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Abstract
Neutrosophic set theory plays an important role in dealing with the impreciseness and inconsistency in data encountered in 
solving real life problems. This article aims to present a novel goal programming based strategy which will be helpful to solve 
Multi-Level Multi-Objective Linear Programming Problem (MLMOLPP) with parameters as neutrosophic numbers (NNs). 
Difficulty in decision making arises due to the presence of multiple decision makers (DMs) and impreciseness in information. 
Here each level DM has multiple linear objective functions with parameters considered as NNs which are represented in the 
form c + dI , where c and d are considered real numbers and the symbol I denotes indeterminacy. The constraints are also 
linear with the parameters as NNs. Firstly the NNs are changed into intervals and the problem turns into a multi-level multi-
objective linear programming problem considering interval parameters. Then interval programming technique is employed 
to obtain the target interval of each objective function. In order to avoid decision deadlock which may arise in hierarchical 
(multi-level) problem, a possible relaxation is imposed by each level DM on the decision variables under his/her control. 
Finally a goal programming strategy is presented to solve the MLMOLPP with interval parameters. The method presented 
in this paper facilitates to solve MLMOLPP with multiple conflicting objectives in an uncertain environment represented 
through NNs of the form c + dI , where indeterminacy I plays a pivotal role. Lastly, a mathematical example is solved to 
show the novelty and applicability of the developed strategy.

Keywords Multi-level multi-objective programming · Neutrosophic number · Interval programming · Goal programming

1 Introduction

Multi-level programming problems (MLPPs) occur in hier-
archical decision making organizations where a DM is pre-
sent at each level of decision making and is assigned the task 
of optimizing one or more objective functions. Also, every 
DM has independent control over a set of decision variables 
(Baky 2010). Since an MLPP involves multiple DMs who 

generally have conflicting objectives, the DMs must co-oper-
ate with each other to obtain a compromise optimal solu-
tion for the overall benefit of the organization. In particular, 
if an MLPP has 2 levels it is called bi-level programming 
problem (BLPP). In most real world situations, the values 
to be assigned to the parameters cannot be precisely known 
due to incomplete and ambiguous information. To address 
this problem, parameters have been interpreted as fuzzy data 
which is represented as fuzzy sets (Baky et al. 2014).

Goal programming (GP) (Charnes et al. 1955) is a very 
important mathematical tool suitable for obtaining optimal 
solution of multi objective programming problems involving 
conflicting objectives. Goal programming when applied to 
a programming problem with fuzzy parameters is termed as 
fuzzy goal programming (FGP). GP has been widely used to 
solve various types of optimization problems such as BLPPs, 
fractional BLPPs, MLPPs, fractional MLPPs, multi-objec-
tive MLPPs, and decentralized fractional BLPP (Pramanik 
2012; Pramanik and Dey 2011; Pramanik et al. 2012; Baky 
2010; Dey et al. 2014a).
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The disadvantage of fuzzy sets is its inability to efficiently 
represent imprecise and inconsistent information as it con-
siders only the truth membership function (Zadeh 1965). 
Intuitionistic fuzzy set (Atanassov 1986) is a modification 
of fuzzy sets which considered both the truth and falsity 
membership functions. But still it had some drawbacks in 
depicting human like decision making. Group decision mak-
ing with fuzzy sets and intuitionistic fuzzy sets has been 
discussed in Banaeian et al. (2018) and Liu et al. (2018). 
Some recent developments on group decision making has 
been discussed in Morente-Molinera et al. (2018, 2019) and 
Pérez et al. (2018). In 1998, a new type of set called neutro-
sophic set was introduced by Smarandache (1998) to deal 
with decision making problems which involved incomplete, 
inconsistent and indeterminate information. Here indeter-
minacy is considered as an independent factor which has 
a major contribution in decision making. Neutrosophic set 
helps in human-like decision making by considering truth, 
falsity and indeterminacy membership functions. Wang et al. 
(2010) introduced single valued neutrosophic set (SVNS) to 
solve practical problems. Application of SVNS can be found 
in a vast range of decision making problems such as multi 
criteria decision making problems (Biswas et al. 2014a, 
b; Broumi and Smarandache 2014), educational problems 
(Mondal and Pramanik 2015), social problems (Pramanik 
and Chakrabarti 2013) etc.

The notion of neutrosophic number (NN) and its basic 
properties were established by Smarandache (2013), in 
which indeterminacy plays a pivotal role. Ye (2016a) 
investigated ranking of NNs based on possibility degree in 
multi-attribute group decision making (MAGDM) strategy. 
Another MAGDM strategy with NNs was formulated by 
Ye (2017) where bidirectional measure was applied. Kong 
et al. (2015) developed misfire fault diagnosis technique in 
gasoline engines using distance measure of NNs and cosine 
function based similarity measure. Ye (2016b) developed 
a method for fault diagnosis of steam turbine with the help 
of exponential similarity measure of NNs. Ye et al. (2017) 
analysed joint roughness coefficient taking the help of NN 
functions. NN generalized weighted power averaging opera-
tor formulated by Liu and Liu (2018) is applied to MAGDM 
in NN environment. Zheng et al. (2017) applied NN general-
ized hybrid weighted averaging operator to MAGDM prob-
lems. Mondal et al. (2018) approached MAGDM problems 
in NN environment through NN-Harmonic mean aggre-
gation operators. Shi and Ye (2017) presented the cosine 
measures of linguistic neutrosophic numbers and used it in 
MAGDM with NNs. Ye (2018b) developed a multi attrib-
ute decision making strategy using the expected value in 
hesitant neutrosophic linguistic number and its similarity 
measure. Various other works related to uncertainty has also 
been studied (Liu et al. 2019; Zhang 2012; Zhang and Zhang 
2012; Zhang et al. 2012a, b, c, 2014a, b, 2015a, b, c, 2016, 

