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Abstract
This paper focuses on noise resistant incremental learning algorithms for single layer feed-forward neural networks (SLFNNs). 
In a physical implementation of a well trained neural network, faults or noise are unavoidable. As biological neural networks 
have ability to tolerate noise, we would like to have a trained neural network that has certain ability to tolerate noise too. 
This paper first develops a noise tolerant objective function that can handle multiplicative weight noise. We assume that 
multiplicative weight noise exist in the weights between the input layer and the hidden layer, and in the weights between 
the hidden layer and the output layer. Based on the developed objective function, we propose two noise tolerant incremental 
extreme learning machine algorithms, namely weight deviation incremental extreme learning machine (WDT-IELM) and 
weight deviation convex incremental extreme learning machine (WDTC-IELM). Compared to the original extreme learning 
machine algorithms, the two proposed algorithms have much better ability to tolerate the multiplicative weight noise. Several 
simulations are carried out to demonstrate the superiority of the two proposed algorithms.

Keywords Weight noise · Extreme learning machine · Neural network · Fault tolerance

1 Introduction

Extreme learning machine (ELM) algorithms (Huang et al. 
2006; Huang and Chen 2007) provide a low computation 
solution for constructing a single layer feed-forward neural 
network (SLFNN). In the ELM concept, the input connec-
tion weights between the input and hidden layers are gen-
erated randomly. Hence we only need to train the output 
connection weights between the hidden and output layers. 
Although the ELM concept uses the random node concept, 
a SLFNN trained by the ELM concept still has the univer-
sal approximation ability (Barron 1993; Hornik et al. 1989; 

Hornik 1991). In the last several years, many applications 
of using ELM were reported. For example, a modified ELM 
model for imbalance data was reported (Li et al. 2018). Also, 
some works of using the ELM concept to handle biological 
data were reported (Bi et al. 2018; Wang et al. 2017).

There are two kinds of ELM algorithms. One is batch 
mode, in which we first generate a number of hidden nodes 
and then we estimate all the output weights at a time. 
Another one is incremental mode, in which we add the hid-
den nodes one-by-one into the network until the predefined 
stopping condition reaches. The incremental ELM (IELM) 
and the convex IELM (CIELM) (Huang et al. 2006; Huang 
and Chen 2007) are two representative incremental ELM 
algorithms with simple update rules. Although many ELM 
algorithms have been developed, few of them have the abil-
ity to tolerate network fault and noise.

In hardware implementation of neural networks, noise 
or faults are prone to occur. For instance when a neural net-
work is implemented on the field-programmable gate array 
(FPGA) technology, we may use a low precision floating 
point format to represent connection weights. The roundoff 
error of using the floating point format can be modelled as 
multiplicative noise (Liu and Kaneko 1969). In an analog 
implementation, thermal noise and drifts always exist in 
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operational amplifiers. Besides, the precision of analog 
devices, such as resistors, are in terms of percentage error. 
In addition, implementing a trained network using a nano-
scale device, during the operation transient noise or failure 
may be introduced (Pajarinen et al. 2011; Mahdiani et al. 
2012). Traditional learning algorithms have poor fault or 
noise tolerant performance. Since biological neural networks 
have certain ability to tolerate noise, we would like to train 
neural network that has certain noise tolerant too.

To handle noise and fault, it is essential to understand 
how they affect the behaviour or performance of a trained 
network. Noise or fault tolerant learning algorithms aim at 
training a network to attain acceptable performance even 
under noise and fault situations. A survey of various kinds 
of imperfect conditions in the traditional network model, 
such as radial basis function (RBF) networks, was reported 
in Martolia et al. (2015). Besides, failure tolerant ability of 
RBF networks was extensively studied (Leung et al. 2010; 
Feng et al. 2017; Murakami and Honda 2007). However, 
few results about failure tolerant ability of ELM networks 
were studied.

This paper investigates the noise tolerant performance of 
the SLFNN model trained by the incremental ELM concept. 
We consider that multiplicative weight noise exist between 
the input and hidden layers, and between the hidden and 
output layers. Firstly, a noise tolerant training objective func-
tion for SLFNNs is formulated. Afterwards, two incremen-
tal ELM algorithms, namely weight deviation incremental 
extreme learning machine (WDT-IELM) and weight devia-
tion convex incremental extreme learning machine (WDTC-
IELM), are derived.

In the WDT-IELM algorithm, the hidden nodes are added 
into the existing network incrementally in the one-by-one 
manner. After adding a new hidden node, all the previous 
trained output weights are not modified .

In the WDTC-IELM algorithm, we use a strategy similar 
to WDT-IELM to create a SLFNN, but we use a simple 
updating rule to modify the previous trained output weights.

We show that for the two proposed ELM algorithms, the 
training objective values are non-increasing at each training 
iteration. We use several simulations, operated on several 
commonly used datasets, to validate the superiority of the 
two proposed algorithms. Compared to the original incre-
mental ELM algorithms, the two proposed algorithms have 
much better ability to tolerate the multiplicative weight 
noise. In addition, we perform paired-t tests to show that 
the improvement of using the proposed algorithms is statisti-
cal significant.

The rest of the paper is organized as follows. The back-
grounds on ELM are given in Sect. 2. In Sect. 3, weight 
noise models are presented and the noise tolerant objec-
tive function is derived. Sect. 4 presents the two proposed 
algorithms. In addition, in this section, we show that during 

training, the objective values are non-increasing. The simu-
lation results are presented in Sect. 5. The paper is ended 
with conclusion in Sect. 6.

2  Mathematical background on extreme 
learning machine

The standard ELM was developed to train SLFNNs  (Huang 
et al. 2006; Huang and Chen 2007; Huang et al. 2006). In 
a SLFNN, there are three layers, namely, input, hidden and 
output layers. In the ELM concept, the input weights in 
between the input layer and the hidden layer are randomly 
generated. They do not need to be learned or tuned. Only the 
output weights in between the hidden layer and the output 
layer nodes are required to be trained. Hence, during learn-
ing, the computational cost is not prohibitive and is much 
lower than that of other traditional learning algorithms such 
as gradient descent (Guély and Siarry 1993).

