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Abstract
Mental stress is a physiological condition that has a strong negative impact on the quality of life, affecting both the physical 
and the mental health. For such a reason, accurate measurements of stress level can be helpful to provide mechanisms for 
prevention and treatment. This paper proposes a procedure for the classification of different mental stress levels by using 
physiological signals provided by low invasive wearable devices. 17 healthy volunteers participated in this study. Three 
different mental states were elicited in them: a resting condition, a stressful cognitive state, and a sustained attention task. 
The acquired physiological signals were: a one lead electrocardiogram (ECG), a respiratory signal, a blood volume pulse 
(BVP), and 14 channels of a 10–20 electroencephalogram (EEG). For all subjects, 59 time series of 300 samples each were 
structured by including the RR series, the respiratory series, the pulse arrival time (PAT) series, and the delta, theta, alpha, 
beta power series of the 14 EEG channels. Different classifiers were implemented to assess the mental stress level starting 
from a pool of 3481 features computed from the aforementioned physiological quantities, using the Network Physiology 
paradigm. The highest achieved accuracy was 84.6%, from logistic regression and random forest classifiers, cross validated 
by mean of leave-one-person-out analysis. A further analysis was carried out to evaluate the classification accuracy using 
only cardio-respiratory signals, since the latter are more suitable to be used in real-life scenarios. In this case, the highest 
achieved accuracy was 76.5% obtained by the random forest classifier.
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1  Introduction

Stress is a key resource that can make the difference 
between life and death (Selye 1974). However, dangerous 
situations for health can happen, if stress mechanisms acti-
vate in an useless manner and for a long time. Indeed, an 
unhealthy level of stress is a direct cause of diseases and 
disorders (Cohen et al. 2007; Kemeny 2003), such as sleep 
disorder, difficulty in concentration and decision, short-term 
memory loss, altered mood, depression and anxiety, inflam-
mation and cardiovascular problems. Stress is considered 
one of the most serious social problem in today’s society for 
its high social cost (Hassard et al. 2017). For the aforemen-
tioned reasons, accurate measurements of stress levels are 
necessary to apply mechanism for prevention and treatment.

Different areas are interested in mental stress assessment, 
such as the ones related to cardiovascular risk (Vaccarino 
et al. 2018; Esler 2017; Curtis and O’Keefe 2002), exercises 
to reduce stress level (Eda et al. 2017; Gauche et al. 2017), 
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work-related stress (Kopyt et al. 2017; Seoane et al. 2014; 
Zheng et al. 2015), student stress (Vanitha and Krishnan 
2016), and environmental stress (Steinheuser et al. 2014). 
Accurate measurement of stress and effort can be also help-
ful in ambient assisted living (Calvaresi et al. 2017) scenar-
ios. Indeed, also in this context interesting applications are 
emerging (Pisoni et al. 2016; Kikhia et al. 2018). This kind 
of measurements can be helpful for therapists, providing 
information not directly perceivable by mean of observation.

Stress detection is usually performed acquiring physi-
ological signals. Among the many physiological signals 
available, the most relevant for stress detection are (Sharma 
and Gedeon 2012):

•	 the cortisol levels, usually measured in saliva. The draw-
back of these kind of measurements is that they are inva-
sive and it is very difficult to obtain a continuous moni-
toring of such levels;

•	 the cardiovascular system activity, usually monitored 
through electrocardiography (ECG), blood volume pulse 
(BVP) and arterial blood pressure (ABP);

•	 the respiratory system activity, that is strongly related to 
cardiovascular system activity;

•	 the electrodermal activity (EDA), i.e. the electrical con-
ductivity of the skin surface;

•	 the muscle activity, measured through electromyogra-
phy (EMG), which measures the level of discharge of 
the motor nerve fibers that innervate the muscle;

•	 the brain activity, measured through electroencephalog-
raphy (EEG).

