) = (1 − �) × �s,d(t)

3982	 A. Ragmani et al.

1 3

load balancing strategies already configured, Cloud Ana-
lyst provides the ability to add a customized scheduling or
load balancing policies. The proposed Ant Class and Fuzzy
module of the FACO algorithm are developed in JAVA on
a Windows platform.

6.1 � Optimization of FACO’s parameters

One of the key aspects of the efficiency of the ACO algo-
rithm is the definition of the parameters ( � , �,...) adapted to
the case study. In our case, we applied the Taguchi orthogo-
nal array to identify the optimal combination of parameters
among all possible combinations (Seghir and Khababa
2018). This experimental approach has been introduced
by Taguchi et al. (2005) as part of quality improvement.
The strength of this approach is to evaluate the relation-
ship between inputs as the algorithm’s parameters (see
Table 3) and outputs which are response time, processing
time and total cost. The simulations are achieved in two
stages. The Taguchi approach relies on the use of prede-
fined tables of experience which allow us to realize the
optimal trials configurations. Among the most well-known
Taguchi array, we note the tables L8(27) , L16(215) , L32(231) ,
L27(3

13) , L36(211 × 312) and L81(96 × 316) . For example, the
L81(9

6 × 316) table handles up to six factors at nine levels
and sixteen factors at three levels. As depicted in Table 3,

we evaluate the influence of the five inputs factors ( �, �, � ,
Numants, Maxiterations ) on the output indicators (response time,
processing time, total cost). we apply a L25 Taguchi array
because we have five input factors and for each factor we
choose five levels. The identification of the optimal param-
eters of the FACO algorithm is a complex process due to the
infinite number of possible combinations and interactions
between parameters (see Fig. 5).

To resolve this problem, we conducted several experi-
ments via the Cloud Analyst simulator by applying the

Fig. 3   The membership functions of inputs variables

Fig. 4   The membership function of output variable

3983FACO: a hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in…

1 3

Taguchi DOE L25 . This approach contributes (i) to the
improvement of the robustness of the product or process
and (ii) to the optimization of the number of achieved
experiments. For example, we achieve 25 trials instead of
55 = 3215 trials. The functioning of the Taguchi concept is
based on the notion of identifying influential factors among
all the elements studied, which in our case is to determine
the parameter that has the most influence on the performance
of the FACO algorithm and to predict the best combination
of appropriate values among all possible arrangements. The
main phases of the Taguchi method are the determination
of the influential factors and the choice of the experimental
array which determines the number of experiments to be
carried out as well as the value of each influential factor per
trial. The Taguchi concept applies the signal-to-noise ratio
(SNR) to examine the measurements recorded. The improve-
ments of outputs could be obtained by reducing the function
defined in the formulation hereafter which corresponds to
the smaller is the best:

where u: trial number; i: experiment number and Ni : Number
of trials for the experiment, y: trials’ result.

During the trials defined by the Taguchi array L25 , we
kept the same Cloud configuration and we modify the FACO
parameter for each experiment. The applied scenario is
based on the use of one user UB1 who initiates an average
of 60 requests per hour of a size of 100 bytes per request,
and three areas DC1, DC2 and DC3 regrouping respectively
12 virtual machines. The achieved results are summarized
in (see Table 4).

The graphical analysis achieved via Minitab 16 allows us
to find out various conclusions such as the optimal configu-
ration per key performance indicator (KPI) to enhance one
KPI such as response time or the three KPI which includes
response time, processing time and total cost. As shown in

(14)SNRi = −10 log
�∑Ni

u=1

y2
u

Ni

�

Fig. 6, 7, 8, the best combination of parameters could be
achieved by keeping the highest level of each parameter.
In other words, the proposed method allows the identifica-
tion of the values of the proposed FACO parameters accord-
ing to the expected objectives. Moreover, Taguchi analysis
identifies the factor that has the greatest impact on the key
performance indicator (see Tables 5, 6, 7). Thus, the number
of ants’ parameters is the one that has the most influence on
the response time and processing time while the � factor is
the one that has the most influence on the value of the total

