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Abstract
Differential evolution (DE) is a powerful evolutionary algorithms, widely applied in different fields of science and engi-
neering for solving the problem of optimization. Since image encryption has been viewed as an interesting research topic 
by many experts and innumerable methods to encrypt images have emerged, currently, the focus is on obtaining optimized 
images. The paper presents a novel image encryption scheme that uses intertwining logistic map (ILM), DNA encoding and 
DE optimization. The proposed approach is based on three phases: permutation involving ILM, diffusion engaging DNA 
and optimization using DE. Parameters like entropy, key sensitivity, secret key space, unified average change in intensity 
(UACI), correlation coefficient —vertical, horizontal and diagonal, and number of pixel change rate have been evaluated to 
test the efficiency of the proposed method. The paper also compares this performance with that of the genetic algorithms 
(GA), used previously for optimization. The significance of this approach is enhancing entropy, the essential characteristic 
of randomness, resisting against numerous statistical and differential attacks and generating good experimental results. The 
main contribution of this paper is to present the efficiency of DE in image optimization and exhibit how DE is better than GA.

Keywords ILM · DE · DNA · Image encryption

1 Introduction

Due to the fast development of network-related technologies 
in the last few decades, there has been a heavy usage of digi-
tal data for the purpose of information exchange (Chen et al. 
2018; Suneja et al. 2019). Digital image, being an impor-
tant integral component of this data, has different security 
concerns associated with it. For this, a number of image 

encryption algorithms have been proposed, the conventional 
being—Rivest–Shamir–Adleman (RSA), international data 
encryption algorithm (IDEA) and data encryption standard 
(DES). However, the intrinsic properties of images such 
as strong redundancy, high correlations among pixels, and 
bulky data capacity have led to the outmoding of the afore-
mentioned standard encryption schemes (Enayatifar et al. 
2017; Li et al. 2007; Solak et al. 2010; Solak and Çokal 
2011; Wang et al. 2015a, b, c).

A colossal interest has emerged in the study of chaotic 
systems for image encryption as these types of systems 
work on a phase space of real numbers, are sensitive to 
initial conditions, and are also, stochastic or random in 
nature (Bisht et al. 2019a, b; Sneha et al. 2019). The simi-
larity of chaos and cryptography has further catalysed the 
engagement of chaos theory in encryption. While cryp-
tography involves rounds and secret key, chaos makes use 
of iterations and control parameters. Image encryption, 
generally, can be divided into two sections—diffusion 
and permutation. The need of diffusion arises in order 
to render the statistics of encrypted data independent of 
the original data. Permutation is also a prerequisite for 
augmenting the complexity between the key and image 
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pixels, and this randomized complexity can be obtained 
using chaotic systems. In 1990, an approach for controlling 
chaotic system was proposed by Ott et al.(1990). Later, 
Fridrich (1998) also devised chaos based encryption and 
since then, various researches have been carried out to 
use chaos theory for reducing the redundancies of the 
encrypted image (Chen et al. 2004; Masuda et al. 2006). 
Yet, some common-attacks are not resisted by chaos-based 
algorithms (Zhang et al. 2012; Rhouma and Safya 2008). 
Spatial bit-level permutation explored in (Liu and Wang 
2011) by dividing the color images into grayscale matri-
ces has improved encryption algorithm and a more recent 
algorithm (Zhang and Wang 2015) exhibits spatiotempo-
ral chaos bringing about higher efficiency. The proposed 
algorithm engages ILM, a high dimension chaotic system 
to obtain bit-level permutations of the individual R, G, 
B matrices, leading to a higher security and giving good 
encryption results.

Adleman (1994) proposed a new DNA-based method 
for image encryption, which consistently improved the 
security as an effective biological tool (Liu et al. 2012a, 
b; Zhang et al. 2010a, b, 2013). The fundamental nature of 
DNA to act as a carrier of information has led to research-
ers proposing varied encryption algorithms using DNA 
over chaos (Xiao et al. 2006; Zhang and Fu 2012). More-
over, because of huge storage, massive parallelism, and 
super-low power consumption, DNA encoding proves to 
be secure and efficacious (Head et al. 2000; Zheng et al. 
2009). Combining DNA with high dimension chaotic sys-
tem such as ILM results in a robust encryption system. 
DNA XOR, DNA XNOR and DNA addition are few of the 
operations that can be applied alongside chaos (Liu et al. 
2012a, b). The only limitation of DNA encoding is the 
independency of the key-stream creation from the cipher 
text (Zhang 2015). This inadequacy of DNA paves the way 
for optimization of images.