2017a, b, 2018a, b, c, d, e, f, Zhang et al. 2019a, b, c, d; 
Zhang and Liang 2013). Pramanik et al. (2017) addressed 
teacher selection problem using bidirectional projection 
measure in NN environment. Ye (2018a) employed a linear 
programming strategy in NN environment to solve optimiza-
tion problems with NNs. Ye et al. (2018) have also solved 
non-linear programming problems in NN environment. 
Banerjee and Pramanik (2018) grounded the linear program-
ming problem with single objective in NN environment with 
the help of goal programming. Here, the coefficients of the 
objectives along with the constraint coefficients have been 
taken to be NNs in the form of c + dI , where c, d are real 
numbers and indeterminacy is represented by I. Pramanik 
and Banerjee (2018) broadened the notion of article Baner-
jee and Pramanik (2018) to multi-objective linear program-
ming problem in NN environment. Also Pramanik and Dey 
(2018) formulated solution method to linear bi-level pro-
gramming problem in NN environment.

In this paper, we have considered NNs in the form 
M = c + dI where c and d are real numbers and I symbol-
izes indeterminacy. c denotes the determinate or sure part 
of M and dI denotes the indeterminate or unsure part of M. 
I is also called the non-numerical indeterminacy (or literal 
indeterminacy) (Smarandache 2015) The method proposed 
in this paper helps to solve MLMOLPP in NN environment 
where the DMs present in various levels usually have con-
flicting objectives. The parameters for the problem are con-
sidered as NNs in the form c + dI where indeterminacy is 
an independent factor which plays a crucial part in decision 
making. Since decision making in real life problems involves 
indeterminate information so NNs can better represent them 
compared to other parameters in uncertain environment such 
as fuzzy numbers and intuitionistic fuzzy numbers.

A GP based strategy to solve MLMOLPP with NNs is 
proposed in this paper. Firstly, the NNs are transformed 
into interval numbers and hereby the given problem gets 
converted into a MLMOLPP with interval parameters. The 
target interval of each objective function is formed through 
interval programming technique and then the goal achiev-
ing functions are constructed to achieve the target goals. 
Each DM allows some possible relaxation on the variable 
controlled by him/her to avoid decision deadlock and obtain 
an optimal compromise solution of the MLMOLPP. Then a 
GP model is constructed to solve the MLMOLPP with NNs. 
Lastly the efficacy of the strategy discussed is demonstrated 
through a numerical illustration.

The remaining part of this paper is arranged in the fol-
lowing manner. Some preliminary notions regarding interval 
numbers and neutrosophic numbers are presented in Sect. 2. 
Section 3 deals with the formulation of the MLMOLPP with 
NNs. Section 4 elaborate the proposed GP strategy. In Sect. 5 
the proposed strategy is applied to an illustrative numerical 
example to clarify its applicability. The article comes to an 
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end with the concluding remarks and further fields of study 
presented in Sect. 6.

2  Preliminaries

Some elementary concepts regarding interval numbers and 
neutrosophic numbers have been discussed under this section 
head.

2.1  Interval numbers (Moore 1998)

An interval number on the real line R is denoted as 
N = [NL, NU] = {n ∶ NL ≤ n ≤ NU , n ∈ R}, where NL and 
NU represent the left and right limit of the interval number N 
on R.

Definition 1 Let m(N) denotes the midpoint and 
w(N) denotes the width of the interval number N  Then 
m(N) =

1

2
(NL + NU) and w(N) = (NU − NL).

Definition 2 The definition of scalar multiplication on N 
is as follows:

Definition 3 Absolute value of N is defined in the follow-
ing way:

Definition 4 The binary operation ‘*’ between two interval 
numbers N1 = [NL

1
, NU

1
] and N2 = [NL

2
, NU

2
] can be defined 

as

In particular

�N =

{
[�NL, �NU], � ≥ 0

[�NU , �NL], � ≤ 0
.

�N� =
⎧⎪⎨⎪⎩

[NL, NU], NL ≥ 0

[0,max(−NL,NU)], NL < 0 < NU

[−NU ,−NL], NU ≤ 0

.

N1 ∗ N2 = {n1 ∗ n2 ∶ n1 ∈ N1, n2 ∈ N2}

where N
L

1
≤ n1 ≤ N

U

1
, NL

2
≤ n2 ≤ N

U

2
.

