
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:3963–3974
https://doi.org/10.1007/s12652-019-01630-6

ORIGINAL RESEARCH

Efficient algorithms to minimize the end‑to‑end latency of edge
network function virtualization

Karanbir Singh Ghai1 · Salimur Choudhury1 · Abdulsalam Yassine2

Received: 24 July 2019 / Accepted: 30 October 2019 / Published online: 22 January 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In future wireless networks, network function virtualization will lay the foundation for establishing a new dynamic resource
management framework to efficiently utilize network resources. The main problem discussed in this paper is the minimi-
zation of total latency for an edge network and how to solve it efficiently. A model of users, virtual network functions and
hosting devices has been taken, and is used to find the minimum latency using integer linear programming. The problem is
NP-hard and takes exponential time to return the optimal solution. We apply the stable matching based algorithm to solve
the problem in polynomial time and then utilize local search to improve its efficiency further. From extensive performance
evaluation, it is found that our proposed algorithm is very close to the optimal scheme in terms of latency and better in terms
of time complexity.

Keywords Network function virtualization · Hosting device · Latency · Stable matching · Local search

1 Introduction

In today’s time, we require an efficient and advanced net-
work model that can support the growing load of the users
(Hu et al. 2011). Different models used for network com-
puting are centralized network computing and distributed
network computing. In the initial phases of networking the
centralized network model was used as there were not many
devices that could support the whole networks but trend
changed and we now use more of distributed networking
model. The main reason behind this is, in centralized net-
works the complete load of the network system falls on one
central machine which increases the risk of network failure
but in distributed networks, the network relies on various
nodes or network devices which makes it more efficient and

thus more reliable (Baran 1964). Edge Networks as the name
suggests is a distributed computing paradigm in which com-
putation is wholly or mostly performed on distributed device
nodes known as smart devices or edge devices as opposed
to primarily taking place in a centralized cloud environ-
ment. Here “edge” is defined as any computing and network
resources along the path between data sources and cloud
data centers (Shi et al. 2016). For example, a smart phone is
the edge between smart body sensors and a cloud, a gateway
in a smart home is the edge between smart home things and
a cloud. Edge computing is related to the concepts of wire-
less sensor networks, intelligent and context-aware networks
and smart objects in the context of human-computer interac-
tion (Satyanarayanan 2017). Edge computing is more con-
cerned with computation performed at the edge of networks
and systems whereas the Internet of Things label implies a
stronger focus on data collection and communication over
networks. Figure 1 illustrates an Edge network in which the
core supplies the data to the various edges, which further
connects to the users.

In this paper, our primary focus will be on the distrib-
uted edge networks. One of the significant factors which
lead to increase in the load on the network, is the exponen-
tial increase in the number of mobile users, the machine
to machine (M2M) communication methods and the Inter-
net-of-things (IoT) as they increase data overhead thus

 * Karanbir Singh Ghai
 kghai1@lakeheadu.ca

 Salimur Choudhury
 salimur.choudhury@lakeheadu.ca

 Abdulsalam Yassine
 ayassine@lakeheadu.ca

1 Department of Computer Science, Lakehead University,
Thunder Bay, ON, Canada

2 Department of Software Engineering, Lakehead University,
Thunder Bay, ON, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01630-6&domain=pdf

3964 K. S. Ghai et al.

1 3

increasing the data rate, capacity demands an increase in the
need for coverage. So, due to the growth mentioned above,
the large volume of raw data is continuously generated by
devices, consequently making cloud computing inadequate
to efficiently and securely handle the data (Shi and Dustdar
2016). Thus the current trend is shifting from centralized
computing to distributed computing as the load in distrib-
uted computing is distributed and doesn’t fall on the shoul-
ders of one central device. According to the report of Cisco
(Cisco 2017), mobile data traffic will grow at a compound
annual growth rate (CAGR) of 47exabytes per month by
2021. Meanwhile, M2M connections are calculated to grow
from 780 million in 2016 to 3.3 billion by 2021. The modern
networks require more hardware base to work efficiently, but
this makes the network more complicated and costly.

To overcome these challenges a newly designed technique
network functions virtualization (NFV), is being used in
which network functions of traditional networks have been
converted into software appliances called virtual network
functions (vNFs) (Chiosi et al. 2013). This technique was
first introduced by a group of researchers from various com-
munication companies in 2012. The objective for introduc-
tion of this technique was to counter multiple factors that
come into play to launch a new network service mainly
including increasing costs of energy, capital investments,
the rarity of skills necessary to design, integrate and oper-
ate increasingly complex hardware-based appliances. This
concept uses the technology of IT virtualization to virtualize
entire classes of network node functions into building blocks
that may connect, or chain together, to create communication
or network services. One of the essential and principal uses

of this technology is that network functions don’t need any
sophisticated or high-end hardware; instead, it can be run on
general- purpose hardware that is available easily.

It is an emerging network architecture to increase flex-
ibility and agility within the operator’s networks by placing
virtualized services on demand in the data center. Figure 1
also demonstrates the edges of the network where vNFs
can be placed to make it more efficient and reliable. One
of the main challenges for the NFV environment is how
to efficiently allocate vNFs to virtual machines (VMs)
(Luizelli et al. 2015) and get the best out of the whole net-
work with the minimum workload on the network. NFV
techniques highly complement the software defined net-
working (SDN) technology (Chiosi et al. 2013), but these
both are not dependent on each other. NFV technique can
be implemented without an SDN, but if both methods are
used together, more efficient results are obtained (Chiosi
et al. 2013). Various security infrastructures that have been
developed and matured in cloud computing space are being
adopted in NFV technology, few examples of these are in
identity services, role-based access control (RBAC) (Chu
2018).