Inspired by the evolution of natural species, EA has been 
variedly applied in order to solve the optimization problems 
in diverse areas of engineering. Storn (1995) introduced a 
stochastic population-based search technique, DE. Today, 
DE is being fruitfully applied in numerous fields such as 
communication (Storn 1996), pattern recognition (Ilonen 
et al. 2003), and mechanical engineering (Joshi and Sander-
son 1999). To ensure operative functioning of the algorithm, 
appropriate evolutionary operators and effective encoding 
schemes need to be determined (Qin et al. 2009; Tuson and 
Ross 1998; Gómez et al. 2003; Julstrom 1995). In the pro-
posed algorithm, the candidates can replace the parents, or 
the initial population, depending upon their fitness values. 
An optimized sequence is successfully produced and it 
can be further utilized to achieve an efficacious encryption 
scheme. In this paper, entropy has been employed for the 
fitness function. Generally, images which show high entropy 

are considered to be efficiently encrypted and DE operates 
on this basis.

In 2010, a novel technique for secret key generation 
through 128-bit hash function using MD5 of mouse-posi-
tions is introduced (Liu and Wang 2010). The paper exhibits 
greater security through larger key space produced by the 
one-time keys. In the proposed algorithm, to improve upon 
the security of encryption, SHA-256 is applied (Guesmi 
et al. 2016). The SHA-256 function produces a 256-bit hash 
from a 120-bit input, which expands the key-space to  2256. 
A small variation in the input bit can result to very large 
variation in the output, leading to Avalanche effect, which 
reduces the probability of the brute-force attack. There 
have been several new advances in the field of chaos based 
encryption system. Chaos systems based on mathemati-
cal models such as perceptron exhibit input parameters or 
weights being altered dynamically (Wang et al. 2010). A 
more recent algorithm (Wang et al. 2019) shows the power 
of fast encryption in real-time system. Incorporating parallel 
computation in this algorithm will improve the execution 
speed of the algorithm.

The main background and motivation behind the pro-
posed work is the techniques proposed in (Abdullah et al. 
2012; Suri and Vijay 2017; Enayatifar et al. 2014). In the 
year 2012, Abdullah et al. first time combined logistic map 
(LM) with genetic algorithm (GA) to introduce an optimized 
and more secure image encryption approach. Later in the 
year 2014, Enayatifar et al. (2014) extended the work by 
combining DNA with LM and GA to make the algorithm 
more secure and optimized. Recently, Suri et al. extended 
these two works by using weighted GA (a bi-objective 
approach of GA) with LM and GA to address the issue of 
objective selection while doing optimization using GA. The 
implemented approach in this paper, targets weakness of LM 
by using a better and efficient chaos map ILM, combines it 
with DNA and uses Differential optimization to get faster 
and optimized results. The evaluated parameters show that 
the conflation of ILM-based permutation, DNA diffusion 
and DE based optimization produces an optimized encrypted 
image, secure for transmission with high dynamicity due to 
the utilization of evolutionary algorithms.

The remaining paper is divided in the following manner. 
Section 2 enumerates the fundamentals that form the crucial 
elements of the algorithm. Section 3 discusses the proposed 
algorithm. Analysis is included in Sect. 4, and the final con-
clusion is presented in Sect. 5.

2  Preliminaries

This section elucidates the fundamental techniques used in 
our proposed algorithm.
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2.1  Intertwining logistic map (ILM)

The classic chaotic system, LM is the simplest of all and is 
popular to its dynamicity (Fridrich 1998; Zhang et al. 2010a, 
b). The mathematical expression for LM function is defined as:

where pk denotes the kth position value of the sequence and 
lies in the range (0,1]. The control parameter � is kept in the 
range of 3.57 and 4 to have a completely chaotic sequence.

Despite exhibiting randomness, the one-dimensional LM is 
sensitive to only one control parameter and has a smaller key-
space and. The authors of (Alvarez and Li 2006), extended this 
one-dimensional LM function to a two-dimensional chaotic 
function that is mathematically expressed as:

where p and q are the two chaotic sequences, lying in the 
range of (0,1], are generated using above two-dimensional 
chaotic function. The variables and δ are taken as 2.75 < 
�1 ≤ 3.4, 2.75 < �2 ≤ 3.45, 0.15 < �1 ≤ 0.21, 0.13 < �2 ≤ 0.15 
to have a complete chaotic sequence. In Khade and Narna-
ware (2012), a three-dimensional LM has been proposed by 
extending the function of the two-dimensional LM, which 
is mathematically expressed as:

(1)pk = � × pk(1 − pk+1)

(2)pk+1 = �1 × pk
(
1 − pk

)
+ �1 × p2

k

(3)qk+1 = �2 × pk
(
1 − qk

)
+ �2

(
p2
k
+ pkqk

)

(4)pk+1 = � × pk
(
1 − pk

)
+ �q2

k
pk + �r3

k

The variables , δ and µ are taken as 0.53 <  < 3.81, 0 <  < 
0.022, and 0 <  < 0.015, respectively. The p0 , q0 and r0 are 
kept in range the (0,1] to represent a non-linear chaotic 
system.

