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Abstract
Classification is a crucial step in the data mining field. The probabilistic neural network (PNN) is an efficient method devel-
oped for classification problems. The success factor of using PNN for classification problems implies in finding the proper 
weight during classification process. The main goal of this paper is to improve the performance of PNN by finding the best 
weight for the PNN using the recent local search approach called �-hill-climbing ( �-HC) optimizer. This algorithm is an 
extension version of the traditional hill climbing algorithm in that it uses a stochastic operator to avoid local optima. The 
proposed approach is evaluated against 11 benchmark datasets ,and the experimental results showed that the proposed �
-HC with PNN approach performed better in terms of classification accuracy than the original PNN, HC-PNN and other six 
well-established approaches using the same experimented benchmarks.
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1  Introduction

In machine learning, classification is normally known as a 
supervised learning mechanism where the initial input data 
is analyzed and used in to learn the system how to classify 
the future data or observations (Brownlee 2016). Therefore, 
The classification process is considered as an important task 
in data mining. In simple terms, classification identifies a set 
of data objects that resemble each other in the same data-
set and are different from the objects in other datasets. In 

order to manipulate the classification problem, a training 
set (input dataset) is required that contains example records 
with a number of attributes. The classification algorithm 
uses the training dataset to construct a model and that model 
can be used to allocate unclassified records to one of the 
defined classes (Alweshah 2018; Alweshah and Abdul-
lah 2015). Examples of classification problems are speech 
recognition Juang et al. (1997), handwriting recognition 
(LeCun et al. 1990), biometric identification (Yampolskiy 
and Govindaraju 2008), document classification (Alweshah 
et al. 2017b; Yan et al. 2018), image and video classifica-
tions (Yan et al. 2019a, b), and many others as reported in 
the latest comprehensive survey (Alweshah et al. 2017a).

Many techniques have been used to solve classification 
problems.Examples include the support vector machine 
(SVM) (Adankon and Cheriet 2009), neural network (NN) 
(Specht 1991), radial basis function (RBF) network (Crad-
dock and Warwick 1996), naïve Bayes (NB) (Friedman et al. 
1997) and many others (Alshareef et al. 2015b; Faris et al. 
2016; Aljarah et al. 2018; Khan et al. 2019; Anagaw and 
Chang 2019; Boveiri et al. 2019). The NN is a common 
technique for solving classification problems and there are 
different types of NN, including the feed-forward neural net-
work and multilayer perceptron (MLP), as well as a radial 
basis function network (RFB), modular networks and the 
probabilistic neural network (PNN) (Specht 1990).
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The NN is exceptionally effective and has been utilized to 
solve many classification problems. It was created in the late 
1950s by Rosenblatt in Alweshah (2014). The NN consists 
of two fundamental components: the neuron and the link. 
The neuron alludes to a sort of processing component, while 
the link interfaces two neurons together. Each link has an 
individual weight. Each neuron gets a simulating signal from 
other neighboring neurons, and from these signals it forms 
data and creates an output result (Alshareef et al. 2015a).

The PNN is a strong data mining tool and it is an algo-
rithm that can be used for a huge number and complex 
(input/output) relationships. The PNN is a special form of 
NN model with a statistical Bayesian decision rule. The gen-
eral structure of a PNN consists of four layers: (1) an input 
layer, where the dimensions of the input vector transcribes 
the dimension of the input layer; (2) a pattern layer (second 
layer), where the dimension of the pattern layer is equal to 
the dimension of the number of examples in the training 
set; (3) a summation layer (third layer), which contains the 
number of classes in the set of examples, and (4) a decision 
layer (fourth layer), which classifies the test example into 
predefined classes.

The success of the PNN is depended on the proper selec-
tion of the weight during the classification process (Iliou and 
Anagnostopoulos 2010). The way of selecting the optimal 
value of weight vector for PNN is recently modelled as an 
optimization problem (Iliou and Anagnostopoulos 2010). 
Several optimization problems such as metaheuristics have 
been recently utilized to tackle such a problem. metaheuris-
tics-based optimization approaches are categorized into 
either single-solution-based or population-based searches 
(Blum and Roli 2003).