N1 + N2 = [NL

1
+ N

L

2
,NU

1
+ N

U

2
]

N1 − N2 = [NL

1
− N

U

2
,NU

1
− N

L

2
]

N1 × N2 = [min(NL

1
× N

L

2
,NL

1
× N

U

2
,NU

1
× N

L

2
,NU

1
× N

U

2
), max(NL

1
× N

L

2
,NL

1
× N

U

2
,NU

1
× N

L

2
,NU

1
× N

U

2
)]

N1∕N2 =

⎧⎪⎨⎪⎩

[NL

1
,NU

1
] ×

�
1

N
U

2

,
1

N
L

2

�
or

[min(NL

1
∕NL

2
,NL

1
∕NU

2
,NU

1
∕NL

2
,NU

1
∕NU

2
), max(NL

1
∕NL

2
,NL

1
∕NU

2
,NU

1
∕NL

2
,NU

1
∕NU

2
)] if 0 ∉ N2

undefined if 0 ∈ N2

.

2.2  Neutrosophic number (Smarandache 2013)

A neutrosophic number is denoted as M = c + dI , where c and 
d are real (or complex) numbers and I ∈ [IL, IU] denotes inde-
terminacy. Also 0.I = I and I ^ n = I  for integer n ≥ 1. Here c 
is called the determinate part of M and dI is the indeterminate 
part of M . So M can be written as

Here we consider c and d to be real numbers.
Now the operations on NNs follow from the operations on 

interval numbers.
Let an NN be considered as M = 2 + 4I, where 2 repre-

sents the determinate part and 4I represents the indeterminate 
part. Let it be assumed that I ∈ [0, 1] , so M transforms into an 
interval number M = [2, 6].

Graphical representation of NN is shown in Fig. 1.

3  Formulation of MLMOLPP with NN 
parameters

In an MLMOLPP, each decision level has a DM associated 
with it and multiple objective functions have to be optimized 
at each level. Here we consider that the objective coefficients 
together with the constraint coefficients are NNs.

M = c + dI = c + d[IL, IU] = [c + dIL, c + dIU] = [ML,MU] (say).

0

1

2

3

4

5

6

7

NN 1
=4+2I

NN 2
=3+I

NN 3
=5+2I

Indeterminate part

Determinate part

Fig. 1  Graphical representation of 3 Neutrosophic Numbers with 
I ∈ [0, 1]
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We consider here a hierarchical structure consist-
ing of q (> 2) levels. The kth level decision maker  DMk 
controls the decision variable wk, k = 1, 2,… , q where 
w = (w1,w2,… ,wq) . A MLMOLPP with NNs where the 
objective function is to be minimized can be written as:

[1st level]

[2nd level]

[qth level]

Subject to

where

Here Ilj ∈ [IL
lj
, IU

lj
], Ikrj ∈ [IL

krj
, IU

krj
], Ikr ∈ [IL

kr
, IU

kr
] and 

alj, dlj, �l, �l, ckrj, bkrj, �kr, �kr, I
L
lj
, IU

lj
, IL

krj
, IU

krj
, IL

kr
, IU

kr
 are real 

numbers. pk is the number of objective functions for  DMk 
(k = 1, 2,… , q) and l is the number of constraints.

Now from Eq. (5) we get

(1)min
w1

Z1(w) = min
w1

(Z11(w),Z12(w),… , Z1p1 (w))

(2)min
w2

Z2(w) = min
w2

(Z21(w),Z22(w),… , Z2p2 (w))

.

.

.

(3)min
wq

Zq(w) = min
wq

(Zq1(w),Zq2(w),… , Zqpq (w))

(4)

w ∈ G =

{
w = (w1,w2,… ,wq) ∈ Rq|

q∑
j=1

(alj + Iljdlj)wj

≥ �l + Il�l, w ≥ 0, l = 1, 2,… , p

}
≠ �

(5)
Zkr(w) =

q∑
j=1

(ckrj + Ikrjbkrj)wj + (�kr + Ikr�kr)

(k = 1, 2,… , q; r = 1, 2,… , pk)

(6)

Zkr(w) =

q∑
j=1

(ckrj + Ikrjbkrj)wj + (�kr + Ikr�kr)

=

q∑
j=1

[(
ckrj + IL

krj
bkrj

)
wj,

(
ckrj + IU

krj
bkrj

)
wj

]
+
[(
�kr + IL

kr
�kr

)
,
(
�kr + IU

kr
�kr

)]

=

[
q∑
j=1

(
ckrj + IL

krj
bkrj

)
wj,

q∑
j=1

(
ckrj + IU

krj
bkrj

)
wj

]
+
[(
�kr + IL

kr
�kr

)
,
(
�kr + IU

kr
�kr

)]

=

[
q∑
j=1

(
ckrj + IL

krj
bkrj

)
wj +

(
�kr + IL

kr
�kr

)
,

q∑
j=1

(
ckrj + IU

krj
bkrj

)
wj +

(
�kr + IU

kr
�kr

)]

=
[
CL
kr
(w),CU

kr
(w)

]

where  
q∑
j=1

(ckrj + IL
krj
bkrj)wj+(�kr + IL

kr
�kr) = CL

kr
(w) and 

q∑
j=1

(ckrj + IU
krj
bkrj)wj+(�kr + IU

kr
�kr) = CU

kr
(w)

Similarly, the constraints in Eq. (4) is reduced as

where �l + IL
l
�l = BL

l
 and �l + IU

l
�l = BU

l
.