Wang and Xu (2014) designed an intertwining relation, 
where the value of one sequence depends upon the other two 
sequences, between three different LM sequences (Khade 
and Narnaware 2012; Kumar et al. 2016):

where � have values between 0 and 3.9999, � > 33.5, 
� > 37.9, � > 35.7.

ILM chaotic sequences showcase uniform distribution as 
compared to LM sequence (Suri and Vijay 2019). Hence, 
the disadvantages of one-dimensional LM like blank win-
dows, stable windows, and irregular distributions of iterated 
sequences are overcome by ILM (Chen et al. 2011). Figure 
from Wang and Xu (2014), compares the Lyapunov expo-
nents of LM with that of ILM. It can clearly be seen that the 
Lyapunov exponents of ILM are all above zero, reinforcing 
the dynamical nature of ILM. Consequently, ILM is used in 
the approach for scrambling of image pixels (Fig. 1).

(5)qk+1 = � × qk
(
1 − qk

)
+ �r2

k
qk + �p3

k

(6)rk+1 = � × rk
(
1 − rk

)
+ �p2

k
rk + �q3

k

(7)pk+1 =
[
� × � × qk ×

(
1 − pk

)
+ rk

]
Mod1

(8)qk+1 =
[
� × �vqk + rk ×

(
1 + p2

k+1

)]
Mod1

(9)rk+1 =
[
� ×

(
qk+1 + pk+1 + �

)
× sin

(
rk
)]
Mod1.

Fig. 1  Lyapunov exponents of LM and ILM (Wang and Xu 2014)
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2.2  Deoxyribonucleic acid (DNA)

In 1994, the first analysis of DNA computing was performed 
by Adleman. A (adenine), C (cytosine), G (guanine) and T 
(thymine) are the four nucleic acids that comprise a DNA 
sequence. It can be inferred from the Watson–Crick relation-
ship, that pairing of Adenine nucleic acid is always done 
with Thymine nucleic acid to represent as complement sand 
pairing of Guanine is always done with Cytosine to repre-
sent as complements. DNA can be applied in encryption 
using binary system (Wang et al. 2015a, b, c; Enayatifar 
et al. 2015; Zhang et al. 2016). Tables 1 and 2 show the 
DNA encoding–decoding rules and DNA XOR operation 
respectively.

2.2.1  DNA rules

There are eight different ways of assigning two-bit values 
to all the four nucleic acids. Table 1 defines the assignment 
based on the rule number.

2.2.2  DNA XOR operation

When two of the nucleic acids undergo XOR operation, it is 
termed as DNA XOR. Following all the properties of DNA 
XOR, Table 2 shows the result of performing the operation.

2.3  Differential evolution (DE)

DE is a predominantly used EA in a wide range of scien-
tific applications. Its high speed and low-resource utilization 

makes it a potential optimization tool for cryptosystems. DE 
differs from the conventional EA in its greedy approach for 
the selection of candidate. It aims at transforming the ini-
tial population, P to evolve into an optimum solution. Each 
vector in the initial population is multi-dimensional. The 
number of dimensions chosen to obtain the optimal solu-
tion depends upon the application on which DE is applied. 
For image encryption, the number of dimensions is taken 
equivalent to the size of the image. The population size, NP, 
determines the number of vectors, and is a critical parameter 
for DE optimization. DE, like other EA, involves three oper-
ations—mutation, crossover and selection. Mutation gen-
erates the mutant (biologically referred to as offspring) by 
making some alterations to the parents. Crossover engages 
the offspring and the parent to undergo a recombination pro-
cess to produce the candidate vector. The interpolation of 
the offspring and the parent is determined by the crossover 
rate, CR. The selection operation then chooses the vector 
from among the offspring and the parent that will sustain. 
All the three operations- mutation, crossover and selection, 
are reiterated over again for the evolution of the optimum 
solution. Figure 2 exhibits the flow of DE algorithm used 
in this paper.

2.3.1  Mutation

The genetic operator mutation, is used to produce the off-
spring O from the parent vector P in the population for each 
iteration, i and each dimension j. Given below are few strate-
gies through which mutation process is carried out.