For what concerns the use of the aforementioned parameters 
for the detection of mental stress, large differences arise in 
the literature. These differences are mainly due to aspects 
such as different protocols and equipment for signal monitor-
ing, in addition to the data analysis performed (Smets et al. 
2015). Subhani et al. (2017) considered features extracted 
from a professional 128 channel EEG to distinguish among 
4 different levels of stress. The reached accuracy was 83.4%. 
Hou et al. (2015) reached an accuracy of 67.1%, 75.2%, and 
85.7% in distinguishing respectively among 4, 3, and 2 dif-
ferent levels of stress. They used features extracted from 
EEG signals obtained from a wireless headset to train a 
support vector machine (SVM) classifier. In Smets et al. 
(2015), an analysis of different classification algorithms 
was performed to distinguish between stressful and non-
stressful situations. The acquired physiological signals 
were ECG, respiration, EDA and temperature. The acquisi-
tion of such signals was performed using wireless devices, 
even if quite invasive, since the recording of the ECG was 
performed applying electrodes on the skin. A similar setup 

was used in Huysmans et al. (2018), where unsupervised 
learning was used to distinguish between relax or stress 
phases. The authors obtained an accuracy of 84.6% using 
personalized dynamic Bayesian networks and an accuracy 
of 82.7% using generalized support vector machines (SVM). 
Sandulescu et al. (2015) used wearable devices to moni-
tor EDA and pulse plethysmograph (PPG) signals to detect 
stressful situations in five participants. The maximum accu-
racy was 83.08% using an SVM algorithm. Mohino-Herranz 
et al. (2015) used ECG and thoracic electrical bioimpedance 
(TEB) signals provided by wearable devices to distinguish 
between low mental load and mental overload, reaching an 
accuracy of 67.7%.

Other works in the literature made use of deep learn-
ing (LeCun et al. 2015) techniques for detecting mental 
stress. In Masood and AlGhamdi (2019) a convolutional 
neural network (CNN) framework was employed to assess 
the improvement in the classification accuracy adding neu-
ral signals to the traditional physiological signals used for 
stress detection, i.e. heart rate variability (HRV) and EDA. 
The authors reached an accuracy of 90% in distinguish 
between stress and non-stress situations. Vuppalapati et al. 
(2018) used EEG features to distinguish between 4 differ-
ent levels of stress, reaching an accuracy of 83.43%. As the 
authors claimed, their accuracy was dependant on the accu-
racy of the machine learning model used and its datasets. 
In Jaques et al. (2017), deep learning techniques were used 
to implement a mood prediction system. In particular, the 
authors demonstrate how personalized models can provide 
substantial performance enhancements. Finally, a survey 
on machine learning techniques for stress detection can be 
found in Panicker and Gayathri (2019).

In this paper, we try to develop a model capable to dis-
tinguish among 3 different mental stress levels among 17 
different subjects. With respect to the previous presented 
works, the novelty of our approach consists in using the new 
paradigm of Network Physiology (Bashan et al. 2012) to 
perform stress detection. In this approach, each organ sys-
tem is seen as a node of a complex network of physiological 
dynamical interactions. Using the Network Physiology, we 
overcome the traditional, reductionist approach, in which 
the function of a single organ is studied in isolation. The 
considered systems are studied by looking at the coupling 
among their output signals. We try to quantify such physi-
ological interactions, using information theory quantities, 
in order to distinct among different mental stress levels. We 
start from the framework described in Zanetti et al. (2018), 
where the Network Physiology paradigm was used to dis-
tinguish between stressful and non-stressful situations in 
one single subject. The novelty of this work with respect 
to Zanetti et al. (2018) consists in the increasing number of 
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states to be distinguished, i.e. 3 vs 2, and the development 
of an inter-subject model. Indeed, in Zanetti et al. (2018) 
the procedure was only tested with one single participant.

2 � System and hardware configuration

The acquisition of the physiological signals was performed 
using low invasive and consumer wearable devices. A sen-
sorized t-shirt, by Smartex1, provides the ECG and the 
respiratory signal at a sampling frequency of respectively 
250Hz and 25Hz . The respiratory signal is acquired through 
a piezoresistive sensor situated at the level of the ribcage. A 
wristband, by Empatica2, provides the BVP signals at a sam-
pling rate of 64Hz . The EEG signals were acquired using the 
14 channels Emotiv3 EPOC PLUS wireless headset (inter-
national 10–20 locations), which has a sampling frequency 
of 256Hz for every channel.