Population-based approaches focus on maintaining and 
improving multiple candidate solutions.They are normally 
manipulating several solutions at a time using recombina-
tion, mutation and selection operators. Although they are 
very efficient in handling several search space regions at 
the same time, they cannot find the local optimal solution 
at each search space regions to which they handled. Two 
main population-based metaheuristics are popularly known: 
evolutionary algorithms and swarm intelligence. Evolu-
tionary algorithms include genetic algorithms (GAs) (Hu 
et al. 2016), harmony search algorithm (Geem et al. 2001). 
Another category of metaheuristics is swarm intelligence. 
Examples of this category include ant colony optimization 
(ACO) (Dorigo and Stützle 2010), PSO, social cognitive 
optimization, the penguin search optimization algorithm 
(PeSOA), the artificial bee colony (ABC) (Zhu and Kwong 
2010) and the Grey Wolf Optimiser (GWO) algorithm 
(Al Nsour et al. 2019).

The single-solution approaches are initiated with a sin-
gle provisional solution. Iterativelly, that solution can be 
improved by moving to its neighbouring solution until the 

local optimal solution is reached. Examples of single-solu-
tion-based used for NN include simulated annealing (SA) 
(Ren and Qu 2014), iterated local search (ILS) (El-Bouri 
2012), variable neighborhood search (VNS) (Xie et  al. 
2012), guided local search (GLS) (Tairan and Zhang 2010) 
and �-hill climbing (Al-Betar 2017).

�-Hill clibming is a recent local-search based algorithm 
(Al-Betar 2017) It is able to escape the local optimal trap 
using �-operator. It has several successful features such as it 
has few parameters to be set in the initial search. It is a very 
simple optimization frameworks. It can be flexibly adapt for 
any kind of optimization problems such as economic load 
dispatch (Al-Betar et al. 2018), denoising electrocardiogram 
(ECG) signals (Alyasseri et al. 2018, 2017b, a), Multiple-
reservoir scheduling (Alsukni et al. 2017), sudoku game (Al-
Betar et al. 2017), Substitution-Boxes (Alzaidi et al. 2018), 
gene selection (Alomari et al. 2018) and feature selection 
(Abualigah et al. 2017). Furthermore, theoretical concepts 
of �-hill climbing related to the adaptive parameter settings 
are also improved (Al-Betar et al. 2019). Also, �-hill climb-
ing is hybridized with other population-based algorithms to 
improve exploitation concepts (Abed-alguni and Alkhateeb 
2018).

In this paper, the �-hill-climbing ( �-HC) algorithm 
is adapted to seek for the optimal weight for the PNN so 
as to improve the performance (accuracy). The weight of 
PNN is modelled as an optimization problem to be solved 
by �-HC. In order to evaluate the proposed method, 11 test 
benchmarks of classification problems are used. Compara-
tive evaluation between PNN without �-HC, PNN with hill 
climbing, PNN with �-HC shows that the PNN with �-HC 
is able to overcome the PNN significantly without �-HC, 
PNN with hill climbing. It can find the optimal weight for 
the PNN and strike the right balance between the exploration 
and exploitation during the search.

The rest of this paper is organized as follows: In Sect. 2, 
the background of PNN algorithm and �-HC is described. 
Then, in Sect. 3 the proposed �-hill-climbing-based PNN 
is discussed in detail. In Sect. 4, the experimental results 
are presented and analyzed. Finally, Sect.  5 concludes 
the paper and provide some possible directions for future 
improvements.

2 � Research background

2.1 � Probabilistic neural network (PNN)

The PNN introduced by Specht (1990) has been shown to 
have effective classification performance, even when used 
to a wide variety of different problems (Berrar et al. 2002; 
Wasserman 1993; Specht 1990; Sweeney et al. 1994; Mao 
et al. 2000; Kwigizile et al. 2004; Manimala and Selvi 2007; 
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Araghi et al. 2009). The training of a PNN does not involve 
the implementation of heuristic searches to get the best 
smoothing factor, for the training, which is an optimization 
problem. A PNN uses a statistical algorithm, known as ker-
nel discriminant analysis (Mika et al. 1999), in which the 
methods are organized into a four-layered feed-forward net-
work consisting of an input layer, hidden layer, pattern/sum-
mation layer and decision/output layer, as shown in Fig. 1.