Next-generation networks are expected to support low-
latency, context-aware and user-specific services in a highly
flexible and efficient manner (Cziva and Pezaros 2017b).
Proposed applications include high-definition, low-latency
video streaming, remote surgery, as well as requests for the
tactile Internet, virtual reality that demand’s network-side
data processing (such as image recognition, transformation).
Mobile networks are the latest and most used type of net-
works nowadays. The latest in this domain is the 5G network
which is on the verge of being deployed for mobile devices.
With the arrival of 5G, the mobile networks have increased
the demand of the novel, more evolved and scalable network
technologies (Bouras et al. 2017) to support this network.
5G will succeed 4G (LTE) which is currently in use, and it
will target high data rate, reduced latency, energy saving,
cost reduction, higher system capacity, and massive device
connectivity (Andrews et al. 2014). It is said to be capable of
supporting 20 Gbit/s data rate, 1 ms of latency and mainly it
can support up to 106 devices per km2 . Using both SDN and
NFV techniques, the 5G network can be made more efficient
and easier to manage (Chu 2018).

In today’s time most of the devices used are smart device,
they can be bulbs, appliances or even medical equipment
(Park and Yen 2018). As all of these type of devices are
connected to the internet. They also contribute towards the
usage of NFV technology. Hence, they are an integral part
of this research. These devices are called IoT devices. IoT,
defined as the Internet of things (IoT) is an emerging tech-
nology which was first proposed to study RFID by Ashton,
Professor of the MIT Auto-ID Center in 1999 (Wang et al.
2016). The IoT can be used in various ways, and the data

Fig. 1 Example of edge network

3965Efficient algorithms to minimize the end‑to‑end latency of edge network function…

1 3

transmitted during network communication can take many
forms, ranging from personal data to sensing information
gathered from the environment (Kim and Lee 2018; Munir
et al. 2019; Campioni et al. 2019). IoT is defined as the net-
work of devices such as vehicles, smart devices, and home
appliances that contain electronics, software and connec-
tivity, which allows these things to connect, interact and
exchange data. The definition of the IoT has evolved due to
the convergence of multiple technologies, real-time analyt-
ics, machine learning, commodity sensors, and embedded
systems (Satyanarayanan 2017). A massive increase in the
number of devices in IoT is being predicted (expected to
reach 50 billion by 2020). Figure 2 shows us an example
of a simple IoT network that can be found in an average
household.

Latency is defined as the delay or the interruption in
a connection; it can depend on various factors distance,
weather, the material used and hardware configurations of
hosting devices and users (Pandi et al. 2018). If the latency
goes beyond a certain threshold, then the whole network
could fail.

In this paper we deal with the vNF placement problem.
Cziva and Pezaros (2017b) proposed the vNF placement
problem, they propose a mathematical (integer linear pro-
gramming) model to solve the problem. The mathematical
model mentioned is NP-hard in nature which means that it
will take exponential time to solve the problem in worst case
scenario and on analyzing it is found that the mathematical
model is having drawbacks and will lead to failures if the
problem persists. No heuristic has been proposed by Cziva
and Pezaros (2017b) to solve the problem in polynomial
time. This paper modifies the mathematical model to remove

the anomaly and to make it more efficient. The modified
model also takes exponential time to solve the problem in
the worst case scenario. Then we propose an heuristic based
on the stable matching (SM) algorithm to solve the modi-
fied problem in a polynomial time. The solutions given by
the model are then compared to the solutions given by the
proposed heuristic (stable matching algorithm) for the allo-
cation of vNFs to hosting devices.We also find that there is
a scope of improving the final solution. We design a local
search technique to improve the solution.

The rest of the paper is designed in the following man-
ner, Sect. 2 canvasses prior works related to our topic of
interest. Section 3 contains the problem definition and the
system model. Section 4 discusses the modification of the
mathematical model, its requirement and implementation.
Section 5 presents a detailed discussion of our proposed
algorithm and its extension with working procedures. The
performance evaluations and simulations are shown in
Sect. 6. Finally, Sect. 7 concludes the paper with some future
research directions.

2 Related work

Network function virtualization (NFV) is an emerging
network architecture and is an efficient technology in the
networking area. Current research works are going-on to
design or implement new techniques to make this emerging
technology more efficient. During the literature review, we
can find several studies trying the different scope of vNF
technology including scaling, allocation, task scheduling,
placement, edge-based models, cloud-based models, and
latency optimization. Moving intelligence from traditional
servers at the center of the network to the network edge
is gaining significant attention from both the research and
the industrial communities, as discussed in citep26, (Cziva
and Pezaros 2017a). Orchestrating and managing vNFs in
different NFV infrastructures has been a popular research
topic, and it is often related to traditional Virtual Machine
(VM) placement problem, as mentioned in (Moens and
Turck 2014). In this research paper, authors have presented
vNF-P, a generic model for efficient placement of virtualized
network functions. Simultaneous placement of vNFs is used
to form a service function chain (SFC), a chain of vNFs,
and then uses admission control (AC) to reach the maxi-
mum performance state. The main issue of this research is
to solve the problem of AC and SFC embedding (Tahmasbi
Nejad et al. 2018). They have used relaxation, reformulation,
and successive convex approximation methods to solve the
problem. In modern data-centers, user network traffic uses
a set of vNFs as a service chain to process traffic demands
(Tashtarian et al. 2017). Sometimes traffic fluctuations in
large-scale data-centers (LDCs) could result in overload and Fig. 2 Example of IoT network

