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Abstract
The neutrosophic set (NS) is a leading tool in modeling of situations involving incomplete, indeterminate and inconsistent 
information. The single-valued neutrosophic sets (SVNs) is more useful tool than neutrosophic sets in some applications of 
engineering and scientific problems. In this paper, we study Hamacher operations and operations between single-valued trap-
ezoidal neutrosophic numbers. Then we propose the single-valued trapezoidal neutrosophic Hamacher weighted arithmetic 
averaging (SVTNHWA) operator, single-valued trapezoidal neutrosophic Hamacher ordered weighted arithmetic averag-
ing (SVTNHOWA) operator, single-valued trapezoidal neutrosophic Hamacher hybrid weighted averaging (SVTNHHWA) 
operator, single-valued trapezoidal neutrosophic Hamacher weighted geometric averaging (SVTNHWGA) operator and 
single-valued trapezoidal neutrosophic Hamacher ordered weighted geometric averaging (SVTNHOWGA) operator and 
single-valued trapezoidal neutrosophic Hamacher hybrid weighted geometric averaging (SVTNHHWGA) operator, and 
obtain some of their properties. Furthermore, we developed a multiple-attribute decision-making method in single-valued 
trapezoidal neutrosophic (SVTN) environment based on these operators. Finally, we proposed an application of MADM 
problem in assessment of potential of software system commercialization.

Keywords  Single-valued trapezoidal neutrosophic number · Hamacher operation · Arithmetic averaging operator · 
Geometric averaging operator · MADM method

1  Introduction

Multi-attribute decision-making (MADM) problem under 
different uncertain environments is an interesting research 
tool having received more and more attention by the 
researchers in the recent years (Gao et al. 2018; Lu et al. 
2019; Wu et al. 2019; Tang and Wei 2019; Garg and Kumar 
2018; Zhang et al. 2019; Jana and Pal 2019a, b; Jana et al. 
2019b, c). The main aim of this technique is to choose 
the best alternative among the finite set of alternatives as 
claimed by the decision makers under the preference val-
ues of the alternatives. It has been extensively applied with 
quantitative or qualitative attribute values and has a board 

application in management model (Teixeira et al. 2018), eco-
nomic analysis (Xu 1987), operation research (Xu 1988), 
analytic management (Levy et al. 2016), etc. As our modern 
society move forward with the decision-making process, so 
it always faces imprecise, vague and uncertain facts to take 
a decision in solving decision-making problems.

Neutrosophic set (NS) a tremendous branch of philosophy 
was proposed by Smarandache (1999, 2005). This proposed 
approach is characterized by three functions called (truth-, 
indeterminacy-, falsity)-membership functions, which is 
the extended form of the fuzzy sets (FS) defined by Zadeh 
(1965), and generalization of intuitionistic fuzzy (IFS) 
(Atanassov 1986). Even though FS and IFS are very power-
ful set to model decision problems containing uncertain-
ties, in some cases these sets are not sufficient to overcome 
indeterminate and inconsistent information experience in 
real world problems. Therefore, NS has strong acceptance 
to develop models carrying indeterminate and inconsistent 
data. However, since codomain of membership functions 
of NS is real standard or nonstandard subsets of ]−0, 1+[ , 
in some applications areas engineering and real scientific 
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fields they have some difficulties in modeling of problems. 
To overcome difficulties in these areas, Wang et al. (2010) 
defined the view of single-valued neutrosophic set (SVNs). 
The hypothesis of trapezoidal neutrosophic sets (TNs) and 
some of their operational rules such as score and accuracy 
functions were defined by Ye (2015). He introduced arith-
metic and geometric weighted averaging operator and based 
on these operators, and also developed a methodology for 
a MADM problems. Deli and Subaş (2015) studied single-
valued triangular neutrosophic numbers (SVTrNNs), which 
can be regarded as particular cases of (SVTNNs). Biswas 
et al. (2014) utilized expected interval of trapezoidal fuzzy 
numbers to study similarity measure in approach of decision 
making. To model a transportation problem Thamaraiselvi 
and Santhi (2016) made use of SVTrNNs. Liu and Wang 
(2014a) introduced a new methodology using normalized 
weighted bonferroni mean in neutrosophic environment for 
MCGDM problems. Liang et al. (2017) followed single-val-
ued trapezoidal preference relations as a game plan for tack-
ling MCDM problems, and proposed two operators named 
as SVTNWWAA operator and SVTNWWGA operator. They 
also gave a decision-making method based on SVTNPRs to 
discourse green supplier selection problems. The aggrega-
tion operators in information retrieval are important research 
areas. In 1988, the ordered OWA operator and studied some 
of their properties introduced by Yager (1988). Thereafter, 
the idea of OWA operator can be implemented to IFS and 
IVIFS environment, and developed MCDM, for more knowl-
edge on other operators and terminology, the readers are 
referred to Beliakov et al. (2007), Hu and Wong (2013), 
He et al. (2013), Ji et al. (2018a), Li and Wang (2017), Liu 
(2013), Liu and Liu (2014), Liu and Wang (2014b), Liu et al. 
(2014a), Liu and Yu (2014), Wang and Liu (2011), Xia et al. 
(2012), Xu (2007), Xu and Yager (2006), Yu (2012, 2013a), 
Zhao et al. (2010), Gupta and Kohli (2016), and Garg and 
Kumar (2018).

Ye (2014c) proposed some novel weighted aggregation 
operators under simplified neutrosophic environment. Liu 
et al. (2014b) introduced some weighted Hamacher aggre-
gation operators on generalized form neutrosophic num-
bers and investigated some properties of these operators. 
Peng et al. (2016) followed some aggregation functions 
based on the basis of new operational rules defined in Ye 
(2014c). Ye (2014d) focused to study on some arithme-
tic and geometric weighted aggregation operators on the 
basic of operational rules of interval neutrosophic linguis-
tic numbers (INLNs) and investigated important proper-
ties of them. Broumi and Smarandache (2014) followed 
MADM methodology to make a decision by aggregating 
information related to neutrosophic trapezoidal linguistic 
arguments. Ji et al. (2018b) focused Frank operations of 
SVNNs, and constructed the SVN prioritized Bonferroni 
mean (SVNFNPBM) operator under Frank aggregation 

function. Zhang et al. (2016) introduced normal cloud 
method on neutrosophic set and other related conviction 
such as backward cloud generator, two aggregated opera-
tors, and an NNC distance measurement, and using these 
ideas to construct MADM approach under SVN environ-
ments. Nancy (2016) defined operations of SVNNs based 
on Frank norm operations, and they proposed a decision-
making method after they define weighted aggregation 
operators. In Deschrijver et al. (2004); Deschrijver and 
Kerre (2002), proposed some aggregation operators based 
on algebraic operation of IFSs, which is a particular issue 
of t-norm (TN) and t-conorm (TCN). Wei et al. (2018) 
developed a MADM method based on bipolar fuzzy 
arithmetic and geometric weighted Hamacher aggrega-
tion operators and looked related properties of them. Gao 
et al. (2018) utilized Hamacher prioritized aggregation 
operators in the input arguments of dual hesitant bipolar 
fuzzy environment. Zhao and Wei (2013) applied hybrid 
operator using Einstein operations in multiple attrib-
ute decision-making method. Zhang (2017) introduced 
Frank aggregation operators for IVIFNs and develop a 
MAGDM problem. Yu (2013b) proposed Choquet aggre-
gation operator on the basis of Einstein operational rules 
under IFNs. Jana et al. (2018) have utilized Dombi aggre-
gation operator in bipolar fuzzy environment and then 
applying them to develop a MADM problems. Further, 
Jana et al. (2019a) utilized Dombi aggregation operator 
in MADM problems technique using picture fuzzy infor-
mation. Liu (2016) applied some new operational rules 
for SVNNs based on Archimedean sum and product, and 
investigated some special properties of them. In Liu et al. 
(2016), constructed neutrosophic Bonferroni weighted 
geometric mean operator based on multi-valued func-
tions. Ye (2016) take into account the expected values of 
neutrosophic linguistic numbers (NLN), and developed 
NLNWAA, NLNWGA operators using arithmetic and 
geometric average functions, and investigate their proper-
ties. Fan et al. (2017) constructed normalized weighted 
Bonferroni mean (LNNNWBM) operator and normalized 
weighted geometric Bonferroni mean (LNNNWGBM) 
operator under neutrosophic linguistic environment, and 
developed MAGDM problems using these operators. Lu 
and Ye (2017) proposed hybrid weighted arithmetic and 
geometric aggregation functions under SVN information 
and utilized these operators develop decision-making 
problems. Tan et al. (2017) introduced three generalized 
SVN linguistic operators which are followed as GSVN-
LWA, GSVNLOWA and GSVNLHA operator. Wu et al. 
(2018) defined the technique of SVN 2-tuple linguistic ele-
ment and its operational rules. They also developed some 
SVN2TL weighted arithmetic and geometric Hamacher 
aggregation operators under SVN2TL environment. Fur-
thermore, they developed an MAGDM method based on 
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these new operations. SVTNNs have important role to 
model some real life problems including indeterminant 
and inconsistent data. In this paper, we propose some 
types of Hamacher arithmetic and geometric aggregating 
operators called  (SVTNH) Hamacher  weighted averag-
ing (SVTNHWAA) operator, SVTNH ordered weighted 
arithmetic  averaging (SVTNHOWAA) operator, SVTNH 
hybrid weighted arithmetic averaging (SVTNHHWAA) 
operator, SVTNH weighted geometric averaging (SVT-
NHWGA) operator, SVTNH ordered weighted geometric 
averaging (SVTNHOWGA) operator and SVTNH hybrid 
weighted geometric averaging (SVTNHHWGA) opera-
tor. We also investigate some of their properties and we 
give a multi attributive decision making method based on 
the new operators for SVTNNs. Finally, we present an 
approach of MADM technique for the selection of soft-
ware systems of technology commercialization.

The rest of the article is organized as follows. In Sect. 2, 
some hypothesis and operations on the following environ-
ments IFNs, ITFNs and SVTNNs are depicted. In Sect. 3, 
Hamacher operations of SVTNNs are defined. In Sect. 4, 
some kinds of SVTNH arithmetic aggregating (SVT-
NHWAA) operators are introduced and some of their prop-
erties are discussed. In Sect. 5, some kinds of SVTNH geo-
metric averaging (SVTNHWGA) operators are introduced 
and some of results are investigated. In Sect. 6, a MADM 
method are developed based on these aggregating operators 
defined in this paper. In Sect. 7, an application of developed 
MADM method is given. In Sect. 8, conclusions of the paper 
and studies that can be made in future are presented.

