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Abstract
The widespread propagation of numerous rumors and fake news have seriously threatened the credibility of microblogs. 
Previous works often focused on maintaining the previous state without considering the subsequent context information. 
Furthermore, most of the early works have used classical feature representation schemes followed by a classifier. We investi-
gate the rumor detection problem by exploring different Deep Learning models with emphasis on considering the contextual 
information in both directions: forward and backward, in a given text. The proposed system is based on Bidirectional Long 
Short-Term Memory with Convolutional Neural Network, effectively classifying the tweet into rumors and non-rumors. 
Experimental results show that the proposed method outperformed the baseline methods with 86.12% accuracy. Furthermore, 
the statistical analysis also shows the effectiveness of the proposed model than the comparing methods.

Keywords Rumor detection · Microblogs · Deep learning · BiLSTM · CNN · Social networking services · Twitter

Abbreviations
ML  Machine learning
DL  Deep learning

RNN  Recurrent neural network
LSTM  Long short-term memory
GRU   Gated recurrent unit
BiLSTM  Bidirectional long short- term memory
CNN  Convolutional neural network
KNN  K-nearest neighbors
DT  Decision tree
RF  Random forest
LR  Logistic regression
NB  Naïve Bayes
BOW  Bag of words
TF-IDF  Term frequency-inverse document frequency
CRF  Conditional random fields
SVM  Support vector machines
LSVM  Linear support vector machine

1 Introduction

In recent times, social media platforms have emerged as a 
central place for exchanging information among individuals 
and groups around the globe. In such platforms, microblog-
ging sites like Twitter are one of the rapid ways of infor-
mation propagation. Before appearing on the conventional 
media, most of the breaking news appears first on Twitter 
(Hamidian and Diab 2015). However, the credibility of such 
information is still an open challenge (Zubiaga et al. 2018). 
There is a number of exemplary events about which rumors 
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or fake news were disseminated and became viral on micro-
blogging sites, misleading public opinion, disrupting the 
social order, decreasing government credibility, and leading 
to a huge threat to the social stability (Liang et al. 2015). For 
example, a rumor of an attack on the White House was posted 
on the hacked Twitter account of Associated Press, resulting 
in the loss of $136 billion in the stock market within 2 min.1

Twitter has been considered as a powerful social network-
ing tool for the politicians to manage the political campaigns 
and approaching their audience in shortest possible time. For 
example, in 2016 US elections, Barack Obama and Hillary 
Clinton were remained as the frequent Twitter users for 
publicizing their political campaigns (Chang et al. 2016). 
Although social networking sites like Facebook and Twit-
ter allow their users to access and disseminate the informa-
tion quickly, however, there is a lack of advanced filtering 
mechanism to verify the credibility of propagated informa-
tion, which leads to bullying, rumor propagation, trolling 
and other unsocial behaviors (Alzanin and Azmi 2018). In 
politics, the extreme political campaigners can easily cre-
ate rumors on Twitter and widely spread by readers and 
followers, who cannot judge their truthfulness (Shao et al. 
2017). Rumors also have important political implications 
on individuals, such as a political rumor circulated about 
Obama’s health care policy in summer 2009 and later this 
rumor have been discredited by media organizations. The 
dissemination of rumors and malicious information can have 
harmful effects also on society, as rumors decrease citizens’ 
trust in the government and support of the regime (Huang 
2017). Different researchers have conducted studies (Castillo 
et al. 2011; Gupta et al. 2014; Jaho et al. 2014) to analyze the 
credibility of information. However, detecting rumors and 
false information on Twitter has been considered as a chal-
lenging research area (Morris et al. 2012; Liu et al. 2015). 
Furthermore, automatic identification of political rumors 
from micro-blogging websites, as well as preventing rumor 
propagation in early stages, is an important research area.”

The work proposed by Ajao et al. (2018) used LSTM-CNN 
model for tweet (breaking news) classification into rumors and 
non-rumors (fake vs genuine). The state-of-the-art LSTM-
CNN model (Ajao et al. 2018) has an initial unidirectional 
LSTM layer that only maintains information from the previ-
ous context, without retaining the subsequent word (contex-
tual information). It lacks the capability to maintain the con-
text information efficiently to be made an input to the CNN 
layer. Therefore, the LSTM-CNN model does not provide an 
efficient way of classifying rumors from online content.

To overcome the aforementioned limitations, we inves-
tigate Bidirectional Long Short-Term Memory (BiLSTM) 
to retain context information both ways in a given tweet by 

maintaining both the previous and next states at word-level. 
In this way, the CNN layer receives input from BiLSTM 
with sufficient context information, minimizing the issue of 
limited context information associated with the unidirec-
tional LSTM layer for tweet classification into rumors and 
non-rumors.

In this work, we focus on the problem of classifying a 
tweet into a rumor or non-rumor. To discriminate rumor 
tweet from non-rumor, the rumor detection task is considered 
as a binary classification problem. We define a given set of 
training data as D =

{
d1, d2, d3,… dn

}
∈ R

zxm with each row 
di ∈ Rn being a data instance and each column Ci ∈ R

z is a 
class label for training data y ∈ {0, 1} , if 1, then rumor, other-
wise non-rumor. We aim to develop a model which can learn 
from the given training data and a class label y that accurately 
classifies rumor and non-rumor based on Twitter-based posts.

In this study, different ML classifiers are experimented 
such as K-nearest neighbors (KNN), Decision tree (DT), 
Random forest (RF), Logistic regression (LR), Naïve Bayes 
(NB) and also different variants of DL models: LSTM, 
CNN, RNN, LSTM-CNN are implemented. We have used 
the task-specific word embeddings feature representation 
scheme for DL classifiers. As the baseline classifiers consist 
of bag of words (BOW), such as CountVectorizer, and Term 
Frequency-Inverse Document Frequency (TF-IDF), as the 
feature representation scheme (Hamidian and Diab 2015).

The proposed system aims at applying DL model, namely 
BiLSTM-CNN, where the BiLSTM layer is used to learn the 
long term dependency in a tweet by considering both the previ-
ous (past) and next (future) context information. After that, CNN 
is applied to extract features for efficient classification of the 
tweet as rumor and non-rumor. The BiLSTM-CNN has already 
been applied in many early works in the domain of Natural Lan-
guage Processing (Zhang and Xiang 2018; Zeng et al. 2016) 
but to the best of our knowledge, we have applied the BiLSTM-
CNN model in Rumor detection domain, for the first time. Addi-
tionally, we compared it with most the other DL models. We 
want to answer the following research questions: RQ#1: How to 
recognize and classify tweets as rumor vs non-rumor, by apply-
ing deep learning-based techniques, RQ#2: What is the perfor-
mance of Word Embedding learned using BiLSTM-CNN over 
the classical feature sets bag-of-word techniques(BOW) like 
CountVectorizer, Tf-IDF? and RQ3: What is the performance 
of the proposed technique for tweet classification into rumor and 
non-rumor with respect to the baseline methods?

Following contributions are made in this study:

(i) Classifying tweets as rumor or non-rumor with DL 
based techniques.

(ii) To investigate the classical feature sets like CountVec-
torizer, TF-IDF over Word Embedding learned using 
CNN, LSTM, RNN, and LSTM-CNN for tweet clas-
sification as rumor and non-rumor.

1 http://www.bloom berg.com/news/artic les/2013-04-23/dow-jones 
-drops -recov ers-after -false -repor t-on-ap-twitt er-page.

http://www.bloomberg.com/news/articles/2013-04-23/dow-jones-drops-recovers-after-false-report-on-ap-twitter-page
http://www.bloomberg.com/news/articles/2013-04-23/dow-jones-drops-recovers-after-false-report-on-ap-twitter-page
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(iii) Development of Web-based interface to detect rumors.
(iv) Comparing the efficiency of the proposed model with 

other baseline methods.
(v) Our method outperforms baseline methods by a signifi-

cant margin.