Table 2   Fuzzy inference rules base for pheromone evaluation

Rule number Description

Rule 1 IF (Memory IS low) OR (Bandwidth IS low) THEN pheromone IS low
Rule 2 IF (Memory IS low) AND (Storage IS low) THEN pheromone IS low
Rule 3 IF (Memory IS low) AND (CPU IS low) THEN pheromone IS low
Rule 4 IF (Bandwidth IS high) AND (CPU IS high) THEN pheromone IS good
Rule 5 IF (Bandwidth IS high) AND (Memory IS high) THEN pheromone IS good
Rule 6 IF (Bandwidth IS high) AND (Storage IS high) THEN pheromone IS good
Rule 7 IF ((Bandwidth IS low) OR (Storage IS low)) OR (Memory IS low) THEN pheromone IS low
Rule 8 IF (Bandwidth IS high) AND (Memory IS medium) THEN pheromone IS medium
Rule 9 IF ((Memory IS medium) OR (Storage IS medium)) AND (CPU IS medium) THEN phero-

mone IS medium
Rule 10 IF ((Memory IS high) OR (Storage IS high)) AND (CPU IS high) THEN pheromone IS good

Fig. 5   Interaction Plot for Response time based on Taguchi analysis
of the trials results

Table 3   Factors values per level

Level � � � Num
ants

Max
iterations

1 0.5 0.5 0.1 10 20
2 0.6 0.6 0.2 20 30
3 0.7 0.7 0.3 30 50
4 0.8 0.8 0.4 40 60
5 0.9 0.9 0.5 50 100

3984	 A. Ragmani et al.

1 3

cost. The results obtained from these analyses allow us to
predict the optimal configuration to apply for the optimiza-
tion of our FACO algorithm. This configuration represents
the combination applied during trial number 24 (see Table 4)
which corresponds to � = 0.9 , � = 0.8 , � = 0.3 , antnum = 20
, and Maxiterations = 20.

6.2 � Performance evaluation of FACO algorithm

As illustrated in Table 8, the second part of the simu-
lation embraces 5 trials that aim to validate the perfor-
mance of the proposed FACO algorithm. We conducted
experiments on CloudSim and CloudAnalyst to evaluate
the performance of our proposed algorithm. We examine
the performance in terms of response time, processing
time and total cost. The results obtained via the FACO
algorithm were compared to the results obtained by other
algorithms, such as Round Robin, which highlights the
performance of the proposed algorithm. Referring to Fig-
ures 9, 10, 11, we note that the response time and process-
ing time achieved by the proposed FACO algorithm out-
perform the other algorithms in the case of a high number
of nodes and requests. The values of the cost indicator are

relatively close because the setting of FACO parameters
(�, �, �,Numants,MaxIterations) were done in such a way to
optimize the response time and the processing time. It
remains possible to give an advantage to the cost if this
is the objective of the system’s administrator. Thus, it has
been demonstrated that response time and processing time
could be relatively improved by applying a more efficient

Table 4   Taguchi L
25

 experiment
array and achieved simulation
results

N
◦ Trial � � � Num

ants
Max

Iterations
Response
time (ms)

Processing
time (ms)

Total cost ($)

1 1 1 1 1 1 301.80 1.81 7 712.29
2 1 2 2 2 2 302.53 2.04 7 640.14
3 1 3 3 3 3 302.51 2.03 7 696.48
4 1 4 4 4 4 301.71 1.76 7 679.62
5 1 5 5 5 5 301.72 1.73 7 640.12
6 2 1 2 3 4 302.70 2.30 7 576.19
7 2 2 3 4 5 301.77 1.77 7 604.96
8 2 3 4 5 1 301.94 1.85 7 671.46
9 2 4 5 1 2 302.69 2.23 7 671.83
10 2 5 1 2 3 301.84 1.78 7 602.46
11 3 1 3 5 2 301.92 1.83 7 680.63
12 3 2 4 1 3 301.70 1.75 7 647.95
13 3 3 5 2 4 302.04 1.87 7 656.63
14 3 4 1 3 5 302.37 1.97 7 704.47
15 3 5 2 4 1 302.45 1.95 7 623.14
16 4 1 4 2 5 302.71 2.07 7 549.65
17 4 2 5 3 1 302.00 1.82 7 597.46
18 4 3 1 4 2 302.35 1.89 7 576.47
19 4 4 2 5 3 301.82 1.78 7 597.96
20 4 5 3 1 4 301.68 1.69 7 603.95
21 5 1 5 4 3 302.82 2.06 7 601.66
22 5 2 1 5 4 301.76 1.80 7 712.28
23 5 3 2 1 5 301.88 1.82 7 592.29
24 5 4 3 2 1 301.54 1.66 7 536.95
25 5 5 4 3 2 302.73 2.32 7 552.36

Fig. 6   Main Effects Plot for SN ratios for response time indicator

3985FACO: a hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in…

1 3

load balancing strategy without a negative impact on the
cost. To date, several studies confirmed the effectiveness
of the meta-heuristic algorithm in improving the load bal-
ancing in the cloud environment. Table 9 shows the com-
parative view of the different load balancing algorithms.