In order to obtain accurate vital signs acquisition, it is 
important to wear these devices correctly. In particular, the 
Smartex t-shirt must be of the right size to provide a good 
contact of the skin with the ECG electrodes and not to have 
the piezoresistive sensor too much stretched or loose. The 
Empatica wristband must be wear not uncomfortably tight, 
but snugly enough to prevent bad illumination conditions 
caused the dispersion of the light from the PPG sensor on 
wrist skin. Particular attention must be also paid to the cor-
rect positioning of the EEG electrodes of the Emotiv head-
set. Anyhow, thanks to the fixed configuration and robust-
ness of the hardware solutions, the setup time of the entire 
system can be achieved in less than 5–10 min per participant. 
All devices are connected to the same PC via Bluetooth.

2.1 � Synchronization of the devices

The main issue in the combination of multiple independ-
ent devices is the lack of a hardware driven synchroniza-
tion method. The data must then be managed and analyzed, 
devising software solutions to perform the temporal align-
ment of the various signals. That is critical since errors could 
occur in the generation of the clock of the electronics, thus 
potentially affecting the processing with temporal shifts in 
the recorded data. The resulting desynchronization must be 
avoided as it impairs the study of interactions between sig-
nals that underlies the concept of Network Physiology. Such 
issue was here solved by running a custom designed syn-
chronization method that foresees the usage of the quantity 
that is available from all devices: the acceleration.

The process can be subdivided into the following steps:

1.	 the identification of the principal motion directions for 
each device;

2.	 the alignment and fastening of devices to a rigid support: 
the industrial Velcro achieved very good performances 
both in term of stability of the mount and removability 
capabilities, Fig. 1;

3.	 the motion of the rigid support (together with the sen-
sors) in order to define a non uniform acceleration pat-
tern: a sinusoidal path is suggested since it is periodic 
and easy to be performed;

4.	 the synchronization of the collected, low-pass filtered, 
acceleration signals with the one used as reference ( a(t)r).

The last two are performed both at the beginning and at 
the end of the recording sessions. This is fundamental to 
compensate any modifying factor that can cause dilatations 
of the time bases. The synchronization is performed as a 
linear warping of the time with respect to a reference sig-
nal (Fig. 2), in this case the one provided by the Smartex 
sensor. Equation (1) reports the formulation, where tf ,ir,n 
stands respectively for a time instant t collected from the 
reference or nth series, aligned at the initial or final phase 
of the data record. The modified temporal instant t̃n can be 
computed as:

 

Alternative quantities than the acceleration can be con-
sidered, the method is general and can be adapted accord-
ingly to the required hardware configuration with no major 
modifications.
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Fig. 1   Wearable devices used for physiological signal acquisition: (A) 
Empatica E4; (B) Emotiv EPOC PLUS; (C) Smartex

1  http://www.smartex.it
2  https://www.empatica.com
3  https://www.emotiv.com
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3 � Experimental protocol

17 healthy participants, with and age ranging between 
18 and 30, were monitored. The recording sessions were 
conducted between 10.30 and 12.00 a.m. to avoid possible 

differences due to the time of the day. The participants were 
seated in front of a PC in a comfortable room at constant 
illumination and were instructed to not speak and to limit 
their movements during the test.

Three different levels of stress were induced to the par-
ticipants. The first was a rest condition induced watching a 
relaxing video. The second was induced playing a serious 
game, which consisted in following a point moving on the 
screen using the mouse and trying to avoid some obstacles. 
The third was obtained through a mental arithmetic task 
using an online tool: participants had to perform sums and 
subtractions of 3-digit number and write the solution in a 
text-box using the keyboard. Each participant performed 2 
recording sessions: one for the mental arithmetic task and 
one playing the serious game. Each recording session was 
structured in this manner:

•	 rest ( 12min);
•	 mental arithmetic/serious game ( 7min);
•	 rest ( 12min).

No pen and paper or other supports were allowed. Also fin-
ger counting was discouraged.

4 � Data processing

The data was analyzed offline using MATLAB and follow-
ing the procedure described in Zanetti et al. (2018). Figure 3 
shows a schematic representation of the analysis performed 
on the acquired signals.

The R peaks in the ECG were detected using the template 
matching algorithm from Speranza et al. (1993), reconstruct-
ing in this way the R-R tachogram. The respiratory signal 

(a)

(b)

Fig. 2   Temporal synchronization of the wearable devices by mean of 
the acceleration signals

Fig. 3   Time series extraction 
procedure from the acquired 
physiological signals
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was then resampled accordingly to the timing of the identi-
fied R peaks. The pulse arrival time (PAT) was obtained 
computing the time that elapses between the R peak in the 
EEG and the corresponding point of maximum derivative in 
the BVP signal (Orini et al. 2012). Figure 4 shows the RR, 
the respiratory, and the PAT time series for one subject dur-
ing the three different mental stress levels. The time series 
were resampled at 1Hz.