4  A goal programming strategy to solve 
MLMOLPP with NN parameters

The minimization type MLMOLPP with neutrosophic num-
bers is rewritten as:

[1st level]

[2nd level]

[qth level]

Subject to

(7)

q∑
j=1

(alj + Iljdlj)wj ≥ �l + Il�l (l = 1, 2,… , p)

⇒

[
q∑
j=1

(alj + IL
lj
dlj)wj,

q∑
j=1

(alj + IU
lj
dlj)wj

]
≥
[
�l + IL

l
�l, �l + IU

l
�l
]

≥ [BL
l
,BU

l
]

(8)min
w1

Z1r(w) =
[
CL
1r
(w),CU

1r
(w)

]
(r = 1, 2,… , p1)

(9)min
w2

Z2r(w) =
[
CL
2r
(w),CU

2r
(w)

]
(r = 1, 2,… , p2)

.

.

.

(10)min
wq

Zqr(w) =
[
CL
qr
(w),CU

qr
(w)

]
(r = 1, 2,… , pq)
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Pr o p o s i t i o n  1  ( S h a o ch e n g  1 9 9 4 )  S u p p o s e  ∑n

k=1
[ek

1
, ek

2
]zk ≥ [f1, f2], then ∑n

k=1
[e

k

2
]z

k
≥ f1,

∑n

k=1
[e

k

1
]z

k
≥ f2 

are the inequalities which provide the maximum and mini-
mum value ranges respectively.

For acquiring the best optimal solution of Zkr(w) , 
(the rth objective function of the kth level DM), 
k = 1, 2,… , q; r = 1, 2,… , pk,we solve the following prob-
lem according to Ramadan (1996) as given below:

Subject to

Let the rth objective function of the kth level DM denoted 
by Zkr(w), acquires its best solution at wB

kr
= (wB

kr1
,wB

kr2
,… ,wB

krq
),

(k = 1, 2,… , q; r = 1, 2,… , pk) and let ZB
kr

 denote the best 
objective value of Zkr(w).

T h e  w o r s t  o p t i m a l  s o l u t i o n  o f 
Zkr(w) , (k = 1, 2,… , q; r = 1, 2,… , pk) is obtained by 
solving the following problem as given by Ramadan (1996).

Subject to

Let the worst solution of Zkr(w) be obtained at 
wW
kr
= (wW

kr1
,wW

kr2
,… ,wW

krq
), (k = 1, 2,… , q; r = 1, 2,… , pk) 

and ZW
kr

 denote the worst objective value of Zkr(w).
So the optimal value of Zkr(w) in interval form is [ZB

kr
, ZW

kr
].

Let it be assumed that the objective function Zkr(w) has its 
target interval [Z∗B

kr
, Z∗W

kr
] as considered by the DM.

The objective function Zkr(w) has the target level consid-
ered as follows:

[
q∑
j=1

(
alj + IL

lj
dlj

)
wj,

q∑
j=1

(
alj + IU

lj
dlj

)
wj

]
≥
[
BL
l
,BU

l

]

w = (w1,w2,… ,wq) ≥ 0

l = 1, 2,… , p

(11)minCL
kr
(w) (k = 1, 2,… , q; r = 1, 2,… , pk)

(12)

q∑
j=1

(
alj + IU

lj
dlj

)
wj ≥ BL

l

w = (w1,w2,… ,wq) ≥ 0

l = 1, 2,… , p

(13)minCU
kr
(w) (k = 1, 2,… , q; r = 1, 2,… , pk)

(14)

q∑
j=1

(
alj + IL

lj
dlj

)
wj ≥ BU

l

w = (w1,w2,… ,wq) ≥ 0

l = 1, 2,… , p

(15)CU
kr
(w) ≥ Z∗B

kr

Hence the goal achievement functions for Zkr(w) can be 
written as:

where DU
kr
> 0, DL

kr
> 0 represent the deviational variables.

Solution of the GP model presented below provides the best 
solution for the kth level ( k = 1, 2,… , q ) DM.

In MLMOLPP, the objectives of various level DMs are usu-
ally conflicting in nature. So it is necessary for the DMs to 
cooperate with each other so as to attain a compromise optimal 
solution for the overall benefit of the organization (Dey et al. 
2014b).

Let wB
k
= (wB

k1
,wB

k2
,… ,wB

kq
) be the best solution of kth level 

DM. The decision variable which is in control of the kth level 
DM is wB

kk
 . To cooperate with other level DMs, the kth level 

DM allows some upper and lower preference bounds on the 
variable wB

kk
 . Let lkk and ukk be the respective lower and upper 

preference bounds suggested by the kth level DM. Therefore, 
we can write

Finally, we develop a GP model for MLMOLPP with neu-
trosophic number structured as follows:

GP model:

Subject to

(16)CL
kr
(w) ≤ Z∗W

kr
(k = 1, 2,… , q; r = 1, 2,… , pk)

(17)−CU
kr
(w) + DU

kr
= −Z∗B

kr

(18)
CL
kr
(w) + DL

kr
= Z∗W

kr
(k = 1, 2,… , q; r = 1, 2,… , pk)