The rest of the article is organized as follows: related work 
is presented in Sect. 2; Sect. 3 presents proposed methodology; 
in Sect. 4, we present experimental setup, analyzes the results 
obtained from experiments and the final section concludes the 
study and gives the recommendation for the future work.

2  Related work

In this section, we present a review of literature on rumor 
detection.

2.1  What about the recent fake news idea?

Nowadays the issue of rumors and fake news is viewed as the 
greatest threats to journalism, democracy, and freedom of 
expression (Hosseinimotlagh and Papalexakis 2018). It has a 
significant impact on various aspects of life such as weakening 
the public trust in government, employed in election campaigns 
against the famous figures, and economically, affecting the con-
sumption of products and food (Conroy et al. 2015). Fake news 
has got a huge potential to produce a real-world impact in a 
very short time period, manipulating the public perception sig-
nificantly. The fake news is published intentionally to mislead 
readers (Long et al. 2017; Asghar et al. 2019b). For instance, 
on August 25th of 2015, fake news about “shootouts and kid-
nappings by drug gangs happening near schools in Veracruz” 
spread through Twitter and Facebook. This caused severe chaos 
in the city involving 26 car crashes because people left their 
cars in the middle of a street and rushed to pick up their children 
from school. This incident of fake news highlights that auto-
matically predicting the veracity of the information on social 
media is of high practical value (Ma et al. 2016).

2.2  Why rumors are problematic?

Rumors and fake news detection in social media text is 
a challenging problem it is even difficult for a human to 
accurately distinguish between real news and fake news. 
As reported by the Forbes,2 only 50–63% success rate is 
achieved by human judges in identifying the fake news using 
a manual inspection method. In another work (Zhou and 

Zafarani 2018), it is observed that 80% of the high school 
students had faced a hard time in determining, whether an 
article is fake or original. While conducting experiments 
on fake reviews identification, it has been observed the fake 
news data is limited because the fake news is usually mixed 
with true stories and it becomes difficult to recognize them 
accurately (Pham 2018).

2.3  What are the previous studies that researched 
about rumors?

In the microblogging platform such as Twitter, various 
issues have been investigated including spam detection 
(Ahmed and Abulaish 2012), sentiment detection (Barbosa 
and Feng 2010) and event detection (Kimmey 2015).The 
research in rumor detection in Twitter is less deeply explored 
so far, although in social psychology (Allport and Postman 
1947) rumors have already been investigated for a long time. 
In one of the early studies on rumor detection (Castillo et al. 
2011), authors have analyzed the information credibility in 
Twitter Posts by extracting 68 features categorized them 
into four types namely (i) user-based features, (ii) content-
based features, (iii) propagation- based features, and (iv) 
topic-based features. With the similar objective, the task of 
misinformation identification in microblogs is carried out 
by Qazvinian et al. (2011) to extract the attributes related to 
the different constructs, such as the content of tweets, net-
work features, and Twitter specific memes. Different Bayes 
classifiers are developed to detect the rumor spreading on 
Twitter. While highlighting the importance of information 
propagation on Twitter, the studies conducted by Seo et al. 
(2012), Tripathy et al. (2010) has focused on the detection of 
rumors from Twitter posts. The study conducted by Tripathy 
et al. (2010) applied logistic regression classifier using a 
small amount of provenance information. Feature engineer-
ing also plays an important role in rumor detection, in this 
connection, Kwon et al. (2013) proposed a set of text fea-
tures identified from the comments and retweet for efficient 
detection of rumors. Use of temporal traits for identification 
of rumor has been focused by Ma et al. (2015). They intro-
duced a time series fitting model by exploiting three sets 
of features, namely structural, temporal and linguistic. This 
work is extended by Yang et al. (2012) using dynamic time 
series model to capture the temporal characteristics of the 
social context features. In the work proposed by Yang et al. 
(2012), two new features are investigated: (i) location-based 
feature, and (ii) client-based features, and the Support Vector 
Machine classifier is trained to identify the misinformation 
on the microblog Sina Weibo. Another work performed by 
Zhou and Zafarani (2018), utilized several classical features, 
namely user, propagation, and other Meta features along 
with the belief of the crowd. In a similar work, Wu et al. 
(2015) developed a graph-kernel-based SVM classifier along 

2 https ://www.forbe s.com/sites /brett edkin s/2016/12/20/ameri cans-
belie ve-they-can-detec t-fake-news-studi es-show-they-cant/#5fd9a 
07c40 22.

https://www.forbes.com/sites/brettedkins/2016/12/20/americans-believe-they-can-detect-fake-news-studies-show-they-cant/#5fd9a07c4022.
https://www.forbes.com/sites/brettedkins/2016/12/20/americans-believe-they-can-detect-fake-news-studies-show-they-cant/#5fd9a07c4022.
https://www.forbes.com/sites/brettedkins/2016/12/20/americans-believe-they-can-detect-fake-news-studies-show-they-cant/#5fd9a07c4022.
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with three sets of features: user, message, and repost, for the 
detection of the false rumors in microblogging sites.

Liu et al. (2019) proposed an Attention-Based BiGRU-
CNN network for Chinese question classification task. The 
system yielded improved results over the state-of-the-art 
works. However, the performance can be further improved 
by using different types of features as input to deep learn-
ing model. Edara et al. (2019) applied several text mining 
and machine learning techniques on social media text col-
lected from cancer supported communities to perform senti-
ment analysis. The work proposed long short-term memory 
(LSTM) neural network as an alternative to the conventional 
sentiment analysis techniques. Experimental results proved 
that the proposed method performed better in terms of both 
accuracy and execution time among the other methods. 
Liu (2018) proposed a text sentiment analysis framework 
based on the Bag of Word(CBOW) model and deep learn-
ing. The proposed system was experimented on two datasets 
COAE2014 and IMDB. Results depict the proposed method 
can accurately determine the emotional category of the text.

The aforementioned studies have applied different 
approaches for the identification and classification of rumors. 
These techniques are based on the supervised machine learn-
ing, unsupervised learning, deep learning and hybrid models.

Most of the aforementioned existing studies, mainly focus 
on the manual feature engineering methods, followed by a 
machine learning (ML) classifier (Jin et al. 2017a; Yang et al. 
2015; Ma et al. 2016). Furthermore, existing studies conducted 
on rumor detection using deep learning (DL) techniques, 
applied different models such as recurrent neural network 
(RNN), long short-term memory (LSTM), gated recurrent 
unit (GRU) (Duong et al. 2017; Chen et al. 2018; Ruchansky 
et al. 2017; Veyseh et al. 2017), temporal attention (att) CNN-
LSTM (Chen et al. 2017a, b), att- RNN (Jin et al. 2017b), 
Convolutional Neural Network (CNN) (Yu et al. 2017a, b) 
and LSTM-CNN (Ajao et al. 2018 In the field of NLP, both 
long short term memory (LSTM) and convolutional neural 
networks (CNN) have shown promising results. Different stud-
ies (Zhang and Xiang 2018; Ayutthaya and Pasupa 2018; Chiu 
and Nichols 2016) conducted in this area indicated that the 
BiLSTM-CNN has exhibited best performance with respect 
to other models. Therefore, we investigate the applicability of 
the deep learning model, namely BiLSTM + CNN for rumor 
detection in the online content. We applied deep neural net-
work BiLSTM-CNN model on different datasets.

3  Materials and methods

The proposed method consists of different modules namely 
(i) dataset acquisition and splitting, (ii) overview of the 
method, (iii) network architecture, and applying an example. 
The detail of each module is described below.

3.1  Dataset acquisition and splitting

We acquired a benchmark Pheme rumor dataset.3 The data-
set consists of 5800 tweets about five breaking news events.

We split the dataset into three parts: (i) Train data, (ii) 
Validation data, and (iii) Test data.