Fig. 7   Main Effects Plot for SN ratios for processing time indicator

Fig. 8   Main Effects Plot for SN ratios for total cost indicator

Table 5   Factors effects ranking for response time indicator

Level � � � Num
ants

Max
Iterations

1 −49.60 −49.61 −49.60 −49.60 −49.60
2 −49.61 −49.60 −49.61 −49.60 −49.61
3 −49.60 −49.60 −49.60 −49.61 −49.60
4 −49.60 −49.60 −49.60 −49.61 −49.60
5 −49.60 −49.60 −49.61 −49.60 −49.60
Delta 0 0.01 0.01 0.02 0.01
Rank 5 3 4 1 2

Table 6   Factors effects ranking for processing time indicator

Level � � � Num
ants

Max
Iterations

1 −5.433 −6.047 −5.337 −5.348 −5.18
2 −5.902 −5.264 −5.888 −5.472 −6.249
3 −5.447 −5.532 −5.064 −6.357 −5.461
4 −5.323 −5.435 −5.749 −5.495 −5.449
5 −5.659 −5.488 −5.729 −5.093 −5.426
Delta 0.579 0.783 0.824 1.264 1.069
Rank 5 4 3 1 2

Table 7   Factors effects ranking for total cost indicator

Level � � � Num
ants

Max
Iterations

1 −77.70 −77.64 −77.69 −77.67 −77.65
2 −77.65 −77.66 −77.62 −77.61 −77.64
3 −77.69 −77.66 −77.64 −77.64 −77.65
4 −77.60 −77.66 −77.64 −77.64 −77.67
5 −77.61 −77.62 −77.65 −77.69 −77.64
Delta 0.1 0.04 0.06 0.07 0.03
Rank 1 4 3 2 5

Fig. 9   FACO Response time (ms) compared to others load balancing
algorithms

Fig. 10   FACO Processing time (ms) compared to others load balanc-
ing algorithms

3986	 A. Ragmani et al.

1 3

7 � Conclusion

This paper proposes a FACO algorithm for virtual machine
scheduling with load balancing adapted to cloud comput-
ing architecture. This study has identified that the ant col-
ony optimization approach has been used to resolve the
load balancing issue due to its capacity to handle a high
number of nodes. This paper introduces a hybrid fuzzy
ant colony algorithm by including a fuzzy logic module to

calculate the pheromone value and the Taguchi concept to
optimize the ACO’s parameters. The experimental results
achieved by the Cloud Analyst simulator confirmed that
the FACO algorithm is more appropriate for handling large
and distributed networks. The main contributions of the
proposed solution are (i) the application of fuzzy logic
to calculate the pheromones probability to minimize the
computing time (ii) the use of Taguchi experience design
for selecting the best ACO’s parameters to find the opti-
mal parameters’ combination. The applied FACO algo-
rithm includes a procedure of evaporation from the trial
of pheromones to avoid earlier convergence towards non-
optimal solutions. The achieved simulations within the
Cloud Analyst and CloudSim platforms showed that the
proposed approach allows improving load balancing in the
Cloud architecture while reducing response time by up to
82%, the processing time by up to 90% and total cost by
up to 9% depending on the applied scenario. Although
the FACO algorithm outperforms the other algorithms,
we aim to generalize the pheromone definition to encom-
passes other distributed systems. Our future work includes
an evaluation of the FACO algorithm within a real and
multi-cloud computing architecture.