2 � Preliminaries

In this section, we present briefly some concepts and opera-
tions related to intuitionistic fuzzy numbers (IFN), intuition-
istic trapezoidal fuzzy numbers (ITFN) and single valued 
trapezoidal neutrosophic numbers.

2.1 � Some concept of IFNs and ITFNs

Definition 1  (Wang and Zhang 2009) A intuitionistic trap-
ezoidal fuzzy number P̂ is an IF set on R (set of real num-
bers) which its membership functions is defined as follows:

and its non-membership function is defined as follows:

(1)𝜇P̂(x) =

⎧
⎪⎨⎪⎩

F̂P, if ê1 ≤ x < ê2
𝜇P, if ê2 ≤ x ≤ ê3
ĜP, if ê3 ≤ x < ê4
0, otherwise

where ê1, ê2, ê3, ê4, f̂1, f̂2, f̂3, f̂4 ∈ R and 𝜇P̂, 𝜈P̂ ⊆ [0, 1] such 
that 0 ≤ 𝜇P̂ + 𝜈P̂ ≤ 1.

The funct ions F̂P̂, ĜP̂, ĤP̂, K̂P̂ ∶ R → [0, 1] .  Here 
F̂P̂ ∶ [ê1, ê2] → [0, 1] ,  K̂P̂ ∶ [f̂3, f̂4] → [0, 1] a r e  con-
tinuous increasing function and ĜP̂ ∶ [ê3, ê4] → [0, 1] , 
ĤP̂ ∶ [f̂1, f̂2] → [0, 1] are continuous decreasing function. 
When continuous increasing and decreasing functions are 
linear, then ITFNs is preferred in practice.

Definition 2  (Wang and Zhang 2009) Let P̂ = (ê1, ê2, ê3, ê4) 
be a ITFN. Then, membership value of P̂ is defined by

and its non-membership value of P̂ is defined as follows:

w h e r e  𝜇P̂, 𝜈P̂ ⊂ [0, 1]  ,  0 ≤ 𝜇P̂ + 𝜈P̂ ≤ 1  a n d 
ê1, ê2, ê3, ê4, f̂1, f̂2, f̂3, f̂4 ∈ R . If [ê1, ê2, ê3, ê4] = [f̂1, f̂2, f̂3, f̂4] 
in an ITFNs P̂ , then ITFNs P̂ is presented as 
P̂ = ⟨(ê1, ê2, ê3, ê4);𝜇P̂, 𝜈P̂⟩.

Definition of NS is given in (Smarandache 1999) as 
follows:

Definition 3  (Smarandache 1999) Let X be finite, with a 
generic element in X denoted by x. A NS c̃ in X is defined by

where its truth-function T̂c is presented by T̂c ∶ X →]0−, 1+[ , 
indeterminacy-function Îc presented Îc ∶ X →]0−, 1+[ , and 
falsity- function F̂c interpreted as F̂c ∶ X →]0−, 1+[ . Also, 
T̂c , Îc and F̂c are real standard or non-standard subsets of 
]0−, 1+[ . There is no restriction on the sum of T̂c , Îc and F̂c , 
and so 0− ≤ T̂c + Îc + F̂c ≤ 3+.

(2)𝜈P̂(x) =

⎧
⎪⎨⎪⎩

ĤP, if f̂1 ≤ x < f̂2
𝜈P, if f̂2 ≤ x ≤ f̂3
K̂P, if f̂3 ≤ x < f̂4
0, otherwise

(3)𝜇P̃ =

⎧
⎪⎪⎨⎪⎪⎩

x−p1
ê2−ê1

𝜇P̂, if ê1 ≤ x < ê2

𝜇P̂, if ê2 ≤ x ≤ ê3
ê4−x

ê3−ê4
𝜇P̂, if ê3 < x ≤ ê4

0, otherwise

(4)𝜈P̂ =

⎧
⎪⎪⎨⎪⎪⎩

f̂2−x+𝜈P̂(x−f̂1)

f̂2−f̂1
, if f̂1 ≤ x < f̂2

𝜈P̂, if f̂2 ≤ x ≤ f̂3
x−f̂3+𝜈P̂(f̂4−x)

f̂4−f̂3
𝜇P̂, if f̂3 < x ≤ f̂4

0, otherwise.

c̃ =
�⟨T̂c(x), Îc(x), F̂c(x)⟩�x ∈ X

�
,
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For real applications of NS, Wang et al. (2010) introduced 
SVNs in the following definition.

Definition 4  (Wang et al. 2010) Let X be a finite set, with a 
generic element in X denoted by x. A SVNS is defined as:

where T̂c ∶ X → [0, 1] indicated the truth, Îc ∶ X → [0, 1] is 
the indeterminacy and F̂c ∶ X → [0, 1] is the falsity function 
of x to c with the condition 0 ≤ T̂c + Îc + F̂c ≤ 3.

The operational rules for SVNSs are given in Liu and Wang 
(2014a), Wang et al. (2010) and Ye (2014b).

Let c̃1 = (T̂c1 , Îc1 , F̂c1
) and c̃2 = (T̂c2 , Îc2 ,Nc2

) be two 
SVNSs.

1.	 c̃1
⨁

c̃2 =
�
T̂c1 + T̂c2 − T̂c1 T̂c2 , Îc1 Îc2 , F̂c1

F̂c2

�

2.	 c̃1
⨂

c2 =
�
T̂c1 T̂c2 (x), Îc1 + Îc2 − Îc1 Îc2 , F̂c1

+ F̂c2
− F̂c1

F̂c2

�

3.	 c̃1 ⊆ c̃2 if and only if following conditions are hold: 
T̂c1 ≤ T̂c2 ; Îc1 ≥ Îc2 ; F̂c1

≥ F̂c2

4.	 c1 is defined as follows: T̂c1
= F̂c1

 ; Îc1 = 1 − Îc1 ; F̂c1
= T̂c1

5.	 (c̃1 ∩ c̃2) =
(
min{T̂c1 , T̂c2}; max{Îc1 , Îc2}; max{F̂c1

, F̂c2
}
)

6.	 (c̃1 ∪ c̃2) =
(
max{T̂c1 , T̂c2}; min{Îc1 , Îc2}; min{F̂c1

, F̂c2
}
)
.

Definition 5  (Ye 2017) Let c̃ = (T̂c, Îc, F̂c) be a SVNN in 
ℝ (set of real numbers). Then, its (truth-, indeterminacy-, 
falsity)-membership functions are respectively defined as 
follows:

and

respectively.

c̃ =
�⟨T̂c(x), Îc(x), F̂c(x)⟩�x ∈ X

�
,

Tc̃(x) =

⎧⎪⎨⎪⎩

T̂L
c

if ê ≤ x < f̂

T̂c if f̂ ≤ x ≤ ĝ

T̂U
c

if ĝ < x ≤ ĥ

0 otherwise,

IÑ(x) =

⎧⎪⎨⎪⎩

ÎL
c

if ê ≤ x < f̂

Îc if f̂ ≤ x ≤ ĝ

ÎU
c

if ĝ < x ≤ ĥ

0 otherwise,

FÑ(x) =

⎧
⎪⎨⎪⎩

F̂L
c

if ê ≤ x < f̂

F̂c if f̂ ≤ x ≤ ĝ

F̂U
c

if ĝ < x ≤ ĥ

0 otherwise

,

Definition 6  (Ye 2017) A single-valued trapezoi-
dal neutrosophic number (SVTNN) is denoted by 
c̃ = {(ê1, ê2, ê3, ê4), (f̂1, f̂2, f̂3, f̂4), (ĝ1, ĝ2, ĝ3, ĝ4)} in a uni-
verse of discourse X, where parameters satisfy the relations 
ê1 ≤ ê2 ≤ ê3 ≤ ê4 , f̂1 ≤ f̂2 ≤ f̂3 ≤ f̂4 and ĝ1 ≤ ĝ2 ≤ ĝ3 ≤ ĝ4 . 
Then truth-Tc̃ , indeterminacy Ic̃ and falsity memberships Fc̃ 
are respectively defined as follows:

w h e r e  Tc, Ic,Fc ∈ [0, 1] w i t h  0 ≤ Tc̃ + Ic̃ + Fc̃ ≤ 3 
a n d  ê1, ê2, ê3, ê4, f̂1, f̂2, f̂3, f̂4, ĝ1, ĝ2, ĝ3, ĝ4 ∈ R  .  T h e n , 
Ñ = ⟨([ê1, ê2, ê3, ê4];T̂c), ([f̂1, f̂2, f̂3, f̂4];Îc), ([ĝ1, ĝ2, ĝ3, ĝ4];F̂c)⟩ 
i s  c a l l e d  S V T N N s .  I f 
[ê1, ê2, ê3, ê4] = [f̂1, f̂2, f̂3, f̂4] = [ĝ1, ĝ2, ĝ3, ĝ4]  i n  a 
SVTNNs Ñ  , then c̃ in SVTNNs can be denoted as 
c̃ = ⟨((ê1, ê2, ê3, ê4);T̂c, Îc, F̂c)⟩.

If ê2 = ê3 in a SVTNN c̃ , then SVTNN is reduces to 
SVTrNNs which is a special case of SVTNN c̃.