(19)

min�

Subject to

− CU
kr
(w) + DU

kr
= −Z∗B

kr

CL
kr
(w) + DL

kr
= Z∗W

kr

q∑
j=1

(alj + IU
lj
dlj)wj ≥ BL

l

q∑
j=1

(alj + IL
lj
dlj)wj ≥ BU

l

� ≥ DU
kr
, � ≥ DL

kr

DU
kr
,DL

kr
,wj ≥ 0

r = 1, 2,… , pk ; l = 1, 2,… , p ; j = 1, 2,… , q

(20)wB
kk
− lkk ≤ wB

kk
≤ wB

kk
+ ukk, k = 1, 2,… , q

(21)

Min S =

p1∑
r=1

(
�U
1r
D

U

1r
+ �L

1r
D

L

1r

)
+

p2∑
r=1

(
�U
2r
D

U

2r
+ �L

2r
D

L

2r

)
+⋯ +

pq∑
r=1

(
�U
qr
D

U

qr
+ �L

qr
D

L

qr

)
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Here �U
kr
, �L

kr
(k = 1, 2,… , q) denote the numerical weights 

of the corresponding deviational variables as recommended 
by the DMs.

4.1  Algorithm for the proposed strategy to solve 
MLMOLPP with NNs

Step 1: The original MLMOLPP with NNs is converted into 
MLMOLPP with interval numbers as in Eqs. (8–10) along 
with the reduced constraints (7).
Step 2: For each objective function the individual best and 
worst solutions are obtained using Eqs. (11–14).
Step 3: The goal achievement functions are constructed 
using Eqs. (17–18).
Step 4: The best solution for each level DM is obtained 
using the GP model (19).
Step 5: The DMs assign upper and lower preference bounds 
as given in Eq. (20).
Step 6: GP model (21) is formed and its solution provides 
the required values of the decision variables.

The flowchart framework for solving the MLMOLPP with 
NNs is presented in Fig. 2.

5  Numerical illustration

A numerical problem is provided to clarify the steps of the 
proposed strategy to obtain the solution of MLMOLPP with 
NNs. Here it is considered that I ∈ [0, 1].

1st level DM:

− CU
kr
(w) + DU

kr
= −Z∗B

kr

CL
kr
(w) + DL

kr
= Z∗W

kr

q∑
j=1

(
alj + IU

lj
dlj

)
wj ≥ BL

l

q∑
j=1

(
alj + IL

lj
dlj

)
wj ≥ BU

l

wB
kk
− lkk ≤ wB

kk
≤ wB

kk
+ ukk

wj, D
U
kr
,DL

kr
, �U

kr
, �L

kr
≥ 0

k = 1, 2,… , q; r = 1, 2,… , pk; l = 1, 2,… , p;

j = 1, 2,… , q

min
x1

{
Z11(x) = [1 + 2I]x1 + [3 + 4I]x2 + [7 + 5I]x3 + [1 + 3I]

Z12(x) = [3 + 4I]x1 + [5 + 9I]x2 + [2 + 3I]x3 + [2 + 4I]

2nd level DM:

3rd level DM:

Subject to

Table 1 presents the transformed problem for 1st level 
DM and Table 2 presents the best and worst solutions for 
1st level DM.

Hence the target objective functions can be taken as:

min
x2

{
Z21(x) = [5 + 6I]x1 + [8 + 9I]x2 + [1 + 4I]x3

Z22(x) = [9 + 8I]x1 + [5 + 4I]x2 + [1 + 2I]x3 + [6 − 7I]

min
x3

{
Z31(x) = [5 − 2I]x1 + [3 − I]x2 + [9 + 4I]x3

Z32(x) = [10 − 4I]x1 + [5 − 4I]x2 + [2 + 3I]x3 + [2 + 5I]

[4 + 2I]x1 + [3 + 7I]x2 + [1 + 5I]x3 ≥ [15 + 10I]

[6 + I]x1 + [−2 + 4I]x2 + [6 + 2I]x3 ≥ [5 + 3I]

x1, x2, x3 ≥ 0

No

Yes

Given the MLMOLPP with NN, convert the NNs into interval NNs.

For each level, the individual best and worst solutions are to be calculated for each 
objective function considering equations (11-14).

Construct goal achievement functions using equations (17-18)

Using GP model (19), the best solution for each level DM is obtained.

Each DM assigns upper and lower preference bounds according to equation (20).

Solve GP model (21) to obtain the values of decision variables

END

START

If solution is 
acceptable for 

all DMs

DMs adjust 
the 

preference 
bounds

Fig. 2  Flowchart depicting the proposed solution method
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The goal functions with targets are:

The best solution of 1st level DM is obtained using GP 
model (19) as x1 = 6.25, x2 = 0, x3 = 0

The 2nd level problem is transformed into 2 linear pro-
gramming problems as given in Table 3. The solutions of 
these 2 LPPs which give the best and worst solutions for 
2nd level DM are given in Table 4.