The proposed deep learning models are implemented with 
the Keras library4 built on TensorFlow using, 64-bit OS with 
an 8 GB memory, and Intel Core i7. Figure 1 depicts the dia-
grammatic representation of train, validation and test split.

3.1.1  Training data

The training of the proposed model is performed using 70% 
of the data as a training set, which can vary for different 
experiments. The model learns from the train data and used 
to fit the model. It includes both the input and the corre-
sponding expected output (Asghar et al. 2019a).

A sample output of the Training phase is presented in 
Table 1.

In addition to the aforementioned dataset, we also used 
two more public datasets for further experimentation: The 
dataset D2 is a merger of two datasets,56 which contains 
two types of news, namely; fake news (size = 2999) and real 
news (size = 4320). The dataset contains a csv file, namely 
“fake-news”, in which majority of the news focus on politi-
cal topics. Similarly, the dataset D37 is comprised of fake 
news (size = 3160) and real news (size = 3165). The dataset 
contains different types of topics, such as world news topics 
and politics in the file namely “fake_real_news” (Table 2).

Original data

NR

R

NR

NR

R

Labeled observations (5800)

Unlabeled
 observations

Train set: To fit model.
         (4640)

Validation set: To tune parameters.
                         (464)

Test set: To evaluate model.
(1160)

Fig. 1  Train, validation and test split

3 https ://figsh are.com/artic les/PHEME _datas et_of_rumou rs_and_
non-rumou rs/40106 19.
4 https ://keras .io/.
5 https ://www.kaggl e.com/jruvi ka/fake-news-detec tion.
6 https ://githu b.com/aluma g/ADAFa ke/tree/maste r/data.
7 https ://www.kaggl e.com/rchit ic17/real-or-fake.

https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://keras.io/
https://www.kaggle.com/jruvika/fake-news-detection
https://github.com/alumag/ADAFake/tree/master/data
https://www.kaggle.com/rchitic17/real-or-fake
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3.1.2  Validation data

During the training phase, the accuracy of training is often 
high, showing a high level of accuracy but the performance 
gets degraded when tested against the test set. Therefore, 
to avoid the performance error in terms of overfitting and 
underfitting, we used 10% validation set. To ensure the opti-
mal functioning of the model, Keras provides two techniques 
for parameter tuning (Acharya 2017), namely: (i) manual 
verification of the dataset, and (ii) automatic verification 
dataset. We applied automatic verification dataset because 
it provides an unbiased evaluation of the model and assists 
in minimizing the problem of overfitting. 

3.1.3  Test data

The test data assists in evaluating the performance of the 
model on unseen/new data. We used 20% test data, com-
pletely independent of the training set. It is used only once 
when the model is completely trained (using trained and val-
idation set). The final evaluation of the model is performed 
through the test data. A sample listing of the Testing data is 
presented in Table 3.

The statistics of the dataset is shown in Table 4.
Firstly, the dataset is segmented into 80:20 split by using 

the train-test split method of scikit-learn. In the next step, 
we dissect the train set into 70:10 split, in which the 10% 
is the validation set. The validation set is used for differ-
ent purposes, such as tuning the model hyperparameters, to 
configuring and evaluating the model.

3.2  Overview of the method

The proposed method is comprised of different modules 
(Fig. 4), namely (i) input data preprocessing, (ii) feature 
representation, (iii) feature encoding, (iv) feature extraction, 
and (v) classification (label predictor). Specifically, the fol-
lowing module is included in our method:

• Input data preprocessing text preparation: In this step, 
we apply, stop word removal, depletion to lowercase, 
and data splitting (tokenization). After tokenization, a 
unique integer is assigned to each word and resultantly, 
an integer-based sentence vector (set of integer/indexes) 
is created. For example, the input sentence: “sad news 
plane crashed southern France”, is transformed into an 
integer vector, based on a unique value assigned to each 
word (Fig. 2).

• Feature representation: In this step, the integer vector 
generated for a sentence in the previous stage (Fig. 2) is 
transformed into a dense vector of fixed size (Yang et al. 
2015) using Keras embedding layer. The dense vector is 
a real-valued encoding (Fig. 3).

• Feature encoding: A BiLSTM is used to perform double 
ended encoding of a sentence, i.e. a sentence is encoded 
from beginning to end and then from end to beginning, 
receiving two representations. Finally, the two represen-
tations are merged to form a final encoded representation 
(Zhang et al. 2018). The dually encoded representation 
captures both previous and forward dependencies. The 
information captured (sentence matrix) is made an input 
to the CNN layer.

• Feature extraction: The CNN layer performs feature 
extraction (e.g. n-grams) by processing the information 
in a hierarchical manner.

• Classification (Label predictor): Finally, classification is 
done by applying sigmoid activation function to the clas-
sify the input sentence/tweet into rumor or non-rumor.

3.3  Network architecture

We trained BiLSTM-CNN classifier to classify a tweet into 
rumor and non-rumor. Our network process information into 
the following five steps;

The proposed BiLSTM-CNN model for tweet classifi-
cation into rumors and non-rumors operates in eight lay-
ers: embedding (sentence matrix), Dropout layer(sentence 
matrix), BiLSTM (sentence matrix), Convolution (sentence 
matrix), Maxpool (sentence matrix), flatten (feature vector), 
and single neuron output(classification). Figure 5 shows an 
end-to-end model with different layers, explained as follows:

Embedding layer: We represent the dataset as a set 
of multiple tweets t and each tweet t is comprised of a 
sequence of z words, i.e. x1, x2, x3 … xz . Each word xi 
constitutes a real valued embedding vector wi ∈ R

m , 

1 2 3 4 5 6

1 2 3 4 5 6

input sentence: “sad news plane crashed southern france”

Fig. 2  Integer vector representation of a sentence

1 2 3 4 5 6

1 2 3 4 5 6

input sentence: “sad news plane crashed southern france”

0.1

0.2

0.3

0.4

0.3

0.9

0.6

0.1

0.4

0.1

0.3
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0.1
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0.8
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Fig. 3  Dense vector representation of a sentence
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known as word embedding. In this work, we used keras 
embedding layer (Duong et al. 2017). The embedding 
layer is comprised of two dimensional input matrix, also 
called embedding matrix/sentence matrix, represented 
as: E ∈ R

zxm , where z is the tweet length, and m is the 
embedding dimension. In this way, the, the matrix E is 
made input to the BiLSTM layer.

The mathematical notations used in Embedding Layer 
are listed in Table 5.

BiLSTM layer: The BiLSTM layer is a special kind of 
RNN, capable of learning long term dependency (Alayba 
et al. 2018).It assists in accessing both previous(left) and 
next (right) context of an encoded tweet (sequence labeling). 
However, in a unidirectional LSTM, the hidden states 

(
ht
)
 

take into account only the previous (past) information, with-
out considering the next(previous) information. Therefore, 
the BiLSTM keeps track of richer information required for 
processing the encoded tweet, sequence labeling (Ma and 

Table 1  Set of tweets from the dataset (training)

Tweet # Tweet Tweet label (R/
NR)

1. Ottawa police are confirming a shooting at the War Memorial. Minutes ago. No other info Non-rumor
2. Shooting at the war memorial in Ottawa Non-rumor
3. Breaking: Police confirm multiple suspects in Ottawa shooting Rumor
4. At least 30 more shots were fired inside Parliament in Ottawa Rumor
5. Police with guns drawn at seen of war memorial shooting Non-rumor
6. #BREAKING: PMO says PM Harper is safe and has left Parliament Hill Non-rumor
8. Gunman on the loose in downtown Ottawa. Canadian citizens disarmed by their government. Target 

rich environment. #OttawaShooting
Rumor

10. Canada Prime Minister Stephen Harper safe has left Parliament Hill: TV quoting PM’s office Non-rumor

Table 2  Description of dataset 
D1, D2, D3

Dataset Description Size Remarks

D1 Pheme rumor dataset 5800 Publically available benchmark datasets
D2 Fake-news 7319
D3 Fake_real_news 6325

Table 3  Set of tweets from the dataset (testing)

Tweet# Tweet Tweet label (R/NR)

7. Uniformed Canadian soldier 
shot at War Memorial in 
#Ottawa

Rumor

9. #Ottawa City Hall is currently 
in lock-down. Please avoid 
the area

Non-rumor

Table 4  Statistics of the dataset

Original set (5800)/100%

Train set (4640)/80% Test set (1160)/20%
Train set
(4176)/70%

Validation set
(464)/10%

Test set
(1160)/20%

Input data 
preprocessing text 

preparation

Feature representation

Feature encoder

Feature 
Extraction

Cleaning data.