This paper considers to use the ELM con-
cept to solve the nonlinear regression problem. Let 
𝔻train = {(xk, tk) ∶ xk ∈ ℝ

D, tk ∈ R, k = 1,… ,N} 
be the training set, where D is the number of input fea-
tures, N is the number of training samples, and xk 
and tk are the inputs and target output of the k-th sam-
ple, respectively. Similarly, the test set is denoted as 
𝔻test = {x�

k�
, t�
k�
) ∶ x�

k�
∈ ℝ

D�

, t�
k�
∈ R, k� = 1,… ,N�}  , 

where N′ is the number of samples in the test set.
The output of a SLFNN with m hidden nodes is equal to

where �j is the jth output weight, and hj(x) is the output of 
the jth hidden node. There are several possible activation 
functions, for instance, in the case of the sigmoid activation 
function, hj(⋅) is given by

where aj and bj are the input weights and input bias, respec-
tively, of the jth hidden node. Grouping aj and bj together, (3) 
can be rewritten as

where wj = [aT
j
, bj]

T , and o = [xT
k
, 1]T . In the ELM concept, 

the input weight vectors, wj’s, are generated randomly.
Given all training samples, the training set error is equal 

to

(1)fm(x) =

m∑
j=1

�jhj(x),

(2)hj(x) =
1

1 + exp−(aT
j
x + bj)

,

(3)hj(x) =
1

1 + exp (−wT
j
o)

,
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Let t be the collection of the target outputs, given by

and let hj be the collection of the j hidden node outputs of 
all input samples, given by

Equation (4) can be written in a compact form, given by

where �m = [�1,… , �m]
T , and

As aforementioned, the input weights wj ’s are randomly 
generated. During training, we do not need to adjust them. 
The ELM concept uses the least square approach to obtain 
the output weights. In the batch mode ELM, given m hidden 
nodes, the optimal output weight vector that minimizes the 
training set error is given by

Instead of using the batch mode to find out the weights, the 
ELM concept has the incremental mode, in which we incre-
mentally add hidden nodes into the existing network until 
the stopping condition reaches. When we insert a new hid-
den node, we need to determine its output weight only. The 
IELM and CIELM are two incremental ELM algorithms. 
In the IELM algorithm, after inserting a new hidden node, 
all the previous trained output weights are unchanged. The 
difference between the two algorithms is that the CIELM 
algorithm uses a simple updating rule to modify all the exist-
ing output weights. Although the ELM concept can sim-
plify the creation process of a SLFNN, few ELM algorithms 
have ability to tolerate the noise situation. In the rest of the 
paper, we will first define a noise tolerant objective func-
tion, and then develop the noise tolerant versions of IELM 
and CIELM.

(4)

�m =

N∑
k=1

(tk − fm(xk))
2

=

N∑
k=1

(tk −

m∑
j=1

�jhj(xk))
2.

t = [t1,… , tN]
T,

hj = [hj(x1),… , hj(xN)]
T.

(5)�m = ‖t −
m�
j=1

�jhj‖22 = ‖t −Hm�m‖22,

(6)Hm = [h1,… , hm] =

⎛⎜⎜⎝

h1(x1) ⋯ hm(x1)

⋮ ⋱ ⋮

h1(xN) ⋯ hm(xN)

⎞⎟⎟⎠
.

(7)�∗
m
=
(
HT

m
Hm

)−1
HT

m
t.

3  Weight noise model and objective 
function

In this section, we consider that a SLFNN is affected by multi-
plicative weight noise in the input weight vectors wj ’s and the 
output weights �j’s. We will first describe the noise model and 
then develop a noise tolerant objective function.

3.1  Weight noise model

When we implement a trained network, weight noise is prone 
to occur. Weight noise can be regarded as the deviation from 
the nominal value of the weight of a well trained neural net-
work. For instance, after training a neural network, we may 
implement the trained network on hardware such as FPGA. 
To do this, we may use a low precision floating point format 
to represent connection weights. The roundoff error of using 
the floating point format can cause an implemented weight to 
deviate from its nominal value. Also, in the analog implemen-
tation, noise are unavoidable. One of commonly used noise 
is multiplicative weight noise (Burr 1991; Liu and Kaneko 
1969). In this model, the difference between the implemented 
weight value and its nominate value is proportional to its nomi-
nate value.

Let wjl be the original value of the lth element in the jth 
input weight vector. Under multiplicative noise model, the 
deviation of an input weight wjl from its nominal value is 
given by

where �jl ’s are independent and identically distributed (iid) 
random variables (RVs). Their mean is equal to zero and 
variance is equal to �2

w
 . In other words, the implemented 

value of an input weight is given by

In (9), the magnitude of the noise component �jl is propor-
tional to that of the nominate value wjl.

Given the deviations �jl , for all l = 1,… ,D + 1 , of the input 
weights for the jth hidden node, the hidden node output is

Note that o = [xT, 1]T and w̃ = [w̃j1,… , w̃j(D+1)]
T , where D 

is the number of input features of the neural network. We 
can use the first order Taylor series to expand (10), given by

(8)�jl = �jlwjl, ∀ j, l,

(9)w̃jl = wkl + 𝛿kl = (1 + 𝜐jl)wjl.

(10)h̃j(x) =
1

1 + exp (−w̃T
j
o)
.
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where

When the sigmoid function is used as the activation function,

Similarly, under the multiplicative noise, the value of an 
output weight becomes

where �j ’s are iid RVs. Their mean is equal to zero and vari-
ance is equal to �2

�
.

Hence for a given input pattern x , the weighted output of 
a noisy hidden node is given by

Since �j ’s and �jl ’s are iid RVs and have zero mean, the 
expected values of the weighted outputs are given by

where ⟨⋅⟩ is the expectation operator. Also, �j ’s and �jl ’s are 
with variances equal to �2

w
 and �2

�
 , respectively. Hence the 

expected squares of the weighted outputs are given by

Furthermore, for j ≠ j′ , we have

3.2  Noise tolerant objective function

Traditional ELM algorithms, for regression, minimize the 
square error between the network output and target output. 
In the noise situation, we propose to minimize the expected 

(11)

h̃j(x) =hj(x) +

D+1∑
l=1

𝛿jl

𝜕hj(x)

𝜕wjl

=hj(x) +

D+1∑
l=1

𝜐jlwjl

𝜕hj(x)

𝜕wjl

=hj(x) +

D+1∑
l=1

𝜐jlwjl𝛥Hjl(x),

(12)�Hjl(x) =
�hj(x)

�wjl

.

(13)�Hjl(x) = olhj(x)(1 − hj(x)).

(14)𝛽j = (1 + 𝜁j)𝛽j

(15)𝛽jh̃j(x)=(1+𝜁j)𝛽j

(
hj(x)+

D+1∑
l=1

𝜐jlwjl𝛥Hjl(x)

)
.