Fig. 11   FACO Total cost ($) compared to others load balancing algo-
rithms

Table 8   FACO performance
compared to Round Robin

Scenario Response time(ms) Processing time(ms)

FACO Round-Robin Improvement% FACO Round-Robin Improvement%

S1 301.54 338.90 12.39% 1.66 2.33 28.8%
S2 177.51 193.96 9.27% 2.45 20.30 87.9%
S3 54.37 99.46 82.93% 4.76 49.90 90.5%
S4 160.67 176.02 9.55% 27.35 42.68 35.9%
S5 74.21 102.13 37.62% 24.51 52.41 53.2%

Table 9   Comparative view of load balancing algorithms

Research paper Applied Algorithms Strength Considered feature General Improvement

(Bui et al. 2017) ACO, non-cooperative
game, and Nash
equilibrium

Taking into account customer
and service provider

Virtual machines provision
solution

A moderate improvement
compared to conventional
algorithms

(Yang and Zhuang 2010) ACO Minor premature conver-
gence probability

Resolving mobile agent
routing

Improvement of time to find
best solution by up to 32%

(Saffar et al. 2011) Bayesian networks
based on ant colony
optimization

A hybrid performed algo-
rithm including Bayesian
network models, ACO and
simulated annealing

Power loss and load balanc-
ing index

Load balancing index improve-
ment up to 41.51% and loss
reduction up to 59.84%

FACO ACO and Fuzzy Logic Improved ACO’s parameters,
simpler and faster to imple-
ment

Response time, processing
time and load balancing
index

Improvement of response time
by up to 82% and processing
time by up to 90%

3987FACO: a hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in…

1 3

Acknowledgements  The authors would like to thank the reviewers for
their valuable reviews and constructive comments, which have contrib-
uted to enhancing the quality of this paper.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

Arunarani A, Manjula D, Sugumaran V (2019) Task scheduling tech-
niques in cloud computing: a literature survey. Future Gener Com-
put Syst 91:407–415

Boveiri HR, Khayami R, Elhoseny M, Gunasekaran M (2019) An effi-
cient Swarm-Intelligence approach for task scheduling in cloud-
based internet of things applications. J Ambient Intell Human
Comput 10(9):3469–3479

Bui KT, Pham TV, Tran HC (2017) A load balancing game approach
for VM provision cloud computing based on ant colony optimi-
zation. In: Cong Vinh P, Tuan Anh L, Loan NTT, Vongdoiwang
Siricharoen W (eds) Context-aware systems and applications, vol
193. Springer International Publishing, Cham, pp 52–63

Cingolani P, Alcalá-Fdez J (2013) jFuzzyLogic: a Java library to design
fuzzy logic controllers according to the standard for fuzzy control
programming. Int J Comput Intell Syst 6(sup1):61–75

Dorigo M, Birattari M, Stützle T (2006) Ant Colony Optimization Arti-
ficial Ants as a Computational Intelligence Technique. IRIDIA—
TECHNICAL REPORT SERIES TR/IRIDIA/2006-023

Gabi D, Ismail AS, Zainal A, Zakaria Z, Abraham A (2018) Orthogo-
nal Taguchi-based cat algorithm for solving task scheduling prob-
lem in cloud computing. Neural Comput Appl 30(6):1845–1863

Gao R, Wu J (2015) Dynamic load balancing strategy for cloud com-
puting with ant colony optimization. Future Internet 7(4):465–483

Gao Y, Guan H, Qi Z, Hou Y, Liu L (2013) A multi-objective ant
colony system algorithm for virtual machine placement in cloud
computing. J Comput Syst Sci 79(8):1230–1242

Gendreau M, Potvin J-Y (eds) (2010) Handbook of metaheuristics,
volume 146 of International series in operations research & man-
agement science. Springer, USA

Gonzalez-Pardo A, Jung JJ, Camacho D (2017) ACO-based clustering
for ego network analysis. Future Gener Comput Syst 66:160–170

Kahraman C, Pardalos PM, Du D-Z (eds) (2008) Fuzzy multi-criteria
decision making, volume 16 of Springer optimization and its
applications. Springer USA

Li Y, Tong S (2017) Adaptive fuzzy output-feedback stabilization
control for a class of switched nonstrict-feedback nonlinear sys-
tems. IEEE Trans Cybern 47(4):1007–1016

Mamdani M, Assilian S (1999) An experiment in linguistic syn-
thesis with a fuzzy logic controller. Int J Hum Comput Stud
51(2):135–147

Masulli F, Pasi G, Yager R, Hutchison D, Kanade T, Kittler J, Klein-
berg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu
Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi
MY, Weikum G (eds) (2013) Fuzzy logic and applications, vol
8256. Lecture notes in computer science. Springer International
Publishing, Cham

Mijumbi R, Serrat J, Gorricho J-L, Bouten N, De Turck F, Boutaba
R (2016) Network function virtualization: state-of-the-art and
research challenges. IEEE Commun Surv Tutor 18(1):236–262