Figure 1 illustrates a typical PNN model. Each input 
neural symbolizes a distinct feature in the training/test data 
sets. The number of the inputs is equivalent to the number 
of features in the data set. A PNN has a relatively quicker 
training process than BP. It basically has an analogous struc-
ture, which ensures convergence with an ideal classifier as 
the dimension of the associated training set increases, and 
has training samples that can be possibly included or elimi-
nated without the need for substantial retraining (Wasserman 
1993). The four layers of the PNN network are described 
below: 

Input layer:	� This contains one neuron for 
each indicator variable. For 
the categorical factors, the 
N − 1 neurons are connected, 
where N shows the number of 
categories. The input neuron 
supposedly standardizes the 
value range by subtracting 
the middle value. after that, 
it divides it between quartile 
range value. From this point 
onward, the input neurons are 
believed to sustain these qual-
ities in each neuron exhibited 
inside the hidden layer.

Hidden layer:	� This contains a single neuron 
for each case in the training 
dataset. The neurons store 
the indicator variable values 
and the objective values for 
the cases. At the point when 
the x vector of the input val-
ues of the input layer is dis-
played, the Euclidean separa-
tion from the center point of 
the neuron for the experiment 
is ascertained by the hidden 
neurons and, after that, with 
the assistance of the sigma 
value the RBF kernel func-
tion is applied. The resultant 
value is then passed to the 
neurons in the pattern layer.

Pattern/summation layer:	� For each class of objective 
factors, a single pattern neu-
ron is available. The objec-
tive class for each training 
group is put away alongside 
each hidden neuron, where 
the weight value emerging 
from the hidden neurons is 
passed to the pattern neu-
rons that correspond to the 
type of hidden neurons. The 
pattern neurons then include 
the values for their represen-
tation classes (hence, these 
values refer to the weighted 
votes for the particular cat-
egory). In practice, this 
layer operate a dot product 
process (Z) on both input 
vec to r  X = (x1, x2,… , xn) 
a n d  w e i g h t  v e c t o r 
W = (w1,w2,… ,wn)  s u ch 
that Z = X.W . Thereafter, the 
non-linear activation function 
is triggered using Z as shown 
in Eq. (1) 

 where � is the smoothing parameter that should be set in the 
initial training process.
Decision/output layer:	� This final layer compares 

the weight votes in favour of 
each target category that is 

(1)f (X) = exp
(wi − x)t − (wi − x)

2�2

Fig. 1   Architecture of a typical probabilistic neural network
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gathered in the pattern layer 
and, after that, uses the high-
est vote to predict the target 
group.

For mathematical formulations, the interpretation of PNN 
concepts is modelled as a multilayer framework of an FFNN 
as shown in Eq. (2).

where hi is the preceding prospect, in which the new object 
belongs to class i, and ci is the cost of misclassifying an 
object that belongs to class i, and fi is the probability density 
function (PDF) of class i. On the other hand, it is significant 
that X is the input vector that has to be classified. In general, 
the prior probabilities and cost of misclassification are called 
as priority when dealing with PNNs and kept equivalent; 
therefore the Bayes optimal decision rule can be reduced 
using Eq. (3).

This rule discloses that the outstanding classification choice 
can be developed just by accomplishing straightforward 
evaluations upon identifying the PDFs of the various classes. 
In particular, the PDF for a single class can be estimated 
based on Eq. (4):

where � is a smoothing parameter, W is the weighting func-
tion, X is the unidentified input sample that has to be classi-
fied, Xik is the kth training input from the ith class, n is the 
number of training inputs for class i, and gi(X) is the PDF 
approximation for class i.

Generally, the Euclidean distance is applied to determine 
the closeness or range between the training sample and the 
unidentified input. The Gaussian function is a typically used 
weighting function because it demonstrates the above-stated 
attributes and can be quickly calculated. Supervised learn-
ing provides an input pattern and changes the network fac-
tors (weights) to reduce the distance between the calculated 
output and the expected output. By setting the weighting 
function to the Gaussian function it is computed as shown 
in Eq. (5):

2.2 �  ‑Hill climbing optimizer

The �-hill climbing is a recent local search-based algorithm 
introduced in Al-Betar et  al. (2017). �-Hill climbing is 

(2)hi × ci × fi > hj × cj × fj ∀i ≠ j

(3)gi(X) > gj(X) ∀i ≠ j.

