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Abstract
In future wireless networks, network function virtualization will lay the foundation for establishing a new dynamic resource 
management framework to efficiently utilize network resources. The main problem discussed in this paper is the minimi-
zation of total latency for an edge network and how to solve it efficiently. A model of users, virtual network functions and 
hosting devices has been taken, and is used to find the minimum latency using integer linear programming. The problem is 
NP-hard and takes exponential time to return the optimal solution. We apply the stable matching based algorithm to solve 
the problem in polynomial time and then utilize local search to improve its efficiency further. From extensive performance 
evaluation, it is found that our proposed algorithm is very close to the optimal scheme in terms of latency and better in terms 
of time complexity.
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1 Introduction

In today’s time, we require an efficient and advanced net-
work model that can support the growing load of the users 
(Hu et al. 2011). Different models used for network com-
puting are centralized network computing and distributed 
network computing. In the initial phases of networking the 
centralized network model was used as there were not many 
devices that could support the whole networks but trend 
changed and we now use more of distributed networking 
model. The main reason behind this is, in centralized net-
works the complete load of the network system falls on one 
central machine which increases the risk of network failure 
but in distributed networks, the network relies on various 
nodes or network devices which makes it more efficient and 

thus more reliable (Baran 1964). Edge Networks as the name 
suggests is a distributed computing paradigm in which com-
putation is wholly or mostly performed on distributed device 
nodes known as smart devices or edge devices as opposed 
to primarily taking place in a centralized cloud environ-
ment. Here “edge” is defined as any computing and network 
resources along the path between data sources and cloud 
data centers (Shi et al. 2016). For example, a smart phone is 
the edge between smart body sensors and a cloud, a gateway 
in a smart home is the edge between smart home things and 
a cloud. Edge computing is related to the concepts of wire-
less sensor networks, intelligent and context-aware networks 
and smart objects in the context of human-computer interac-
tion (Satyanarayanan 2017). Edge computing is more con-
cerned with computation performed at the edge of networks 
and systems whereas the Internet of Things label implies a 
stronger focus on data collection and communication over 
networks. Figure 1 illustrates an Edge network in which the 
core supplies the data to the various edges, which further 
connects to the users.

In this paper, our primary focus will be on the distrib-
uted edge networks. One of the significant factors which 
lead to increase in the load on the network, is the exponen-
tial increase in the number of mobile users, the machine 
to machine (M2M) communication methods and the Inter-
net-of-things (IoT) as they increase data overhead thus 

 * Karanbir Singh Ghai 
 kghai1@lakeheadu.ca

 Salimur Choudhury 
 salimur.choudhury@lakeheadu.ca

 Abdulsalam Yassine 
 ayassine@lakeheadu.ca

1 Department of Computer Science, Lakehead University, 
Thunder Bay, ON, Canada

2 Department of Software Engineering, Lakehead University, 
Thunder Bay, ON, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01630-6&domain=pdf


3964 K. S. Ghai et al.

1 3

increasing the data rate, capacity demands an increase in the 
need for coverage. So, due to the growth mentioned above, 
the large volume of raw data is continuously generated by 
devices, consequently making cloud computing inadequate 
to efficiently and securely handle the data (Shi and Dustdar 
2016). Thus the current trend is shifting from centralized 
computing to distributed computing as the load in distrib-
uted computing is distributed and doesn’t fall on the shoul-
ders of one central device. According to the report of Cisco 
(Cisco 2017), mobile data traffic will grow at a compound 
annual growth rate (CAGR) of 47exabytes per month by 
2021. Meanwhile, M2M connections are calculated to grow 
from 780 million in 2016 to 3.3 billion by 2021. The modern 
networks require more hardware base to work efficiently, but 
this makes the network more complicated and costly.