Definition 7  (Ye 2017) Let c̃1 = ⟨(ê1, f̂1, ĝ1, ĥ1);T̂c1 , T̂c1 , F̂c1
⟩ 

and c̃2 = ⟨(ê2, f̂2, ĝ2, ĥ2);T̂c2 , Îc2 , F̂c2
⟩ be two SVTNNs and 

𝜆 > 0 . Then operational rules for c̃1 and c̃2 are defined as 
follows:

1.	 c̃1
⨁

c̃2 = ⟨(ê1 + ê2, f̂1 + f̂2, ĝ1 + ĝ2, ĥ1 + ĥ2); T̂c1 + T̂c2
−T̂

c1
T̂
c2
, Î

c1
Î
c2
, F̂

c1
F̂
c2
⟩

(5)Tc̃(x) =

⎧
⎪⎪⎨⎪⎪⎩

x−ê1
ê2−ê1

T̂c if ê1 ≤ x < ê2

T̂c if ê2 ≤ x ≤ ê3
ê4−x

ê4−ê3
T̂c if ê3 < x ≤ ê4

0 otherwise,

(6)Ic̃(x) =

⎧
⎪⎪⎨⎪⎪⎩

f̂2−x+Îc(x−f̂1)

f̂2−f̂1
if f̂1 ≤ x < f̂2

Îc if f̂2 ≤ x ≤ f̂3
x−f̂3+Îc(f̂4−x)

f̂4−f̂3
if f̂3 ≤ x ≤ f̂4

0 otherwise,

(7)Fc̃(x) =

⎧
⎪⎪⎨⎪⎪⎩

ĝ2−x+F̂c(x−ĝ1)

ĝ2−ĝ1
if ĝ1 ≤ x < ĝ2

F̂c if ĝ2 ≤ x ≤ ĝ3
x−ĝ3+F̂c(ĝ4−x)

ĝ4−ĝ3
if ĝ3 < x ≤ ĝ4

0 otherwise.
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2.	 c̃1
⨂

c̃2 = ⟨(ê1ê2, f̂1 f̂2, ĝ1ĝ2, ĥ1ĥ2); T̂c1 T̂c2 , Îc1 + Îc2−

−Î
c1
Î
c2
, F̂

c1
+ F̂

c2
− F̂

c1
F̂
c2
⟩

3.	 𝜆c̃1 = ⟨(𝜆ê1, 𝜆f̂1, 𝜆ĝ1, 𝜆ĥ1); 1 − (1 − T̂c1 )
𝜆, I𝜆

c1
,F𝜆

c1
⟩

4.	 c̃𝜆
1
= ⟨(ê𝜆

1
, f̂ 𝜆
1
, ĝ𝜆

1
, ĥ𝜆

1
);T𝜆

c1
, 1 − (1 − Îc1 )

𝜆, 1 − (1 − F̂c1
)𝜆⟩.

In Deli and Subaş (2014), introduced score and accuracy 
functions of SVTNNs.

D e f i n i t i o n  8   ( D e l i  a n d  S u b a ş  2 0 1 4 )  L e t 
Ñ = ⟨(ê, f̂ , ĝ, ĥ); T̂c, Îc, F̂c⟩ be a SVTNN. Then score and 
accuracy function of c̃ are defined as follows:

respectively.

Based on the above functions, considering prioritized 
analysis between any two SVTNNs c̃1 and c̃2 is defined in 
Deli and Subaş (2014) as follows:

Let c̃1 and c̃2 be any two SVTNNs.

	 (i)	 If �(c̃1) < �(c̃2) , imply c̃1 ≺ c̃2
	 (ii)	 If �(c̃1) > �(c̃2) , imply c̃1 ≻ c̃2
	 (iii)	 If �(c̃1) = �(c̃2) , then

1.	 If 𝜑(c̃1) < 𝜑(c̃2) , imply c̃1 ≺ c̃2.
2.	 If 𝜑(c̃1) > 𝜑(c̃2) , imply c̃1 ≺ c̃2.
3.	 If 𝜑(c̃1) = 𝜑(c̃2) , imply c̃1 ∼ c̃2.

3 � Hamacher operations of single‑valued 
trapezoidal neutrosophic sets

3.1 � Hamacher operations

In FS theory, TN and TCN are the robust aid to present gen-
eral union and intersection of FS (Deschrijver et al. 2004; 
Roychowdhury and Wang 1998). The generalized union 
and intersection of TN and TCN on IFS were provided by 
Deschrijver and Kerre (2002). Hamachar (1978) introduced 
Hamacher operations known as Hamacher (Ham) product 
( 
⨂

 ) and Hamacher (Ham) sum ( 
⨁

 ), which are example 
of TN and TCN, respectively. Hamacher TN and TCN are 
provided in the following definition.

(8)

�(c̃) =
1

16

[
ê + f̂ + ĝ + ĥ

]
×
(
2 + T̂c − Îc − F̂c

)
�(c̃) ∈ [0, 1]

(9)
𝜑(Ñ) =

1

16

[
ê + f̂ + ĝ + ĥ

]
×
(
2 + T̂c − Îc + F̂c

)
,𝜑(Ñ) ∈ [0, 1]

(10)Ham(� , �) =�
⨂

� =
��

℘ + (1 −℘)(� + � − ��)

Usually, when ℘ = 1 , then Hamacher TN and TCN reduce 
to the following forms:

are called algebraic TN and algebraic TCN, respectively.
When ℘ = 2 , then Hamacher TN and TCN reduces to the 

following forms:

are known Einstein TN and Einstein TCN, respectively.

3.2 � Hamacher operations of SVTNNs

To this part, we introduce the notion of Ham operations 
on SVTNNs and prove some properties of this opera-
tions. Let c̃1 and c̃2 be SVTNNs and 𝜆 > 0 , then Ham prod-
uct and Ham sum of c̃1 = ⟨(ê1, f̂1, ĝ1, ĥ1); T̂c1 , Îc1 , F̂c1

⟩ and 
c̃2 = ⟨(ê2, f̂2, ĝ2, ĥ2); T̂c2 , Îc2 , F̂c2

⟩ defined are as follows:
1.	

2.	

(11)Ham∗(� , �) =�
⨁

� =
� + � − �� − (1 −℘)��

1 − (1 −℘)��
.

(12)Ham(� , �) =�
⨂

� = ��

(13)Ham∗(� , �) =�
⨁

� = � + � − ��.

(14)Ham(� , �) =�
⨂

� =
��

1 + (1 − �)(1 − �)

(15)Ham∗(� , �) =�
⨁

� =
� + �

1 + ��

c̃1

⨁
c̃2 =

⟨(
ê1 + ê2, f̂1 + f̂2, ĝ1 + ĝ2, ĥ1 + ĥ2

)
;

Tc1 + Tc2 − Tc1Tc2 − (1 −℘)Tc1Tc2
1 − (1 −℘)Tc1Tc2

,

Ic1 Ic2

℘ + (1 −℘)(Ic1 + Ic2 − Ic1 Ic2 )
,

Fc1
Fc2

℘ + (1 −℘)(Fc1
+ Fc2

− Fc1
Fc2

)

⟩

c̃1

⨂
c̃2 =

⟨(
ê1ê2, f̂1 f̂2, ĝ1ĝ2, ĥ1ĥ2

)
;

Tc1Tc2

℘ + (1 −℘)(Tc1 + Tc2 − Tc1Tc2 )
,

Ic1 + Ic2 − Ic1 Ic2 − (1 −℘)Ic1 Ic2
1 − (1 −℘)Ic1 Ic2

,

Fc1
+ Fc2

− Fc1
Fc2

− (1 −℘)Fc1
Fc2

1 − (1 −℘)Fc1
Fc2

⟩
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3.	

4.	

4 � SVTN‑Hamacher arithmetic aggregation 
operators

Based on the basis of Hamacher operation on SVTNNs, 
we propose single-valued trapezoidal neutrosophic Ham 
weighted arithmetic average (SVTNHWAA) operator, sin-
gle-valued trapezoidal neutrosophic Ham ordered weighted 
arithmetic average (SVTNHOWAA) operator and single-
valued trapezoidal neutrosophic Ham hybrid weighted arith-
metic average (SVTNHHAA) operator.

Definition 9  Let ̃cz =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
(z = 1, 2,… , v) 

be a number of SVTNNs. Then, SVTNHWAA operator is a 
function SVTNHWAA ∶ �v

→ � defined as follows:

where � = (�1,�2,… ,�v)
T  be the weight vector of 

c̃z(z = 1, 2,… , v) with 𝜓z > 0 and 
∑v

z=1
�z = 1.

By using Ham operations on SVTNNs, we get the fol-
lowing theorem.

Theorem 1  Let ̃cz =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 ( z = 1, 2,… , v) 

be a collection of SVTNNs. Then,

𝜆c̃1 =
⟨(

𝜆ê1, 𝜆f̂1, 𝜆ĝ1, 𝜆ĥ1

)
;

(1 + (℘ − 1)Tc1 )
𝜆 − (1 − Tc1 )

𝜆

(1 + (℘ − 1)Tc1 )
𝜆 + (℘ − 1)(1 − Tc1 )

𝜆
,

℘(Ic1 )
𝜆

(1 + (℘ − 1)(1 − Ic1 ))
𝜆 + (℘ − 1)(Ic1 )

𝜆
,

℘(Fc1
)𝜆

(1 + (℘ − 1)(1 − Fc1
))𝜆 + (℘ − 1)(Fc1

)𝜆

⟩
, 𝜆 > 0

c̃𝜆
1
=
⟨(

ê𝜆
1
, f̂ 𝜆
1
, ĝ𝜆

1
, ĥ𝜆

1

)
;

℘(Tc1 )
𝜆

(1 + (℘ − 1)(1 − Tc1 ))
𝜆 + (℘ − 1)(Tc1 )

𝜆
,

(1 + (℘ − 1)Ic1 )
𝜆 − (1 − Ic1 )

𝜆

(1 + (℘ − 1)Ic1 )
𝜆 + (℘ − 1)(1 − Ic1 )

𝜆
,

(1 + (℘ − 1)Fc1
)𝜆 − (1 − Fc1

)𝜆

(1 + (℘ − 1)Fc1
)𝜆 + (℘ − 1)(1 − Fc1

)𝜆

⟩
, 𝜆 > 0.

SVTNHWAA𝛹 (c̃1Ñ2,… , c̃v) =

v⨁
z=1

(𝜓zc̃z)

where � = (�1,�2,… ,�v) be the weight vector of 
c̃z(z = 1, 2,… , v) such that 𝜓z > 0 , and 

∑v

z=1
�z = 1.