Hence the target objective functions can be taken as:

The goal functions with targets are:

x1 + 3x2 + 7x3 + 1 + D
L

11
= 22.75

− 3x1 − 7x2 − 12x3 − 4 + D
U

11
= −4

3x1 + 5x2 + 2x3 + 2 + D
L

12
= 49

− 7x1 − 14x2 − 5x3 − 6 + D
U

12
= −7

5x1 + 8x2 + x3 ≤ 68

11x1 + 17x2 + 5x3 ≥ 3

9x1 + 5x2 + x3 − 1 ≤ 81

17x1 + 9x2 + 3x3 + 6 ≥ 2

5x1 + 8x2 + x3 + D
L

21
= 68

− 11x1 − 17x2 − 5x3 + D
U

21
= −3

9x1 + 5x2 + x3 − 1 + D
L

22
= 81

− 17x1 − 9x2 − 3x3 − 6 + D
U

22
= −2

Table 1  Problem formulation for best and worst solution of 1st level 
DM

Objective 
function

Problem for the best solution Problem for the worst 
solution

Z11 Min x1 + 3x2 + 7x3 + 1

Subject to
6x1 + 10x2 + 6x3 ≥ 15

7x1 + 2x2 + 8x3 ≥ 5

x1, x2, x3 ≥ 0

Min 3x1 + 7x2 + 12x3 + 4

Subject to
4x1 + 3x2 + x3 ≥ 25

6x1 − 2x2 + 6x3 ≥ 8

x1, x2, x3 ≥ 0

Z12 Min 3x1 + 5x2 + 2x3 + 2

Subject to
6x1 + 10x2 + 6x3 ≥ 15

7x1 + 2x2 + 8x3 ≥ 5

x1, x2, x3 ≥ 0

Min 7x1 + 14x2 + 5x3 + 6

Subject to
4x1 + 3x2 + x3 ≥ 25

6x1 − 2x2 + 6x3 ≥ 8

x1, x2, x3 ≥ 0

Table 2  Best and worst solutions for 1st level DM

Objective function Best solution with solu-
tion point

Worst solution with 
solution point

Z11 3.5 at (2.5, 0, 0) 22.75 at (6.25, 0, 0)
Z12 7 at (0, 0, 2.5) 49.75 at (6.25, 0, 0)

Table 3  Problem formulation for best and worst solution of 2nd level 
DM

Objective 
function

Problem for the best solution Problem for the worst 
solution

Z21 Min 5x1 + 8x2 + x3

Subject to
6x1 + 10x2 + 6x3 ≥ 15

7x1 + 2x2 + 8x3 ≥ 5

x1, x2, x3 ≥ 0

Min 11x1 + 17x2 + 5x3

Subject to
4x1 + 3x2 + x3 ≥ 25

6x1 − 2x2 + 6x3 ≥ 8

x1, x2, x3 ≥ 0

Z22 Min 9x1 + 5x2 + x3 − 1

Subject to
6x1 + 10x2 + 6x3 ≥ 15

7x1 + 2x2 + 8x3 ≥ 5

x1, x2, x3 ≥ 0

Min 17x1 + 9x2 + 3x3 + 6

Subject to
4x1 + 3x2 + x3 ≥ 25

6x1 − 2x2 + 6x3 ≥ 8

x1, x2, x3 ≥ 0

Table 4  Best and worst solutions for 2nd level DM

Objective function Best solution with solu-
tion point

Worst solution with 
solution point

Z21 2.5 at (0, 0, 2.5) 68.75 at (6.25, 0, 0)
Z22 1.5 at (0, 0, 2.5) 81 at (0, 7.1, 3.7)

Table 5  Problem formulation for best and worst solution of 3rd level 
DM

Objective 
function

Problem for the best solution Problem for the worst 
solution

Z31 Min 3x1 + 2x2 + 9x3

Subject to
6x1 + 10x2 + 6x3 ≥ 15

7x1 + 2x2 + 8x3 ≥ 5

x1, x2, x3 ≥ 0

Min 5x1 + 3x2 + 13x3
Subject to
4x1 + 3x2 + x3 ≥ 25

6x1 − 2x2 + 6x3 ≥ 8

x1, x2, x3 ≥ 0

Z32 Min 6x1 + x2 + 2x3 + 2

Subject to
6x1 + 10x2 + 6x3 ≥ 15

7x1 + 2x2 + 8x3 ≥ 5

x1, x2, x3 ≥ 0

Min 10x1 + 5x2 + 5x3 + 7

Subject to
4x1 + 3x2 + x3 ≥ 25

6x1 − 2x2 + 6x3 ≥ 8

x1, x2, x3 ≥ 0

x1 + 3x2 + 7x3 + 1 ≤ 22.75

3x1 + 7x2 + 12x3 + 4 ≥ 4

3x1 + 5x2 + 2x3 + 2 ≤ 49

7x1 + 14x2 + 5x3 + 6 ≥ 7
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The best solution of 2nd level DM is obtained using GP 
model (19) as x1 = 3.0714, x2 = 0, x3 = 12.714

Table 5 presents the transformed problems for finding the 
best and worst solution of 3rd level DM. Table 6 depicts the 
best and worst solutions for 3rd level DM.