3966 K. S. Ghai et al.

1 3

under-load phenomena in service chains. In this research
paper, a distributed approach based on alternating direction
method multipliers (ADMM) is used to balance the traffic
as well as horizontally scale up and down vNFs in LDCs
with minimum deployment and forwarding costs. One of
the main challenges for the NFV environment is how to effi-
ciently allocate virtual network functions (vNF) to virtual
machines (VMs) (Cho et al. 2017). In this research, a more
comprehensive model based on real measurements to cap-
ture network latency among vNFs with more granularity to
optimize placement of vNFs in CDCs.

Stable Match algorithm has been used frequently to
solve many problems in various research areas in computer
science and other fields of study too. McVitie and Wilson
(McVitie and Wilson 1971) pointed out that the algorithm
by Gale and Shapley (Gale and Shapley 1962) in which
men propose to women, generates a male-optimal solution
in which every man gets the best partner he can in any stable
matching and every woman gets the worst partner she can
in any stable matching. They suggested an equal measure
of optimality under which the sum of the ranks of partners
for all men and women was to be minimized. An efficient
algorithm was provided by Irving et al. (Irving et al. 1987)
to find a stable matching satisfying the optimality criterion
of McVitie and Wilson.

Stable Matching Algorithm has also been used in sched-
uling of both computing and storage resources in data cen-
tres (Chu et al. 2017). In the research mentioned above
paper, authors first define a preference list for each side and
stability of their matching, then they propose a useful Stable
Matching Based Algorithm (SMB) scheme. This algorithm
has given them a stable matching for computing and stor-
age resources as well as applications (virtual machines) for
all the performed experimental cases. Authors in (Sugimoto
et al. 2009) proposes a fast iteration algorithm for Kansei
matching, which is further used as an algorithm to solve the
stable matching problem. This is also easy and more trans-
parent than the conventional (extended) Gale–Shapley (GS)
algorithm in the sense of programming and debugging. The
research shows that the proposed algorithm executes more
than six times faster than the Gale–Shapley, while it requires
the same memory storage as the GS algorithm. They also
present a version of the iteration algorithm that is more effi-
cient and describes the result of comparative experimenta-
tion in execution time.

Local search is a technique in which the algorithm tries to
find the solution to a problem locally that satisfies the con-
ditions required by the given problem. When the algorithm
is done with a state or node, it moves to the next node or
state by applying the local changes until it finds an optimal
solution. Local search algorithm has been used to design the
reliable networks optimally (Dengiz et al. 1997; Islam et al.
2015; Hassan et al. 2017a, b). The research mentioned above

paper proposes a genetic algorithm (GA) with specialized
encoding, initialization, and local search operators to opti-
mize the design of communication network topologies. The
problem taken by the authors is NP-hard and often generates
infeasible networks using random initialization and standard
genetic operators as it is highly constrained. They found that
special purpose GA is more efficient than an enumerative
based method on NP-hard problems of realistic size.

3 Problem description and system model

3.1 Problem description

In this paper, we are dealing with a problem in which we
need to minimize the latency generated by the newly made
connections in a topology. This is done by assigning the
vNFs to that hosting devices which gives minimum latency
for the topology. This problem can be categorized under the
assignment problem in which we need to find that appropri-
ate assignment of all vNFs to hosting devices that mini-
mizes the total expected latencies from all users to its vNFs.
The allocation of the vNFs to hosting devices depends on
various factors like the requirement of vNFs, the capacity of
host devices and mainly on the latency between the hosting
device and the vNFs. The allocation is complete when all of
the vNFs are allocated, or when the capacity of all the host-
ing devices gets exhausted.

3.2 System model

In this paper, we are using the same model as used by (Cziva
and Pezaros 2017b). Here we consider that vNFs are to be
connected to host devices, and further users are connected
to vNFs to use the network. The goal of this paper is to
allocate vNFs to different hosting devices to minimize the
latency caused.

3.2.1 Parameters

We consider a system with vNFs and hosting devices, where
ℕ = { n1, n2, n3,… , ni } is the set of all vNFs in the network.
For each ni we can define memory, CPU and IO require-
ments (��), as well as Maxlatency (���) that denotes the
maximum latency which vNF ni can tolerate. Similarly ℍ
= { h1, h2, h3,… , hj } is the set of vNF hosting devices (that
represent either a cloud or an edge server). Similar to vNF’s
requirements, each hj has capacity (��) on its properties, for
example; CPU, memory, IO etc. ��� gives the latency between
the user of the ni vNF in case ni is located at hj (Table 1).

��� is a binary decision variable that denotes allocation of
vNFs to hosts; where

3967Efficient algorithms to minimize the end‑to‑end latency of edge network function…

1 3

3.2.2 Mathematical (ILP) model

The objective of our model is to minimize the Total-Latency
value which is given by Eq. (1).

• First constraint (2) ensures that vNFs are placed to host-
ing devices with sufficient capacity. This constraint also
defines that vNFs can’t be allocated to the hosting device
if its capacity gets filled.

• Second constraint (3), ensures that latency-sensitive
vNFs are placed subject to not violating the max latency
requirement from their users. The latency of the selected
pair should always be less than the Maxlatency for the
vNF.