By mathematical induction, We prove the Theorem 1 as 
follows:

Proof 

	 (i)	 When z = 1 , then �1 = 1 , therefore left side of the 
(16) becomes 

 and for right side of (16), we have 

 Hence, (16) holds for z = 1.
	 (ii)	 Assume that (16) holds for z = t , then 

(16)

SVTNHWAA𝜓 (c̃1, c̃2 … , c̃v) =

v�
z=1

(𝜓zc̃z)

=

�� v�
z=1

êz𝜓z,

v�
z=1

f̂z𝜓z,

v�
z=1

ĝz𝜓z,

v�
z=1

ĥz𝜓z

�
;

∏v

z=1
(1 + (℘ − 1)T̂z)

𝜓z −
∏v

z=1
(1 − T̂z)

𝜓z

∏v

z=1
(1 + (℘ − 1)T̂z)

𝜓z + (℘ − 1)
∏v

z=1
(1 − T̂z)

𝜓z

,

℘
∏v

z=1
(Îz)

𝜓z

∏v

z=1
(1 + (℘ − 1)(1 − Îz))

𝜓z + (℘ − 1)
∏v

z=1
(Îz)

𝜓z

,

℘
∏v

z=1
(F̂z)

𝜓z

∏v

z=1
(1 + (℘ − 1)(1 − F̂z))

𝜓z + (℘ − 1)
∏v

z=1
(F̂z)

𝜓z

�

SVTNHWAA𝛹 (c̃1, c̃2 … , c̃z) = c̃1

= ⟨(ê1, f̂1, ĝ1, ĥ1);T̂1, Î1, F̂1⟩

(17)

⟨
(ê1, f̂1, ĝ1, ĥ1);

1 + (℘ − 1)T̂1 − (1 − T̂1)

(1 + (℘ − 1)T̂1) + (℘ − 1)(1 − T̂1)
,

℘Î1

1 + (℘ − 1)(1 − Î1) + (℘ − 1)Î1
,

℘F̂1

1 + (℘ − 1)(1 − F̂1) + (℘ − 1)F̂1

⟩

=
⟨
(ê1, f̂1, ĝ1, ĥ1);T̂1, Î1, F̂1

⟩
.
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Now for z = t + 1 , then

(18)

SVTNHWA𝛹 (c̃1, c̃2 … , c̃t) =

t�
z=1

(𝜓zc̃z)

=

�� t�
z=1

êz𝜓z,

t�
z=1

f̂z𝜓z,

t�
z=1

ĝz𝜓z,

t�
z=1

ĥz𝜓z

�
;

∏t

z=1
(1 + (℘ − 1)T̂z)

𝜓z −
∏t

z=1
(1 − T̂z)

𝜓z

∏t

z=1
(1 + (℘ − 1)T̂z)

𝜓z + (℘ − 1)
∏t

z=1
(1 − T̂z)

𝜓z

,

℘
∏t

z=1
(Îz)

𝜓z

∏t

z=1
(1 + (℘ − 1)(1 − Îz))

𝜓z + (℘ − 1)
∏t

z=1
(Îz)

𝜓z

,

℘
∏t

z=1
(F̂z)

𝜓z

∏t

z=1
(1 + (℘ − 1)(1 − F̂z))

𝜓z + (℘ − 1)
∏t

z=1
(F̂z)

𝜓z

�
.

(19)

SVTNHWA𝛹 (c̃1, c̃2 … , c̃t, c̃t+1)

=

t�
z=1

(𝜓zc̃z)
�

(𝜓t+1c̃t+1)

=

�� t�
z=1

êz𝜓z,

t�
z=1

f̂z𝜓z,

t�
z=1

ĝz𝜓z,

t�
z=1

ĥz𝜓z

�
;

∏t

z=1
(1 + (℘ − 1)T̂z)

𝜓z −
∏t

z=1
(1 − T̂z)

𝜓z

∏t

z=1
(1 + (℘ − 1)T̂z)

𝜓z + (℘ − 1)
∏t

z=1
(1 − T̂z)

𝜓z

,

℘
∏t

z=1
(Îz)

𝜓z

∏t

z=1
(1 + (℘ − 1)(1 − Îz))

𝜓z + (℘ − 1)
∏t

z=1
(Îz)

𝜓z

,

℘
∏t

z=1
(F̂z)

𝜓z

(1 + (℘ − 1)
∏t

z=1
(1 − F̂z))

𝜓z + (℘ − 1)
∏t

z=1
(F̂z)

𝜓z

�

���
êt+1𝜓t+1, f̂t+1𝜓t+1, ĝt+1𝜓t+1, ĥt+1𝜓t+1

�
;

(1 + (℘ − 1)T̂t+1)
𝜓t+1 − (1 − T̂t+1)

𝜓t+1

(1 + (℘ − 1)T̂t+1)
𝜓t+1 + (℘ − 1)(1 − T̂t+1)

𝜓t+1

,

℘(Ît+1)
𝜓t+1

(1 + (℘ − 1)(1 − Ît+1))
𝜓t+1 + (℘ − 1)(Ît+1)

𝜓t+1

,

℘(F̂t+1)
𝜓t+1

(1 + (℘ − 1)(1 − F̂t+1))
𝜓t+1 + (℘ − 1)(F̂t+1)

𝜓t+1

�

=

�� t+1�
z=1

êz𝜓z,

t+1�
z=1

f̂z𝜓z,

t+1�
z=1

ĝz𝜓z,

t+1�
z=1

ĥz𝜓z

�
;

∏k+1

v=1
(1 + (℘ − 1)T̂z)

𝜓z −
∏t+1

z=1
(1 − T̂z)

𝜓z

∏t+1

z=1
(1 + (℘ − 1)T̂z)

𝜓z + (℘ − 1)
∏t+1

z=1
(1 − T̂z)

𝜓z

,

℘
∏t+1

z=1
(Îz)

𝜓z

∏t+1

z=1
(1 + (℘ − 1)(1 − Îz))

𝜓z + (℘ − 1)
∏t+1

z=1
(Îz)

𝜓z

,

Thus, z = t + 1 holds for (16).
Hence, from steps (i) and (ii), we conclude that (16) holds 

for any z ∈ N . □

Theorem 2  (Idempotency) Let c̃z =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 

(z = 1, 2,… , v) be a number of SVTNNs, where c̃z = c̃ for all 
z. Then,

Theorem 3  (Boundedness) Let c̃z =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 

(z = 1, 2,… , v) be a number of SVTNNs and let

Then,

Theorem 4  (Monotonicity) Let c̃z =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 

and ̃c�

v
=
⟨
(ê�

v
, f̂ �
v
, ĝ�

v
, ĥ�

v
);T̂ �

z
, Î�

z
, F̂�

z

⟩
(z = 1, 2,… , v) be two sets 

of SVTNNs. If c̃z ≤ c̃
′

z
 for all z, then

Now, we considered two special cases subsequently for the 
SVTNHWA operator when the parameter ℘ takes the values 
1 or 2.

Case 1 If ℘ = 1 , then SVTNHWA is reduced to single-
valued trapezoidal neutrosophic weighted arithmetic averaging 
(SVTNWA) operator

(20)

℘
∏t+1

z=1
(F̂z)

𝜓z

∏t+1

z=1
(1 + (℘ − 1)(1 − F̂z))

𝜓z + (℘ − 1)
∏t+1

z=1
(F̂z)

𝜓z

�
.

SVTNHWA𝜓 (c̃1, c̃2 … , c̃v) = c̃.

c̃− =min
z

c̃z =
⟨(

min
z

êz, min
z

f̂z, min
z

ĝz, min
z

ĥz

)
;

min
z
(T̂z), max

z
(Îz), max

z
(F̂z)

⟩

c̃+ =max
z

c̃z =
⟨(

max
z

êz, max
z

f̂z, max
z

ĝz, max
z

ĥz

)
;

max
z
(T̂z), min

z
(Îz), min

z
(F̂z)

⟩
.

c̃− ≤ SVTNHWA𝜓 (c̃1, c̃2 … , c̃v) ≤ c̃+.

(21)

SVTNHWA𝜓 (c̃1, c̃2 … , c̃v)

≤ SVTNHWA𝜓 (c̃
�

1
, c̃

�

2
,… , c̃

�

v
).

(22)

SVTNWA𝜓 (c̃1, c̃2 … , c̃v) =

v⨁
z=1

(𝜓zc̃z)

=

⟨( n∑
v

êz𝜓z,

n∑
j

f̂z𝜓z,

n∑
j

ĝz𝜓z,

n∑
v

ĥz𝜓z

)
;

1 −

v∏
z=1

(1 − T̂z)
𝜓z ,

v∏
z=1

(Îz)
𝜓z ,

v∏
z=1

(F̂z)
𝜓z

⟩
.
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Case 2 If ℘ = 2 , then SVTNHWA is reduced to single-
valued trapezoidal Einstein weighted arithmetic averaging 
(SVTNEWA) operator:

D e f i n i t i o n  1 0   L e t  c̃z =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 

(z = 1, 2,… , v) be a number of SVTNNs. The SVTNHOWA 
operator of dimension v is a function SVTNHOWA ∶ �v

→ � 
with associated vector � = (�1,�2,… ,�v)

T  such that 
𝜓z > 0 , and 

∑v

z=1
�z = 1 . Therefore,

where (�(1), �(2),… , �(n)) are the permutation of 
�(z)(z = 1, 2,… , v) ,  for which c̃𝜎(z−1) ≥ c̃𝜎(z) for all 
z = 1, 2,… , v.

Based on Hamacher operation on SVTNNs, we can intro-
duced the following.

Theorem 5  Let cz =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 (z = 1, 2,… , v) 

be a collection of SVTNNs. A SVTNHOWAA operator is a 
function SVTNHOWA ∶ �v

→ � with associated vector 
� = (�1,�2,… ,�v)

T  such that 𝜓z > 0 , and 
∑v

z=1
�z = 1 . 

Then,

(23)

SVTNEWAA𝛹 (c̃1, c̃2 … , c̃v) =

v�
z=1

(𝜓zc̃z)

=

�� n�
v

êz𝜓z,

n�
v

f̂z𝜓z,

n�
v

ĝz𝜓z,

n�
v

ĥz𝜓z

�
;

∏v

z=1
(1 + T̂z)

𝜓z −
∏v

z=1
(1 − T̂z)

𝛹

∏v

z=1
(1 + T̂z)

𝜓z +
∏v

z=1
(1 − T̂z)

𝛹
,

2
∏v

z=1
(Îz)

𝜓z

∏v

z=1
(2 − Îz)

𝜓z +
∏v

z=1
(Îz)

𝜓z

,

2
∏v

z=1
(F̂z)

𝜓z

∏v

z=1
(2 − F̂z)

𝜓z +
∏v

z=1
(F̂z)

𝜓z

�
.