Hence the target objective functions can be taken as:

The goal functions with targets are:

The best solution of 3rd level DM is obtained using GP 
model (19) as x1 = 2.846, x2 = 4.53846, x3 = 0

Suppose the preference bounds offered by the 1st level 
DM on x1 , the decision variable under his/her control, is 
taken as 6.25 − 1.25 ≤ x1 ≤ 6.25 + 1.25. Similarly, the 
preference bounds set by the 2nd level DM on the decision 
variable x2 is taken as 0 ≤ x2 ≤ 0 + 2 and the 3rd level DM 
assigns preference bounds on the decision variable x3 as 
0 ≤ x3 ≤ 0 + 2.

The best solution point of each level DM and the prefer-
ence bounds imposed by them are presented in Table 7.

The solution of the GP model described below is the opti-
mal compromise solution of the original given problem.

GP model:

3x1 + 2x2 + 9x3 ≤ 27

5x1 + 3x2 + 13x3 ≥ 4

6x1 + x2 + 2x3 + 2 ≤ 58

10x1 + 5x2 + 5x3 + 7 ≥ 4

3x1 + 2x2 + 9x3 + D
L

31
= 27

− 5x1 − 3x2 − 13x3 + D
U

31
= −4

6x1 + x2 + 2x3 + 2 + D
L

32
= 58

− 10x1 − 5x2 − 5x3 − 7 + D
U

32
= −4

(22)Min
1

12

(
DL

11
+ DU

11
+ DL

12
+ DU

12
+ DL

21
+ DU

21
+ DL

22
+ DU

22
+ DL

31
+ DU

31
+ DL

32
+ DU

32

)

Table 6  Best and worst 
solutions for 3rd level DM

Objective function Best solution with solution point Worst solution with solution point

Z31 3.62069 at (0.3448, 1.293, 0) 27.84615 at (2.846154, 4.5385, 0)
Z32 3.9117 at (0, 1.3235, 0.29412) 58.15385 at (2.846154, 4.5385, 0)

Table 7  Best solution points 
for the level DMs and the 
preference bounds imposed

Level DMs Best solution point Preference bounds

1st Level DM x1 = 6.25, x2 = 0, x3 = 0 6.25 − 1.25 ≤ x1 ≤ 6.25 + 1.25

2nd Level DM x1 = 3.0714, x2 = 0, x3 = 12.714 0 ≤ x2 ≤ 0 + 2

3rd Level DM x1 = 2.846, x2 = 4.5385, x3 = 0 0 ≤ x3 ≤ 0 + 2

Table 8  Compromise optimal range of the objective functions

Objective functions Compromise optimal range

Z11 [7.25, 22.75]
Z12 [20.75, 49.75]
Z21 [31.25, 68.75]
Z22 [55.25, 112.25]
Z31 [18.75, 31.25]
Z32 [39.5, 69.5]

Table 9  Solution points obtained for various preference bounds

x1 x2 x3 Solution point

5 ≤ x1 ≤ 7.5 0 ≤ x2 ≤ 2 0 ≤ x3 ≤ 2 (6.25, 0, 0)
5.5 ≤ x1 ≤ 7.5 0 ≤ x2 ≤ 2 0 ≤ x3 ≤ 2 (6.25, 0, 0)
6 ≤ x1 ≤ 7.5 0 ≤ x2 ≤ 2 0 ≤ x3 ≤ 2 (6.25, 0, 0)
6 ≤ x1 ≤ 7 0 ≤ x2 ≤ 2 0 ≤ x3 ≤ 2 (6.25, 0, 0)
4.5 ≤ x1 ≤ 7.5 0 ≤ x2 ≤ 2 0 ≤ x3 ≤ 2 (6.25, 0, 0)
4 ≤ x1 ≤ 7 0 ≤ x2 ≤ 2 0 ≤ x3 ≤ 2 (6.25, 0, 0)
5.5 ≤ x1 ≤ 7.5 0 ≤ x2 ≤ 2.5 0 ≤ x3 ≤ 2.5 (6.25, 0, 0)
5.5 ≤ x1 ≤ 7.5 0 ≤ x2 ≤ 3 0 ≤ x3 ≤ 2.5 (6.25, 0, 0)
6 ≤ x1 ≤ 7.5 0 ≤ x2 ≤ 3 0 ≤ x3 ≤ 3 (6.25, 0, 0)
5.5 ≤ x1 ≤ 7.5 0 ≤ x2 ≤ 1 0 ≤ x3 ≤ 1 (6.25, 0, 0)
5 ≤ x1 ≤ 7 0 ≤ x2 ≤ 0.5 0 ≤ x3 ≤ 1 (6.25, 0, 0)
5.5 ≤ x1 ≤ 7.5 0 ≤ x2 ≤ 1.5 0 ≤ x3 ≤ 1.5 (6.25, 0, 0)
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Subject to

Solving GP model (22), we obtain the solution point as 
(6.25, 0, 0). The compromise optimal range of the objec-
tive functions obtained using this solution point are shown 
in Table 8.