(16)
⟨
𝛽jh̃j(x)

⟩
= (1 + 0)𝛽j(hj(x) + 0) = 𝛽jhj(x) ,

(17)
⟨
𝛽2
j
h̃2
j
(x)
⟩
=
(
1+𝜎2

𝛽

)
𝛽2
j

(
h2
j
(x)+𝜎2

w

D+1∑
l=1

w2
jl
𝛥H2

jl
(x)

)
.

(18)
⟨
𝛽jh̃j(x)𝛽j� h̃j� (x)

⟩
= 𝛽jhj(x)𝛽j�hj� (x).

error over all noise patterns. For a particular noise pattern, 
the training error set of a noisy network is given by

From (16)–(18), the expected error over all noise patterns 
is given by

where

In (21), the expected error of a SLFFN contains three terms. 
The first term ‖em‖22 is the error of a noiseless SLFFN. The 
second term is the degradation from the noise in the output 
weights �j’s. The third term is the the degradation from the 
noise in the input weights wjl’s. In the ELM concept, the 
input weights wjl are randomly generated, and their values 
are then fixed. Only the output weights are required to be 
trained.

(19)�̃�m =

N∑
k=1

(tk −

m∑
j=1

𝛽jh̃j(xk))
2.

(20)

Jm =⟨�̃�m⟩

=

�
N�
k=1

(tk −

m�
j=1

𝛽jh̃j(xk))
2

�

=

N�
k=1

(tk −

m�
j=1

𝛽jhj(xk))
2

+ 𝜎2
𝛽

N�
k=1

m�
j=1

𝛽2
j
h2
j
(xk)

+ (1 + 𝜎2
𝛽
)

N�
k=1

m�
j=1

𝛽2
j

D+1�
l=1

𝜎2
w
w2
jl
𝛥2
jl
(xk)

(21)=‖em‖22 + �2
�
�m + (1 + �2

�
)�2

w
�m,

(22)em =t − fm

(23)fm =

m∑
j=1

�jhj

(24)hj =[hj(x1),… , hj(xN)]
T

(25)�m =

m�
j=1

�2
j
‖hj‖22

(26)�m =

N∑
k=1

m∑
j=1

�2
j

D+1∑
l=1

�2
w
w2
jl
�H2

jl
(xk).
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4  Noise tolerant incremental algorithms

This section presents the two incremental ELM algo-
rithms, namely WDT-IELM and WDTC-IELM, for train-
ing SLFNNs. The WDTC-IELM algorithm use the same 
strategy to add hidden nodes into the network, but we use a 
simple updating rule to modify the existing output weights.

4.1  WDT‑IELM

The WDT-IELM algorithm is a noise tolerant version of the 
original IELM. The WDT-IELM algorithm incrementally 
adds hidden nodes one-by-one into the network. Suppose 
that a SLFFN already has m − 1 hidden nodes. The incre-
mental strategy is that we determine the value of the output 
weight �m of the newly inserted node and do not modify 
the existing output weights {�1,… , �m−1} . According to that 
strategy, we have the following recursive relationships for 
fm , �m , and �m , given by

With (27), the recursive equation for the error vector is given 
by

Based on (21), and (27)–(30), Jm can be expressed as

Let

To maximize the reduction in the expected error over all 
noise patterns, we should consider

(27)fm =fm−1 + �mhm

(28)�m =�m−1 + �2
m
‖hm‖22

(29)�m =�m−1 + �2
m

N∑
k=1

D+1∑
l=1

w2
ml
�H2

ml
(xk).

(30)em = em−1 − �mhm.

(31)

Jm =Jm−1 − 2�me
T
m−1

hm + (1 + �2
�
)�2

m
‖hm‖22

+ (1 + �2
�
)�2

w
�2
m

N�
k=1

D+1�
l=1

w2
ml
�H2

ml
(xk).

(32)

Rm =Jm − Jm−1

= − 2�me
T
m−1

hm + (1 + �2
�
)�2

m
‖hm‖22

+ (1 + �2
�
)�2

w
�2
m

N�
k=1

D+1�
l=1

w2
ml
�H2

ml
(xk).

(33)
�Rm

��m
= 0.

Then the optimal value of �m is given by

where

With this optimal value, Rm is given by

Apparently, the expected training error of the noisy network 
always reduces.  The summary of the WDT-IELM algorithm 
is given in Algorithm 1. It should be noticed during training, 
we do not need to keep �m and �m . 

4.2  WDTC‑IELM

In Huang and Chen (2007), the CIELM algorithm was pre-
sented. It aims at improving the approximation ability of 
IELM. The performance demonstration in Huang and Chen 
(2007) showed that the CIELM algorithm outperforms the 
original IELM algorithm. However, it was designed for the 
noiseless situation. Hence, it is equally important to develop a 
noise tolerant version of CIELM.

In the proposed WDTC-IELM algorithm, we also incre-
mentally insert hidden nodes into the network in the one-by-
one manner. After determine the current output weight �m , we 
update all the previous trained weights, given by

(34)�∗
m
=

eT
m−1

hm

(1 + �2
�
)(‖hm‖22 + �2

w
�m)

,

(35)�m =

N∑
k=1

D+1∑
l=1

w2
ml
�H2

ml
(xk).

(36)Rm = −
(eT

m−1
hm)

2

�
(1 + �2

�
)(‖hm‖22 + �2

w
�m)

�2
.

(37)�new
j

= (1 − �m)�
old
j

j = 1, 2,… ,m − 1.
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With (37), the recursive equations for fm , em , �m , and �m 
becomes

From  (38) and  (41), the training objective Jm can be 
expressed as

Then we can obtain the difference between two consecutive 
iterations, given by

Similar to the WDT-IELM algorithm, in the WDTC-IELM 
the optimal value of �m is given by

(38)fm =(1 − �m)fm−1 + �mhm

(39)em =t − fm = em−1 + �m(fm−1 − hm)

(40)�m =(1 − �m)
2�m−1 + �2

m
‖hm‖22

(41)�m =(1 − �m)
2�m−1 + �2

m

N∑
k=1

D+1∑
l=1

w2
ml
�H2

ml
(xk).

(42)

Jm =‖em−1‖22+2�meTm−1(fm−1−hm)
+ �2

m
‖fm−1−hm‖22

+ �2
�

�
(1−�m)

2�m−1 + �2
m
‖h2

m
‖2
2

�

+ (1 + �2
�
)�2

w

�
(1 − �m)

2�m

+ �2
m

N�
k=1

D+1�
l=1

w2
ml
�H2

ml
(xk)

�

(43)

=Jm−1

+ �2
m

�
‖fm−1 − hm‖2m + �2

�
(�m−1 + ‖hm‖22)

+ (1 + �2
�
)�2

w

�
�m−1 +

N�
k=1

D+1�
l=1

w2
ml
�H2

ml
(xk)

��

+ 2�m
�
eT
m−1

(fm−1 − hm) − �2
�
�m−1

− (1 + �2
�
)�2

w
�m−1

�
.