(24)SVTNHOWA𝜓 (c̃1, c̃2 … , c̃v) =

v⨁
z=1

(𝜓zc̃𝜎(z))

(25)

SVTNHOWA𝛹 (c̃1, c̃2 … , c̃v) =

v�
z=1

(𝜓zc̃𝜎(z))

=

�� v�
z=1

ê𝜎(v)𝜓z,

v�
z=1

f̂𝜎(z)𝜓z,

v�
z=1

ĝ𝜎(z)𝜓z,

v�
z=1

ĥ𝜎(z)𝜓z

�
;

∏v

z=1
(1 + (℘ − 1)T̂𝜎(z))

𝜓z −
∏v

z=1
(1 − T̂𝜎(z))

𝜓z

∏v

z=1
(1 + (℘ − 1)T̂𝜎(z))

𝜓z + (℘ − 1)
∏v

z=1
(1 − T̂𝜎(z))

𝜓z

,

℘
∏v

z=1
(Î𝜎(z))

𝜓z

∏v

z=1
(1 + (℘ − 1)(1 − Î𝜎(z)))

𝜓z + (℘ − 1)
∏v

z=1
(Î𝜎(z))

𝜓z

,

℘
∏v

z=1
(F̂𝜎(z))

𝜓z

(1 + (℘ − 1)
∏v

z=1
(1 − F̂𝜎(z))

𝜓z + (℘ − 1)
∏v

z=1
(F̂𝜎(z))

𝜓z

�

where (�(1), �(2),… , �(n)) are the permutation of 
�(z)(z = 1, 2,… , v) ,  for which c̃𝜎(z−1) ≥ c̃𝜎(z) for all 
z = 1, 2,… , v.

The SVTNHOWA operator follows these properties as:

Theorem 6  (Idempotency) If c̃z =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 

(z = 1, 2,… , v) be a number of SVTNNs such that c̃z = c̃ for 
all z. Then,

Theorem 7  (Boundedness) Let c̃z =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 

(z = 1, 2,… , v) be a number of SVTNNs and let

Then,

T h e o r e m   8   ( M o n o t o n i c i t y  p r o p e r t y )  L e t 
c̃z =

⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 a n d 

c̃
�

z
=
⟨
(ê�

z
, f̂ �
z
, ĝ�

z
, ĥ�

z
);T̂ �

z
, Î�

z
, F̂�

z

⟩
(z = 1, 2,… , v) be two sets of 

SVTNNs, if c̃z ≤ c̃
′

z
 for all z, then

Theorem 9  (Commutativity) Let c̃z(z = 1, 2,… , v) and c̃′

z
 

(z = 1, 2,… , v) be two sets of SVTNNs. Then,

where  c̃
�

z
(z = 1, 2,… , v) i s  any  permutat ion  o f 

c̃z(z = 1, 2,… , v).

There are two cases arises when the parameter ℘ takes 1 
or 2.

Case 1 If ℘ = 1 , then SVTNHOWA is reduced to single-
valued trapezoidal neutrosophic ordered weighted arithmetic 
averaging (SVTNOWAA) operator

(26)SVTNHOWA𝜓 (c̃1, c̃2 … , c̃v) = c̃.

c̃− = min
z

c̃z, c̃+ = max
z

c̃z.

c̃− ≤ SVTNHOWA𝜓 (c̃1, c̃2 … , c̃v) ≤ c̃+.

SVTNHOWA𝜓 (c̃1, c̃2 … , c̃v) ≤ SVTNHOWA𝜓 (c̃
�

1
, c̃

�

2
,… , c̃

�

v
).

SVTNHOWA𝜓 (c̃1, c̃2 … , c̃v)

= SVTHOWA𝜓 (c̃
�

1
, c̃

�

2
,… , c̃

�

v
)
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Case 2 If ℘ = 2 , then SVTNHOWA is transformed to the 
SVTNEOWA operator:

Above Definitions 12 and 13, we see that SVTNHWA opera-
tor considered the weights of SVTN values, other hand SVT-
NHOWAA imply weights of the given ordered positions of 
SVTN values instead of weights of the SVTN values. There-
fore, weights represent both the operators SVTNHWA and 
SVTNHOWA are in different ways. But, they are examined 
only one of them.

To overcome this difficulties, we introduce SVTN-
Hamacher hybrid arithmetic averaging (SVTNHHA) 
operator.

Definition 11  A SVTN-Ham hybrid arithmetic averag-
ing (SVTNHHA) operator of dimension v is a function 
SVTNHHA ∶ �v

→ � , with associated weight vector 
� = (�1,�2,… ,�v) such that 𝜓z > 0 , and 

∑v

z=1
�z = 1 . 

Further,

SVTNHOWA𝛹 (c̃1, c̃2 … , c̃v) =

v⨁
z=1

(𝜓zc̃z)

=

⟨( v∑
z=1

ê𝜎(v)𝜓z,

v∑
z=1

f̂𝜎(z)𝜓z,

v∑
z=1

ĝ𝜎(z)𝜓z,

v∑
z=1

ĥ𝜎(z)𝜓z

)
;

1 −

v∏
z=1

(1 − T𝜎(v))
𝜓z ,

v∏
z=1

(I𝜎(v))
𝜓z ,

v∏
z=1

(F𝜎(v))
𝜓z

⟩
.

SVTNEOWA𝛹 (c̃1, c̃2 … , c̃v) =

v�
z=1

(𝜓zc̃z)

=

�� v�
z=1

ê𝜎(z)𝜓z,

v�
z=1

f̂𝜎(z)𝜓z,

v�
z=1

ĝ𝜎(z)𝜓z,

v�
z=1

ĥ𝜎(z)𝜓z

�
;

∏v

z=1
(1 + T̂𝜎(z))

𝜓z −
∏v

z=1
(1 − T̂𝜎(z))

𝛹

∏v

z=1
(1 + T̂𝜎(z))

𝜓z +
∏v

z=1
(1 − T̂𝜎(z))

𝛹
,

2
∏v

z=1
(Î𝜎(z))

𝜓z

∏v

z=1
(2 − Î𝜎(z))

𝜓z +
∏v

z=1
(Î𝜎(z))

𝜓z

,

2
∏v

z=1
(F̂𝜎(z))

𝜓z

∏v

z=1
(2 − F̂𝜎(z))

𝜓z +
∏v

z=1
(F̂𝜎(z))

𝜓z

�
.

where ̇̃c𝜎(z) is the zth largest weighted SVTN values 
̇̃cz( ̇̃cz = vwzc̃z, z = 1, 2,… , v) , and w = (w1,w2,… ,wv)

T 
be the v weight vector of ̇̃cz with wz > 0 and 

∑v

z=1
wz = 1 , 

where v is follows as balancing coefficient. When 
w = (1∕v, 1∕v,… , 1∕v) , then SVTNHWAA operator is a 
particular issue of SVTNHHAA operator.

Let � = (1∕v, 1∕v,… , 1∕v) , then SVTNHOWAA is a par-
ticular issue of the operator SVTNHHWAA. Thus, SVT-
NHHWAA operator is a generalization of SVTNHWAA and 
SVTNHOWAA, which review the degrees of the given class 
and their ordered positions.

Now we describe two cases of the SVTNHHWA opera-
tor for the values of ℘:

Case 1 If ℘ = 1 , then SVTNHHWA is reduced to the 
SVTN-hybrid weighted arithmetic averaging (SVTrN-
HWA) operator given as follows:

Case 2 If ℘ = 2 , then SVTNHHWA operator is reduced to 
the SVTN-Einstein hybrid weighted arithmetic averaging 
(SVTNEHWA) operator given as follows:

SVTNHHA𝜓 ,𝛹 (c̃1, c̃2 … , c̃v) =

v�
z=1

(𝜓z
̇̃c𝜎(z))

=

�� v�
z=1

ê𝜎(v)𝜓z,

v�
z=1

f̂𝜎(z)𝜓z,

v�
z=1

ĝ𝜎(z)𝜓z,

v�
z=1

ĥ𝜎(z)𝜓z

�
;

∏v

z=1
(1 + (℘ − 1) ̇̂T𝜎(z))

𝜓z −
∏v

z=1
(1 − ̇̂

T𝜎(z))
𝜓z

∏v

z=1
(1 + (℘ − 1) ̇̂T𝜎(z))

𝜓z + (℘ − 1)
∏v

z=1
(1 − ̇̂

T𝜎(z))
𝜓z

,

℘
∏v

z=1
( ̇̂I𝜎(z))

𝜓z

∏v

z=1
(1 + (℘ − 1)(1 − ̇̂

I𝜎(z)))
𝜓z + (℘ − 1)

∏v

z=1
( ̇̂I𝜎(z))

𝜓z

,

℘
∏v

z=1
( ̇̂F𝜎(z))

𝜓z

(1 + (℘ − 1)
∏v

z=1
(1 − ̇̂

F𝜎(z))
𝜓z + (℘ − 1)

∏v

z=1
( ̇̂F𝜎(z))

𝜓z

�

SVTNHWA𝛹 (c̃1, c̃2 … , c̃v) =

v⨁
z=1

(𝜓z
̇̃Nv)

=

⟨( v∑
z=1

ê𝜎(v)𝜓z,

v∑
z=1

f̂𝜎(z)𝜓z,

v∑
z=1

ĝ𝜎(z)𝜓z,

v∑
z=1

ĥ𝜎(z)𝜓z

)
;

1 −

v∏
z=1

(1 − ̇̂
T𝜎(z))

𝜓z ,

v∏
z=1

( ̇̂I𝜎(z))
𝜓z ,

v∏
z=1

(Ḟ𝜎(v))
𝜓z

⟩
.



3726	 C. Jana et al.

1 3

(27)

SVTNEHWAA𝛹 (c̃1, c̃2 … , c̃v) =

v�
z=1

(𝜓z
̇̃Nv)

=

�� v�
z=1

ê𝜎(v)𝜓z,

v�
z=1

f̂𝜎(z)𝜓z,

v�
z=1

ĝ𝜎(z)𝜓z,

v�
z=1

ĥ𝜎(z)𝜓z

�
;

∏v

z=1
(1 + ̇̂

T𝜎(z))
𝜓z −

∏v

z=1
(1 − ̇̂

T𝜎(z))
𝛹

∏v

z=1
(1 + ̇̂

T𝜎(z))
𝜓z +

∏v

z=1
(1 − ̇̂

T𝜎(z))
𝛹
,

2
∏v

z=1
( ̇̂I𝜎(z))

𝜓z

∏v

z=1
(2 − ̇̂

I𝜎(z))
𝜓z +

∏v

z=1
( ̇̂I𝜎(z))

𝜓z

,
2
∏v

z=1
( ̇̂F𝜎(z))

𝜓z

∏v

z=1
(2 − ̇̂

F𝜎(z))
𝜓z +

∏v

z=1
( ̇̂F𝜎(z))

𝜓z

�
.