To overcome these challenges a newly designed technique 
network functions virtualization (NFV), is being used in 
which network functions of traditional networks have been 
converted into software appliances called virtual network 
functions (vNFs) (Chiosi et al. 2013). This technique was 
first introduced by a group of researchers from various com-
munication companies in 2012. The objective for introduc-
tion of this technique was to counter multiple factors that 
come into play to launch a new network service mainly 
including increasing costs of energy, capital investments, 
the rarity of skills necessary to design, integrate and oper-
ate increasingly complex hardware-based appliances. This 
concept uses the technology of IT virtualization to virtualize 
entire classes of network node functions into building blocks 
that may connect, or chain together, to create communication 
or network services. One of the essential and principal uses 

of this technology is that network functions don’t need any 
sophisticated or high-end hardware; instead, it can be run on 
general- purpose hardware that is available easily.

It is an emerging network architecture to increase flex-
ibility and agility within the operator’s networks by placing 
virtualized services on demand in the data center. Figure 1 
also demonstrates the edges of the network where vNFs 
can be placed to make it more efficient and reliable. One 
of the main challenges for the NFV environment is how 
to efficiently allocate vNFs to virtual machines (VMs) 
(Luizelli et al. 2015) and get the best out of the whole net-
work with the minimum workload on the network. NFV 
techniques highly complement the software defined net-
working (SDN) technology (Chiosi et al. 2013), but these 
both are not dependent on each other. NFV technique can 
be implemented without an SDN, but if both methods are 
used together, more efficient results are obtained (Chiosi 
et al. 2013). Various security infrastructures that have been 
developed and matured in cloud computing space are being 
adopted in NFV technology, few examples of these are in 
identity services, role-based access control (RBAC) (Chu 
2018).

Next-generation networks are expected to support low-
latency, context-aware and user-specific services in a highly 
flexible and efficient manner (Cziva and Pezaros 2017b). 
Proposed applications include high-definition, low-latency 
video streaming, remote surgery, as well as requests for the 
tactile Internet, virtual reality that demand’s network-side 
data processing (such as image recognition, transformation). 
Mobile networks are the latest and most used type of net-
works nowadays. The latest in this domain is the 5G network 
which is on the verge of being deployed for mobile devices. 
With the arrival of 5G, the mobile networks have increased 
the demand of the novel, more evolved and scalable network 
technologies (Bouras et al. 2017) to support this network. 
5G will succeed 4G (LTE) which is currently in use, and it 
will target high data rate, reduced latency, energy saving, 
cost reduction, higher system capacity, and massive device 
connectivity (Andrews et al. 2014). It is said to be capable of 
supporting 20 Gbit/s data rate, 1 ms of latency and mainly it 
can support up to 106 devices per km2 . Using both SDN and 
NFV techniques, the 5G network can be made more efficient 
and easier to manage (Chu 2018).

In today’s time most of the devices used are smart device, 
they can be bulbs, appliances or even medical equipment 
(Park and Yen 2018). As all of these type of devices are 
connected to the internet. They also contribute towards the 
usage of NFV technology. Hence, they are an integral part 
of this research. These devices are called IoT devices. IoT, 
defined as the Internet of things (IoT) is an emerging tech-
nology which was first proposed to study RFID by Ashton, 
Professor of the MIT Auto-ID Center in 1999 (Wang et al. 
2016). The IoT can be used in various ways, and the data 

Fig. 1  Example of edge network
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transmitted during network communication can take many 
forms, ranging from personal data to sensing information 
gathered from the environment (Kim and Lee 2018; Munir 
et al. 2019; Campioni et al. 2019). IoT is defined as the net-
work of devices such as vehicles, smart devices, and home 
appliances that contain electronics, software and connec-
tivity, which allows these things to connect, interact and 
exchange data. The definition of the IoT has evolved due to 
the convergence of multiple technologies, real-time analyt-
ics, machine learning, commodity sensors, and embedded 
systems (Satyanarayanan 2017). A massive increase in the 
number of devices in IoT is being predicted (expected to 
reach 50 billion by 2020). Figure 2 shows us an example 
of a simple IoT network that can be found in an average 
household.