Convert words to vector.

Preserve information for 
sequence data.

Extract features from text.

Final classification of tweet into 
rumor vs nonrumor.

Classification 
(Label predictor)

Fig. 4  Block diagram for method overview
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Hovy 2016). To learn information from preceding as well as 
subsequent tokens, BiLSTM incorporates a Forward LSTM 
layer and a Backward LSTM layer (Zhou et al. 2016).

Forward LSTM: It processes the sequence from left to 
right by concatenating the two inputs, i.e. the current input 
“ x1 ”, and the previous input (hidden state) “ ht−1 ”. For a 
given input sequence: x1, x2,… xz−1 the Forward LSTM layer 
produces an output sequence “ ⃗h”.

Backward LSTM: It processes the sequence from right to 
left by concatenating the two inputs: the current input “ s1 ” 
with the next input (future hidden state) “ ht+1 ”. For a given 
input sequence: xz+1,… , x2, x1 , the Backward LSTM layer 
produces an output sequence “ ←h”.

The forward and backward context representations, 
denoted by “ ⃗h ” and “ ←h ” respectively, are merged to produce 
a new sentence matrix H =

[
h1, h2, h3,… ..hz

]
 , H ∈ R

zxm 

sentence matrix Pooling layer

Flatten layer

Output layer     

Convolutional layer

Filter matrix

sad

news

plane

crashed

……..

Input text

Embedding layer BiLSTM Layer

h h

Sad news, 
@plane 
crashed in 
southern 
#France

sad

news
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…..

Preprocessed

text 

Rumor

NonRumor

Fig. 5  Network architecture

Table 5  Symbols used in the embedding layer

Mathematical symbol Description

t Tweet
wi Embedding vector
E Sentence matrix generates from Embed-

ding layer
R Real numbers
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(Zhou et al. 2016). To combine forward and backward out-
put, the element-wise sum is computed as follows (Eq. 1):

Finally, the new sentence matrix (Eq. 1) is made an input 
to the CNN layer.

Following equations are used for the computation of for-
ward and backward LSTM.

Forward LSTM Gates [5]

Backward LSTM Gates

Where n is the size of the input, m is the size of cell 
state, xt : input vector of size n × 1 , ft : forget gate vector 
of size m × 1 , it : input gate vector of size m × 1 , ot : output 
gate vector of size m × 1 , ht : output vector of size m × 1 , 
ct : cell state vector of size m × 1 . The Wf ,Wi,Wo, and Wc , 
represent input gate weight matrices of size m × n n. 
Uf ,Ui,Uo, and Uc represent output gate weight matrices of 
size m × m . bf , bi, bo, and bc represent bias vectors of size 
m × 1 . � shows logistic sigmoid activation function and 
finally the, � shows hyperbolic tangent function.

Each of these gates is considered as separate modules 
within the BiLSTM, performing different functions. The 
input gate ( it ) determines how much emphasis to put on 
each of the inputs, the forget gate ( ft ) discards the unnec-
essary information, and the output gate computes the final 
output  ht.

The mathematical notations used in BiLSTM Layer are 
listed in Table 6.

(1)
↔

h = h⃗⊕ �⃖h

(2)ft = �
(
Wf xt + Uf ht−1 + bf

)

(3)it = �
(
Wixt + Uiht−1 + bi

)

(4)ot = �
(
Woxt + Uoht−1 + bo

)

(5)c ∼ t = �
(
Wcxt + Ucht−1 + bc

)

(6)ct = ft ⊙ ct−1 + it ⊙ c ∼t

(7)ht = ot ⊙ 𝜏
(
ct
)

(8)ft = �
(
Wf xt + Uf ht+1 + bf

)

(9)it = �
(
Wixt + Uiht+1 + bi

)

(10)ot = �(Woxt + Uoht+1 + bo

(11)c ∼ t = �
(
Wcxt + Ucht+1 + bc

)

(12)ct = ft ⊙ ct+1 + it ⊙ c ∼t

(13)ht = ot ⊙ 𝜏
(
ct
)

CNN layer The CNN layer is comprised of different 
layers, namely convolution, maxpool, and flatten, gener-
ating a feature vector. Detail of each layer is presented as 
follows:

Convolution: A convolutional operation involves a con-
volution filter matrix MRkxd (Zhou et al. 2016). To generate 
a feature map, a filter matrix M is applied to each possible 
window of words over the matrix H of the previous BiLSTM 
layer. For example, a feature map U is learned as follows:

where i  ranges from 1to(z − k + 1) and j ranges from 
1to(m − d + 1 ), bR is bias term, “ ◦ ” is convolutional opera-
tion between M and E, and f is a nonlinear function. We used 
the Relu function because of its better performance than the 
other functions like Tanh (Zhang et al. 2017).

Af te r  pe r fo r ming  t he  convolu t ion  opera -
tion (Eq.  14), the matrix U  is obtained as follows: 
U =

[
u1,1, u1,2,… uz−k+1,m−d+1

]
,URz−k+1.

Maxpool: The size of the feature map (U) is further 
reduced by applying the maxpool layer by selecting the 
important features (max: value). This assists in reducing 
the computation time by discarding the non-maximal (un-
important features).

The maxpool operation is computed as follows:

After applying Eq. 15, the pooled feature matrix is obtained 
as follows: O =

[
o1,1, o1,2,… ou−k+1,v−d+1

]
,O ∈ Ru−k+1,v−d+1.

(14)Uij = f
(
W◦si∶i+k−1,j+d−1 + b

)

(15)Oij = max
(
oi+k−1,j+d−1

)
.

Table 6  Symbols used in BiLSTM

Mathematical symbol Description

xt Input vector
ft Forget gate vector
it Input gate vector of size
ot Output gate vector
ht Hidden state
ht−1 Previous hidden state
ht+1 Future hidden state
↔

h Final representation (element-wise sum of 
previous and future hidden state)

ct Cell state vector
Wf ,Wi,Wo, and Wc t input gate weight matrices
Uf ,Ui,Uo, and Uc Represent output gate weight matrices
bf , bi, bo, and bc Represent bias vectors
� Shows logistic sigmoid activation function
� Shows hyperbolic tangent function
f A nonlinear function
H Sentence matrix generated by BiLSTM layer
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The mathematical notations used in CNN Layer are listed 
in Table 7.

Flattening The Flatten layer is used to transform the 
pooled feature map obtained in the previous stage, into a 
feature vector, in order to prepare the input for the final clas-
sification layer. For this purpose, the elements or the features 
of the pooled feature matrix O are transformed into a flat-
tened vector produced by the reshaping operation (Lopez-
Martin et al. 2017) as follows:

Classification For the final classification, we use Dense 
layer with a single neuron and a sigmoid activation function, 
to compute the probability of the two classes i.e. rumor and 
nonrumor.

The net input is obtained by applying the Eq. 17, as 
follows:

We take an example tweet and provide a step-wise detail 
explaining how different layers of the proposed BiLSTM-
CNN model operated for classifying the tweet as rumor or 
non-rumor (Fig. 6).