• Third constraint (4), constraint ensures that all vNFs are
allocated to hosting devices exactly once. A single vNF
can’t be connected to two hosting devices, but one host-
ing device can connect to two vNFs.

The above-mentioned ILP problem is a minimizing prob-
lem in which our objective is to minimize the total latency
obtained by the allocation of the vNFs to the hosting devices.
It can be noted that the above ILP is an NP-hard problem

xij =

{

1 if ni is allocated to hj
0 otherwise

(1)Minimize
∑

ni∈ℕ

∑

hj∈ℍ

xijlij

(2)
Subject To-

∑

ni∈ℕ
xij ∗ Ri ≤ Cj,∀hj ∈ ℍ

(3)
∑

hj∈ℍ
xijlij ≤ MLi,∀ni ∈ ℕ

(4)
∑

hj∈ℍ
xij = 1,∀ni ∈ ℕ

(Cziva and Pezaros 2017b) and can be solved by optimally
by an ILP solver, for example, IBM CPLEX or Gurobi. For
our simulations, we used IBM CPLEX to solve it optimally.

4 Mathematical model modification

In this problem statement, the allocation constraint Eq. 4
states that every vNF should be connected to at least one
host device. If this constraint fails in any circumstance, the
whole model fails. Some of the scenarios that lead to model
failure are:

Let us consider a scenario with five vNFs that want to
connect to three different hosting devices as represented in
Fig. 3. It can be seen that all the devices want to connect
with the hosting devices, but due to the insufficient capacity
of the hosting devices, all of the vNFs won’t be connected
and the connections in green will only be connected. Though
it doesn’t have much problem but due to the allocation con-
straint Eq. 4 the model will fail and will give an infeasible
solution.

4.1 Proposed modification

Thus, to fix the above problem and make the problem more
general, we used another mixed integer linear programming
(MILP) problem model to find the maximum number of
vNFs that can be connected optimally to the hosting devices.
The allocation constraint (4) is thus changed to:

where ‘M’ is the total number of vNFs that can be connected
optimally and another constraint (6) is added, which ensures

(5)
∑

ni∈ℕ

∑

hb∈ℍ
xij = M

(6)
∑

hb∈ℍ
xij <= 1,∀ni ∈ ℕ

Table 1 Parameters

Variable Description

ℕ Set of all vNFs
ℍ Set of all hosting devices
Cj Maximum capacity of a hosting device j
Ri Requirement of vNF i
MLi Maximum latency a vNF i can tolerate.
lij Latency b/w the user of the ni vNF in

case that vNF is located at hj

Fig. 3 Fail case scenario for 5 vNFs

3968 K. S. Ghai et al.

1 3

that one vNF connects to a maximum of one Hosting Device.
M is calculated using another ILP formulation which is as
follows:

where,

For each vNF i ∈ ℕ , Ai ⊆ ℍ is a set of hosting devices that
can hold vNF i (satisfying constraint 3).

Similarly Bj ⊆ ℕ be the set of vNFs that can be assigned to
hosting devices j. vNF i is connectable to hosting device j,
if it satisfies constraint 3.

Cj is capacity of hosting devices and Ri are the requirements
for vNFs. Further the constraint 8 is similar to constraint 2.
Constraint 9 states that one vNF can’t be connected to more
than one hosting device.

The problem model used to find the “M” is also an NP-
Hard problem and it can be defined as Multiple Knapsack
Problem with Assignment Restrictions (MKAR) (Dawande
et al. 2000). The model can be solved optimally by an ILP
solver, such as IBM CPLEX or by a � 1

2
 Approximation

Algorithm as proposed in (Dawande et al. 2000).
The complete new model with modification becomes:

(7)Maximize M =
∑

ni∈ℕ

∑

hj∈ℍ
xij

(8)
Subject To−

∑

i∈Bj

xij ∗ Rj <= Cj,∀j ∈ ℍ

(9)
∑

j∈Ai

xij <= 1,∀i ∈ ℕ

xij =

{

1 if ni is allocated to hj
0 otherwise

Ai =

{

1 if ni can be accommodated by hj
0 otherwise

Bj =

{

1 if hj can accommodate ni
0 otherwise

(10)Minimize
∑

ni∈ℕ

∑

hj∈ℍ

xijlij

(11)
Subject To-

∑

ni∈ℕ
xij ∗ Ri ≤ Cj,∀hj ∈ ℍ

(12)
∑

hj∈ℍ
xijlij ≤ MLi,∀ni ∈ ℕ

5 Proposed algorithm

5.1 Stable matching algorithm

Stable matching based solution has been proposed in various
domain in the case of assignment problems (Hossen et al.
2018; Ghai et al. 2019). Stable Matching start’s by creating
two priority matrices for the two groups that we want to
match. These matrices are created on the basis of the laten-
cies in which the lesser latencies are given the more priority
for both the groups that are vNFs and hosting devices. Then
the matching is done according to the priority matrix, where
the vNF wants to connect to the hosting device that is first on
its priority list. The same case exists for hosting devices as
they want to connect to the vNF that is first on their priority
list. The algorithm runs for all the vNFs and matches them
to hosting devices until a stable matching is achieved.