Latency is defined as the delay or the interruption in 
a connection; it can depend on various factors distance, 
weather, the material used and hardware configurations of 
hosting devices and users (Pandi et al. 2018). If the latency 
goes beyond a certain threshold, then the whole network 
could fail.

In this paper we deal with the vNF placement problem. 
Cziva and Pezaros (2017b) proposed the vNF placement 
problem, they propose a mathematical (integer linear pro-
gramming) model to solve the problem. The mathematical 
model mentioned is NP-hard in nature which means that it 
will take exponential time to solve the problem in worst case 
scenario and on analyzing it is found that the mathematical 
model is having drawbacks and will lead to failures if the 
problem persists. No heuristic has been proposed by Cziva 
and Pezaros (2017b) to solve the problem in polynomial 
time. This paper modifies the mathematical model to remove 

the anomaly and to make it more efficient. The modified 
model also takes exponential time to solve the problem in 
the worst case scenario. Then we propose an heuristic based 
on the stable matching (SM) algorithm to solve the modi-
fied problem in a polynomial time. The solutions given by 
the model are then compared to the solutions given by the 
proposed heuristic (stable matching algorithm) for the allo-
cation of vNFs to hosting devices.We also find that there is 
a scope of improving the final solution. We design a local 
search technique to improve the solution.

The rest of the paper is designed in the following man-
ner, Sect. 2 canvasses prior works related to our topic of 
interest. Section 3 contains the problem definition and the 
system model. Section 4 discusses the modification of the 
mathematical model, its requirement and implementation. 
Section 5 presents a detailed discussion of our proposed 
algorithm and its extension with working procedures. The 
performance evaluations and simulations are shown in 
Sect. 6. Finally, Sect. 7 concludes the paper with some future 
research directions.

2  Related work

Network function virtualization (NFV) is an emerging 
network architecture and is an efficient technology in the 
networking area. Current research works are going-on to 
design or implement new techniques to make this emerging 
technology more efficient. During the literature review, we 
can find several studies trying the different scope of vNF 
technology including scaling, allocation, task scheduling, 
placement, edge-based models, cloud-based models, and 
latency optimization. Moving intelligence from traditional 
servers at the center of the network to the network edge 
is gaining significant attention from both the research and 
the industrial communities, as discussed in citep26, (Cziva 
and Pezaros 2017a). Orchestrating and managing vNFs in 
different NFV infrastructures has been a popular research 
topic, and it is often related to traditional Virtual Machine 
(VM) placement problem, as mentioned in (Moens and 
Turck 2014). In this research paper, authors have presented 
vNF-P, a generic model for efficient placement of virtualized 
network functions. Simultaneous placement of vNFs is used 
to form a service function chain (SFC), a chain of vNFs, 
and then uses admission control (AC) to reach the maxi-
mum performance state. The main issue of this research is 
to solve the problem of AC and SFC embedding (Tahmasbi 
Nejad et al. 2018). They have used relaxation, reformulation, 
and successive convex approximation methods to solve the 
problem. In modern data-centers, user network traffic uses 
a set of vNFs as a service chain to process traffic demands 
(Tashtarian et al. 2017). Sometimes traffic fluctuations in 
large-scale data-centers (LDCs) could result in overload and Fig. 2  Example of IoT network
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under-load phenomena in service chains. In this research 
paper, a distributed approach based on alternating direction 
method multipliers (ADMM) is used to balance the traffic 
as well as horizontally scale up and down vNFs in LDCs 
with minimum deployment and forwarding costs. One of 
the main challenges for the NFV environment is how to effi-
ciently allocate virtual network functions (vNF) to virtual 
machines (VMs) (Cho et al. 2017). In this research, a more 
comprehensive model based on real measurements to cap-
ture network latency among vNFs with more granularity to 
optimize placement of vNFs in CDCs.