(44)Rm =Jm − Jm−1

(45)

=�2
m

�
‖fm−1 − hm‖2m + �2

�
(�m−1 + ‖hm‖22)

+ (1 + �2
�
)�2

w

�
�m−1 +

N�
k=1

D+1�
l=1

w2
ml
�H2

ml
(xk)

��

+ 2�m
�
eT
m−1

(fm−1 − hm) − �2
�
�m−1

− (1 + �2
�
)�2

w
�m−1

�

where

With this optimal value, Rm is given by

where

In (48), the denominator � is positive. Hence, the expected 
training error of the noisy network always reduces. The 
summary of the WDTC-IELM algorithm is given in Algo-
rithm 2. It can be seen that in the WDTC-IELM, we need to 
keep two addition variables �m and �m . 

(46)�∗
m
=

eT
m−1

(fm−1 − hm) − �2
�
�m−1 − (1 + �2

�
)�2

w
�m−1

�

(47)

� =‖fm−1 − hm‖2m + �2
�
(�m−1 + ‖hm‖22)

(1 + �2
�
)�2

w

�
�m−1 +

N�
k=1

D+1�
l=1

w2
ml
�H2

ml
(xk)

�
.

(48)Rm = −
�2

�
.

(49)� = eT
m−1

(fm−1−hm)−�
2
�
�m−1−(1+�

2
�
)�2

w
�m−1).

Table 1  Details of the seven UCI datasets

Data-set Number of samples Number of 
features

Abalone 4177 8
Concrete 1030 9
Airfoil self noise (ASN) 1503 5
Bodyfat 252 7
Chemical sensor 498 8
Building energy 4208 14
Housing 506 13
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5  Numerical study

In this section, we evaluate the performance of the proposed 
algorithms with some real life datasets obtained from the 
UCI machine learning repository (Lichman 2013). Datasets 
that we use to validate the performance of the algorithms 
are Abalone, Housing price, Concrete Compressive strength, 
Airfoil Self Noise (ASN), BodyFat, Chemical Sensor, and 
Building Energy. Table 1 presents the properties of the data-
sets. The datasets are pre-processed. The target outputs of 
these datasets are normalized to the range of [0, 1], while the 
input features of the data sets are normalized to the range of 
[−1, 1]. In addition, we randomly generate the input weights 
of the hidden nodes from range [−1, 1].

For fair comparison, we use the tenfold evaluation 
method. The samples of a dataset are randomly partitioned 
into ten subsets. The summary of the partitioning is given 
in Table  2. In our simulation, a subset is used as the test 
set, and the remaining nine subsets are used as training 
data. The noise levels that we test are ({�2

�
= �2

w
= 0.04,

�2

�
= �2

w
= 0.09, �2

�
= �2

w
= 0.09 and �2

�
= �2

w
= 0.25} ) . 

According to the analysis in Liu and Kaneko (1969), the 
noise level �2

�
= �2

w
= 0.04 responds around 2–3 mantissa 

bits in the digital implementation. For other noise levels, 
we can consider that the standard deviation of noise is 
around 30–50 % of the nominate value in the analog 
implementation.

5.1  Number of hidden nodes

We use three datasets to demonstrate how the test set 
errors change with respect to the various numbers of hid-
den nodes. The three datasets are Abalone, Concrete, and 
Boston Housing. Three noise levels {�2

�
= �2

w
= 0.04,

�2

�
= �2

w
= 0.09, �2

�
= �2

w
= 0.25} are considered. Figure 1 

shows the test set MSE versus the number of nodes for a 
typical run. It can be seen that the test set errors of the 
CIELM are much higher than those of the other three algo-
rithms. That means, the noise tolerant ability of the origi-
nal CIELM is very poor. For the IELM, WDT-IELM, and 
WDTC-IELM algorithms, when the number of hidden 
nodes is around 400–500, the decreasing rate of the test 
set error is very slow. Thus, we treat 500 hidden nodes as 
a reference point to conduct a deeper analysis in the rest 
parts of the paper.

For the figure, the WDT-IELM algorithm is better than 
the IELM algorithm. When the noise level is high, the 
improvement on the test set error becomes more significant. 
In addition, when we use the WDTC-IELM algorithm, we 
can further improve the test set MSE. For instance, for the 
Abalone data set with noise level equal to �2

�
= �2

w
= 0.04 , 

the test set MSE of the original I-ELM algorithm is 0.01074. Ta
bl
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When we use the WDT-IELM algorithm, we can reduce the 
test set MSE to 0.01053. Using the WDTC-IELM algorithm, 
we can further reduce the test set MSE to 0.006246. The 
MSE difference between IELM and WDTC-IELM is 
0.005172.

5.2  Performance comparison

To further investigate the performance of those algorithms, 
we use the tenfold evaluation strategy. The setting of the 
tenfold is shown in Table 2. The average test set perfor-
mance over the tenfold in the seven datasets is summarized 
in Table 3. Besides, for an easy and quick view of the result 
in Table 3, we also provide a chart view of the performance 
in Fig. 2. The table contains 7 × 4 × 4 = 112 entities. Each 
entity is the average MSE of the tenfolds (ten runs).

From the table, the test set MSE values from WDT-IELM 
are smaller than those of IELM. This is obvious at large 
noise level as shown in Fig. 2. Besides, the test set MSE val-
ues from WDTC-IELM are much smaller than those of the 
other three algorithms. For instance, for the BodyFat dataset, 
when the noise level is 0.04, the test set MSE value of the 
original IELM is 0.020329. When we use WDT-IELM, we 
reduce the test set MSE value to 0.019707. Furthermore, 
when we use the WDTC-IELM algorithm, the test set MSE 
value can be reduced to 0.010461. The improvement of using 
the WDTC-IELM algorithm is more significant for high 
noise levels. When the noise level is 0.25, the test set MSE 
value of the original IELM is 0.063316. When we use WDT-
IELM, we further reduce the test set MSE value to 0.046406. 
Furthermore, when we use the WDTC-IELM algorithm, the 
test set MSE value can be reduced to 0.012829.
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Fig. 1  Test set MSE versus number of hidden nodes. Three noise levels are consider. They are �2
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= 0.09 , �2

�
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a–c Are for Abalone dataset. d–f Are for Concrete Compressive strength dataset. g–i Are for Housing Price dataset
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Furthermore, we discover that the WDTC-IELM are 
relatively insensitive to the noise level. Consider the Aba-
lone dataset.