For what concerns the EEG, the power spectral den-
sity (PSD) in the � (0.5–3 Hz), � (3–8 Hz), � (8–12 Hz), � 
(12–25 Hz) bands was computed using the periodogram. 
A sliding window of 2 s and a 50% of overlap was used. 
The MATLAB function bandpower() was used to compute 
the PSD specifying the band of interest and the sampling 
frequency of the input signal. Figure 5 reports an example 
of EEG power series of a recording session for the AF3 
electrode.

5 � Feature extraction

The work follows the approach fostered by network physiol-
ogy (Bashan et al. 2012), in which each organ system is seen 
as a node of a complex network of physiological interac-
tions. To investigate these interactions, the proposed method 
exploits information-theoretic measures starting from the 
time series computed as reported in Sect. 4. For every signal 
and for every possible couple, this computes then the self-
entropy Sy , the mutual information I(X; Y), and the condi-
tional mutual information I(X; Y|Z) (Faes et al. 2016, 2017).

5.1 � Information‑theoretic measures

Given a dynamic process Y, its present sample Yn and past 
states �Y

n
= [Yn−1, Yn−2,…] , the amount of information con-

tained in Yn , which can be predicted by its past, can be com-
puted as follows:

Fig. 4   RR, respiratory and PAT 
time series during rest (REST), 
serious game (SG) task, and 
mental arithmetic (MA)

Fig. 5   EEG power series in the 
� , � , � , and � bands during rest 
(REST), serious game (SG) 
task, and mental arithmetic 
(MA) of a recording session for 
the AF3 electrode
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where H(Yn) is the Shannon entropy, defined as 
H(Yn) = −

∑
p(Yn) ln p(Yn) , and H(Yn|�Y

n
) the conditional 

entropy.
Considering instead two distinct dynamic processes X and 

Y, the mutual information I(Xn;Yn) measures the amount of 
information that can be obtained about the present value of a 
random variable observing another one, and it is defined as:

where H(Xn) and H(Yn) are the marginal entropies, H(Xn|Yn) 
and H(Yn|Xn) are the conditional entropies, and H(Xn, Yn) 
the joint entropy.

The conditional mutual information I(Xn;Yn|Zn) is instead 
defined as:

where I(Xn;Yn|Zn) is the expected value of the mutual infor-
mation between Xn and Yn , given the value of a third variable 
Zn , measuring the fraction of the information shared between 
Xn and Yn that is not shared with Zn.

For the practical computation of the above quantities, under 
the hypothesis of Gaussian distribution of y, it is possible to 
apply the formulas described in Barnett et al. (2009) and Porta 
et al. (2015). For what concerns SY , it can be computed as:

where �2
Y
 is the variance of Y and �2

�
 is the variance of the 

prediction error � of an Auto Regressive model fitting Y:

where p is the model order, which is computed using the 
Akaike information criterion (Schwarz 1978).

Given the covariance � and precision �−1 matrices of X 
and Y:

I(Xn;Yn) and I(Xn;Yn|Zn) can be computed as (Gelfand and 
IAglom 1959):

(2)SY = H(Yn) − H(Yn|�Y
n
),

(3)

I(Xn;Yn) = H(Xn) − H(Xn|Yn)
= H(Yn) − H(Yn|Xn)

= H(Xn) + H(Yn) − H(Xn, Yn),

(4)
I(Xn;Yn|Zn) = I(Xn;Yn, Zn) − I(Xn;Zn)

= I(Yn;Xn,Zn) − I(Yn;Zn).

(5)SY =
1

2
log

�2
Y

�2
�

,

(6)Yn =

p∑

i=1

aiYp−i + �

(7)� =
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]

(8)�−1 =
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�2
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�2
Y

]
,

where Zn contains all the variables except Xn and Yn.