Stable Match algorithm has been used frequently to 
solve many problems in various research areas in computer 
science and other fields of study too. McVitie and Wilson 
(McVitie and Wilson 1971) pointed out that the algorithm 
by Gale and Shapley (Gale and Shapley 1962) in which 
men propose to women, generates a male-optimal solution 
in which every man gets the best partner he can in any stable 
matching and every woman gets the worst partner she can 
in any stable matching. They suggested an equal measure 
of optimality under which the sum of the ranks of partners 
for all men and women was to be minimized. An efficient 
algorithm was provided by Irving et al. (Irving et al. 1987) 
to find a stable matching satisfying the optimality criterion 
of McVitie and Wilson.

Stable Matching Algorithm has also been used in sched-
uling of both computing and storage resources in data cen-
tres (Chu et al. 2017). In the research mentioned above 
paper, authors first define a preference list for each side and 
stability of their matching, then they propose a useful Stable 
Matching Based Algorithm (SMB) scheme. This algorithm 
has given them a stable matching for computing and stor-
age resources as well as applications (virtual machines) for 
all the performed experimental cases. Authors in (Sugimoto 
et al. 2009) proposes a fast iteration algorithm for Kansei 
matching, which is further used as an algorithm to solve the 
stable matching problem. This is also easy and more trans-
parent than the conventional (extended) Gale–Shapley (GS) 
algorithm in the sense of programming and debugging. The 
research shows that the proposed algorithm executes more 
than six times faster than the Gale–Shapley, while it requires 
the same memory storage as the GS algorithm. They also 
present a version of the iteration algorithm that is more effi-
cient and describes the result of comparative experimenta-
tion in execution time.

Local search is a technique in which the algorithm tries to 
find the solution to a problem locally that satisfies the con-
ditions required by the given problem. When the algorithm 
is done with a state or node, it moves to the next node or 
state by applying the local changes until it finds an optimal 
solution. Local search algorithm has been used to design the 
reliable networks optimally (Dengiz et al. 1997; Islam et al. 
2015; Hassan et al. 2017a, b). The research mentioned above 

paper proposes a genetic algorithm (GA) with specialized 
encoding, initialization, and local search operators to opti-
mize the design of communication network topologies. The 
problem taken by the authors is NP-hard and often generates 
infeasible networks using random initialization and standard 
genetic operators as it is highly constrained. They found that 
special purpose GA is more efficient than an enumerative 
based method on NP-hard problems of realistic size.

3  Problem description and system model

3.1  Problem description

In this paper, we are dealing with a problem in which we 
need to minimize the latency generated by the newly made 
connections in a topology. This is done by assigning the 
vNFs to that hosting devices which gives minimum latency 
for the topology. This problem can be categorized under the 
assignment problem in which we need to find that appropri-
ate assignment of all vNFs to hosting devices that mini-
mizes the total expected latencies from all users to its vNFs. 
The allocation of the vNFs to hosting devices depends on 
various factors like the requirement of vNFs, the capacity of 
host devices and mainly on the latency between the hosting 
device and the vNFs. The allocation is complete when all of 
the vNFs are allocated, or when the capacity of all the host-
ing devices gets exhausted.

3.2  System model

In this paper, we are using the same model as used by (Cziva 
and Pezaros 2017b). Here we consider that vNFs are to be 
connected to host devices, and further users are connected 
to vNFs to use the network. The goal of this paper is to 
allocate vNFs to different hosting devices to minimize the 
latency caused.

3.2.1  Parameters

We consider a system with vNFs and hosting devices, where 
ℕ = { n1, n2, n3,… , ni } is the set of all vNFs in the network. 
For each ni we can define memory, CPU and IO require-
ments ( �� ), as well as Maxlatency ( ��� ) that denotes the 
maximum latency which vNF ni can tolerate. Similarly ℍ 
= { h1, h2, h3,… , hj } is the set of vNF hosting devices (that 
represent either a cloud or an edge server). Similar to vNF’s 
requirements, each hj has capacity ( �� ) on its properties, for 
example; CPU, memory, IO etc. ��� gives the latency between 
the user of the ni vNF in case ni is located at hj (Table 1).