– When the noise level is 0.04, the test set MSE of IELM 
is 0.011783. When the noise level increases to 0.25, the 
test set MSE increases to 0.031176.

– When the noise level is 0.04, the test set MSE of 
CIELM is 0.020905. When the noise level increases to 
0.25, the test set MSE increases to 0.089067.

– When the noise level is 0.04, the test set MSE of WDT-
IELM is 0.011560. When the noise level increases to 
0.25, the test set MSE increases to 0.023635.

– When the noise level is 0.04, the test set MSE of WDT-
IELM is 0.007181. When the noise level increases to 
0.25, the test set MSE increases to 0.008544.

The above phenomenon also happens in the other six data-
sets. Since the WDTC-IELM is the best among the four 
algorithms, one may argue that we do not need to consider 
the WDT-IELM. However, the WDTC-IELM algorithm 
needs to update all the previous trained weights and has 
a more complicated training procedure, as shown Algo-
rithms 1 and 2.

5.3  Paired T‑test analysis

From Fig 2 and Table 3, in terms of average test set MSE, 
the two proposed algorithms are better than the two original 
algorithms. In this section, we would like to check if the 
improvements are statistical significant or not. We would 
like to perform significant test, i.e., paired t-test, to check if 
the performance of the proposed algorithms are statistical 

Table 3  The performance of the four algorithms over the tenfold. The number of hidden nodes in the networks is 500

Data set Noise level IELM WDT-IELM CIELM WDTC-IELM
AVG MSE (STD) AVG MSE (STD) AVG MSE (STD) AVG MSE (STD)

Abalone �2

�
= �2

w
= 0.04 0.011783 (0.000938) 0.011560 (0.000937) 0.020905 (0.001155) 0.007181 (0.000754)

�2

�
= �2

w
= 0.09 0.017275 (0.000977) 0.015978 (0.000973) 0.042613 (0.001670) 0.007562 (0.000796)

�2

�
= �2

w
= 0.16 0.026747 (0.001161) 0.021641 (0.001096) 0.070163 (0.002897) 0.008205 (0.000831)

�2

�
= �2

w
= 0.25 0.031176 (0.001242) 0.023635 (0.001129) 0.089067 (0.003462) 0.008544 (0.000871)

Concrete �2

�
= �2

w
= 0.04 0.025125 (0.001773) 0.024660 (0.001771) 0.081572 (0.004145) 0.018160 (0.001696)

�2

�
= �2

w
= 0.09 0.036084 (0.001891) 0.033387 (0.001869) 0.159236 (0.007044) 0.018807 (0.001746)

�2

�
= �2

w
= 0.16 0.051595 (0.002221) 0.043229 (0.002060) 0.304412 (0.014399) 0.020196 (0.001805)

�2

�
= �2

w
= 0.25 0.061589 (0.002194) 0.045867 (0.002029) 0.400578(0.017670) 0.021036 (0.001866)

 Airfoil self noise (ASN) �2

�
= �2

w
= 0.04 0.030828 (0.002594) 0.029885 (0.002568) 0.068495 (0.004323) 0.017614 (0.002150)

�2

�
= �2

w
= 0.09 0.049538 (0.002893) 0.044534 (0.002797) 0.116458(0.005878) 0.018152 (0.002146)

�2

�
= �2

w
= 0.16 0.078103 (0.003992) 0.062197 (0.003523) 0.199054(0.010623) 0.019508 (0.002172)

�2

�
= �2

w
= 0.25 0.088394 (0.004238) 0.062641 (0.003548) 0.349192 (0.012665) 0.019850 (0.002204)

 Bodyfat �2

�
= �2

w
= 0.04 0.020329 (0.004176) 0.019707 (0.004235) 0.022267 (0.003534) 0.010461 (0.003271)

�2

�
= �2

w
= 0.09 0.028394 (0.004417) 0.026290 (0.004513) 0.031199 (0.003772) 0.010922 (0.003435)

�2

�
= �2

w
= 0.16 0.043682 (0.004384) 0.034604 (0.004472) 0.051883 (0.004338) 0.011654 (0.003632)

�2

�
= �2

w
= 0.25 0.063316 (0.004514) 0.046406 (0.004556) 0.099397 (0.008975) 0.012829 (0.003924)

 Chemical sensor �2

�
= �2

w
= 0.04 0.015480 (0.000928) 0.014666 (0.000879) 0.030556 (0.002067) 0.003908 (0.000634)

�2

�
= �2

w
= 0.09 0.027633 (0.001375) 0.024117 (0.001150) 0.051147 (0.003091) 0.004240 (0.000657)

�2

�
= �2

w
= 0.16 0.047376 (0.002041) 0.035701 (0.001430) 0.093500(0.005328) 0.004497 (0.000716)

�2

�
= �2

w
= 0.25 0.061687 (0.002665) 0.041432 (0.001609) 0.194894 (0.010652) 0.005578 (0.000764)

 Building energy �2

�
= �2

w
= 0.04 0.033315 (0.002004) 0.032760 (0.001970) 0.033096 (0.002196) 0.024433 (0.001759)

�2

�
= �2

w
= 0.09 0.043506 (0.002079) 0.040445 (0.001985) 0.043062 (0.002483) 0.024665 (0.001663)

�2

�
= �2

w
= 0.16 0.065593 (0.002526) 0.055578 (0.002225) 0.056860 (0.002981) 0.025735 (0.001618)

�2

�
= �2

w
= 0.25 0.071086 (0.002598) 0.053335 (0.002148) 0.080842 (0.003679) 0.026818 (0.001555)

 Housing �2

�
= �2

w
= 0.04 0.020332 (0.006023) 0.019815 (0.006108) 0.022122 (0.005755) 0.012956 (0.006287)

�2

�
= �2

w
= 0.09 0.029526 (0.006505) 0.026570 (0.006406) 0.032400 (0.006259) 0.013440 (0.006491)

�2

�
= �2

w
= 0.16 0.045813 (0.006505) 0.037162 (0.007546) 0.060647 (0.006416) 0.014920 (0.006651)

�2

�
= �2

w
= 0.25 0.062733 (0.007802) 0.045019 (0.007958) 0.082054 (0.007856) 0.015648 (0.006513)
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significant or not. Since the CIELM is with very poor per-
formance, we do not perform the paired t-test on it.