5.1  Sensitivity analysis

For different choices of the preference bounds, the solution 
points obtained by solving the GP model (22) are shown 
in Table 9.

x1 + 3x2 + 7x3 + 1 + D
L

11
= 22.75

− 3x1 − 7x2 − 12x3 − 4 + D
U

11
= −4

3x1 + 5x2 + 2x3 + 2 + D
L

12
= 49

− 7x1 − 14x2 − 5x3 − 6 + D
U

12
= −7

5x1 + 8x2 + x3 + D
L

21
= 68

− 11x1 − 17x2 − 5x3 + D
U

21
= −3

9x1 + 5x2 + x3 − 1 + D
L

22
= 81

− 17x1 − 9x2 − 3x3 − 6 + D
U

22
= −2

3x1 + 2x2 + 9x3 + D
L

31
= 27

− 5x1 − 3x2 − 13x3 + D
U

31
= −4

6x1 + x2 + 2x3 + 2 + D
L

32
= 58

− 10x1 − 5x2 − 5x3 − 7 + D
U

32
= −4

6x1 + 10x2 + 6x3 ≥ 15

7x1 + 2x2 + 8x3 ≥ 5

4x1 + 3x2 + x3 ≥ 25

6x1 − 2x2 + 6x3 ≥ 8

5 ≤ x1 ≤ 7.5

0 ≤ x2 ≤ 2

0 ≤ x3 ≤ 2

x1, x2, x3 ≥ 0

D
L

1i
,D

U

1i
,D

L

2i
,D

U

2i
,D

L

3i
,D

U

3i
≥ 0

i = 1, 2

6  Comparison with other existing methods

The proposed method solves Multi-Level Multi-Objec-
tive Linear Programming Problem with the parameters as 
neutrosophic numbers in the form c + dI, where c and d 
are real numbers and I denotes indeterminacy. But there 
exists no other method in the literature for solving Multi-
Level Multi-Objective Linear Programming Problem with 
neutrosophic numbers in the form c + dI. This is the first 
approach in neutrosophic number environment.

Some research articles dealing with Multi-Level Multi-
Objective Linear Programming Problem (MLMOLPP) are 
mentioned here. Liu and Yang (2018) used interactive 
programming approach to solve MLMOLPP. Pramanik 
et al. (2015) deals with the solution of multi- level linear 
plus linear fractional programming with multiple objec-
tive functions using Fuzzy Goal Programming (FGP) 
approach. MLMOLPP has been solved using FGP by 
Baky (2010). Lachhwani (2014) solved MLMOLPP using 
FGP approach in a simpler way than Baky (2010). In all 
these articles the parameters are crisp numbers. So the 
parameter environments of these papers are different than 
our paper.

Multi-Level Multi-Objective Programming Prob-
lem which involves fuzzy parameters in the objectives 
and right hand side of constraints has been solved by 
Abou-El-Enien and El-Feky (2018). Here the compro-
mise solution of the problem has been obtained using 
TOPSIS approach. Stochastic fuzzy multi-level multi-
objective fractional programming problem has been 
solved by Osman et al. (2017) using FGP approach. Here 
the chance-constrained approach with dominance possi-
bility criteria and level cuts are used to transform the 
fuzzy problem into an equivalent crisp problem. Emam 
et al. (2016) discussed a solution method to multi-level 
multi-objective quadratic programming problem with 
the constraint parameters as trapezoidal fuzzy numbers. 
The method proposed in this article uses linear ranking 
to convert the fuzzy numbers into crisp numbers and then 
uses interactive approach to obtain the satisfactory solu-
tion. A solution procedure of multi-level multi-objective 
fractional programming problem with fuzzy demands 
has been discussed by Osman et al. (2018) using FGP 
approach. In all these research articles, the parameters 
are considered as fuzzy numbers.

So it can be observed that till now no paper in the lit-
erature deals with MLMOLPP with neutrosophic numbers 
in the form c + dI. Since the parameter environment of our 
paper does not match with that of other research articles, 
for this reason direct comparison with relative methods 
does not arise.
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7  Conclusion

The paper presents a GP strategy to solve MLMOLPP with 
neutrosophic numbers. The NNs are firstly converted into 
interval numbers and the problem thus gets changed into an 
MLMOLPP with interval parameters. Interval programming 
technique is employed to obtain the target interval of each 
objective function. Goal achievement functions are con-
structed to attain the target goals. Since in an MLMOLPP, a 
situation of decision deadlock may arise owing to conflicting 
objectives, each level DM provides preference bounds on the 
decision variables controlled by him/her. GP strategy is then 
employed to obtain the compromise optimal solution of the 
MLMOLPP with NNs. A numerical example is solved to 
clarify the applicability and efficiency of this strategy. The 
method discussed here can be applied in decision making in 
large hierarchical organizations where multiple DMs having 
conflicting objectives are involved. Real decision making 
process can be better represented through neutrosophic num-
bers as it considers all aspects of decision making i.e., truth, 
falsity and indeterminacy. Here indeterminacy is considered 
as an independent factor which has a key role in decision 
making. The novelty of the method lies in its simplicity and 
efficient handling of indeterminate data.

No comparison is done as the developed strategy is the 
first attempt to solve MLMOLPP in NN environment. The 
goal programming strategy discussed here can be useful to 
solve real problems in a vast range of fields which include 
agriculture, transportation, bio-fuel production etc. in NN 
environment.
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