3.3.1  Input preparation and embedding layer

We take a sample Tweet: “sad news plane crashed south-
ern France”, and apply the proposed model for its classifi-
cation as rumor or non-rumor. Firstly, the input tweet is 
segmented into a set of tokens as follows: “sad”, “news”, 
“plane”, “crashed”, “southern”, “France”. Next, we build 
the vocabulary index which is a mapping of the index to each 
unique word. As there are 6 unique tokens the vocabulary is 
6, represented as: “sad: 1”, “news: 2”, “plane: 3”, “crashed: 
4”, “southern: 5”, “France: 6”. After that, the given tweet 
is transformed into a sequence of integers i.e. [1, 2, 3, 4, 5, 6] . 
Next each word with a single index in the tweet is transformed 
into a vector using an embedding layer, represented as fol-
lows: [0.10.20.30.4],[0.30.90.60.1], where the first row is an 
embedding vector for the token “sad” and the second row 
represents the token “news”. The process is repeated for 
such tokens. Resultantly, a matrix is constituted as follow; 

(16)T = pooled.reshape[(u − k + 1) × (v − d + 1)]

(17)yin =
∑

xi.wi + b

[[0.10.20.30.4],[0.30.90.60.1], [0.40.10.30.2],[0.70.80.10.2]

[0.90.60.50.4], [0.80.10.30.6]].

3.3.2  Dropout layer

The functionality of the Dropout Layer is to prevent overfit-
ting. We set the value of “rate” parameter to “0.5”, where its 
value ranges between0 and 1. The Dropout layer is applied 
after the embedding layer, so it randomly turns off or removes 
the activation of neurons in the embedding layer (Shen et al. 
2017).

3.3.3  BiLSTM layer

The unidirectional LSTM can only get information from the 
previous context. But most of the sequence data, especially 
in the classification task, depending on overall information 
including past and future. Therefore, we choose to use bidi-
rectional architecture for processing the sequence in two direc-
tions: left-to-right (Forward LSTM) and right-to-left (Back-
ward LSTM), yielding overall information of the sequence 
(Zhang and Xiang 2018).

The input received from the Dropout layer is made an input 
to the BiLSTM layer. The computation is comprised of 4 com-
ponents, namely an input gate (it), a forget gate ( ft ), an output 
gate (ot) , and a new memory container (c ∼ t).

3.3.4  Forward LSTM

In Forward LSTM each gate takes a current input ( xt ), previ-
ous state (ht−1) , performs some computation (Eqs. 2–7), and 
finally information is aggregated in the form of hidden state 
“ ⃗h ”, show as follows:

3.3.5  Backward LSTM

In backward LSTM, each gate takes current input (
xt
)
 , future state (ht+1) , performs some computation 

(Eqs.  8–13), and aggregate the hidden state “ ←h ”, as 
follows:

h⃗ ot ct

⎡⎢⎢⎢⎣
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Table 7  Symbols used in CNN

Mathematical symbol Description

M Convolution filter matrix
U Feature map
O Pooled feature matrix
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Fig. 6  Working flow of proposed BiLSTM-CNN model for an example sentence
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3.3.6  The final output of BiLSTM Layer

Finally, the forward LSTM h⃗ and backward LSTM �⃖h are 
accumulated (element-wise summation) using Eq. 1, to get 
the final representation ↔h , represented as follows:

3.3.7  CNN layer

The input received from the previous layer (BiLSTM) is 
made an input to the convolutional layer for extracting 
local n-gram features. It works as follows:

3.4  Stage‑1: Filtering

In the filtering step, the filter matrix is convolved over 
the input matrix to generate the convolved feature map 
(Eq. 14). The filtering stage is comprised of the following 
three steps, namely: (i) alignment of sentence matrix with 
filter matrix, (ii) element-wise multiplication of the filter 
matrix with the selected patch of the sentence matrix, and 
(iii) Computation of the feature u12 by summing all the 
values obtained in the previous step.

• Feature matrix Row1: 0.7, 0.8, 0.6, 0.4
• Filter matrix: 0.3, 0.1, 0.4, 0.2
• Feature map Element1: 0.7 × 0.3, 0.8 × 0.1, 0.6 × 0.4, 

0.4 × 0. 2 = 0.61
• Adding bias: 0.61 + 0.1 = 0.71
• Apply Relu Activation function: Output = max (0, 

0.71) as 0.71 > 0 => 0.71

3.5  Stage‑2: Pooling

In this step, the convolved feature map obtained from the 
previous stage is reduced using Eq. 15. The pooling pro-
cess is carried out by applying the following steps: (i) an 
appropriate window size (commonly 2 or 3) is selected, 
(ii) choosing a stride: The stride controls the movement of 
window/filter around the Rectified Feature map by shifting 
the window with a specific threshold/size (stride = 1, in our 
example), and (iii) A maximum value is selected as output 
from the window/filter obtained from the previous step.

• Max pool for Element1: max (0.57, 0.51, 0.36, 
0.47) => the maximal number found is 0.57.

↔

h h⃗
←

h
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3.6  Stage‑3: Flattening

Applying Eq. 16, the pooled feature matrix obtained from 
the previous stage is transformed into a feature vector.

3.6.1  Classification layer

The feature vector received from the previous layer(CNN) is 
made an input to the classification layer, in which a sigmoid 
activation function is applied to compute the probability of 
the classes (rumor and non-rumor).

For the BiLSTM-CNN model, the net input can be calcu-
lated (using Eq. 17) as follows:

Putting the values of s 1 − s8(s1 = 0.57, s2 = 0.71, s3 =

0.65, s4 = 0.75, s5 = 0.65, s6 = 0.75, s7 = 0.47, s8 = 0.66),

w1 − w8(w1 = 0.3,w2 = 0.2,w3 = 0.5,w4 = 0.1,w5 = 0.4,

w6 = 0.6,w7 = 0.8,w8 = 0.1), and b = 0.2 we get:

Applying sigmoid activation function: y = F
(
yin

)
, where 

y is the output. F is the sigmoid activation function, and yin 
is the net input computed (2.57). The computation of y takes 
place as follows:

Taking “y” as probability, we formulate the decision rule 
as follows.

Using the aforementioned computation, y = 0.8 > 0.5 , 
therefore, the input tweet: “sad news plane crashed southern 
france” is predicted as “rumor”.

4  Experiment results and evaluation

In this section, we present the detail of the experimental 
setup design for the proposed model, along with a detailed 
answer to each of the posed research question.

yin = s1.w1 + s2.w2 + s3.w3… sz.wz + b

yin = 0.57 ∗ 0.3 + 0.71 ∗ 0.2 + 0.65 ∗ 0.5 + 0.75 ∗ 0.1

+ 0.65 ∗ 0.4 + 0.75 ∗ 0.6 + 0.47 ∗ 0.8

+ 0.66 ∗ 0.1 + (0.2) => yin = 2.57.

=> y = 1∕1 + e−yin

= 1
/
1 + e−2.57

y = 0.8

f (x) =

{
1 (rumor), y > 0.5

0 (non − rumor), otherwise
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4.1  Answers to posed research questions

4.1.1  Answer to RQ#1: How to recognize and classify 
tweets as rumor vs non‑rumor, by applying deep 
learning‑based techniques?

We applied different BiLSTM-CNN models for classifying 
tweets into rumors and non-rumors using different param-
eters. Inspired by the work conducted by Rani and Kumar 
(2018) on deep learning based sentiment analysis.

Table 8 shows the parameters setting for the proposed 
BiLSTM-CNN model. We performed experimentation with 
varying parameters: a number of filters are varied from 8 
to 64, BiLSTM unit is varied from 20 to 278, and different 
filer sizes are used, such as 2 × 2, and 3 × 3. We used cer-
tain parameters with fixed sizes, such as vocabulary size, 
input vector size, embedding dimension, activation function, 
batch size, dropout, and a number of epochs. In Table 9, we 

present the configuration setting of the selected parameters 
(number of filters, BiLSTM unit size, and Filter size) for the 
10 BiLSTM-CNN models.