5.1.1 Algorithm

In the above Algorithm 1, we start with all the vNFs and
hosting devices as free, and take Total latency and Count as
0. The algorithm will run until maximum number of devices
that can be connected (M) are connected, as shown in line 4,
where M is calculated in the modified model using 7. Then a
vNF, n proposes to the hosting device h that has the highest
priority for vNF if the conditions as specified in line 6 are
met then the vNF and hosting device is engaged. The count,
capacity, and total latency are then updated. The other aspect
is that if the hosting device is connected to another vNF
n′ , as shown in line 11. Then from line 12, if the hosting
device prefers the selected vNF n over the currently engaged
n′ , the hosting device will be engaged with n and n′ will
become free. In this case the count remains same but capac-
ity and total latency are updated. If the hosting device does
not prefer the selected vNF, n over the currently engaged n′ ,
then the pair remains engaged. The proposed algorithm has
a complexity of O(n ∗ m) in the worst case where n is the
number of vNFs, and m is the number of host devices (while
n >> m). So, generalizing we can say that the complexity of
the algorithm is O(n2).

(13)
∑

ni∈ℕ

∑

hb∈ℍ
xij = M

(14)
∑

hb∈ℍ
xij <= 1,∀ni ∈ ℕ

3969Efficient algorithms to minimize the end‑to‑end latency of edge network function…

1 3

Algorithm 1 Stable Matching
1: procedure Matching vNFs to Hosting Devices until a stability is achieved
2: All vNFs and Hosting devices are free.
3: Initialize both totalLatency and count as 0.
4: while (There Exist a Free vNF (n) who has not proposed to hosting device (h) and

count is less than M) do
5: h→ is the first preferred Hosting Device
6: if (h is free and Constraints 11 and 12 are satisfied) then
7: (n, h) become engaged
8: Update count = count + 1
9: Update capacity = capacity of h - requirement of n
10: Update totalLatency = totalLatency + latency between the n and h
11: else(Some pair (n′, h) already exists)
12: if (h prefers n to n′) then
13: (n, h) become engaged
14: n′ becomes free
15: Count remains same
16: Update capacity and totalLatency
17: else
18: (n′, h) remain engaged
19: end if
20: end if
21: end while
22: Return totalLatency and matched pairs
23: end procedure

the end the solution is provided using the updated alloca-
tions. The improvement is calculated as follows:

• For Case I (Swapping), we calculate and compare the
sum of the latencies for the connected pairs and for
the swapped connections. If the sum of latency for
the swapped pair is lesser, it can be said that there is
improvement in solution. This way we don’t have to cal-
culate the whole total latency each time.

• For Case II (Moving for free vNF), we just check that
if the latency of the new connection is lesser than the
selected connection then there is an improvement in solu-
tion.

• For Case II (Moving for free hosting device), we just
check that if the latency of the new connection is lesser
than the selected connection then there is an improve-
ment in solution.

Complexity of above algorithm is O(n ∗ m ∗ W) in the worst
case where n is the number of vNFs, m is the number of
hosting devices (where n >> m) and “W” is the latency
given by the stable matching solution (taken as initial feasi-
ble solution). So, generalizing we can say that the complex-
ity of the algorithm is O(n2 ∗ W).

5.2 Local search

Though the stable match based algorithm discussed in the
previous section works efficiently, it can be improved using
a local search algorithm. In this procedure, we start with an
initial feasible solution that is provided by the Stable Match
algorithm and then tries to improve the solution iteratively.
The local search begins by picking two connected pair of
hosting devices and vNFs and checks whether the latency
can be improved by changing the connections locally. The
algorithm stops when there is no further improvement is
possible.

5.2.1 Algorithm

In this local search Algorithm (2) we start with a feasible
solution provided by the Stable Match algorithm. All the
connected pairs (i, j) are checked from the provided solu-
tion by comparing them (7) with all the other connected
pairs (i′, j′). We even compare the selected pair with all the
unpaired vNFs (13) and hosting devices (19). IF the com-
parison leads to improvement (reduction) in the total latency
and they satisfy the constraints 11 and 12 , then the connec-
tion is either swapped or moved. The whole procedure is
performed while there is still a chance of improvement. At

3970 K. S. Ghai et al.

1 3

Algorithm 2 Local Search (Swapping\Moving)
1: procedure Swap or Move the current matched pairs to find more efficient

solution.
2: Using initial feasible solution from Algorithm 1.
3: Initialize improvement = true.
4: while (improvement) do
5: improvement = false.
6: Checking for all connected pairs (i, j) and (i′, j′), where “i” vNF is con-

nected to “j” hosting device and similarly “i′” is connected to “j′”. � Case
I

7: if (lij + li′j′ > lij′ + li′j and Constraints 11 and 12 are satisfied) then �
Swapping

8: Assign vNF i to hosting device j′ and vNF i′ to hosting device j.
9: Update Capacity for hosting devices.
10: improvement = true.
11: end if
12: Check for other unconnected vNFs (i′′). � Case II
13: if (lij > li′′j and Constraints 11 and 12 are satisfied) then � Moving
14: Assign vNF i′′ to hosting device j and vNF i will get free.
15: Update Capacity for hosting devices.
16: improvement = true.
17: end if
18: Check for other unconnected hosting devices (j′′). � Case III
19: if (lij > lij′′ and Constraints 11 and 12 are satisfied) then � Moving
20: Assign vNF i to hosting device j′′.
21: Update Capacity for hosting devices.
22: improvement = true.
23: end if
24: end while
25: Print New minimum totalLatency using current allocation.
26: end procedure

Fig. 4 Latency result comparisons between optimal (ILP), stable
matching and stable match with local search for 50 vNFs

Fig. 5 Latency result comparisons between optimal (ILP), stable
matching and stable match with local search for 100 vNFs