1. DE/best/1

2. DE/rand/1

3. DE/rand-to-best/1

4. DE/best/2

5. DE/rand/2

As seen above, a scaling factor, F , is required in the pro-
cess of mutation. Generally, a range of [0.4, 1] is viewed 
effective for better mutant generation (Qin et al. 2009). The 

(10)Oi,j = Pbest,j + F
(
Pr1(i),j − Pr2(i),j

)

(11)Oi,j = Pr1(i),j + F
(
Pr2(i),j − Pr3(i),j

)

(12)Oi,j = Pi,j + F
(
Pbest,j − Pi,j

)
+ F

(
Pr1(i),j − Pr2(i),j

)

(13)
Oi,j = Pbest,j + F

(
Pr1(i),j − Pr2(i),j

)
+ F

(
Pr3(i),j − Pr4(i),j

)

(14)
Oi,j = Pr1(i),j + F

(
Pr2(i),j − Pr3(i),j

)
+ F

(
Pr4(i),j − Pr5(i),j

)

Table 1  DNA encoding–decoding rules

Rules G (guanine) A (adenine) C (cytosine) T (thymine)

R1 01 00 10 11
R2 10 00 01 11
R3 01 11 10 00
R4 10 11 01 00
R5 11 10 00 01
R6 11 01 00 10
R7 00 10 11 01
R8 00 01 11 10

Table 2  DNA XOR operation

XOR G (guanine) A (adenine) C (cytosine) T (thymine)

A G A C T
C T C A G
G A G T C
T C T G A
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random vector Prx(i),j . is exclusive of both Pi,j and Pbest,j . The 
proposed approach uses the DE/rand-to-best/1 method for 
generating the corresponding mutant vectors.

2.3.2  Crossover

The mutation process produces the offspring vector as well 
as the parent vector. Interpolating both of them to generate 
a new candidate vector is done by the crossover process. For 
adequate crossover to take place, appropriate CR is required, 
which is taken as 0.8 in this case. Three specific types of 
crossover exist as mentioned below.

1. Single point crossover
 In this type of crossover, two vectors, i.e. the parent vec-

tor and the offspring vector are divided into two halves. 
The candidate vector is formed by fusing first half from 
one vector and the second half from another.

2. Two-point crossover
 Two-point crossover operation divides the parent vector 

and the offspring vector in three parts by earmarking two 

points for division. The new candidate vector is formed 
by taking each of the three parts from any of the two 
vectors.

3. Multi-point crossover
 Similarly, in this operation, the two vectors are divided 

into multiple parts by taking multiple points and then the 
candidate vector is generated by any of the correspond-
ing parts from aforementioned vectors.

The multi-point approach to the crossover operation gives 
a better mix of the two vectors. Hence, the multi-point cross-
over operation is employed along with a CR value of 0.8 to 
produce an effective candidate.

Here, x refers to a random value of the range [0,1) that 
determines the corresponding dimension of each candidate 
vector.

2.3.3  Selection

The final operation applied after mutation and crossover 
is selection. Like the name suggests, this operation simply 
selects the vector that will prevail for the future iterations. 
The fitness function is the basis on which the selection is 
made. The entropy fx, is used as the primary fitness function 
for this process. If the entropy of the parent vector is more, 
the parent vector is chosen for the next iteration. Else, the 
candidate vector is chosen as the next iteration parent vector.

3  Proposed algorithm of image encryption

The algorithm of the encryption process is discussed from 
the very beginning. It describes the secret key generation 
through SHA-256 followed by DE optimization that involves 
chaos-based permutation and DNA diffusion. The entire 
flow of the image encryption algorithm is shown in Fig. 3.

3.1  Color image input

For simplifying the process of encryption, a plain color 
image is broken down into three two-dimensional pixel 
matrices—R (red), G (green) and B (blue) that are further 
converted to one-dimensional matrices. Table 3 gives the 
pseudo code for performing this input conversion.

(15)Ci,j =

{
Oi,j, xi,j ≤ CR

Pi,j, xi,j > CR
.

(16)Pi,j+1 =

{
Ci,j, fCi,j, ≥ fPi,j,
Pi,j, fCi,j, ≤ fPi,j

Initialise set of Population 
Vector(p1,...,pn)

Compute fitness value of 
parent vector pi 

For each parent 
vector pi

Mutation: Produce offspring 
vector using parent, best and 

two random vectors

Crossover: Produce 
candidate vetor using parent 

and offspring vector

Selection based on fitness 
value of parent and candidate 

vector

Next 
iteration

Fig. 2  Differential evolution (DE) algorithm
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3.2  Secret key generation using SHA‑2

To have a larger key space and better key sensitivity, secure 
hash algorithm (SHA-2) has been used by the second step 
of the proposed approach to generate the seed value for the 
secret key. To generate this seed value, a 120-bit stochasti-
cally produced input initial secret key is used by the SHA-2 
function. For three dimensions of an image, three chaotic 
sequences are generated by using 3 separate seeds. These 
seed values are generated using the pseudo code shown in 
Table 4.