In all models, BiLSTM unit size has been varied along 
with the filter size and number of filter size. Table 9 shows 
the configuration settings of all 10 BiLSTM-CNN models.

After experimentation with different parameter settings 
of the BiLSTM-CNN models, we recorded the test accu-
racy, loss score, and training time, as listed in Table 10. It 
is observed that the BiLSTM-CNN model (BiLSTM-CNN 
(10)), with BiLSTM unit size = 278 (neurons), filter size = 2, 
and the number of filter = 8, performed better and achieved 
maximum accuracy of 86.12%. Why our results are better. 
The experimental results suggested that through proper 
training, the BiLSTM-CNN (10), can outperform the other 
variants of DL models. It is also observed that the accuracy 
of the model is increased by increasing the number of neu-
rons and by reducing the number of filters.

The average test accuracy and loss score of all BiL-
STM-CNN models is shown in Fig.  7a, b. In Fig.  7a, 
X-axis denotes training time and the y-axis denotes the 
test accuracy, whereas in Fig. 7b, X-axis denotes the train-
ing time and y-axis denotes the loss score.

In Fig. 7a, with the increase in training time, there 
is a gradual increase in the test accuracy and the learn-
ing curve shows that the models are learning from data, 
whereas in Fig. 7b, the learning curve shows that the errors 
are decreasing as the number of training steps is increased.

The performance evaluation measures, such as precision, 
and recall (Table 11) are obtained for different variations 
of the BiLSTM-CNN models, as listed in Table 10. The 
computations of precision and recall, are shown as follows 
(Eq. 18, 19)

(18)
precision = Truepoistive∕Truepositive + Falsepositive

Table 8  Parameters settings of the proposed BiLSTM-CNN

Parameter Value

Vocabulary size 10,000
Input vector size 40
Embedding dimension 128
BiLSTM unit size 280, 230, 215, 

200,170,127, 
120,50,30, 20

Number of convolutional layers 1
Number of hidden layers 7
Number of filters 8, 10, 12, 32,64
Filter size 2, 3
Dropout 0.5
Activation function Sigmoid
Number of epochs 3
Batch size 32

Table 9  Parameter setting for 10 variations of BiLSTM-CNN models

Model name No. of filters BiLSTM 
unit size

Filter size

BiLSTM-CNN(1) 64 20 3
BiLSTM-CNN(2) 64 30 2
BiLSTM-CNN(3) 32 50 3
BiLSTM-CNN(4) 32 120 2
BiLSTM-CNN(5) 12 127 3
BiLSTM-CNN(6) 12 170 2
BiLSTM-CNN(7) 10 200 3
BiLSTM-CNN(8) 10 215 2
BiLSTM-CNN(9) 8 230 3
BiLSTM-CNN(10) 8 280 2

Table 10  Test accuracy, loss and training time of BiLSTM-CNN 
models

Model name Test accuracy (%) Test loss Training 
time (s)

BiLSTM-CNN(1) 84.91 0.37 16
BiLSTM-CNN(2) 84.48 0.36 18
BiLSTM-CNN(3) 84.66 0.36 20
BiLSTM-CNN(4) 85.17 0.35 29
BiLSTM-CNN(5) 83.28 0.40 48
BiLSTM-CNN(6) 83.79 0.44 64
BiLSTM-CNN(7) 84.40 0.36 53
BiLSTM-CNN(8) 85.09 0.35 58
BiLSTM-CNN(9) 85.17 0.39 64
BiLSTM-CNN(10) 86.12 0.35 69
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The F-score is defined as the weighted average of preci-
sion and recall. The greater the F-score, the better is the per-
formance of the model. Mathematically, F-score is computed 
using the following Eq. (20):

(19)recall = Truepoistive∕Truepositive + Falsenegative

(20)
F−score = 2 × (Recall × Precision)∕(Recall + Precision)

Figure 8 shows comparative results in terms of accuracy, 
of all the models (BILSTM-CNN). It is evident that the pro-
posed BiLSTM-CNN (BiLSTM-CNN (10)) performed bet-
ter than the other variants of BiLSTM-CNN. Why our results 
are better? After performing experimentation with different 
parameters variations of BiLSTM-CNN models, it has been 
analyzed that through proper training the BiLSTM-CNN 
(10) is able to achieve an accuracy of 86.12%.

4.1.2  RQ#2: What is the performance of Word Embedding 
learned using BiLSTM‑CNN over the classical feature 
sets bag‑of‑word techniques (BOW) like Tf‑idf, 
CountVectorizer?

We conducted an experiment to evaluate the efficiency of 
word embedding features learned using BiLSTM-CNN 
w.r.t the classical feature set on the Bag-of-Word(BOW) 
approach, namely CountVectorizer and Tf-IDF used in the 
machine learning algorithms. The performance evaluation 
results reported in Table 12 are summarized as follows.

Part-A In this experiment, we evaluated the perfor-
mance of different baseline(classical) feature representa-
tion schemes, such as CountVectorizer and Tf-IDF. The 
CountVectorizer uses count-of-word approach, whereas 
the Tf-IDF transforms the text into a feature vector for the 
text classification. For experimentation, multiple classifiers 
are used for both CountVectorizer and TF-IDF techniques, 
among them, DT achieved the best accuracy (81%) and the 
RF model achieved the lowest accuracy (65.43%).

Part B In this experiment, we performed a rumor classi-
fication task using BiLSTM-CNN model with task-specific 
word embedding feature set. The basic advantage of using 
word embedding over the traditional BOW model is that 
when the vocabulary size is too large, then the BOW model 
exhibits poor performance, whereas the deep learning based 
word embedding gives improved results.
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Fig. 7  a Average learning curve of accuracy. b Average learning 
curve of loss

Table 11  The performance measure of BiLSTM-CNN models

Model name Precision Recall F-score

BiLSTM-CNN(1) 0.85 0.85 0.85
BiLSTM-CNN(2) 0.84 0.84 0.84
BiLSTM-CNN(3) 0.84 0.85 0.85
BiLSTM-CNN(4) 0.85 0.85 0.85
BiLSTM-CNN(5) 0.85 0.83 0.83
BiLSTM-CNN(6) 0.84 0.84 0.84
BiLSTM-CNN(7) 0.84 0.84 0.84
BiLSTM-CNN(8) 0.85 0.85 0.85
BiLSTM-CNN(9) 0.85 0.85 0.85
BiLSTM-CNN(10) 0.86 0.86 0.86
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Fig. 8  Comparison of accuracy for all BiLSTM-CNN models



4328 M. Z. Asghar et al.

1 3

Part A vs B The results reported in Table 11 show that 
the proposed deep learning model(BiLSTM-CNN) based on 
task-specific word embedding yields more improved results 
when compared with that of classical machine learning 
classifiers using traditional feature representation schemes 
(CountVectorizer, Tf-IDF).

Figure 9 presents the comparison of the proposed model 
with the baseline ML algorithms to analyze the performance 
improvement in terms of accuracy. The baseline ML algo-
rithms such as K-NN, DT, LR, NB, and RF are applied to 
the same dataset using Anaconda based jupyter notebook.8

It is observed that the BiLSTM-CNN model performed 
better than different ML classifiers (Fig. 9) Why our results 
are better? The word embedding based features in the BiL-
STM-CNN capture both the syntactic and semantic informa-
tion about the given token(word). The feature representation 
is encoded in a dense and low dimensional vector. On the 
contrary, the classical BOW feature in ML classifier cannot 
capture the semantics of an input sentence, because it treats 
each word as a one-hot vector. The feature encoding requires 

large dimensional space with the lack of capturing complex 
linguistic information due to its sparse representation.

4.1.3  RQ#3: What is the performance of the proposed 
technique for tweet classification into rumor 
and non‑rumor with respect to the state‑of‑the‑art 
methods?