3971Efficient algorithms to minimize the end‑to‑end latency of edge network function…

1 3

6 Results

The ILP model used is implemented in IBM CPLEX, and
our proposed algorithm has been implemented in C++. In
this process, we don’t use a network simulator as we are not
solving any network layer research problems. For input, the
data taken includes the number of vNFs, hosting devices,

users. The other values taken as input are capacity of host-
ing devices, requirements and a maximum latency of vNFs
and latency between the vNF and hosting device as these

Fig. 6 Latency result comparisons between optimal (ILP), stable
matching and stable match with local search for 500 vNFs

Fig. 7 Latency result comparisons between optimal (ILP), stable
matching and stable match with local search for 1000 vNFs

Fig. 8 Latency result comparisons between optimal (ILP), stable
matching and stable match with local search for 2000 vNFs

Fig. 9 Latency result comparisons between optimal (ILP), stable
matching and stable match with local search for 3000 vNFs

3972 K. S. Ghai et al.

1 3

all are the properties of hosting devices and vNFs which
are used in the simulations. For latency between the vNFs
and the hosting devices, we take random values between
15–40 as it depends on various factors such as distance, the
material used, and the performance of hosting devices and
vNFs. Similarly, the random values of the capacity of the
hosting devices are taken between 10–75. Requirements and

a maximum latency of vNFs have also been taken randomly
between 1–15 and 20–50 respectively. For all the simulation
results presented in this section, we start with 20 vNFs and
5 hosting devices. The different instances that are used in
this scenario are 20, 30, 50 and 100 for vNFs. 5, 10, 15, 20
are a different number of host devices which are then used
to form different cases and use them to compare results for

Fig. 10 Time (min) comparison
between optimal (ILP), stable
matching and stable match with
local search for 500 and 1000
vNFs

Fig. 11 Time (min) comparison
between optimal (ILP), stable
matching and stable match with
local search for 2000 and 3000
vNFs

3973Efficient algorithms to minimize the end‑to‑end latency of edge network function…

1 3

Opt (optimal result from ILP), stable match (SM) and local
search (LS) algorithms. All of the simulation results pre-
sented in this section are an average of 10 different runs for
a particular scenario. The figures ahead (Figs. 4, 5, 6, 7, 8,
9, 10 and 11) illustrate us the result comparison between the
ILP result given by Opt (mathematical model), SM (stable
match) and LS (SM with local search) on basis of TL (total
latency) for different cases. Table 2 shows the comparisons
between the time taken by both optimal and stable match
with the local search for different number of vNFs and var-
ied number of host devices. It shows that the local search
takes 20–30% less time compared to the optimal. The table
also represents the comparisons in terms of latency. It is
found that local search solution costs around 7–8% more
latency compared to the optimal solutions. In summary, con-
sidering all experimental results, it is clear that the stable
match algorithm performs very close to the optimal (costs
9–10% more than the optimal latency). However, when the
local search is added, an even better result is achieved (7–8%
more than the optimal latency).

7 Conclusion and future work

In this paper, we modify an existing latency minimization
problem (to make it more general) for edge NFV. Since
the problem is NP-hard, we introduce two heuristics (one
is based one stable matching and another one is based on
local search) to solve the problem efficiently. Our results

suggest that our local search provides results quite close to
the optimal in a very reasonable time.

In future we plan to consider a problem which will
deal in fair allocation of the vNFs to the hosting devices
and minimizing the total latency simultaneously. Another
future aspect can be to design an effcient algorithm to do
the assignment of vNFs to hosting devices dynamically. This
algorithm will automatically start re-assigning the vNFs
when there is a change in scenario and change in latency
(goes beyond a specified limit). A similar type of problem
has been defined in (Cziva et al. 2018); in this problem, the
authors give an ILP model first to allocate vNFs to a dis-
tributed edge infrastructure, minimizing end-to-end latency.
Then they dynamically re-schedule the optimal placement of
vNFs based on temporal network-wide latency fluctuations
using optimal stopping theory. Since, the problem can take
exponential time in the worst case, designing an efficient
heuristic to solve this problem is an interesting research
topic.

References

Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK,
Zhang JC (2014) What will 5g be? IEEE J Select Areas Commun
32(6):1065–1082. https ://doi.org/10.1109/JSAC.2014.23280 98

Baran P (1964) On distributed communications networks. IEEE
Trans Commun Syst 12(1):1–9. https ://doi.org/10.1109/
TCOM.1964.10888 83

Bouras C, Kollia A, Papazois A (2017) Sdn nfv in 5g: Advancements
and challenges. In: 2017 20th Conference on innovations in
clouds, internet and networks (ICIN), pp 107–111. https ://doi.
org/10.1109/ICIN.2017.78993 98

Campioni F, Choudhury S, Al-Turjman F (2019) Scheduling rfid
networks in the iot and smart health era. J Ambient Intell Hum
Comput:1–15

Chiosi M, Clarke D, Willis Cablelabs P, Donley C, Johnson Centu-
rylink L, Bugenhagen M, Feger J, Khan W, China C, Cui H, Chen
China Deng C, T, Baohua L, Zhenqiang S, Wright S (2013) Net-
work functions virtualisation (nfv) network operator perspectives
on industry progress https ://doi.org/10.13140 /RG.2.1.4110.2883