Tables 4 and 5 summarize the paired t-test results, i.e., the 
IELM versus WDT-IELM, and IELM versus WDTC-IELM. 
For the one-tail test with 10 trials and 95% confidence level, 
the critical t-value is 1.8331.

Before we perform the paired test, we should check if 
the data pass the normality test or not. In this paper, we 
consider the Anderson–Darling goodness-of-fit hypothesis 
test. For the hypothesis test, the critical p value is 0.05. That 
is the p value of the data should be greater than 0.05. Since 
there are three algorithms involved, four noise levels, and 
seven datasets, there are 84 sets of data. Among those sets, 
most of cases meet the normality test. Only nine cases do 
not the normality test. The nine cases appear in three data-
sets: the ASN dataset, the Chemical Sensor dataset, and 
the Housing dataset. In the ASN dataset, there are three 
cases: WDT-IELM (noise level=0.04) with p value equal 
to 0.0498, WDT-IELM (noise level=0.09) with p value 

equal to 0.0162, and IELM (noise level=0.09) with p value 
equal to 0.0313. In the Housing dataset, there are two cases: 
IELM (noise level=0.16) with p value equal to 0.0481 and 
IELM (noise level = 0.25) with p value equal to 0.0381. In 
the Chemical Sensor dataset, there are four cases: IELM 
(noise level=0.16) with p value equal to 0.028, IELM (noise 
level=0.25) with p value equal to 0.0129, WDT-IELM 
(noise level=0.16) with p value equal to 0.03, and WDT-
IELM (noise level=0.25) with p value equal to 0.0345.

In Table 4, all t-values are greater than the critical t-value 
(i.e. 1.8331). Besides, all confidence intervals of the aver-
age improvements excluded the zero. For example, in the 
Bodyfat dataset with the noise level equal to 0.25, the 
t-value is 89.1, which is greater than 1.8331. Besides, the 
confidence interval of average improvement is in between 
[0.016480, 0.017339]. With these results, there is strong 
evidence that the WDT-IELM is better than IELM.
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Again, in Table 5, all the t-values are much greater than 
the critical t-value. This phenomenon revealed the improve-
ment of WDTC-IELM is statistically significant too.

As mentioned in the above, there are a few cases that do 
not meet the normality test. However, from Table 3, for those 
cases, the improvements of using WDT-IELM and WDTC-
ILM are greater than the standard deviations of IELM, 
WDT-IELM and WDTC-IELM. Hence, we can conclude 
that the improvements of WDT-IELM and WDTC-IELM are 
significant.

For example, for the ASN with the noise level equal to 
0.09, for the IELM, the test set MSE of is 0.049538 and the 
standard deviation is 0.002893. When we use the WDT-
IELM, the test set MSE of is 0.044534 and the standard 
deviation is 0.002797. Clearly, the improvement of using 
WDT-IELM is around 0.005004 and is around two times 

of the standard deviations. When we use the WDTC-IELM, 
the test set MSE of is 0.018152 and the standard deviation 
is 0.002. Clearly, the improvement of using WDT-IELM is 
around 0.031386 and is around nines times of the standard 
deviations.

5.4  Performance improvement ratio

We also present the performance improvement ratios of 
WDT-IELM and WDTC-IELM. We calculate the perfor-
mance improvement ratio:

where Pe and Pp are the performances of existing and 
proposed models, respectively. Table 6 summarizes the 
the performance improvement ratios of WDT-IELM and 

(50)((Pe − Pp)∕Pe) ∗ 100,

Table 4  The paired t-test result between WDT-IELM and IELM

Data set Noise level IELM vs. WDT-IELM

AVG IELM MSE AVG WDT-
IELM MSE

AVG improvement t-value p-value Confidence interval of 
AVG improvement

Abalone �2

�
= �2

w
= 0.04 0.011783 0.011560 0.000223 52.0 1.80 × 10−12 [0.000214, 0.000232]

�2

�
= �2

w
= 0.09 0.017275 0.015978 0.001296 115.3 1.41 × 10−15 [0.001271, 0.001322]

�2

�
= �2

w
= 0.16 0.026747 0.021641 0.005107 124.3 7.19 × 10−16 [0.005014, 0.005199]

�2

�
= �2

w
= 0.25 0.031176 0.023635 0.007542 114.2 1.54 × 10−15 [0.007392, 0.007691]

Concrete �2

�
= �2

w
= 0.04 0.025125 0.024660 0.000465 30.8 1.98 × 10−10 [0.000431, 0.000499]

�2

�
= �2

w
= 0.09 0.036084 0.033387 0.002697 69.0 1.43 × 10−13 [0.002609, 0.002786]

�2

�
= �2

w
= 0.16 0.051595 0.043229 0.008366 73.1 8.57 × 10−14 [0.008107, 0.008625]

�2

�
= �2

w
= 0.25 0.061589 0.045867 0.015721 83.5 2.56 × 10−14 [0.015295, 0.016147]

Airfoil self noise (ASN) �2

�
= �2

w
= 0.04 0.030828 0.029885 0.000943 60.5 4.63 × 10−13 [0.000908, 0.000978]

�2

�
= �2

w
= 0.09 0.049538 0.044534 0.005004 86.9 1.79 × 10−14 [0.004874, 0.005135]

�2

�
= �2

w
= 0.16 0.078103 0.062197 0.015906 76.7 5.50 × 10−14 [0.015436, 0.016375]

�2

�
= �2

w
= 0.25 0.088394 0.062641 0.025754 82.2 2.97 × 10−14 [0.025045, 0.026463]

 Bodyfat �2

�
= �2

w
= 0.04 0.020329 0.019707 0.000622 20.9 6.20 × 10−9 [0.000555, 0.000689]

�2

�
= �2

w
= 0.09 0.028394 0.026290 0.002104 41.5 1.37 × 10−11 [0.001989, 0.002219]

�2

�
= �2

w
= 0.16 0.043682 0.034604 0.009078 91.9 1.08 × 10−14 [0.008854, 0.009301]

�2

�
= �2

w
= 0.25 0.063316 0.046406 0.016909 89.1 1.43 × 10−14 [0.016480, 0.017339]

 Chemical sensor �2

�
= �2

w
= 0.04 0.015480 0.014666 0.000814 39.8 1.99 × 10−11 [0.000768, 0.000860]

�2

�
= �2

w
= 0.09 0.027633 0.024117 0.003516 42.8 1.04 × 10−11 [0.003330, 0.003701]

�2

�
= �2

w
= 0.16 0.047376 0.035701 0.011676 55.2 1.06 × 10−12 [0.011197, 0.012154]