To evaluate the performance of the proposed BiLSTM-CNN 
model (word embeddings) for rumor detection, we compare 
with different deep learning models on the 3 datasets. Results 
presented in Tables 13, 14, 15 are summarized as follows.

• BiLSTM-CNN (Proposed) VS CNN (Baseline): In the first 
experiment, we compare the performance of our proposed 
model with the work performed by [30] using a single layer 
CNN model for rumor classification. Results presented in 
Table 13 show that the CNN model with single convolution 
layer yielded poor results (Acc: 79.74%, Pre: 80%, Rec: 80% 
and F-score: 78%) when compared with the proposed BiL-
STM-CNN model. The basic reason behind the degraded 
performance of CNN is that single convolution layer doesn’t 
keep track of maintaining the sequence information in text, 
which is required for text classification problem. Further-
more, the CNN model needs a large dataset for providing 
improved classification results.

• BiLSTM-CNN (proposed) vs RNN(Baseline): In the 
next experiment, we compared the performance of our 
model with the single layer RNN proposed by Ma et al. 
(2016). Our proposed model outperformed the single 
layer RNN because it can’t process extra-long sequences, 
i.e. the RNN lacks in learning long term dependencies. 
For retaining the context information, it is required to 
maintain information for long a time interval, which the 
single layer RNN can’t do, because of it. remembers only 
the short-term memory sequences. Results presented in 

Table 12  Performance 
evaluation of machine learning 
vs proposed model

Bold entries show that a particular method has shown promising results in terms of better accuracy, preci-
sion, recall, and F-score

Methods Acc Pre Recall F-score

Part-A
Baselines
Machine learning with 

traditional features
TF-IDF + KNN (Zubiaga 

et al. 2018)
80.94 0.81 0.81 0.81

BOW + DT (Zubiaga et al. 
2018)

81% 0.82 0.82 0.82

BOW + NB 68.15 0.79 0.66 0.64
CountVectorizer + LR 78.18 0.78 0.78 0.77
CountVectorizer + RF 65.43 0.77 0.65 0.52

Part-B
Proposed methodology BiLSTM-CNN + task-spe-

cific word embedding
86.12% 0.86 0.86 0.86
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Fig. 9  Performance analysis of proposed system (accuracy-based) 
with the baseline ML algorithms

8 https ://www.anaco nda.com/.
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Table 13 show that the RNN model has exhibited 5.26% 
less efficient in terms of precision, recall, f-measure, and 
accuracy, as compared to our proposed BiLSTM-CNN 
model

• BiLSTM-CNN (proposed) vs LSTM (Baseline): In this 
experiment, we evaluated the performance of our pro-
posed model with the work performed by Ruchansky 
et al. (2017) using the LSTM model for rumor classifi-
cation. The major limitation of unidirectional LSTM is 
that it preserves only past information, and can’t preserve 
information of the future/next state for better interpreta-
tion of the sentence context. Therefore, a single layer of 
LSTM yielded a performance degradation of up to 3.36% 
than the proposed model.

• BiLSTM-CNN (proposed) vs LSTM-CNN (Baseline): 
In the next experiment, we evaluated the performance 
of our proposed model with the work performed by 
Ajao et al. (2018) using LSTM-CNN model for fake 
news identification. Experimental results (Table 10) 
show that the proposed model has shown a performance 
improvement of 2.95% than the state of the art LSTM-
CNN model. Experimental results (Table 13) show that 
the proposed model has shown a performance improve-
ment of 2.95% than the state of the art LSTM-CNN 
model (Ajao et al. 2018). Why our results are better? 
The major reason behind the poor performance of the 
baseline work is that it used initially a unidirectional 
LSTM, which can only maintain information from the 

Table 13  Performance evaluation of deep learning vs proposed model for D1

Bold entries show that a particular method has shown promising results in terms of better accuracy, precision, recall, and F-score

Methods Acc (%) Pre Recall F-score

Baselines
Deep learning with Word 

embedding

1-layer CNN + task specific word embedding (Yu et al. 
2017a)

79.74 0.80 0.80 0.78

1-Layer LSTM + task specific word embedding (Ajao 
et al. 2018)

82.76 0.83 0.83 0.82

LSTM-CNN + task specific word embedding (Ajao et 
al.  2018)

83.53 0.83 0.84 0.83

Attention-based BiLSTM-CNN 84.66 0.85 0.85 0.85
RNN + task specific word embedding (Ma et al. 2016) 80.86 0.81 0.81 0.80

Proposed methodology BiLSTM-CNN + task-specific word embedding 86.12 0.86 0.86 0.86

Table 14  Performance evaluation of deep learning vs proposed model for D2

Bold entries show that a particular method has shown promising results in terms of better accuracy, precision, recall, and F-score

Methods Acc (%) Pre Recall F-score

Baselines
Deep learning with Word 

embedding

1-layer CNN + task specific word embedding 79.92 0.80 0.80 0.80
1-Layer LSTM + task specific word embedding 81.69 0.82 0.82 0.82
1-Layer BiLSTM + task specific word embedding 83.74 0.84 0.84 0.84
RNN + task specific word embedding 80.05 0.81 0.80 0.80
Attention-based BiLSTM-CNN 84.29 0.84 0.84 0.84

Proposed methodology BiLSTM-CNN + task-specific word embedding 86.61 0.87 0.87 0.87

Table 15  Performance evaluation of deep learning vs proposed model for D3

Bold entries show that a particular method has shown promising results in terms of better accuracy, precision, recall, and F-score

Methods Acc (%) Pre Recall F-score

Baselines
Deep learning with Word 

embedding

1-layer CNN + task specific word embedding (Yu et al. 
2017a)

80 0.80 0.80 0.80

1-Layer LSTM + task specific word embedding (Ajao 
et al. 2018)

82 0.82 0.82 0.82

1-Layer BiLSTM + task specific word embedding 83 0.83 0.83 0.83
RNN + task specific word embedding (Ma et al. 2016) 81 0.81 0.81 0.81
Attention-based BiLSTM-CNN 84 0.84 0.84 0.84

Proposed methodology BiLSTM-CNN + task-specific word embedding 85 0.85 0.85 0.85



4330 M. Z. Asghar et al.

1 3

previous input without acquiring future context infor-
mation. Due to such information loss, the subsequent 
CNN layer cannot capture the context information effi-
ciently and resultantly the convolution layer loses the 
sequence information. Therefore, LSTM-CNN model 
performed less efficiently than the proposed BiLSTM-
CNN model for rumor detection.

• BiLSTM-CNN (proposed) vs Attention based BiL-
STM-CNN (Baseline): In this experiment, we evalu-
ated the performance of our proposed model with the 
work performed by Zhu et al. (2018) for text classifica-
tion.

  The basic theme of the attention mechanism is to pay 
attention to the significant words (Rocktäschel et al. 
2015). The attention is an additional MLP mechanism, 
which is jointly trained with all the other components 
of the deep learning model (Attention-based BiL-
STM-CNN). This mechanism determines which words 
should be given more attention, than the other words, in 
a sentence when predicting sentence class. The atten-
tion layer aims at creating a context vector for each 
word (Zhao and Wu 2016).

  Experimental results reported in Table 13 show that 
the Attention-based BiLSTM-CNN model has exhibited 
1.46% less efficiency as compared to our proposed BiL-
STM-CNN model. It is observed that the performance 
has not improved by using the attention layer, because 
the model has become more complex to be trained (Han 
et al. 2018).

We evaluate the performance of the proposed model with 
the two additional datasets (D2, D3) and their results are 
reported in Tables 14 and 15. Experimental results indi-
cate that the proposed BiLSTM-CNN model perform better 
the other baselines models in terms of accuracy, precision, 
recall, and f-measure. These results show that by combin-
ing the BiLSTM with CNN, we are able to achieve better 
accuracy.”

The aforementioned experiments show that the proposed 
BiLSTM-CNN model has performed improved performance 
(accuracy: 86.12%) as compared to the state-the-art deep 
learning-based studies (Duong et al. 2017; Ma et al. 2016; 
Ruchansky et al. 2017; Ajao et al. 2018), conducted on the 
rumor classification.