Cho D, Taheri J, Zomaya AY, Wang L (2017) Virtual network func-
tion placement: Towards minimizing network latency and lead
time. In: 2017 IEEE International conference on cloud comput-
ing technology and science (CloudCom), pp 90–97. https ://doi.
org/10.1109/Cloud Com.2017.12

Chu W (2018) NFV and NFV-based security services, vol 15. Wiley,
Oxford, pp 347–372. https ://doi.org/10.1002/97811 19293 071.
ch15

Chu Q, Cui L, Zhang Y (2017) Joint computing and storage resource
allocation based on stable matching in data centers. In: 2017 ieee
3rd international conference on big data security on cloud (big-
datasecurity), ieee international conference on high performance
and smart computing (hpsc), and ieee international conference
on intelligent data and security (ids), pp 207–212. https ://doi.
org/10.1109/BigDa taSec urity .2017.36

Cisco (2017) Cisco visual networking index: global mobile data traffic
forecast update, 2017–2022. Cisco White Paper

Table 2 Working time comparison (s) and latency comparisons

vNFs Hosting
devices

Opt LS %
Decrease
(time)

%
Increase
(latency)

50 vNFs 10 HD 0.090 0.076 20.00 6.76
15 HD 0.117 0.108 11.97 8.19
20 HD 0.137 0.129 10.95 7.62

100 vNFs 10 HD 0.131 0.125 8.40 5.31
15 HD 0.120 0.110 13.33 5.42
20 HD 0.124 0.116 12.10 5.86

500 vNFs 50 HD 10.300 7.180 30.29 7.15
100 HD 10.146 6.880 32.19 7.83
150 HD 10.183 6.950 31.75 7.08

1000 vNFs 100 HD 83.216 45.540 45.27 6.77
150 HD 85.413 47.213 44.72 6.48
200 HD 82.514 46.923 43.13 6.79

2000 vNFs 150 HD 190.310 87.519 54.01 6.36
200 HD 185.546 86.217 53.53 6.87
250 Hd 188.571 88.651 52.99 6.88

3000 vNFs 250 HD 413.241 153.416 62.87 6.43
300 HD 415.317 151.871 63.43 6.24

https://doi.org/10.1109/JSAC.2014.2328098
https://doi.org/10.1109/TCOM.1964.1088883
https://doi.org/10.1109/TCOM.1964.1088883
https://doi.org/10.1109/ICIN.2017.7899398
https://doi.org/10.1109/ICIN.2017.7899398
https://doi.org/10.13140/RG.2.1.4110.2883
https://doi.org/10.1109/CloudCom.2017.12
https://doi.org/10.1109/CloudCom.2017.12
https://doi.org/10.1002/9781119293071.ch15
https://doi.org/10.1002/9781119293071.ch15
https://doi.org/10.1109/BigDataSecurity.2017.36
https://doi.org/10.1109/BigDataSecurity.2017.36

3974 K. S. Ghai et al.

1 3

Cziva R, Pezaros DP (2017a) Container network functions: bringing
nfv to the network edge. IEEE Commun Mag 55(6):24–31. https
://doi.org/10.1109/MCOM.2017.16010 39

Cziva R, Pezaros DP (2017b) On the latency benefits of edge nfv.
In: 2017 ACM/IEEE symposium on architectures for networking
and communications systems (ANCS), pp 105–106. https ://doi.
org/10.1109/ANCS.2017.23

Cziva R, Anagnostopoulos C, Pezaros D (2018) Dynamic, latency-
optimal vnf placement at the network edge, pp 693–701. https ://
doi.org/10.1109/INFOC OM.2018.84860 21

Dawande M, Kalagnanam J, Keskinocak P, Salman F, Ravi R (2000)
Approximation algorithms for the multiple knapsack problem with
assignment restrictions. J Comb Optim 4(2):171–186. https ://doi.
org/10.1023/A:10098 94503 716

Dengiz B, Altiparmak F, Smith AE (1997) Local search genetic algo-
rithm for optimal design of reliable networks. IEEE Trans Evol
Comput 1(3):179–188. https ://doi.org/10.1109/4235.66154 8

Gale D, Shapley LS (1962) College admissions and the stability of
marriage. Am Math Mon 69(1):9–15. http://www.jstor .org/stabl
e/23127 26

Ghai KS, Choudhury S, Yassine A (2019) A stable matching based
algorithm to minimize the end-to-end latency of edge nfv. Proced
Comput Sci 151:377–384

Hassan MY, Hussain F, Hossen MS, Choudhury S, Alam MM (2017a)
A near optimal interference minimization resource allocation
algorithm for d2d communication. In: 2017 IEEE international
conference on communications (ICC), IEEE, pp 1–6

Hassan Y, Hussain F, Hossen S, Choudhury S, Alam MM (2017b)
Interference minimization in d2d communication underlaying cel-
lular networks. IEEE Access 5:22471–22484

Hossen MS, Hassan MY, Hussain F, Choudhury S, Alam MM (2018)
Relax online resource allocation algorithms for d2d communica-
tion. Int J Commun Syst 31(10):e3555

Hu F, Qiu M, Li J, Grant T, Tylor D, McCaleb S, Butler L, Hamner R
(2011) A review on cloud computing: design challenges in archi-
tecture and security. CIT 19:25–55

Irving RW, Leather P, Gusfield D (1987) An efficient algorithm for
the“optimal” stable marriage. J ACM 34(3):532–
543. https ://doi.org/10.1145/28869 .28871

Islam MT, Taha AEM, Akl S, Choudhury S (2015) A local search
algorithm for resource allocation for underlaying device-to-device
communications. In: 2015 IEEE global communications confer-
ence (GLOBECOM), IEEE, pp 1–6