3.3  First permutation

Using the three seed values generated in the second step, the 
third step of the proposed technique generates ILM function. 

The one-dimensional R, G and B matrices are then shuffled 
using these three ILM generated sequences. Table 5 gives 
the pseudo code for this ILM based shuffling process.

Two 
dimensional 
Input Color 

Image 

Image 
Pixels 

Shuffling 

Intertwining 
Logistic Map (ILM)

DNA 
Encoding

DNA XOR
Diffusion

Encrypted
Image

SHA-2 Function 
and Seed 

Generation

DNA 
Encoding

Mask 
Sequence

Differential Evolution 
Algorithm(DE)

Fig. 3  Block diagram of proposed approach

Table 3  Image input Table 4  SHA-2 function to generate seed values

Table 5  First permutation
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3.4  Optimization through DE

In this step, the optimized mask sequence is obtained 
through DE. First, the population vector is randomly initial-
ized and simultaneously, the fitness value for each is stored. 
For each iteration, each vector of the population undergoes 
the mutation, crossover and selection processes. Finally, the 
vector which has the best fitness value forms the optimized 
mask sequence. Table 6 shows the pseudo code for the same.

3.5  Final encryption

The final step includes steps 3.1–3.4 to generate the final 
cipher image. The seed obtained through SHA-256 is sent to 
generate the three ILM sequences. These sequences are used 
to shuffle the plain image. The optimized mask sequence 
is obtained through DE. This mask sequence is converted 
to the DNA format along with the shuffled image. The two 
then undergo diffusion by an operation of DNA XOR. The 
result is then DNA decoded to form the encrypted image. 
The pseudo code for the entire process is given in Table 7 
and the entire flowchart is shown in Fig. 4.

4  Simulation results

This section gives the description of the experimental setup 
used to implement the proposed encryption technique. It also 
describes the different evaluation parameters that have been 
used to the test the encryption efficiency of the proposed 
method. An efficacious image encryption method should 
not only show resistance against differential and statistical 
attacks, but it should also be capable of handling brute force 
attacks viz. key sensitivity analysis and key space analy-
sis. Hence, the proposed method has been evaluated against 
following various parameters such that the purpose of an 
efficient encryption technique can be achieved.

4.1  Experimental setup

For experimental setup, Python 2.7 has been used on the 
platform PyCharm 2.3 on a Windows 10 PC using an Intel 
Core i3 as the processor clocked at 1.7 GHz CPU with 4 GB 
RAM and 500 GB hard disk memory. Sample standard color 
images such as Lena, Bungee and Baboon of sizes 64 × 64, 
128 × 128, 256 × 256 and 512 × 512 are tan as the input 
image data-set for conducting the experiments.

4.2  Key space analysis

This parameter determines the resisting ability of an encryp-
tion algorithm towards brute force attacks. It gives a measure 
of the key sample space from which encryption key selection 
is made. Hence, to reduce the feasibility of brute force the 
key sample space should be made very large. The proposed 
work uses SHA-2 function that generates a key-space of size 
 2256 that is considered to beis large enough to show resist-
ance against brute-force attack (Alvarez and Li 2006).

4.3  Key sensitivity analysis

An efficient encryption technique is sensitive to minute 
changes in secret key used. This Avalanche effect is nec-
essary for key sensitivity and it produces an output which 
is different from the previous one. To evaluate this param-
eter, a 360 bit secret key is used to encrypt the sample Bun-
gee image of Fig. 5a is encrypted and Fig. 5b shows the 
encrypted output for this key.

Table 6  Optimized mask DNA through DE

Table 7  ILM-DE encryption
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Then, one-bit change is made in the original image and 
the altered one-bit image re-encrypted using the same secret 
key. Figure 6c shows the re-encryption results. Figure 6d 
shows the difference between the two cipher images 6b, c 
of Bungee. It can clearly be observed form the evaluation 
that the proposed technique is sensitive to secret keys and is 
able to resist exhaustive attacks. This also shows sensitivity 
of the encryption algorithm to the change of plain image as 
the two encrypted images 6b, c are generated from a plain 
image differing in only one pixel and yet the results are very 
efficient and highly independent of each other as illustrated 
in Fig. 6d. Apart from that, both the resultant encrypted 
images show expected values of parameters that are used 

to analyze the encryption algorithm of images which are 
discussed later in the paper, thus illustrating efficiency and 
sensitivity of encryption algorithm.