��� is a binary decision variable that denotes allocation of 
vNFs to hosts; where
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3.2.2  Mathematical (ILP) model

The objective of our model is to minimize the Total-Latency 
value which is given by Eq. (1).

• First constraint (2) ensures that vNFs are placed to host-
ing devices with sufficient capacity. This constraint also 
defines that vNFs can’t be allocated to the hosting device 
if its capacity gets filled.

• Second constraint (3), ensures that latency-sensitive 
vNFs are placed subject to not violating the max latency 
requirement from their users. The latency of the selected 
pair should always be less than the Maxlatency for the 
vNF.

• Third constraint (4), constraint ensures that all vNFs are 
allocated to hosting devices exactly once. A single vNF 
can’t be connected to two hosting devices, but one host-
ing device can connect to two vNFs.

The above-mentioned ILP problem is a minimizing prob-
lem in which our objective is to minimize the total latency 
obtained by the allocation of the vNFs to the hosting devices. 
It can be noted that the above ILP is an NP-hard problem 

xij =

{

1 if ni is allocated to hj
0 otherwise

(1)Minimize
∑

ni∈ℕ

∑

hj∈ℍ

xijlij

(2)
Subject To-

∑

ni∈ℕ
xij ∗ Ri ≤ Cj,∀hj ∈ ℍ

(3)
∑

hj∈ℍ
xijlij ≤ MLi,∀ni ∈ ℕ

(4)
∑

hj∈ℍ
xij = 1,∀ni ∈ ℕ

(Cziva and Pezaros 2017b) and can be solved by optimally 
by an ILP solver, for example, IBM CPLEX or Gurobi. For 
our simulations, we used IBM CPLEX to solve it optimally.

4  Mathematical model modification

In this problem statement, the allocation constraint Eq. 4 
states that every vNF should be connected to at least one 
host device. If this constraint fails in any circumstance, the 
whole model fails. Some of the scenarios that lead to model 
failure are:

Let us consider a scenario with five vNFs that want to 
connect to three different hosting devices as represented in 
Fig. 3. It can be seen that all the devices want to connect 
with the hosting devices, but due to the insufficient capacity 
of the hosting devices, all of the vNFs won’t be connected 
and the connections in green will only be connected. Though 
it doesn’t have much problem but due to the allocation con-
straint Eq. 4 the model will fail and will give an infeasible 
solution.

4.1  Proposed modification

Thus, to fix the above problem and make the problem more 
general, we used another mixed integer linear programming 
(MILP) problem model to find the maximum number of 
vNFs that can be connected optimally to the hosting devices. 
The allocation constraint (4) is thus changed to:

where ‘M’ is the total number of vNFs that can be connected 
optimally and another constraint (6) is added, which ensures 

(5)
∑

ni∈ℕ

∑

hb∈ℍ
xij = M

(6)
∑

hb∈ℍ
xij <= 1,∀ni ∈ ℕ

Table 1  Parameters

Variable Description

ℕ Set of all vNFs
ℍ Set of all hosting devices
Cj Maximum capacity of a hosting device j
Ri Requirement of vNF i
MLi Maximum latency a vNF i can tolerate.
lij Latency b/w the user of the ni vNF in 

case that vNF is located at hj

Fig. 3  Fail case scenario for 5 vNFs
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that one vNF connects to a maximum of one Hosting Device. 
M is calculated using another ILP formulation which is as 
follows:

where,

For each vNF i ∈ ℕ , Ai ⊆ ℍ is a set of hosting devices that 
can hold vNF i (satisfying constraint 3).

Similarly Bj ⊆ ℕ be the set of vNFs that can be assigned to 
hosting devices j. vNF i is connectable to hosting device j, 
if it satisfies constraint 3.

Cj is capacity of hosting devices and Ri are the requirements 
for vNFs. Further the constraint 8 is similar to constraint 2. 
Constraint 9 states that one vNF can’t be connected to more 
than one hosting device.