5 � SVTN‑Hamacher geometric aggregation 
operators

To this part, we introduce Hamacher geometric aggrega-
tion operators under SVTN information such as (SVT-
NHWGA)operator, (SVTNHOWGA) operator and (SVT-
NHHWGA) operator.
D e f i n i t i o n  1 2   L e t 
c̃z =

⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
(z = 1, 2,… , v) be a number of 

SVTNNs. Then, SVTNHWGA operator is a function 
�v

→ � such that

where � = (�1,�2,… ,�v)
T  be the weight vector of 

c̃z(z = 1, 2,… , v) with 𝜓z > 0 and 
∑v

z=1
�z = 1.

We have drawn the following theorem using Hamacher 
operations on SVTNNs.

T h e o r e m   1 0   L e t  c̃z =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 

( z = 1, 2,… , v) be a number of SVTNNs. Then, aggregated 
value of them using the SVTNHWGA operation is also a 
SVTNN, and

SVTNHWGA𝜓 (c̃1, c̃2 … , c̃v) =

v⨂
z=1

(c̃z)
𝜓z

(28)

SVTNHWGA𝜓 (c̃1, c̃2 … , c̃v) =

n�
v=1

(c̃z)
𝜓z

=

�� v�
z=1

(êz)
𝜓z ,

v�
z=1

(f̂z)
𝜓z ,

v�
z=1

(ĝz)
𝜓z ,

v�
z=1

(ĥz)
𝜓z

�
;

℘
∏v

z=1
(T̂z)

𝜓z

∏v

z=1
(1 + (℘ − 1)(1 − T̂z))

𝜓z + (℘ − 1)
∏v

z=1
(T̂z)

𝜓z

∏v

z=1
(1 + (℘ − 1)T̂z)

𝜓z −
∏v

z=1
(1 − Îz)

𝜓z

∏v

z=1
(1 + (℘ − 1)Îz)

𝜓z + (℘ − 1)
∏v

z=1
(1 − Îz)

𝜓z

,

∏v

z=1
(1 + (℘ − 1)F̂z)

𝜓z −
∏v

z=1
(1 − F̂z)

𝜓z

∏v

z=1
(1 + (℘ − 1)F̂z)

𝜓z + (℘ − 1)
∏v

z=1
(1 − F̂z)

𝜓z

�

where � = (�1,�2,… ,�v) be the weight vector of 
c̃z(z = 1, 2,… , v) such that 𝜓z > 0 , and 

∑v

z=1
�z = 1.

Proof  Proved by mathematical induction follows from Theo-
rem 1. � □

T h e o r e m   1 1   ( I d e m p o t e n c y )  I f 
c̃z =

⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
(z = 1, 2,… , v) are all equal, 

i.e. c̃z = c̃ for all z, then

T h e o r e m   1 2   ( B o u n d e d n e s s )  L e t 
c̃z =

⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
(z = 1, 2,… , v) be a number of 

SVTNNs and let

Then,

T h e o r e m   1 3   ( M o n o t o n i c i t y )  L e t 
c̃z =

⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
(z = 1, 2,… , v)  a n d 

c̃
�

z
(z = 1, 2,… , v) be two sets of SVTNNs. If c̃z ≤ c̃

′

z
 for all z, 

then

SVTNHWGA𝜓 (c̃1, c̃2 … , c̃v) = c̃.

c̃− =min
z

c̃z =
⟨(

min
z

êz, min
z

f̂z, min
z

ĝz, min
z

ĥz

)
;

min
z
(T̂z), max

z
(Îz), max

z
(F̂z)

⟩

c̃+ =max
z

c̃z =
⟨(

max
z

êz, max
z

f̂z, max
z

ĝz, max
z

ĥz

)
;

max
z
(T̂z), min

z
(Îz), min

z
(F̂z)

⟩
.

c̃− ≤ SVTNHWGA𝛹 (c̃1, c̃2 … , c̃v) ≤ c̃+.

SVTNHWGA𝜓 (c̃1, c̃2 … , c̃v)

≤ SVTNHWGA𝜓 (c̃
�

1
, c̃

�

2
,… , c̃

�

v
).
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Theorem 14  Let ̃cz =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
(z = 1, 2,… , v) 

be a number of SVTNNs. A SVTNHOWGA operator of 
dimension v is a function SVTNHOWGA ∶ �v

→ � with 
associated vector � = (�1,�2,… ,�v)

T such that 𝜓z > 0 , 
and 

∑v

z=1
�z = 1 . Furthermore,

where (�(1), �(2),… , �(v)) are the permutation of 
�(z)(z = 1, 2,… , v) ,  for which c̃𝜎(z−1) ≥ c̃𝜎(z) for all 
z = 1, 2,… , v.

The following properties can be easily proved for SVT-
NHOWGA operator.

T h e o r e m   1 5   ( I d e m p o t e n c y )  I f 
c̃z =

⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
(z = 1, 2,… , v) such that ̃cz = c̃ 

for all z. Then,

T h e o r e m   1 6   ( B o u n d e d n e s s )  L e t 
c̃z =

⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
(z = 1, 2,… , v) be a number of 

SVTNNs and let c̃− = min
z

c̃z, c̃+ = maxz c̃z. Then,

T h e o r e m   1 7   ( M o n o t o n i c i t y )  L e t 
c̃z =

⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
(z = 1, 2,… , v)  a n d 

c̃
�

z
(z = 1, 2,… , v) be two sets of SVTNN. If c̃z ≤ c̃

′

z
 for all z. 

Then,

(31)

SVTNHOWGA𝜓 (c̃1, c̃2 … , c̃v) =

v�
z=1

(c̃𝜎(z))
𝜓z

=

�� v�
z=1

(ê𝜎(z))
𝜓z ,

v�
z=1

(f̂𝜎(z))
𝜓z ,

v�
z=1

(ĝ𝜎(z))
𝜓z ,

v�
z=1

(ĥ𝜎(z))
𝜓z

�
;

℘
∏v

z=1
(T̂𝜎(z))

𝜓z

∏v

z=1
(1 + (℘ − 1)(1 − T̂𝜎(z)))

𝜓z + (℘ − 1)
∏v

z=1
(T̂𝜎(z))

𝜓z

,

∏v

z=1
(1 + (℘ − 1)Î𝜎(z))

𝜓z −
∏v

z=1
(1 − Î𝜎(z))

𝜓z

∏v

z=1
(1 + (℘ − 1)Î𝜎(z))

𝜓z + (℘ − 1)
∏v

z=1
(1 − Î𝜎(z))

𝜓z

,

∏v

z=1
(1 + (℘ − 1)F̂𝜎(z))

𝜓z −
∏v

z=1
(1 − F̂𝜎(z))

𝜓z

∏v

z=1
(1 + (℘ − 1)F̂𝜎(z))

𝜓z + (℘ − 1)
∏v

z=1
(1 − F̂𝜎(z))

𝜓z

�

SVTNHOWGA𝜓 (c̃1, c̃2 … , c̃v) = c̃.

c̃− ≤ SVTNHOWGA𝜓 (c̃1, c̃2 … , c̃v) ≤ c̃+.

SVTNHOWGA𝜓 (c̃1, c̃2 … , c̃v)

≤ SVTNHOWGA𝜓 (c̃
�

1
, c̃

�

2
,… , c̃

�

v
).

Now, we considered two special cases subsequently for the 
SVTNHWGA operator when the parameter ℘ takes the val-
ues 1 or 2.

Case 1 If ℘ = 1 , then SVTNHWGA operator will reduce 
to (SVTNWGA) operator:

Case 2 If ℘ = 2 , then SVTNHWGA operator is reduces to 
SVTNEWGA operator:

D e f i n i t i o n  1 3   L e t  c̃z =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 

(z = 1, 2,… , v) be a number of SVTNNs. A SVTNHOWGA 
operator is a function SVTNHOWGA ∶ �v

→ � with associ-
ated vector � = (�1,�2,… ,�v)

T  such that 𝜓z > 0 , and ∑v

z=1
�z = 1 . Therefore,

where (�(1), �(2),… , �(v)) are the permutation of 
�(z)(z = 1, 2,… , v) ,  for which c̃𝜎(z−1) ≥ c̃𝜎(z) for all 
z = 1, 2,… , v.

The following theorem is develop based on Ham-opera-
tion on SVTNNs.

SVTNWGA𝛹 (c̃1, c̃2 … , c̃v) =

n⨂
v=1

(c̃z)
𝜓z

=

⟨( v∏
z=1

(êz)
𝜓
z
,

n∏
v

(f̂z)
𝜓
z
,

v∏
z=1

(ĝz)
𝜓
z
,

v∏
z=1

(ĥz)
𝜓
z

)
;

v∏
z=1

(T̂z)
𝜓z , 1 −

v∏
z=1

(1 − Îz)
𝜓z , 1 −

v∏
z=1

(1 − F̂z)
𝜓z

⟩
.

(29)

SVTNEWGA𝜓 (c̃1, c̃2 … , c̃v) =

v�
z=1

(c̃z)
𝜓z

=

�� v�
z=1

(êz)
𝜓z ,

v�
z=1

(f̂z)
𝜓z ,

v�
z=1

(ĝz)
𝜓z ,

v�
z=1

(ĥz)
𝜓z

�
;

2
∏v

z=1
(T̂z)

𝜓z

∏v

z=1
(2 − T̂z)

𝜓z +
∏v

z=1
(T̂z)

𝜓z

,

∏v

z=1
(1 + Îz)

𝜓z −
∏v

z=1
(1 − Îz)

𝜓z

∏v

z=1
(1 + Îz)

𝜓z +
∏v

z=1
(1 − Îz)

𝛹
,

∏v

z=1
(1 + F̂z)

𝜓z −
∏v

z=1
(1 − F̂z)

𝜓z

∏v

z=1
(1 + F̂z)

𝜓z +
∏v

z=1
(1 − F̂z)

𝜓z

�
.