(4)gi(X) =
1

ni × �

ni
∑

k=1

X − xik

�

(5)gi(X) =
1

ni × �

ni
∑

k=1

exp
(x−xik )

2

�2 .

initialized with a random solution x = (x1, x2,… , xn) . Itera-
tively, that solution undergoes changes using three main 
operators: (1) N -operator, (2) �-operator, and (3) S-opera-
tor. �-Hill climbing is normally stopped when the maximum 
number of iterations is met. The feasibility of the solution 
is normally preserved during the search. Note that the hill 
climbing (HC) algorithm is the same of the �-hill climbing 
but without �-operator. Algorithm 1 pseudo-coded the basic 
version of �-hill climbing. The three operators are described 
as follows (Fig. 2):

N -operator	� This operator is used to move the current solu-
tion x to its neighboring solution x′ using a 
movement strategy with a probability of N  
in which the feasibility is maintained. The 
line 5 in Algorithm 1 is the pseudo-code for 
N -operator. For more clarification, let xi be 
assigned by a value of �i(k) of kth location, 
the value of x′

i
 will be assigned by value as 

follows: 

 where �i,k ± m is the neighboring value of �i(k) . It is worth 
mentioning that the N -operator is invoked once at each iter-
ation using a random walk mechanism. This means that the 
effect of moving to the neighbouring solution is not checked 
until the S − operator is invoked.
�-operator	� The �-operator is responsible for the explora-

tion process by applying a uniform mutation 
to the current solution. ∀i ∈ (1, 2,… , n) , the 
decision variable xi is randomly selected to be 
changed using the � parameter as in Eq. (7). 
The lines from 6 to 10 in Algorithm 1 are the 
pseudo-code for �-operator. 

(6)x�
i
= �i,k ± m

x�
i
←

{

�r U[0, 1] ≤ �

i�
i

otherwise.

Fig. 2   �-Hill climbing optimizer
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 It is worth mentioning that � determines how often the uni-
form mutation is applied.
S-operator	� The improved solution x′ is evaluated 

using f (x�) . The current solution x will be 
replaced by the improved solution x′ , if bet-
ter (i.e., f (x�) ≤ f (x) ). The lines from 11 to 
13 in Algorithm 1 are the pseudo-code for S
-operator.

The proposed method was assessed by figuring four 
counts. True positives (TP) refer to the class with the num-
ber of correctly assigned records; true negatives (TN) refer 
to the number of correct instances that are not part of the 
class; false positives (FP) refer to the number of instances 
that are incorrectly assigned; false negatives (FN) refer to 
the positive tuples that are labelled incorrectly.

Fig. 3   Representation of initial 
weights

Algorithm 1 Original β–hill climbing pseudo-code
1: x = (x1, x2, . . . , xn) { Generate the initial solution x}
2: Calculate f(x)
3: itr = 0
4: while (itr ≤ Max Itr) do
5: x = xi = νi,k±m {N -operator}
6: for i = 1, · · · , n do
7: if (U [0, 1] ≤ β) then
8: xi = νi(r) {β-operator}
9: end if
10: end for
11: if f(x ) ≤ f(x) then
12: x = x {S-operator}
13: end if
14: itr = itr + 1
15: end while

3 �  ‑Hill climbing optimizer for PNN 
classifier

In this paper, the �-HC algorithm is utilized to find the opti-
mal weights that can be efficiently used in the PNN algo-
rithm hoping to increase the accuracy of the classification 
process. Initially, random weights vector x are generated 
through the PNN algorithm, and the input values are multi-
plied by the corresponding weights by a model determined 
by the PNN. Figure3 shows the solution representation 
example

As shown in Fig. 4, the proposed method included two 
parts, the first one represents the PNN algorithm and the 
other represents the �-HC algorithm. In the first part, the 
training data is used, and the tested data is subject to the 
classification process. As for the process of adjusting the 
weights of the PNN is the responsibility of the �-HC algo-
rithm, then the accuracy of the disaggregated data is cal-
culated and the process is repeated until the completion 
criterion is met.

Classification accuracy computed in Eq. (7) is a term 
that refers to a statistical measure that displays how well the 
classifier is able to correctly identify the objects towards 
the labelled classes. The error rate computed in Eq.(8) is a 
measure of the objects that are incorrectly recognized. Fur-
thermore, specificity and sensitivity were also calculated in 
Eqs. (9) and (10), respectively.