The problem model used to find the “M” is also an NP-
Hard problem and it can be defined as Multiple Knapsack 
Problem with Assignment Restrictions (MKAR) (Dawande 
et al. 2000). The model can be solved optimally by an ILP 
solver, such as IBM CPLEX or by a � 1

2
 Approximation 

Algorithm as proposed in (Dawande et al. 2000).
The complete new model with modification becomes:

(7)Maximize M =
∑

ni∈ℕ

∑

hj∈ℍ
xij

(8)
Subject To−

∑

i∈Bj

xij ∗ Rj <= Cj,∀j ∈ ℍ

(9)
∑

j∈Ai

xij <= 1,∀i ∈ ℕ

xij =

{

1 if ni is allocated to hj
0 otherwise

Ai =

{

1 if ni can be accommodated by hj
0 otherwise

Bj =

{

1 if hj can accommodate ni
0 otherwise

(10)Minimize
∑

ni∈ℕ

∑

hj∈ℍ

xijlij

(11)
Subject To-

∑

ni∈ℕ
xij ∗ Ri ≤ Cj,∀hj ∈ ℍ

(12)
∑

hj∈ℍ
xijlij ≤ MLi,∀ni ∈ ℕ

5  Proposed algorithm

5.1  Stable matching algorithm

Stable matching based solution has been proposed in various 
domain in the case of assignment problems (Hossen et al. 
2018; Ghai et al. 2019). Stable Matching start’s by creating 
two priority matrices for the two groups that we want to 
match. These matrices are created on the basis of the laten-
cies in which the lesser latencies are given the more priority 
for both the groups that are vNFs and hosting devices. Then 
the matching is done according to the priority matrix, where 
the vNF wants to connect to the hosting device that is first on 
its priority list. The same case exists for hosting devices as 
they want to connect to the vNF that is first on their priority 
list. The algorithm runs for all the vNFs and matches them 
to hosting devices until a stable matching is achieved.

5.1.1  Algorithm

In the above Algorithm 1, we start with all the vNFs and 
hosting devices as free, and take Total latency and Count as 
0. The algorithm will run until maximum number of devices 
that can be connected (M) are connected, as shown in line 4, 
where M is calculated in the modified model using 7. Then a 
vNF, n proposes to the hosting device h that has the highest 
priority for vNF if the conditions as specified in line 6 are 
met then the vNF and hosting device is engaged. The count, 
capacity, and total latency are then updated. The other aspect 
is that if the hosting device is connected to another vNF 
n′ , as shown in line 11. Then from line 12, if the hosting 
device prefers the selected vNF n over the currently engaged 
n′ , the hosting device will be engaged with n and n′ will 
become free. In this case the count remains same but capac-
ity and total latency are updated. If the hosting device does 
not prefer the selected vNF, n over the currently engaged n′ , 
then the pair remains engaged. The proposed algorithm has 
a complexity of O(n ∗ m) in the worst case where n is the 
number of vNFs, and m is the number of host devices (while 
n >> m ). So, generalizing we can say that the complexity of 
the algorithm is O(n2).

(13)
∑

ni∈ℕ

∑

hb∈ℍ
xij = M

(14)
∑

hb∈ℍ
xij <= 1,∀ni ∈ ℕ
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Algorithm 1 Stable Matching
1: procedure Matching vNFs to Hosting Devices until a stability is achieved
2: All vNFs and Hosting devices are free.
3: Initialize both totalLatency and count as 0.
4: while (There Exist a Free vNF (n) who has not proposed to hosting device (h) and

count is less than M) do
5: h→ is the first preferred Hosting Device
6: if (h is free and Constraints 11 and 12 are satisfied) then
7: (n, h) become engaged
8: Update count = count + 1
9: Update capacity = capacity of h - requirement of n
10: Update totalLatency = totalLatency + latency between the n and h
11: else(Some pair (n′, h) already exists)
12: if (h prefers n to n′) then
13: (n, h) become engaged
14: n′ becomes free
15: Count remains same
16: Update capacity and totalLatency
17: else
18: (n′, h) remain engaged
19: end if
20: end if
21: end while
22: Return totalLatency and matched pairs
23: end procedure

the end the solution is provided using the updated alloca-
tions. The improvement is calculated as follows:

• For Case I (Swapping), we calculate and compare the 
sum of the latencies for the connected pairs and for 
the swapped connections. If the sum of latency for 
the swapped pair is lesser, it can be said that there is 
improvement in solution. This way we don’t have to cal-
culate the whole total latency each time.