5.2 � Application

The experimental testing protocol produced 3 time series 
from the cardio-respiratory part and 56 ( 14 × 4 ) from the 
EEG, for a total of 59. These were processed as described 
in Sect. 5.1 for every possible combination, obtaining 3481 
features: 59 from the computation of the self entropy, 1711 
from the mutual information and 1711 from the conditional 
mutual information. To compare the time series among 
different participants, all extracted features were initially 
normalized with respect to the baseline resting conditions. 
Given the three mental states, i.e. rest (REST), mental 
arithmetic (MA) and serious game (SG) and the feature fi , 
for i = 1, 2, 3,… , 3481 , the normalized feature f j,∗

i
 , where 

j = {REST ,MA, SG} , was computed as follows:

6 � Results

Different classification algorithms were tested for the clas-
sification of the stress status: (1) support vector classification 
(SVC), (2) random forest (RF), and (3) logistic regression 
(LR). The hyper-parameters for each classifier were opti-
mized by a grid search: C, � , and kernel for SVC, depth 
and the number of estimators for RF, and C and penalty 
for LR (Buitinck et al. 2013). A leave-one-person-out cross 
validation was applied to test the accuracy of the considered 
classification algorithms.

LR and RF achieved the best classification accuracy, 
equal to 84.3% and 84.3% respectively, Fig. 6 reports the 
confusion matrices.

The most remarkable result concerns the classification of 
the mental arithmetics status: all classifiers correctly clas-
sified this task for 100% of the cases, and at the same time 
other tasks were never misclassified with it. It follows that 
the feature values for the mental arithmetic strongly charac-
terize the task, making it well distinguishable from others. 
The outcome is that a heavy mental stress status can be reli-
ably be recognized by the proposed method.
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As for the remaining classes, these present some misclas-
sified results, proof that the considered feature base presents 
some similarities in these two stress states. However, since 
the logistic classifier and random forest classifier have cor-
rectly recognized about 80% rests and serious-games, this 
represents a sub-optimal but anyhow sufficiently accurate 
classification outcome for the applicability of the method.

The SVC with the low classification accuracy wrongly 
recognized many rests as the serious-game. The soft-margin 
SVM with RBF kernel allows some examples placed on the 
wrong side to be ignored based on C parameter, on fitting. 
Since the classifier with a low C parameter like this classifier 
ignores many examples placed on the wrong side, it is con-
sidered that the classifier was built so that many rest states 
placed on the serious-game side were ignored, in this result. 
However, the overall classification accuracy decreased by 
using a higher C parameter; therefore, it is said that the SVM 
algorithm is not suitable for this dataset.

Random Forest algorithm builds a set of decision trees 
based on feature importance. This can be exploited to inves-
tigate what feature is important for classification. Table 1 
reports the values, as normalized percentage, of the ten most 
important features identified by the RF model. Such features 
count for the 59.3% of the overall feature importance score. 
The most important features are the ones relative to EEG 
signals. In particular, 4 features out of 10 are relative to the 
mutual information shared between pairs of electrodes in 
which one is positioned in the frontal part and the other in 
the occipital part of the head. Among the most important 
features there are also the self-entropies of the electrodes 
FC6 and T7.

Since the Emotive EPOC is a quite invasive device for a 
real-life scenario, we tested the accuracy of the classifica-
tion algorithm using the features provided only from the 
cardio-respiratory series. Since in this case we would have 
only 9 features, we added to them more traditional features 
for stress measurement, i.e. the LF/HF ratio, the mean and 

the standard deviation of the RR series, the respiratory fre-
quency and the mean of the phasic component (Greco et al. 
2016) of the EDA signal, which is provided by the Empatica 
E4 wristband. In this case the best obtained accuracy was of 
76.5% using the RF classifier (Fig. 7).

All classifiers could correctly recognize mental arith-
metics even without Emotive EPOC features. However, the 
logistic regression classifier and the SVC have recognized 
some rest and serious-game as mental arithmetic. Especially, 
the LR classifier wrongly recognized about 70% of rest as 
others and the classification accuracy decreased more 20% 
than the logistic regression classifier with Emotive EPOC 
features. Conversely, although the SVC also have recog-
nized several rests and serious-games as mental arithme-
tic; however, it has correctly recognized rests than the SVC 
with Emotive EPOC features and the classification accu-
racy was also improved 5%. Therefore, it is thought that the 
dataset without Emotive EPOC is suitable for SVC, and is 
not for logistic regression. The random forest classifier has 
increased a few numbers of incorrect classification between 
rest and mental arithmetic; therefore, the classification accu-
racy has also decreased about 8% than the classifier with 
Emotive EPOC features. However, the random forest clas-
sifier has no any rest and serious-game recognized as men-
tal arithmetic, unlike other classifiers, and has kept enough 
high classification accuracy even without Emotive EPOC 