(7)Accuracy =
TP + TN

TP + TN + FP + FN

(8)ErrorRate =1 −
TP + TN

TP + TN + FP + FN

(9)Specificity =
TN

TN + FP

(10)Sensitivity =
TP

TP + TN
.
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4 � Experiments and results

In this section, the results produced by the proposed method 
is evaluated using a set of experiments. The proposed algo-
rithm are programmed using Matlab R2010 on an Intel® 
Xeon® CPU E5-1630 v3@3.70 GHz computer are pre-
sented. Table 1 shows the parameter settings used for the 
proposed algorithm, which were determined after intensive 
preliminary experiments.

The aim of conducting these experiments is to check 
whether the classification accuracy is maximized using the 
PNN utilized �-HC.

The quality of the solutions is given in terms of the best 
accuracy value (in percent), after 30 independent runs for 
each of the 11 datasets. In this research, four performance 

measures are used: accuracy, error rate, sensitivity and spec-
ificity as formulated in the previous section. Table 2 presents 
the results for HC-based PNN, �-HC-based PNN and the 
original PNN classification techniques when applied to the 
11 benchmark datasets. The results in bold highlights the 
best outcomes. The results summarized in table apparently 
proved that the proposed �-HC based PNN method was able 
to outperform the original PNN algorithm on all datasets 
and also mostly obtained better results than HC based PNN.

Figures 5 and 6 presents the simulation results for the 
convergence characteristics of �-HC based PNN and HC 
based PNN in comparison with original PNN using the 11 
datasets. Each algorithm was run for 200 iterations. These 
results show that �-HC based PNN can converge faster than 
HC based PNN except when applied to GCD and ACA. 
Moreover, �-HC obtains similar convergence trend for the 
Heart, and API datasets. Interestingly, when applied to the 
Four class dataset, �-HC achieved 100% accuracy in all 
iterations.

We also investigate whether the performance of �-HC-
PNN has a significant statistical different indicator from 
HC-PNN and the firefly algorithm (FA) in terms of classifi-
cation accuracy, sensitivity, and specificity. Accordingly, a 

Fig. 4   Flowchart of proposed �-HC-PNN

Table 1   Parameter settings Parameter Value

Population size 50
Number of iterations 200
� 0.5
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sample T test with a significance interval of 95% ( � = 0.05) 
is used. The results show that there is a significant difference 
between the comparative algorithms in favour to �-HC-PNN. 
To elaborate, with regards to accuracy, �-HC-PNN is statisti-
cally different from HC-PNN and FA (p value < 0.05 ). As 
for sensitivity and specificity, �-HC is also statistically dif-
ferent from HC-PNN and FA. Figure 7 presents the box plots 
that demonstrate the distribution resolution quality obtained 
by �-HC, HC-PNN and FA for the six tested datasets used 
Gorunescu (2011).

We also assessed all the computational results (with 
regards to classification accuracy) of the proposed �-HC 
against those of six popular approaches in the literature. 
The abbreviations of the comparative approaches are listed 
in Table 3.

Notably, none of the comparative approaches men-
tioned in Table 4 were applied to whole datasets used in 
our study, except for FA. Therefore, different combinations 
of these separate approaches were tested for each dataset, 
as described in Table 4. The best results are highlighted in 
bold font.

From the table it can be seen that �-HC ranked first in all 
datasets except ACA and GCD, thereby achieving the best 
performance with regards to classification accuracy. Also, 
HC ranked second. Moreover, �-HC and HC were able to 
classify the Four class dataset with no miss classifications 
(100% accuracy). In a nutshell, �-HC outperformed the other 
comparative approaches for almost all datasets used.