• For Case II (Moving for free vNF), we just check that 
if the latency of the new connection is lesser than the 
selected connection then there is an improvement in solu-
tion.

• For Case II (Moving for free hosting device), we just 
check that if the latency of the new connection is lesser 
than the selected connection then there is an improve-
ment in solution.

Complexity of above algorithm is O(n ∗ m ∗ W) in the worst 
case where n is the number of vNFs, m is the number of 
hosting devices (where n >> m) and “W” is the latency 
given by the stable matching solution (taken as initial feasi-
ble solution). So, generalizing we can say that the complex-
ity of the algorithm is O(n2 ∗ W).

5.2  Local search

Though the stable match based algorithm discussed in the 
previous section works efficiently, it can be improved using 
a local search algorithm. In this procedure, we start with an 
initial feasible solution that is provided by the Stable Match 
algorithm and then tries to improve the solution iteratively. 
The local search begins by picking two connected pair of 
hosting devices and vNFs and checks whether the latency 
can be improved by changing the connections locally. The 
algorithm stops when there is no further improvement is 
possible.

5.2.1  Algorithm

In this local search Algorithm (2) we start with a feasible 
solution provided by the Stable Match algorithm. All the 
connected pairs (i, j) are checked from the provided solu-
tion by comparing them (7) with all the other connected 
pairs ( i′, j′ ). We even compare the selected pair with all the 
unpaired vNFs (13) and hosting devices (19). IF the com-
parison leads to improvement (reduction) in the total latency 
and they satisfy the constraints 11 and 12 , then the connec-
tion is either swapped or moved. The whole procedure is 
performed while there is still a chance of improvement. At 
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Algorithm 2 Local Search (Swapping\Moving)
1: procedure Swap or Move the current matched pairs to find more efficient

solution.
2: Using initial feasible solution from Algorithm 1.
3: Initialize improvement = true.
4: while (improvement) do
5: improvement = false.
6: Checking for all connected pairs (i, j) and (i′, j′), where “i” vNF is con-

nected to “j” hosting device and similarly “i′” is connected to “j′”. � Case
I

7: if (lij + li′j′ > lij′ + li′j and Constraints 11 and 12 are satisfied) then �
Swapping

8: Assign vNF i to hosting device j′ and vNF i′ to hosting device j.
9: Update Capacity for hosting devices.
10: improvement = true.
11: end if
12: Check for other unconnected vNFs (i′′). � Case II
13: if (lij > li′′j and Constraints 11 and 12 are satisfied) then � Moving
14: Assign vNF i′′ to hosting device j and vNF i will get free.
15: Update Capacity for hosting devices.
16: improvement = true.
17: end if
18: Check for other unconnected hosting devices (j′′). � Case III
19: if (lij > lij′′ and Constraints 11 and 12 are satisfied) then � Moving
20: Assign vNF i to hosting device j′′.
21: Update Capacity for hosting devices.
22: improvement = true.
23: end if
24: end while
25: Print New minimum totalLatency using current allocation.
26: end procedure

Fig. 4  Latency result comparisons between optimal (ILP), stable 
matching and stable match with local search for 50 vNFs

Fig. 5  Latency result comparisons between optimal (ILP), stable 
matching and stable match with local search for 100 vNFs
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6  Results