(a) (b) (c)

Fig. 6   Classification results for different classifiers. The best result was obtained by logistic regression and random forest classifiers, with an 
accuracy of 84.3%

Table 1   Top 10 feature importance of Random Forest classifier

Feature Importance 
(%)

Feature Importance 
(%)

1 S-�
FC6

7.024 6 MI-�
F8

-�
AF4

6.068
2 MI-�

F3
-�

O1
7.015 7 MI-�

AF3
-�

P8
5.872

3 S-�
T7

6.937 8 MI-�
F3

-�
P8

5.672
4 MI-�

FC5
-�

P8
6.648 9 MI-�

F4
-�

F8
4.188

5 MI-�
P7

-�
O2

6.189 10 MI-�
F7

-�
T8

3.677
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features. In both datasets, Random Forest has been the best 
classifier; in conclusion, it is clear that it is suitable for our 
recognition.

Table 2 shows the feature importance of the random for-
est classifier. In this case, the most important features are 
relative to the ECG signal; i.e. the mean and the standard 
deviation of the RR series and its self-entropy.

Table 3 shows the comparison of our work with respect 
to others found in the literature and analyzed in Sect. 1. 
The framework proposed in this paper falls among the best 
results. For such a reason, it is possible to claim that the 
Network Physiology paradigm can be a good framework to 
detect stressful situations, even among different subjects.

7 � Conclusion

The simultaneous recording of ECG, BVP, respiration and 
EEG signals, provided by wearable devices, was exploited to 
distinguish between 3 different mental stress states, i.e. rest, 
sustained attention, and stress, elicited in 17 participants. An 
approach based on the new field of Network Physiology was 
used. Information theoretic measures, such as self entropy, 
mutual information and conditional mutual information, 
were used to train different classifier algorithms. The best 
results were obtained by LR and RF classifiers with an accu-
racy of 84.6%. An accuracy of 76.5% was instead obtained 
by RF using only features provided by the cardio-respiratory 

(a) (b) (c)

Fig. 7   Classification results for different classifiers. The best result was obtained by random forest classifiers, with an accuracy of 76.5%

Table 2   Feature importance 
of Random Forest classifier 
without Emotive EPOC features

Feature Importance (%) Feature Importance (%)

1 Mean-RR 24.033 6 Mean-phasicEDA 5.918
2 std-RR 16.624 7 S-RESP 5.487
3 S-RR 8.998 8 MI-RR-RESP 5.123
4 S-PAT 7.369 9 RESPfreq 4.378
5 CMI-RESP-RR 6.971 10 CMI-PAT-RESP 3.547

Table 3   Comparison of our 
work with respect to similar 
works in the literature

Study Acquired signals Mental states Accuracy (%)

Proposed ECG, Resp., BVP, EEG 3 84.6
Masood and AlGhamdi (2019) EEG, Heart Rate Monitor, EDA 2 90.0
Vuppalapati et al. (2018) EEG 4 83.43
Huysmans et al. (2018) ECG, EDA 2 79.0
Subhani et al. (2017) EEG 4 83.4
Hou et al. (2015) EEG 4 67.1
Smets et al. (2015) ECG, Resp., EDA, Temp. 2 84.6
Sandulescu et al. (2015) EDA, PPG 2 83.08
Mohino-Herranz et al. (2015) ECG, TEB 2 67.7
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signals. These results are comparable with the ones found in 
the literature (Table 3).

With respect to the current state of the art, the novelty 
of our approach consists in using the new approach of Net-
work Physiology on signal acquired from “low-invasive” and 
consumer wearable devices to distinguish among different 
levels of mental stress. These results are quite promising 
and suggest that an inter-subject model using the parameters 
provided by Network Physiology is feasible. Future develop-
ment will foresee the improvement of the classification accu-
racy, using only the devices related to the cardio-respiratory 
signals for their lower invasiveness. Indeed these devices are 
more suitable for applications in real-life scenarios.
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