4.4  Differential attack

To perform this attack, two encrypted images are pro-
duced by the attacker by doing trivial changes in the 
original image, where one encrypted image is generated 
from the original image and the second encrypted image 
is produced from the changed original image. Hence, 
effort is made to establish a correlation by comparing the 
encrypted and the original image. Two parameters are used 

Plain Image 

Pr Pg Pb

SHA-256 
Function 

(x0, y0, z0) Intertwining 
Logistic Map Yn

Xn

Zn

First Permutation of Pr, Pg, 
Pb using sequences[Xn, Yn, 

Zn] 

DNA Encoding 

Sr Sg Sb

Mask DNA 
Sequence

Diffusion of Sr, Sg, Sb using  
Mask DNA sequences 

DNA 
Encoding 

Mask 
Sequence 

Differential 
Evolution 

Algorithm (DE ) 

DNA Decoding 

Final Encrypted Image 

Fig. 4  Flowchart of the proposed algorithm
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for testing the degree of differential attack, viz. Unified 
average changing intensity (UACI), which is the percent-
age of the average change in intensity of corresponding 

pixels, and Number of pixel change rate (NPCR) which 
signifies the percentage of pixels in the encrypted images 
that changed. These are mathematically expressed as:

Fig. 5  a Plain bungee image. b 
Encrypted-image

Fig. 6  a Sample bungee image. 
b Encrypted image of sample 
bungee image. c Re-encrypted 
image of one bit-altered sample 
bungee image. d Difference 
image of encrypted and re-
encrypted image
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where D(j, k) is given as

where two encrypted images are denoted by c1 , c2 and the 
pixel value at index 

[
i, j
]
 in the image is denoted by c

[
i, j
]
.

The evaluated values of UACI and NPCR are shown in 
Table 8. It can be observed from the results that the pro-
posed encryption method is very close to ideal values that 
are above 99 for NPCR and about 30 for UACI. Thus, it can 
be concluded from the obtained values of these two param-
eters that the proposed technique ensures efficacy in resisting 
differential and plain-text attack effectively.

Table  9 shows an in-depth comparison of basic 
LM + DNA + DE and ILM + DNA + DE techniques on the 
basis of the parameters—NPCR, UACI, CC and entropy for 
Fig. 5a. High NPCR and UACI combined with low CC and 
an entropy closer to eight definitely prove a better chaotic 
efficiency of ILM as compared to LM.

4.5  Histogram analysis

Histogram delineates the frequency of pixel distribution 
throughout the image and is an integral statistical feature. 
Histogram is a plot of frequency of each pixel value in the 
image. Technically, a cipher image should have flat histo-
grams in contrast to the steep slope of plain image histo-
gram. This increases the level of randomness and makes it 
difficult to fetch information from images.

The results of Histogram evaluation have been shown 
in Table  10. It can be observed that encrypted images 
using proposed method are having regular distribution in 

(17)UACI =
1

P × Q

P∑

j=1

Q∑

k=1

||c1(j, k) − c2(j, k)
||

255
× 100%

(18)NPCR =
1

P × Q

P∑

j=1

Q∑

k=1

D(j, k) × 100%

(19)D(j, k) =

{
1, c1(j, k) ≠ c2(j, k)

0, otherwise

comparison to the source image that has an irregular or non-
uniform distribution. Hence, it proves the ability of the pro-
posed method against statistical attack.

Variance analysis is a quantitative analysis which is used 
for evaluating uniformity of encrypted images. It is a math-
ematical representation of histogram analysis. The value 
of variance is inversely proportional to the uniformity in 
encrypted images, i.e., lesser the variance, more is the uni-
formity in ciphered images (Zhang and Wang 2014). Vari-
ance is evaluated as:

where X is the vector for histogram values and X = {x1, 
 x2,…,  x256}, where  xi is the number of pixels with value 
equal to i. For color image, variance is calculated by taking 
average of variance of three matrix corresponding to R, G 
and B components.

There are two ways for analysis using variance, first one 
is comparing variance of ciphered image with that of plain 
image. Variance of color bungee image was evaluated as 
742,453.35 whereas the ciphered image has variance value 
6497.44, thus showing more uniformity in ciphered image 
as compared to plain image.

Second method includes comparing variance value of 
multiple ciphered images resulting from encrypting the 
same bungee image with different encryption keys. All the 

(20)var(X) =
1

n2

n∑

j=1

n∑

k=1

1

2

(
xj − xk

)2

Table 8  Analysis parameters tabulated for color data-set images

Parameters Component red (R) Component green (G) Component blue (B)