�2

�
= �2

w
= 0.25 0.061687 0.041432 0.020256 54.0 1.29 × 10−12 [0.019407, 0.021104]

Building energy �2

�
= �2

w
= 0.04 0.033315 0.032760 0.000555 34.1 8.03 × 10−11 [0.000518, 0.000592]

�2

�
= �2

w
= 0.09 0.043506 0.040445 0.003061 74.6 7.09 × 10−14 [0.002968, 0.003154]

�2

�
= �2

w
= 0.16 0.065593 0.055578 0.010015 87.3 1.73 × 10−14 [0.009756, 0.010275]

�2

�
= �2

w
= 0.25 0.071086 0.053335 0.017751 100.3 4.93 × 10−15 [0.017350, 0.018151]

Housing �2

�
= �2

w
= 0.04 0.020332 0.019815 0.000518 11.3 1.27 × 10−6 [0.0000414, 0.000621]

�2

�
= �2

w
= 0.09 0.029526 0.026570 0.002956 28.4 4.08 × 10−10 [0.002720, 0.003191]

�2

�
= �2

w
= 0.16 0.045813 0.037162 0.008651 29.4 2.96 × 10−10 [0.007986, 0.009317]

�2

�
= �2

w
= 0.25 0.062733 0.045019 0.017714 36.70 4.10 × 10−11 [0.016622, 0.018805]
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WDTC-IELM. The 3rd and 4th columns show the the per-
formance improvement ratios of WDT-IELM and WDTC-
IELM to IELM, respectively. The 3rd and 4th columns show 
the the performance improvement ratios of WDT-IELM and 
WDTC-IELM to C-IELM. The table clearly shows that our 
algorithms outperform the existing ones. For example, in the 
ASN dataset we have the following performance improve-
ment ratios.

– When the noise level is 0.04, the improvement ratio of 
WDT-IELM to IELM is 3.06%. When the noise level 
increases to 0.25, the improvement ratio increases to 
29.14%.

– When the noise level is 0.04, the improvement ratio of 
WDTC-IELM to IELM is 42.86%. When the noise level 
increases to 0.25, the improvement ratio increases to 
77.54%.

– When the noise level is 0.04, the improvement ratio of 
WDT-IELM to CIELM is 56.37%. When the noise level 
increases to 0.25, the improvement ratio increases to 
82.06%.

– When the noise level is 0.04, the improvement ratio of 
WDTC-IELM to CIELM is 74.28%. When the noise 
level increases to 0.25, the improvement ratio increases 
to 94.32%.

Table 5  The paired t-test result between WDTC-IELM and IELM

Data set Noise level IELM vs. WDTC-IELM

AVG IELM MSE AVG 
WDTC-
IELM MSE

AVG Improvement t-value p-value Confidence interval 
of AVG improvement

Bodyfat �2

�
= �2

w
= 0.04 0.022278 0.010835 0.011443 20.4 7.74 × 10−9 [0.010172, 0.012714]

�2

�
= �2

w
= 0.09 0.034085 0.011378 0.022707 28.9 3.45 × 10−10 [0.020930, 0.024483]

�2

�
= �2

w
= 0.16 0.052936 0.012189 0.040746 32.5 1.21 × 10−10 [0.037912, 0.043580]

�2

�
= �2

w
= 0.25 0.070029 0.013115 0.056914 35.9 4.93 × 10−11 [0.053333, 0.060495]

Abalone �2

�
= �2

w
= 0.04 0.012662 0.007209 0.005453 206.4 7.48 × 10−18 [0.005393, 0.005513]

�2

�
= �2

w
= 0.09 0.019211 0.007580 0.011631 308.8 1.99 × 10−19 [0.011546, 0.011716]

�2

�
= �2

w
= 0.16 0.028824 0.008017 0.020807 426.4 1.09 × 10−20 [0.020700, 0.020917]

�2

�
= �2

w
= 0.25 0.035775 0.008502 0.027273 561.4 9.19 × 10−22 [0.027163, 0.027383]

Airfoil self noise (ASN) �2

�
= �2

w
= 0.04 0.031486 0.016750 0.014736 259.8 9.44 × 10−19 [0.014608, 0.014864]

�2

�
= �2

w
= 0.09 0.051227 0.017497 0.033730 323.9 1.30 × 10−19 [0.033495, 0.033966]

�2

�
= �2

w
= 0.16 0.081452 0.018467 0.062985 359.3 5.10 × 10−20 [0.062589, 0.063382]

�2

�
= �2

w
= 0.25 0.107319 0.019475 0.087845 404.0 1.76 × 10−20 [0.087353, 0.088336]

Housing �2

�
= �2

w
= 0.04 0.022812 0.013174 0.009637 16.8 4.32 × 10−8 [0.008336, 0.010940]

�2

�
= �2

w
= 0.09 0.034105 0.013651 0.020454 29.9 2.54 × 10−10 [0.018908, 0.022001]

�2

�
= �2

w
= 0.16 0.054031 0.015027 0.039005 66.7 1.92 × 10−13 [0.037683, 0.040327]

�2

�
= �2

w
= 0.25 0.073486 0.015348 0.058138 41.6 1.34 × 10−11 [0.054976, 0.061300]

Concrete �2

�
= �2

w
= 0.04 0.027174 0.017707 0.009468 76.6 5.61 × 10−14 [0.009188, 0.009747]

�2

�
= �2

w
= 0.09 0.038863 0.018418 0.020445 67.7 1.70 × 10−13 [0.019762, 0.021128]

�2

�
= �2

w
= 0.16 0.055533 0.019621 0.035911 73.1 8.53 × 10−14 [0.034799, 0.037023]

�2

�
= �2

w
= 0.25 0.070241 0.020741 0.049500 74.5 7.14 × 10−14 [0.047997, 0.051003]

Chemical sensor �2

�
= �2

w
= 0.04 0.015348 0.003805 0.011543 206.3 7.51 × 10−18 [0.011417, 0.011670]

�2

�
= �2

w
= 0.09 0.029669 0.004125 0.025544 225.5 3.37 × 10−18 [0.025288, 0.025800]

�2

�
= �2

w
= 0.16 0.050609 0.004567 0.046042 240.3 1.91 × 10−18 [0.045608, 0.046475]

�2

�
= �2

w
= 0.25 0.065332 0.005175 0.060157 259.1 9.66 × 10−19 [0.059632, 0.060683]

Building Energy �2

�
= �2

w
= 0.04 0.035929 0.024715 0.011214 303.4 2.34 × 10−19 [0.011130, 0.011297]

�2

�
= �2

w
= 0.09 0.050040 0.025368 0.024672 281.2 4.63 × 10−19 [0.024473, 0.024870]

�2

�
= �2

w
= 0.16 0.071174 0.026145 0.045030 305.8 2.18 × 10−19 [0.044697, 0.045363]

�2

�
= �2

w
= 0.25 0.091444 0.027190 0.064254 309.4 1.96 × 10−19 [0.063784, 0.064724]
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The above occurrence also happens in the other six data-
sets. Furthermore, we give visual figures as shown in 
Fig. 3. The figure makes a better view of Table 6. From the 
figure and table, the improvement ratios of our proposed 
algorithms (WDT-IELM and WDTC-IELM) are more sig-
nificant for high noise levels.