(30)SVTNHOWGA𝜓 (c̃1, c̃2 … , c̃v) =

v⨂
z=1

(c̃𝜎(z))
𝜓z



3728	 C. Jana et al.

1 3

Theorem 18  (Commutativity) Let c̃z(z = 1, 2,… , v) and c̃′

z
 

(z = 1, 2,… , v) be two sets of SVTNNs. Then,

where  c̃
�

z
(z = 1, 2,… , v) i s  any  permutat ion  o f 

c̃z(z = 1, 2,… , v).

If it is taken the 1 and 2, then there are two cases for the 
parameter ℘.

Case 1 If ℘ = 1 , then SVTNHOWGA operator reduces to 
SVTNOWGA operator

Case 2 If ℘ = 2 , then SVTNHOWGA operator is reduced 
to the SVTNEOWGA operator:

In Definitions 12 and 13, we see that SVTNHWGA opera-
tor considered weights only the SVTN values, other hand 
the SVTNHOWGA operator weights imply the given 
ordered positions of the weights of SVTN values them-
selves. Therefore, weights interpreted in SVTNHWGAA 
and SVTNHOWGA are in different view. But, they are 
examine only one of them. To overcome this problems, we 

SVTNHOWGA𝜓 (c̃1, c̃2 … , c̃v)

= SVTNHOWGA𝜓 (c̃
�

1
, c̃

�

2
,… , c̃

�

v
)

SVTNOWGA𝜓 (c̃1, c̃2 … , c̃v) =

v⨂
z=1

(c̃z)
𝜓z

=

⟨( v∏
z=1

(ê𝜎(z))
𝜓z ,

v∏
z=1

(f̂𝜎(z))
𝜓z ,

v∏
z=1

(ĝ𝜎(z))
𝜓z ,

v∏
z=1

(ĥ𝜎(z))
𝜓z

)
;

v∏
z=1

(T̂𝜎(z))
𝛹
z
, 1 −

v∏
z=1

(1 − Î𝜎(z))
𝜓z , 1 −

v∏
z=1

(1 − F̂𝜎(z))
𝜓z

⟩
.

(32)

SVTNEOWGA𝜓 (c̃1, c̃2 … , c̃v) =

v�
z=1

(c̃z)
𝜓z

=

�� v�
z=1

(ê𝜎(z))
𝜓z ,

v�
z=1

(f̂𝜎(z))
𝜓z ,

v�
z=1

(ĝ𝜎(z))
𝜓z ,

v�
z=1

(ĥ𝜎(z))
𝜓z

�
;

2
∏v

z=1
(T̂𝜎(z))

𝜓z

∏v

z=1
(2 − T̂𝜎(z))

𝜓z +
∏v

z=1
(T̂𝜎(v))

𝜓z

,

∏v

z=1
(1 + Î𝜎(z))

𝜓z −
∏v

z=1
(1 − Î𝜎(z))

𝜓z

∏v

z=1
(1 + Î𝜎(z))

𝜓z +
∏v

z=1
(1 − Î𝜎(z))

𝜓z

,

∏v

z=1
(1 + F̂𝜎(z))

𝜓z −
∏v

z=1
(1 − F̂𝜎(z))

𝜓z

∏v

z=1
(1 + F̂𝜎(z))

𝜓z +
∏v

z=1
(1 − F̂𝜎(z))

𝜓z

�
.

introduced SVTN-Hamacher hybrid geometric averaging 
(SVTNHHGA) operator.

Definition 14  Let Nj =
⟨
(êz, f̂z, ĝz, ĥz);T̂z, Îz, F̂z

⟩
 be a number 

of SVTNNs. Then, SVTNHHGA operator of dimension v is 
a function SVTNHHGA ∶ �v

→ � , with associated weight 
vector � = (�1,�2,… ,�v) such that 𝜓z > 0 ,  and ∑v

z=1
�z = 1 . Therefore, SVTNHHWGA operator can be 

evaluated as

where ̇̃c𝜎(z) is the zth largest weighted trapezoidal neu-
trosophic values ̇̃cz ( ̇̃zc = vwzc̃z, z = 1, 2,… , v) ,  and 
w = (w1,w2,… ,wv)

T  be the weight vector of ̇̃cz with 
wz > 0 and 

∑v

z=1
wz = 1 , where v is the balancing coeffi-

cient. When w = (1∕v, 1∕v,… , 1∕v) , then SVTNHWGA 
operator is a particular issue of SVTNHHGA operator. Let 
� = (1∕v, 1∕v,… , 1∕v) , then SVTNHOWGA is a usual issue 
of the SVTNHHGA operator. Thus, SVTNHHGA is a exten-
sion of both the SVTNHWGA and SVTNHOWGA opera-
tors, which reflects the degrees of the given arguments and 
their ordered positions.

Now we describe two cases of the SVTNHHGA operator 
for the values of ℘:

Case 1 If ℘ = 1 , then SVTNHHWGA operator is reduced 
to the SVTNHGA operator:

(33)

SVTNHHWGA𝛹 (c̃1, c̃2 … , c̃v) =

n�
v=1

( ̇̃c𝜎(z))
𝜓z

=

�� v�
z=1

ê𝜎(z)𝜓z,

v�
z=1

f̂𝜎(z)𝜓z,

v�
z=1

ĝ𝜎(z)𝜓z,

v�
z=1

ĥ𝜎(z)𝜓z

�
;

℘
∏v

z=1
( ̇̂T𝜎(z))

𝜓z

∏v

z=1
(1 + (℘ − 1)(1 − ̇̂

T𝜎(z)))
𝜓z + (℘ − 1)

∏v

z=1
( ̇̂T𝜎(z))

𝜓z

,

∏v

z=1
(1 + (℘ − 1) ̇̂I𝜎(z))

𝜓z −
∏v

z=1
(1 − ̇̂

I𝜎(z))
𝜓z

∏v

z=1
(1 + (℘ − 1) ̇̂I𝜎(z))

𝜓z + (℘ − 1)
∏v

z=1
(1 − ̇̂

I𝜎(z))
𝜓z

,

∏v

z=1
(1 + (℘ − 1) ̇̂F𝜎(z))

𝜓z −
∏v

z=1
(1 − ̇̂

F𝜎(z))
𝜓z

∏v

z=1
(1 + (℘ − 1) ̇̂F𝜎(z))

𝜓z + (℘ − 1)
∏v

z=1
(1 − ̇̂

F𝜎(z))
𝜓z

�

SVTNHWGA𝛹 (c̃1, c̃2 … , c̃v) =

v⨂
z=1

( ̇̃cz)
𝜓z

=

⟨( v∏
z=1

(ê𝜎(z))
𝜓z ,

v∏
z=1

(f̂𝜎(z))
𝜓z ,

v∏
z=1

(ĝ𝜎(z))
𝜓z ,

v∏
z=1

(ĥ𝜎(z))
𝜓z

)
;

v∏
z=1

( ̇̂T𝜎(z))
𝜓z , 1 −

v∏
z=1

(1 − ( ̇̂I𝜎(z))
𝜓z , 1 −

v∏
z=1

(1 − ̇̂
F𝜎(z))

𝜓z

⟩
.
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Case 2 If ℘ = 2 , then SVTNHHWGA operator is reduced 
to the SVTNEHWGA operator as follows:

6 � Model for MADM in trapezoidal 
neutrosophic environment

In this study, we propose MADM method using SVTNH 
aggregation operators in which weights of the attrib-
utes values real numbers under SVTN environment. Here 
MADM method is used to developed usefulness of evalu-
ation emerging software systems commercialization under 
SVTN information. Let A = {A1,A2,… ,Am} be the set of 
alternatives, T = {T1, T2,… , Tn} be the set of attributes. Let 
� = (�1,�2,… ,�v) be the weight vector of the attribute 
Az (z = 1, 2,… , v) are completely known such that 𝜓z > 0 
and 

∑v

z=1
�z = 1 . Suppose that D̃ = (T̂hz, Îhz, F̂hz)u×v is the 

trapezoidal neutrosophic decision matrix, where T̂hz is the 
truth-membership degree for which alternative Ah satisfies 
the attribute Tz given by the decision makers, Îhz denote the 
degree of indeterminacy-membership such that alternative 
Ah does not satisfies the attribute Tz , and F̂hz falsity-mem-
bership degree that the alternative Ah does not satisfy the 
attribute Tz given by the decision maker, where T̂hz ⊂ [0, 1] , 
Îhz ⊂ [0, 1] and F̂hz ⊂ [0, 1] for which 0 ≤ T̂hz + Îhz + F̂hz ≤ 1 , 
(h = 1, 2,… , u) and (z = 1, 2,… , v).

The algorithm follows a method to interpret MADM 
problem under SVTN information using SVTNHWA and 
SVTNHWGA operators.
Algorithm
Input: SVTN information.
Output: To get desired alternative.
Step 1. We introduce the decision matrix D̃ , and use the 
operator SVTNHWA

SVTNEHbWGA𝜓 (c̃1, c̃2 … , c̃v) =

v�
z=1

( ̇̃cz)
𝜓z

=

�� v�
z=1

(ê𝜎(z))
𝜓z ,

v�
z=1

(f̂𝜎(z))
𝜓z ,

v�
z=1

(ĝ𝜎(z))
𝜓z ,

v�
z=1

(ĥ𝜎(z))
𝜓z

�
;

2
∏v

z=1
( ̇̂T𝜎(z))

𝜓z

∏v

z=1
(2 − ̇̂

T𝜎(z))
𝜓z +

∏v

z=1
( ̇̂T𝜎(z))

𝜓z

,

∏v

z=1
(1 + ̇̂

I𝜎(z))
𝜓z −

∏v

z=1
(1 − ̇̂

I𝜎(z))
𝜓z

∏v

z=1
(1 + ̇̂

I𝜎(z))
𝜓z +

∏v

z=1
(1 − ̇̂

I𝜎(z))
𝜓z

,

∏v

z=1
(1 + ̇̂

F𝜎(z))
𝜓z −

∏v

z=1
(1 − ̇̂

F𝜎(z))
𝜓z

∏v

z=1
(1 + ̇̂

F𝜎(z))
𝜓z +

∏v

z=1
(1 − ̇̂

F𝜎(z))
𝜓z

�
.

to obtained the over all preference values �h (h = 1, 2,… , u) 
of the alternative Ah.