Lena Bungee Baboon Lena Bungee Baboon Lena Bungee Baboon

NPCR 99.6459 99.6475 99.6017 99.5590 99.6109 99.5956 99.5849 99.5590 99.6063
UACI 32.9558 32.9997 29.5848 30.4491 31.1707 27.9389 29.5262 32.2094 30.6470
CC-horizontal − 0.0062 0.0035 − 0.0560 0.0502 0.0222 0.0209 − 0.0002 0.0473 0.0196
CC-vertical − 0.0341 0.0468 − 0.0338 − 0.0243 0.0143 0.0261 − 0.0012 0.0238 − 0.0045
CC-diagonal − 0.0091 − 0.0493 0.0011 0.0090 0.0132 − 0.0070 0.0350 − 0.0351 − 0.0386
Entropy 7.9985 7.9967 7.9968 7.9973 7.9970 7.9972 7.9969 7.9969 7.9969
Contrast 10.8621 10.8104 10.7894 10.7568 10.8562 10.8325 10.7965 10.9102 10.8235

Table 9  Comparison with earlier proposed methods

Parameters LM ILM

NPCR 99.5973 99.6475
UACI 31.3682 32.9997
CC-horizontal 0.0548 0.0035
CC-vertical 0.0494 0.0468
CC-diagonal − 0.0325 − 0.0493
Entropy 7.9959 7.9967
Contrast 10.7914 10.8104
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values were observed in the range 6300–6600, thus depicting 
the efficiency of algorithm in uniformity of ciphered images 
and making the statistical attacks useless for the proposed 
algorithm.

4.6  Correlation coefficient (CC) analysis

To establish and realize a linear association between two 
adjacent image pixels the term Correlation is used. Plain 

or original image pixels have a high correlation whereas 
an encrypted image should have low CC value. The cor-
relation coefficient is given by the formula  rxy:

where

(21)rxy =
cov(x, y)

√
D(x)

√
D(y)

Table 10  Histogram analysis
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where two successive pixels are denoted by x , y and ran-
domly selected pixel pairs (x, y) are denoted by S . Expec-
tation and variance of x are denoted by E(x) and D(x) , 
respectively.

The results in Table 8 show the CC values-horizontal, 
vertical and diagonal obtained using the proposed method. 
The CC has been calculated by choosing randomly 1000 
pairs of pixels from the image and then, using the duplets 
from this selected set of pixels to compute the coefficient 
value. The obtained results show that CC values are very 
low i.e. closer to zero, in case of encrypted images.

4.7  Resistance attack analysis

Sections 4.1 to 4.6 depict different metrics that help avoid 
the classical attacks (Wang et al. 2012; Bisht et al. 2018; 
Jaroli et al. 2018) based on the assumption that the mecha-
nism of the cryptosystem is known thoroughly by a crypta-
nalyst barring the initial seed. The classical four types of 
attacks are mentioned below:

• Ciphertext only where the attacker has the knowledge 
of a couple of cipher texts.

• Known plaintext where the attacker has the knowledge 
of the plaintext and the corresponding cipher text.

• Chosen plaintext where the attacker has selective 
access of encryption system from which the corre-
sponding ciphertext can be extracted from the chosen 
plaintext.

• Chosen chipertext where the attacker has selective 
access of decryption system from which the corre-
sponding plaintext can be extracted from the chosen 
cipher text.

Since the proposed algorithm has a good key space and 
the chaos system is sensitive to the initial seed, the algorithm 
is resistant against chosen plaintext attack, which is one of 
the most common attacks. The DNA diffusion and optimi-
zation through DE along with ILM and SHA-256 make the 
cryptosystem more secure and resistant towards the afore-
mentioned attacks.

(22)cov(x, y) =
1

S

S∑

i=1

(
xi − E(x)

)(
yi − E(y)

)

(23)D(x) =
1

S

S∑

i=1

(
xi − E(x)

)2
.

(24)E(x) =
1

S

S∑

i=1

xi

4.8  Information analysis

Information analysis parameter termed as entropy is used 
to define the level of randomness or uncertainty. Low 
entropy signifies less ergodicity and high entropy signifies 
increase in the level of randomness (Bisht et al. 2019a, b). 
The ideal value for image entropy is eight and the numeri-
cal representation of entropy is defined as:

where the number of gray levels denoted by the variable N , 
and the total number of symbols are denoted by the vari-
able M (= 2n ). Thevariable mi ∈ M and the variable P

(
mi

)
 

denotes the probability of having mi levels in the image.
Table 8 shows the information entropy values of R, G, 

B components for the encrypted color Bungee image. The 
results justify the good information entropy values of the 
encrypted images.

4.9  Contrast analysis

This parameter is used to compute the intensity difference 
between the successive pixels of an image (Khan et al. 
2015, 2017). In other words, this parameter enables a user 
to make distinction between various entities existing in 
the image. Hence, this parameter mainly emphasizes on 
intensity computation of a pixel and the computation is 
performed over the full image. The mathematical expres-
sion for contrast parameter is shown as (Khan et al. 2017):

where gray-level co-occurrence matrices (GLCM) is defined 
by p(i, j) . Number of rows and columns are denoted by N . 
The evaluated results for the input image data set by using 
proposed method have been shown in Table 8.