6  Conclusion

In this paper, we have developed a noise resistant objective 
function for concurrent multiplicative weight noise in the 
input weights and output weights. Based on the developed 

objective function, we then propose two increment ELM 
algorithms that can handle weight noise. We also show 
that during the incremental training, the training objec-
tive is non-increasing. From the simulation results, the 
proposed incremental algorithms are much better than the 
original incremental algorithms. Besides, based on the 
paired t-test results and the performance improvement 
ratio results, the improvement of the proposed algorithms 
are statistical significant.

Table 6  Performances 
Improvement ratio of the 
comparison algorithms: IELM, 
CIELM,WDT-IELM and 
WDTC-IELM

Data set Noise level  Performance improvement ratio

WDT-IELM 
to IELM (%)

WDTC-IELM 
to IELM (%)

WDT-IELM 
to CIELM 
(%)

WDTC-IELM 
to CIELM (%)

Abalone �2

�
= �2

w
= 0.04 1.89 39.05 44.70 65.65

�2

�
= �2

w
= 0.09 7.50 56.22 62.50 82.25

�2

�
= �2

w
= 0.16 19.09 69.33 69.16 88.31

�2

�
= �2

w
= 0.25 24.19 72.59 73.46 90.41

Concrete �2

�
= �2

w
= 0.04 1.85 27.72 69.77 77.74

�2

�
= �2

w
= 0.09 7.48 47.88 79.03 88.19

�2

�
= �2

w
= 0.16 16.22 60.86 85.80 93.37

�2

�
= �2

w
= 0.25 25.53 65.85 88.55 94.75

Airfoil self noise (ASN) �2

�
= �2

w
= 0.04 3.06 42.86 56.37 74.28

�2

�
= �2

w
= 0.09 10.10 63.36 61.76 84.41

�2

�
= �2

w
= 0.16 20.37 75.02 68.75 90.20

�2

�
= �2

w
= 0.25 29.14 77.54 82.06 94.32

Bodyfat �2

�
= �2

w
= 0.04 3.06 48.54 13.06 53.85

�2

�
= �2

w
= 0.09 7.41 61.53 15.73 64.99

�2

�
= �2

w
= 0.16 20.78 73.32 33.30 77.54

�2

�
= �2

w
= 0.25 26.71 79.74 53.31 87.09

Chemical sensor �2

�
= �2

w
= 0.04 5.26 74.76 52.00 87.21

�2

�
= �2

w
= 0.09 12.72 84.66 52.85 91.71

�2

�
= �2

w
= 0.16 24.64 90.51 61.82 95.19

�2

�
= �2

w
= 0.25 32.84 90.96 78.74 97.14

Building energy �2

�
= �2

w
= 0.04 1.67 26.66 1.02 26.18

�2

�
= �2

w
= 0.09 7.04 43.31 6.08 42.72

�2

�
= �2

w
= 0.16 15.27 60.77 2.26 54.74

�2

�
= �2

w
= 0.25 24.97 62.27 34.03 66.83

Housing �2

�
= �2

w
= 0.04 2.55 36.28 10.43 41.44

�2

�
= �2

w
= 0.09 10.01 54.48 18.00 58.52

�2

�
= �2

w
= 0.16 18.88 67.43 38.73 75.40

�2

�
= �2

w
= 0.25 28.24 75.06 45.13 80.93
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Fig. 3  Performance improvement ratios. Four noise levels are considered. They are �2

�
= �2

w
= 0.04 , �2

�
= �2

w
= 0.09 , �2

�
= �2

w
= 0.16 , and 

�2

�
= �2

w
= 0.25

https://doi.org/10.1007/s12652-018-0960-7
https://doi.org/10.1007/s12652-018-0960-7
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/s12652-018-0994-x
https://doi.org/10.1007/s12652-018-0994-x


15657Two noise tolerant incremental learning algorithms for single layer feed‑forward neural…

1 3

Mahdiani HR, Fakhraie SM, Lucas C (2012) Relaxed fault-tolerant 
hardware implementation of neural networks in the presence of 
multiple transient errors. IEEE Trans Neural Netw Learn Systems 
23(8):1215–1228

Martolia R, Jain A, Singla L (2015) Analysis & survey on fault toler-
ance in radial basis function networks. In: 2015 IEEE interna-
tional conference on computing, communication & automation 
(ICCCA), pp 469–473

Murakami M, Honda N (2007) Fault tolerance comparison of IDS 
models with multilayer perceptron and radial basis function net-
works. In: International joint conference on neural networks 2007 
(IJCNN2007), pp 1079–1084, IEEE

Pajarinen J, Peltonen J, Uusitalo MA (2011) Fault tolerant machine 
learning for nanoscale cognitive radio. Neurocomputing 
74(5):753–764

Wang SJ, Muhammad K, Phillips P, Dong Z, Zhang YD (2017) Ductal 
carcinoma in situ detection in breast thermography by extreme 
learning machine and combination of statistical measure and 
fractal dimension. J Ambient Intell Human Comput. https ://doi.
org/10.1007/s1265 2-017-0639-5

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12652-017-0639-5
https://doi.org/10.1007/s12652-017-0639-5

	Two noise tolerant incremental learning algorithms for single layer feed-forward neural networks
	Abstract
	1 Introduction
	2 Mathematical background on extreme learning machine
	3 Weight noise model and objective function
	3.1 Weight noise model
	3.2 Noise tolerant objective function

	4 Noise tolerant incremental algorithms
	4.1 WDT-IELM
	4.2 WDTC-IELM

	5 Numerical study
	5.1 Number of hidden nodes
	5.2 Performance comparison
	5.3 Paired T-test analysis
	5.4 Performance improvement ratio

	6 Conclusion
	Acknowledgements 
	References