Step 2. Evaluation of the score �(�h) (h = 1, 2,… , u) 
based on over all SVTN information �h (h = 1, 2,… , u) 
to determine the ranking of all the alternatives 
Ah(h = 1, 2,… , u) to select desirable choice Ah . If the value 
of �(�h) and �(�) are same, then we next proceed to evaluate 
degrees of accuracy �(�h) and �(�z) based on over all SVTN 
information of �h and �z , and rank the alternative Ah depend-
ing with the accuracy degrees of �(�h) and �(�h).

Step 3. Rank all the alternative Ah (h = 1, 2,… , u) 
in order to choice the best one(s) in accordance with 
�(�h)(h = 1, 2,… , u).

Step 4. End.

(34)

𝛿h = SVTNHWA𝜓 (c̃1, c̃2 … , c̃v) =

v�
z=1

(𝜓zc̃z)

=

�� v�
z=1

êz𝜓z,

v�
z=1

f̂z𝜓z,

v�
z=1

ĝz𝜓z,

v�
z=1

ĥz𝜓z

�
;

∏v

z=1
(1 + (℘ − 1)T̂z)

𝜓z −
∏v

z=1
(1 − T̂z)

𝜓z

∏v

z=1
(1 + (℘ − 1)T̂z)

𝜓z + (℘ − 1)
∏v

z=1
(1 − T̂z)

𝜓z

,

℘
∏v

z=1
(Îz)

𝜓z

∏v

z=1
(1 + (℘ − 1)(1 − Îz))

𝜓z + (℘ − 1)
∏v

z=1
(Îz)

𝜓z

,

℘
∏v

z=1
(F̂z)

𝜓z

(1 + (℘ − 1)
∏v

z=1
(1 − F̂z))

𝜓z + (℘ − 1)
∏v

z=1
(F̂z)

𝜓z

�

(35)

or 𝛿h = SVTNHWGA𝜓 (c̃1, c̃2 … , c̃v) =

v�
z=1

(c̃z)
𝜓z

=

�� v�
z=1

(êz)
𝜓z ,

v�
z=1

(f̂z)
𝜓z ,

v�
z=1

(ĝz)
𝜓z ,

v�
z=1

(ĥz)
𝜓z

�
;

℘
∏v

z=1
(T̂z)

𝜓z

(1 + (℘ − 1)
∏v

z=1
(1 − T̂z))

𝜓z + (℘ − 1)
∏v

z=1
(T̂z)

𝜓z

∏v

z=1
(1 + (℘ − 1)T̂z)

𝜓z −
∏v

z=1
(1 − Îz)

𝜓z

∏v

z=1
(1 + (℘ − 1)Îz)

𝜓z + (℘ − 1)
∏v

z=1
(1 − Îz)

𝜓z

,

∏v

z=1
(1 + (℘ − 1)F̂z)

𝜓z −
∏v

z=1
(1 − F̂z)

𝜓z

∏v

z=1
(1 + (℘ − 1)F̂z)

𝜓z + (℘ − 1)
∏v

z=1
(1 − F̂z)

𝜓z

�
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7 � Numerical example and comparative 
analysis

7.1 � Numerical example

With the rapid progress and huge application of informa-
tion technology, the selection of emerging software sys-
tems becomes more and more important. The aim of the 
project is to predict the best software systems based on their 
performances, that provide alternatives of four candidates. 
Therefore, to this section, we shall present a numerical result 
to establish the potential assessment of software technol-
ogy systems depicted in Ye (2014a) under SVTN environ-
ment in order to investigate our proposed method. There is 
a committee which selects four possible software systems 
Ãh(h = 1, 2,… , 4) . They choose four attributes to assess four 
possible software as follows: 

T1∶	� Contribution about organization performance.
T2∶	� Effort to transform from current system.
T3∶	� Costs of hardware and software investment.
T4∶	� Outsourcing software developer reliability.

 According to above attributes of which weight vector is 
� = (0.25, 0.22, 0.35, 0.18)T , alternatives A1,A2,A3 and A4 
are evaluated with SVTNNs by decision makers which have 
same dominance degree. Evaluation of decision makers is 
as in Table 1.

In order to select most desirable software Ah 
(h = 1, 2,… ,m) , we use the SVTNHWA and SVTNHWGA 
operators. SVTN values in Table  1 are evaluated as 
follows:

–	 Step 1: Let ℘ = 3 . Then, by using the SVTNHWAA 
operator to aggregate preferences values �h of software 
systems Ah for (h = 1, 2, 3, 4) are as follows: 

–	 Step 2: By using the equation given in Definition 8, for 
each �h (h = 1, 2, 3, 4) score S(𝛿h) is obtained as follows: 

–	 Step 3: Based on the scores of the software systems Ah 
for (h = 1, 2, 3, 4) ranking order of the emerging software 
systems Ah is obtained as A4 ≻ A2 ≻ A1 ≻ A3

–	 Step 4: According to ranking order of the alternatives A4 
is selected as the best choice software system.

If SVTNHWGA operator is used for the same problem, 
then the problem can be solved in similar way as follows:

–	 Step 1: Let ℘ = 3 . Then, by using the SVTNHWGA 
operator to aggregate �h of emerging software systems 
Ah for (h = 1, 2, 3, 4) are calculated as follows: 

�̃1 =
⟨
(0.3230, 0.4230, 0.5230, 0.6230);

0.5582, 0.1725, 0.1976

⟩

�̃2 =
⟨
(0.3890, 0.5070, 0.6250, 0.7250);

0.6528, 0.2351, 0.3091

⟩

�̃3 =
⟨
(0.3020, 0.4270, 0.4840, 0.5840);

0.6413, 0.1899, 0.2182

⟩

�̃4 =
⟨
(0.4330, 0.5150, 0.5970, 0.6790);

0.7636, 0.2671, 0.2671

⟩
.

S(�̃1) = 0.2587, S(�̃2) = 0.2960,

S(�̃3) = 0.2508, S(�̃4) = 0.3099.

Table 1   Evaluations of decision makers

A1 A2 A3 A4

T1 ⟨(0.3, 0.4, 0.5, 0.6);0.6, 0.2, 0.2⟩ ⟨(0.5, 0.6, 0.7, 0.8);0.8, 0.2, 0.3⟩ ⟨(0.2, 0.4, 0.4, 0, 5);0.5, 0.3, 0.4⟩ ⟨(0.6, 0.7, 0.8, 0.9);0.7, 0.3, 0.3⟩
T2 ⟨(0.4, 0.5, 0.6, 0.7);0.7, 0.1, 0.1⟩ ⟨(0.4, 0.5, 0.6, 0.7);0.7, 0.4, 0.4⟩ ⟨(0.5, 0.6, 0.7, 0.8);0.7, 0.2, 0.2⟩ ⟨(0.4, 0.5, 0.6, 0.7);0.8, 0.4, 0.4⟩
T3 ⟨(0.2, 0.3, 0.4, 0.5);0.5, 0.2, 0.2⟩ ⟨(0.4, 0.5, 0.6, 0.7);0.6, 0.2, 0.2⟩ ⟨(0.2, 0.3, 0.4, 0.5);0.8, 0.1, 0.1⟩ ⟨(0.3, 0.4, 0.5, 0.6);0.7, 0.3, 0.3⟩
T4 ⟨(0.5, 0.6, 0.7, 0.8);0.4, 0.2, 0.4⟩ ⟨(0.2, 0.4, 0.6, 0.7);0.4, 0.2, 0.5⟩ ⟨(0.4, 0.5, 0.5, 0.6);0.3, 0.3;0.4⟩ ⟨(0.5, 0.5, 0.5, 0.5);1, 0, 0⟩
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–	 Step 2: By using the equation given in Definition 8, for 
each �h (h = 1, 2, 3, 4) score S(𝛿h) is obtained as follows: 

–	 Step 3: Based on the scores of software systems Ah for 
(h = 1, 2, 3, 4) ranking order of the software systems Ah 
is obtained as A4 ≻ A2 ≻ A1 ≻ A3.

–	 Step 4: According to ranking order of the alternatives A4 
is selected as the best software system.

Note that, although scores of alternatives are different 
for obtained 𝛽h(h = 1, 2, 3, 4) by using SVTNWA and SVT-
NWGA, ranking order of the alternatives is same. A4 is the 
most desirable alternative in either events. To compare with 
the existing work (Wang and Zhang 2009) which develop 
decision making approach using ITFN information whereas 
in this proposed decision making problems using SVTNs 
information. It is noted that SVTN is a generalization ITFN. 
The results of the decision making method in this paper is 
more classic and general in applications. Also, compared 
with the existing works (Biswas et al. 2014; Ye 2013, 2014c; 
Zhang et al. 2014) in which evaluated decision making 
results are in the domain of discrete sets of literatures but 
not existing continuous sets of literatures, whereas this paper 
proposed decision making approach can be suitable to solve 
decision making problems with triangular and trapezoidal 
neutrosophic information. Therefore, propose method in this 
paper is a generation of the existing methods and have a 
advantages to solve decision making problems.

�̃1 =
⟨
(0.3040, 0.4086, 0.5114, 0.6133);

0.5469, 0.1777, 0.2139

⟩

�̃2 =
⟨
(0.3733, 0.5027, 0.6236, 0.7238);

0.6310, 0.2444, 0.3250

⟩

�̃3 =
⟨
(0.2772, 0.4116, 0.4709, 0.5730);

0.6000, 0.2074, 0.2511

⟩

�̃4 =
⟨
(0.4167, 0.5030, 0.5854, 0.6647);

0.7777, 0.2861, 0.2861

⟩
.

S(�̃1) = 0.2457,

S(�̃2) = 0.2865, S(�̃3) = 0.2319,

S(�̃4) = 0.29901.

8 � Conclusion

In this article, we study about the method to solve a MADM 
problem under SVTN information. We introduce arithmetic 
and geometric averaging operations to utilize some SVTN 
Hamacher aggregation operators from the motivation of 
Hamacher operations as: SVTNHWAA operator, SVT-
NHOWAA operator, SVTNHHWAA operator, SVTrN-
HWGA operator, SVTNHOWGA operator and SVTNHH-
WGA operator. The different characteristic of these proposed 
operators are studied. Then, we have used these operators to 
develop some approaches to solve MADM problems. Lastly, 
a practical example for emerging software system selection 
is given to verify our proposed method and to illustrate the 
application and effectiveness of the proposed method. In 
next study, the proposed model can be applied in decision 
support systems, risk analysis and other domains containing 
uncertainties.
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