4.10  Grayscale and binary image analysis

A grayscale image, commonly known as black-and-white 
image, is an image containing only one component, where 
each pixel depicts the intensity of light. Unlike grayscale 
image that has a range of 256 pixel values to choose from, 
binary images have only a choice of two pixel values 
(mostly black and white). However, like grayscale image 
it is also a type of digital image. The proposed technique 
of image encryption works for all three (grayscale, binary 
and color) types of images due to architecture flexibility.

(25)H(m) =

2N−1∑

i=0

P
(
mi

)
log2

1

P
(
mi

)

(26)C =
∑N

i,j=1
|i − j|2p(i, j)



3783Differential evolution optimization of intertwining logistic map‑DNA based image encryption…

1 3

4.11  Time comparison

The run time for the two EA algorithms i.e., GA and DE are 
compared by executing the programs on the experimental 
specifications described in Sect. 4.1. These EA algorithms 
depend on the two input parameters that are population size 
and number of iterations of the algorithm. More are the 
iterations or the population size, more is the time taken irre-
spective of the two algorithms. Though the time increases 
with these parameters, but the time taken by GA always 
remains manifolds higher than that of DE. The comparison 
between the two algorithms based upon time requirement is 
shown in Fig. 7.

4.12  Comparison with existing approaches

In the recent years, the researchers not only have used 
multi-dimensional chaos maps instead of one dimensional 
chaos maps, but have also combined the chaos maps with 
different techniques such as DNA, optimization methods, 
cellular automata to build more efficient and secure image 
encryption technique. The proposed work in this paper is 
also a perfect example of one such technique. Table 11 

exhibits the comparison of the proposed technique with 
some of the earlier proposed image encryption algorithms 
that have used LM, DNA and genetic algorithms (Guesmi 
et al. 2016; Abdullah et al. 2012; Suri and Vijay 2017; 
Wang and Xu 2014). It also compares the approach with 
encryption techniques which involves manipulation of 
bits of pixels for encryption in their algorithms. One tech-
nique combines ILM with Reversible Cellular Automata 
(RCA), in which only higher 4-bit part of pixel is used 
as data to be encrypted (Wang and Luan 2013). Another 
technique involves cyclic shift of bits in pixel for encrypt-
ing the image data (Wang et al. 2015a, b, c). Motivated 
by the results of these method, the proposed algorithm 
in the paper contributes in two ways. Firstly, it engages 
the significant contributions presented by the aforemen-
tioned earlier methods. Secondly, and most importantly, 
it optimizes upon the former approaches by engaging the 
Evolutionary Algorithm that provide all the good features-
augmented key space, high randomness and fast process. 
Thus, the proposed approach embodies the best of all 
the elements, providing an efficacious image encryption 
(Table 12).

Fig. 7  Time comparison 
between DE and GA for differ-
ent populations and iterations
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Table 11  Analysis parameters 
tabulated for grayscale and 
binary images

Parameters Grayscale Binary

Lena Bungee Baboon Lena Bungee Baboon

Contrast 10.8982 10.7985 10.8741 10.8550 10.8514 10.8927
Entropy 7.9965 7.9975 7.9970 7.9968 7.9972 7.9975
CC-vertical − 0.0341 − 0.0031 0.0433 0.0092 0.0174 − 0.0014
CC-horizontal − 0.0062 0.0222 − 0.0125 0.0148 − 0.0024 0.0217
CC-diagonal − 0.0091 0.0421 0.0400 − 0.0124 0.0025 0.0128
UACI 32.9558 34.0691 30.6110 31.9746 36.7423 32.7832
NPCR 99.6459 99.6546 99.6322 99.6259 99.6320 99.6142
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5  Conclusion and future work

The algorithm has been proposed to develop an efficacious 
approach to obtain an optimized image encryption. The 
approach is further an integration of SHA-2 for generating 
the seed, ILM for permuting the image pixels by using the 
location map and DNA diffusion. Moreover, the algorithm 
is optimized with the help of DE that produces a mask 
sequence, which is further converted to DNA and utilized in 
DNA diffusion process. The optimization plays a crucial role 
in providing an efficient encryption. High entropy values and 
low CC values directly infer better results for an optimized 
encryption. The results of DE optimization are also com-
pared with that of GA optimization. Theoretical analysis and 
experimental results reinforce that the algorithm using DE 
demonstrates better encoding efficiency than GA. The results 
also corroborate the fact that encryption using DE is faster 
than encryption using GA. Hence, DE can be used to obtain 
a quicker and more secure encryption process.
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