4.1.4  Why our results are better?

The major reason for the performance improvement of our 
model over state-of-the-art studies is that we used BiLSTM, 
which preserves information both from the past and future 
contexts, before making its input to the CNN model. The 
BiLSTM layer produces a new representation of the input 
it receives from the embedding layer in such a way that it 

captures information from both the current input as well as 
the previous inputs, abstaining from the information loss. 
Therefore, it is concluded that the BiLSTM model is able to 
retain the contextual information (current and previous) over 
a long period of time for making predictions efficiently. The 
BiLSTM model has shown efficient performance for the tweet 
classification into rumors and non-rumors in conjunction with 
the CNN layer, which extracts useful n-gram features and such 
richer representation assists in receiving better accuracy.

4.2  Addressing few limitations of our proposed 
model

In this section, we address two limitations of our proposed 
model, the detail is given as follows:

4.2.1  Using 2 additional datasets

To address the limitation #1(see limitation section), we have 
applied the proposed model on two additional datasets, and 
their results are reported in Sect. 4. The implementation 
code is given in the supplementary material.

4.2.2  Applying sampling technique on dataset D1

One of the limitations of our system (see limitation section) 
is the use imbalance classes in the dataset (D1), which may 
result in performance degradation. To address this issue, 
different sampling techniques, such as under-sampling and 
oversampling can be applied. We applied oversampling tech-
nique, implemented in Python Anaconda-based framework, 
and achieved an accuracy improvement of 1%, i.e. 87% as 
compared to result reporter in Table 13. Oversampling can be 
defined as adding more copies of the minority class and we 
have used resampling module form Scikit-learn to randomly 
replicate sample from the minority class. The implementation 
code is given in supplementary material.

Table 16  Performance evaluation using pre-trained word Embeddings

Dataset Pretrained embed-
dings (BiLSTM-
CNN Model)

Accuracy Precision Recall F-score

D1 Glove 78.10 0.80 0.78 0.79
FastText 80.69 0.82 0.81 0.81
Google Word2vec 83.53 0.83 0.84 0.83

D2 Glove 75.14 0.75 0.75 0.75
Fasttext 76.50 0.77 0.76 0.77
Google Word2vec 76.37 0.77 0.76 0.77

D3 Glove 77 0.77 0.76 0.76
Fasttext 80 0.80 0.80 0.80
Google Word2vec 81 0.82 0.82 0.82
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4.2.3  Using pre‑trained word embedding

There are two ways of adding an embedding layer in Deep 
learning model, namely (i) Train your own embedding layer, 
and (ii) Use a pre-trained embedding. One more limitation (see 
limitation section) of our proposed system is that we used task-
specific word embedding, based on the learning from scratch 
in the rumor dataset. To address this limitation, we also used 
three pre-trained word embedding models, namely Glove, 
FastText and Google Word2vec on the proposed BiLSTM-
CNN, and the results are listed in below Table 16. The imple-
mentation code is given in supplementary material.

The performance of the proposed model on three Dataset 
D1, D2, D3 is computed using the pre-trained embeddings. 
The experimental results (Table 16) depict that Google Word-
2vec performs better than the other pre-trained embeddings.

4.3  Significance test

We performed two experiments to investigate whether the 
proposed BiLSTM-CNN model with features, based on word 
embeddings, is statistically significant than that of Machine 
Learning classifier (Decision Tree) with classical features 
based on BOW, and does not occur by chance.

We randomly extracted (260) tweets from the corpus and 
each tweet was classified by both deep learning model (BiL-
STM-CNN) vs Machine learning algorithm (Decision tree). 
The experimental setup is comprised of the following null and 
alternate hypothesis.

H0: The error rate of the two classifiers is the same.

HA: The error rate of both classifiers is significantly 
different.

The McNemar’s test statistic (“Chi squared”) can be com-
puted as follows:

where the notation �2 used in Eq. 21 denotes the Chi squared 
statistic, b and c represent the number of discordant pair, and 
1 represents the degree of freedom.

4.3.1  Discussion

In the first experiment, the performance of Decision tree 
with traditional feature set is reported in Table 12. The 
decision tree algorithm showed relatively poor perfor-
mance in all four metrics (Acc, pre, recall, and f1-measure) 
(Habib et al. 2018). The results depict that the Decision 

(21)�2 =
(|b − c| − 1)2

(b + c)

tree with traditional features set i.e. BOW is shown poor 
performance to detect the rumors from tweets.

In the second experiment, the BiLSTM-CNN classi-
fier with word embedding-based features has shown sig-
nificantly better results (Table 13). The model predicted 
rumors in tweets with an accuracy of 86.12%.

In the significant test, we validated that there is a sig-
nificant difference between Deep learning model (BiLSTM-
CNN) with word embedding features than the Machine 
Learning classifier (Decision Tree) with classical features. 
Results in Table 17 show the tweets on which both classi-
fiers disagreed are 58 (Classifier with a different type of 
features display different behavior to the misclassification). 
McNemar’s test with continuity correction is applied to cal-
culate the p value. The Chi squared value is 4.98 and the 
two-tailed p-value is 0.026 with one degree of freedom. The 
null hypothesis is rejected with small p-value < 0.5 and sup-
ports the alternative hypothesis: the proposed BiLSTM-CNN 
model with features, based on word embeddings, is statisti-
cally significant than that of Machine Learning classifier 
(Decision Tree) with classical features based on BOW.

The aforementioned statistical analysis shows that the 
word embedding features significantly improved the per-
formance of the proposed model (BiLSTM-CNN) for tweet 
classification into rumors and non-rumors.

4.4  Limitations

The proposed approach has the following limitations.

1. In this work, only text-based features are used for rumor 
classification, whereas the inclusion of further types of 
the features may produce more robust results (Ma et al. 
2016).

2. The work focused only on the English text representa-
tion.

Table 17  Significance test to measure the performance difference 
between baseline (decision tree) and the proposed classifier (BiL-
STM-CNN)

McNemar ‘s Test: The Chi squared is 4.98 with 1 degree of freedom 
and the two-tailed P value is 0.026 reject the null hypothesis and 
accept alternative hypothesis (the two algorithms are statistically sig-
nificant)

Proposed classifier (BiLSTM-CNN) 
with word embedding

Baseline classifier (DT) 
with traditional feature 
set (BOW)

Total

Correctly Classified 185 38 223
Misclassified 20 17 37

205 55 260
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4.5  Future directions

1. In addition to text-based features, other types of features, 
such as images and social context, can be investigated 
for obtaining more efficient results.

2. In future, more experiments will be performed on the 
textual content in language text.

3. In the future, we want to investigate other techniques 
in deep learning and multidimensional CNN for rumor 
classification (Ahmad et al. 2019; Khan et al. 2019).

5  Conclusion

In this work, we addressed the problem of tweet classifica-
tion into rumor and non-rumor by using a Deep learning-
based BiLSTM-CNN model. The proposed work consists 
of the following tasks: (i) dataset acquisition, (ii) preproc-
essing, (iii) feature representation, (iv) feature encoding, 
(v) feature extraction, and (vi) classification

The proposed BiLSTM-CNN model is a combination of 
BiLSTM and CNN. The BiLSTM, also called sequential 
layer, preserves the sequence information in both directions 
(forward and backward), while the CNN layer captures the 
features from the rich representation produced by the BiL-
STM layer; and finally, the tweet is classified as rumor and 
non-rumor. We experimented with various machine learning 
and deep learning classifiers and reported their results on 
the benchmark Twitter dataset. Experimental results show 
that that the BiLSTM-CNN performed better than the other 
models by outperforming all other classifiers and achieving 
the best results in terms of improved accuracy (86.12%), 
precision (86%), recall (86%) and f-measure (86%).
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