Mikaeeli Mamaghani S, Jabraeil Jamali MA (2019) A load-balanced
congestion-aware routing algorithm based on time interval in
wireless network-on-chip. J Ambient Intell Human Comput
10(7):2869–2882

Ragmani A, Elomri A, Abghour N, Moussaid K, Rida M (2019) An
improved hybrid fuzzy-ant colony algorithm applied to load
balancing in cloud computing environment. Proc Comput Sci
151:519–526

Ragmani A, Omri AE, Abghour N, Moussaid K, Rida M (2017)
An efficient load balancing strategy based on mapreduce for
public cloud. In: ICC 2017: Second international conference
on internet of things and cloud computing, ACM Press, Cam-
bridge, pp 1–10

Routaib H, Badidi E, Elmachkour M, Sabir E, ElKoutbi M (2014)
Modeling and evaluating a cloudlet-based architecture for Mobile
Cloud Computing. In 2014 9th international conference on intel-
ligent systems: theories and applications (SITA-14), IEEE, Rabat,
Morocco, pp 1–7

Saffar A, Hooshmand R, Khodabakhshian A (2011) A new fuzzy opti-
mal reconfiguration of distribution systems for loss reduction and
load balancing using ant colony search-based algorithm. Applied
soft computing 11(5):4021–4028

Seghir F, Khababa A (2018) A hybrid approach using genetic and fruit
fly optimization algorithms for QoS-aware cloud service composi-
tion. J Intell Manuf 29(8):1773–1792

Shetty SM, Shetty S (2019) Analysis of load balancing in cloud data
centers. J Ambient Intell Human Comput. https​://doi.org/10.1007/
s1265​2-018-1106-7

Sosinsky BA, (2011) Cloud computing bible. Wiley, Indianapolis [John
Wiley, distributor]

Taguchi, G., Chowdhury, S., Wu, Y., Taguchi, S., and Yano, H. (2005)
Taguchi’s quality engineering handbook. Wiley/ASI Consulting
Group, Hoboken/Livonia

Tamilvizhi T, Parvathavarthini B (2019) A novel method for adaptive
fault tolerance during load balancing in cloud computing. Cluster
Comput 22(5):10425–10438

Van Broekhoven E, De Baets B (2008) Monotone Mamdani–Assilian
models under mean of maxima defuzzification. Fuzzy Sets Syst
159(21):2819–2844

Wickremasinghe B, Calheiros RN, Buyya R (2010) CloudAnalyst: a
CloudSim-based visual modeller for analysing cloud computing
environments and applications. In: AINA ’10 Proceedings of the
2010 24th IEEE international conference on advanced information
networking and applications, IEEE, Perth, pp 446–452

Xu M, Tian W, Buyya R (2017) A survey on load balancing algorithms
for virtual machines placement in cloud computing: a survey on
load balancing algorithms for VM placement in cloud computing.
Concurrency Comput Pract Experience 29(12):e4123

Yang J, Zhuang Y (2010) An improved ant colony optimization algo-
rithm for solving a complex combinatorial optimization problem.
Appl Soft Comput 10(2):653–660

Yu L, Chen L, Cai Z, Shen H, Liang Y, Pan Y (2016) Stochastic load
balancing for virtual resource management in datacenters. IEEE
Trans Cloud Comput. https​://doi.org/10.1109/TCC.2016.25259​84

Zahoor S, Javaid S, Javaid N, Ashraf M, Ishmanov F, Afzal M (2018)
Cloud-fog-based smart grid model for efficient resource manage-
ment. Sustainability 10(6):2079

Zhang J, Wang X, Huang H, Chen S (2017) Clustering based virtual
machines placement in distributed cloud computing. Future Gener
Comput Syst 66:1–10

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12652-018-1106-7
https://doi.org/10.1007/s12652-018-1106-7
https://doi.org/10.1109/TCC.2016.2525984

	FACO: a hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in high-performance cloud computing
	Abstract
	1 Introduction
	2 Related works
	3 Background
	3.1 Ant colony optimization algorithms
	3.2 Fuzzy logic controller

	4 Problem statement
	5 Proposed FACO algorithm
	5.1 Pheromone trials

	6 Simulation and results analysis
	6.1 Optimization of FACO’s parameters
	6.2 Performance evaluation of FACO algorithm

	7 Conclusion
	Acknowledgements
	References