Kim S, Lee I (2018) Iot device security based on proxy re-encryp-
tion. J Ambient Intell Hum Comput 9(4):1267–1273. https ://doi.
org/10.1007/s1265 2-017-0602-5

Luizelli MC, Bays LR, Buriol LS, Barcellos MP, Gaspary LP (2015)
Piecing together the nfv provisioning puzzle: efficient placement
and chaining of virtual network functions. In: 2015 IFIP/IEEE

international symposium on integrated network management
(IM), pp 98–106. https ://doi.org/10.1109/INM.2015.71402 81

McVitie DG, Wilson LB (1971) Three procedures for the stable
marriage problem. Commun ACM 14(7):491–492. https ://doi.
org/10.1145/36261 9.36263 2

Moens H, Turck FD (2014) Vnf-p: A model for efficient placement of
virtualized network functions. In: 10th International conference
on network and service management (CNSM) and workshop, pp
418–423. https ://doi.org/10.1109/CNSM.2014.70142 05

Munir A, Laskar MTR, Hossen MS, Choudhury S (2019) A localized
fault tolerant load balancing algorithm for rfid systems. J Ambient
Intell Hum Comput 10(11):4305–4317

Pandi S, Wunderlich S, Fitzek FHP (2018) Reliable low latency
wireless mesh networks —from myth to reality. In: 2018 15th
IEEE annual consumer communications networking conference
(CCNC), pp 1–2. https ://doi.org/10.1109/CCNC.2018.83193 26

Park JH, Yen NY (2018) Advanced algorithms and applications based
on iot for the smart devices. J Ambient Intell Hum Comput
9(4):1085–1087. https ://doi.org/10.1007/s1265 2-018-0715-5

Satyanarayanan M (2017) The emergence of edge computing. Com-
puter 50(1):30–39. https ://doi.org/10.1109/MC.2017.9

Shi W, Dustdar S (2016) The promise of edge computing. Computer
49(5):78–81. https ://doi.org/10.1109/MC.2016.145

Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: vision
and challenges. IEEE IoT J 3(5):637–646. https ://doi.org/10.1109/
JIOT.2016.25791 98

Sugimoto S, Hattori T, Izumi T, Kawano H (2009) Fast kansei match-
ing method as an algorithm for the solution of extended stable
marriage problem. In: 2009 International conference on biomet-
rics and kansei engineering, pp 209–214. https ://doi.org/10.1109/
ICBAK E.2009.55

Tahmasbi Nejad MA, Parsaeefard S, Maddah-Ali MA, Mahmoodi T,
Khalaj BH (2018) vspace: Vnf simultaneous placement, admis-
sion control and embedding. IEEE J Select Areas Commun
36(3):542–557. https ://doi.org/10.1109/JSAC.2018.28153 18

Tashtarian F, Varasteh A, Montazerolghaem A, Kellerer W (2017)
Distributed vnf scaling in large-scale datacenters: an admm-
based approach. In: 2017 IEEE 17th international conference
on communication technology (ICCT), pp 471–480. https ://doi.
org/10.1109/ICCT.2017.83596 82

Wang S, Hou Y, Gao F, Ji X (2016) A novel iot access architecture for
vehicle monitoring system. In: 2016 IEEE 3rd world forum on
internet of things (WF-IoT), pp 639–642. https ://doi.org/10.1109/
WF-IoT.2016.78453 96

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/MCOM.2017.1601039
https://doi.org/10.1109/MCOM.2017.1601039
https://doi.org/10.1109/ANCS.2017.23
https://doi.org/10.1109/ANCS.2017.23
https://doi.org/10.1109/INFOCOM.2018.8486021
https://doi.org/10.1109/INFOCOM.2018.8486021
https://doi.org/10.1023/A:1009894503716
https://doi.org/10.1023/A:1009894503716
https://doi.org/10.1109/4235.661548
http://www.jstor.org/stable/2312726
http://www.jstor.org/stable/2312726
https://doi.org/10.1145/28869.28871
https://doi.org/10.1007/s12652-017-0602-5
https://doi.org/10.1007/s12652-017-0602-5
https://doi.org/10.1109/INM.2015.7140281
https://doi.org/10.1145/362619.362632
https://doi.org/10.1145/362619.362632
https://doi.org/10.1109/CNSM.2014.7014205
https://doi.org/10.1109/CCNC.2018.8319326
https://doi.org/10.1007/s12652-018-0715-5
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/ICBAKE.2009.55
https://doi.org/10.1109/ICBAKE.2009.55
https://doi.org/10.1109/JSAC.2018.2815318
https://doi.org/10.1109/ICCT.2017.8359682
https://doi.org/10.1109/ICCT.2017.8359682
https://doi.org/10.1109/WF-IoT.2016.7845396
https://doi.org/10.1109/WF-IoT.2016.7845396

	Efficient algorithms to minimize the end-to-end latency of edge network function virtualization
	Abstract
	1 Introduction
	2 Related work
	3 Problem description and system model
	3.1 Problem description
	3.2 System model
	3.2.1 Parameters
	3.2.2 Mathematical (ILP) model

	4 Mathematical model modification
	4.1 Proposed modification

	5 Proposed algorithm
	5.1 Stable matching algorithm
	5.1.1 Algorithm

	5.2 Local search
	5.2.1 Algorithm

	6 Results
	7 Conclusion and future work
	References