Table 2   Results obtained by 
PNN, HC and �-HC on the test 
datasets

Dataset Approach TP FP TN FN Accuracy (%) Sensitivity Specificity Error rate

PID PNN 35 28 90 39 65.1 0.47 0.76 0.35
HC-PNN 141 38 320 19 78.65 0.88 0.89 0.11
�-HC-PNN 142 37 319 20  81.25 0.88 0.90 0.11

HSS PNN 44 12 6 15 64.94 0.75 0.33 0.35
HC-PNN 139 12 36 19 85.72 0.88 0.75 0.15
�-HC-PNN 139 12 34 21  85.72 0.87 0.74 0.16

AP PNN 23 1 1 2 88.88 0.92 0.5 0.11
HC-PNN 54 1 15 1 96.3 0.98 0.94 0.03
�-HC-PNN 53 2 15 1 96.3 0.98 0.88 0.04

BC PNN 14 9 36 13 69.44 0.52 0.8 0.31
HC-PNN 46 10 123 14 83.33 0.77 0.92 0.12
�-HC-PNN 49 7 125 12 84.72 0.80 0.95 0.10

LD PNN 18 15 34 19 60.47 0.49 0.69 0.40
HC-PNN 73 26 113 21 87.21 0.78 0.81 0.20
�-HC-PNN 77 22 112 22  93.02 0.78 0.84 0.19

Heart PNN 27 5 23 13 73.53 0.68 0.82 0.26
HC-PNN 79 3 85 15 86.76 0.84 0.97 0.1
�-HC-PNN 79 3 90 10  86.76 0.89 0.97 0.07

GCD PNN 133 46 39 32 68.8 0.81 0.46 0.31
HC-PNN 435 31 164 45 83.6 0.91 0.84 0.11
�-HC-PNN 439 27 182 27  80.8 0.94 0.87 0.08

Parkinson’s PNN 38 1 6 4 89.79 0.90 0.86 0.10
HC-PNN 38 1 6 4 89.79 0.90 0.86 0.10
�-HC-PNN 95 0 35 1  91.84 0.99 1.00 0.01

SPECTF PNN 49 4 5 9 80.59 0.84 0.56 0.19
HC-PNN 133 12 30 5 92.54 0.96 0.71 0.09
�-HC-PNN 138 7 30 5 93.04 0.99 0.94 0.02

ACA​ PNN 60 14 84 15 83.24 0.8 0.86 0.17
HC-PNN 193 15 237 20 94.22 0.91 0.94 0.08
�-HC-PNN 197 11 245 12 93.06 0.94 0.96 0.05

Fourclass PNN 78 0 138 0 100 1 1 0
HC-PNN 78 0 138 0 100 1 1 0
�-HC-PNN 78 0 138 0  100 1 1 0
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5 � Conclusion and future work

The key goal of this research is to improve the classifica-
tion accuracy of the PNN by (1) modifying the PNN’s inner 
weights to discover high-quality solutions, thus improve 
classification accuracy and (2) attaining a high convergence 
speed. The proposed approach presented in this paper is the 
utilization of the �-HC metaheuristic algorithm with the 
PNN algorithm, where �-HC was utilized to optimize the 
weights of the PNN. The rationale for utilizing �-HC, which 
is a nature-inspired population-based algorithm, was based 
on its capacity to undertake an extensive exploration of the 
search space, its straightforwardness, and its potential for 
solving various complicated classification problems.

In order to evaluate the proposed method, 11 benchmark 
datasets circulated widely to evaluate the new classification 
methods are used in the experiments. Initially, the three 
experimented approaches which are PNN, HC-PNN, and �
-HC-PNN are compared in terms of Accuracy, Sensitivity, 

Specificity, and Error rate. Interestingly, for all measures, the 
proposed �-HC-PNN achieved the best results.

Furthermore, the proposed �-HC-PNN is also compared 
with three well-established approaches using the same data-
sets. The results produced by �-HC-PNN are better than that 
produced by others for nine out of eleven datasets.

evaluated against 11 benchmark datasets and the experi-
mental results showed that the proposed �-HC with PNN 
approach performed better in terms of classification accu-
racy than the original PNN, HC-PNN and other six well-
established approaches using the same experimented bench-
marks. In a nutshell, hybridizing �-HC with PNN improves 
the classification accuracy of PNN.

In general, the results obtained affirmed the powerful 
performance of the proposed algorithm. In the future, the 
following improvement can be investigated:

•	 The �-HCO can be hybridized with another classification 
method instead of PNN.

Fig. 5   Convergence characteris-
tics of �-HC-PNN and HC-PNN
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Fig. 6   Continued,Convergence 
characteristics of �-HC-PNN 
and HC–PNN

Fig. 7   Box plots for �-HC, HC and FA
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•	 Other classification datasets with combinatorial features 
can be used for further validation.

•	 Other local search methods can be investigated to show 
the strength of �-HCO.
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