The ILP model used is implemented in IBM CPLEX, and 
our proposed algorithm has been implemented in C++. In 
this process, we don’t use a network simulator as we are not 
solving any network layer research problems. For input, the 
data taken includes the number of vNFs, hosting devices, 

users. The other values taken as input are capacity of host-
ing devices, requirements and a maximum latency of vNFs 
and latency between the vNF and hosting device as these 

Fig. 6  Latency result comparisons between optimal (ILP), stable 
matching and stable match with local search for 500 vNFs

Fig. 7  Latency result comparisons between optimal (ILP), stable 
matching and stable match with local search for 1000 vNFs

Fig. 8  Latency result comparisons between optimal (ILP), stable 
matching and stable match with local search for 2000 vNFs

Fig. 9  Latency result comparisons between optimal (ILP), stable 
matching and stable match with local search for 3000 vNFs
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all are the properties of hosting devices and vNFs which 
are used in the simulations. For latency between the vNFs 
and the hosting devices, we take random values between 
15–40 as it depends on various factors such as distance, the 
material used, and the performance of hosting devices and 
vNFs. Similarly, the random values of the capacity of the 
hosting devices are taken between 10–75. Requirements and 

a maximum latency of vNFs have also been taken randomly 
between 1–15 and 20–50 respectively. For all the simulation 
results presented in this section, we start with 20 vNFs and 
5 hosting devices. The different instances that are used in 
this scenario are 20, 30, 50 and 100 for vNFs. 5, 10, 15, 20 
are a different number of host devices which are then used 
to form different cases and use them to compare results for 

Fig. 10  Time (min) comparison 
between optimal (ILP), stable 
matching and stable match with 
local search for 500 and 1000 
vNFs

Fig. 11  Time (min) comparison 
between optimal (ILP), stable 
matching and stable match with 
local search for 2000 and 3000 
vNFs
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Opt (optimal result from ILP), stable match (SM) and local 
search (LS) algorithms. All of the simulation results pre-
sented in this section are an average of 10 different runs for 
a particular scenario. The figures ahead (Figs. 4, 5, 6, 7, 8, 
9, 10 and 11) illustrate us the result comparison between the 
ILP result given by Opt (mathematical model), SM (stable 
match) and LS (SM with local search) on basis of TL (total 
latency) for different cases. Table 2 shows the comparisons 
between the time taken by both optimal and stable match 
with the local search for different number of vNFs and var-
ied number of host devices. It shows that the local search 
takes 20–30% less time compared to the optimal. The table 
also represents the comparisons in terms of latency. It is 
found that local search solution costs around 7–8% more 
latency compared to the optimal solutions. In summary, con-
sidering all experimental results, it is clear that the stable 
match algorithm performs very close to the optimal (costs 
9–10% more than the optimal latency). However, when the 
local search is added, an even better result is achieved (7–8% 
more than the optimal latency).

7  Conclusion and future work

In this paper, we modify an existing latency minimization 
problem (to make it more general) for edge NFV. Since 
the problem is NP-hard, we introduce two heuristics (one 
is based one stable matching and another one is based on 
local search) to solve the problem efficiently. Our results 

suggest that our local search provides results quite close to 
the optimal in a very reasonable time.

In future we plan to consider a problem which will 
deal in fair allocation of the vNFs to the hosting devices 
and minimizing the total latency simultaneously. Another 
future aspect can be to design an effcient algorithm to do 
the assignment of vNFs to hosting devices dynamically. This 
algorithm will automatically start re-assigning the vNFs 
when there is a change in scenario and change in latency 
(goes beyond a specified limit). A similar type of problem 
has been defined in (Cziva et al. 2018); in this problem, the 
authors give an ILP model first to allocate vNFs to a dis-
tributed edge infrastructure, minimizing end-to-end latency. 
Then they dynamically re-schedule the optimal placement of 
vNFs based on temporal network-wide latency fluctuations 
using optimal stopping theory. Since, the problem can take 
exponential time in the worst case, designing an efficient 
heuristic to solve this problem is an interesting research 
topic.
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