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Abstract
Radar sea clutter is the backscattering radar echo of rough sea surface, the research of radar sea clutter is of great signifi-
cance to national defense construction and national economic development. Sea clutter prediction is also an important point 
in radar signal processing field. The traditional sea clutter prediction method has lower precision when predicting long-
distance sea clutter data, and when the amount of data is large, the time is also lengthened, thereby reducing the efficiency 
of prediction. In this paper, a new method based on long short-term memory (LSTM) for predicting sea clutter at longer 
distances in the atmospheric duct environment using near-distance observations is proposed, the principle of LSTM network 
is introduced, and the factors affecting prediction accuracy are analyzed. The high precision prediction of radar sea clutter 
by LSTM network is realized. It provide the basis for further work on inversion problem of atmospheric ducts. It also has 
very important application value for studying the clutter suppression of the radar model and improving the target detection 
performance of the radar.
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1 Introduction

Radar sea clutter (Wang et al. 2007) is the backscattering 
radar echo of rough sea surface. Sea clutter is the most dif-
ficult and challenging problem of marine radar, sea clutter 
prediction is also an important point in radar signal process-
ing field (Wang et al. 2009). The accurate modeling of radar 
sea clutter and the realization of prediction techniques are 
of great significance to national defense construction and 
national economic development. For example, a commonly 
used atmospheric duct inversion technique called refractivity 
from clutter (RFC) (Krolik and Tabrikian 1998) is imple-
mented based on radar sea clutter. In addition, the analysis 
and prediction of sea clutter have very important application 
value for studying the clutter suppression of radar models 
and improving the target detection performance of radars.

In 2000, Haykin et al. (2002) proposed chaotic character-
istics of sea clutter based on a large number of IPIX radar 
data, the results that sea clutter is chaotic dynamic rather 
than purely random. The chaotic phenomenon (Haykin and 
Puthusserypady 1997; Lin et al. 2004) is between the certain 
relationship and the random relationship, it is a generaliza-
tion of the existing determination mode and an important 
form of objective existence in the natural world. Chaos con-
tains order, which is different from random motion that can-
not be controlled, but has obvious nonlinear relationship, it 
can usually be determined by nonlinear dynamic equations 
and is locally predictable (Bian-zhang 2004; Xie 2009). 
Because sea clutter has such chaotic characteristics, the 
sequence of sea clutter can be predicted, which has impor-
tant theoretical and practical significance for the study of sea 
clutter and subsequent target detection.

For a stable data sequence, using the traditional statisti-
cal model can get the good prediction results, but for the 
sea clutter sequence with chaotic characteristics, even if the 
model matches the data well, sometimes it is impossible 
to make an accurate prediction (Xie 2009). So far, many 
methods for modeling and predicting sea clutter have been 
developed. For example, the similarity point method (Xi 
2005) is to find the closest or most similar point to the cur-
rent time point in the history record, and replace the current 
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time point with the similar point to predict the future evolu-
tion of the current state point. This method is simple, but not 
very accurate. In 2004, a local-region multi-steps forecasting 
model based on phase-space reconstruction is presented for 
chaotic time series prediction (Cai et al. 2004), simulation 
results from several typical chaotic time series demonstrate 
that the models are effective for multi-steps prediction of 
chaotic time series. In addition to this, there is a regression 
method, Xiaohong et al. (2010) used the traditional nonlin-
ear regression model to predict sea clutter, they get the better 
prediction effect, but the method is easy to eliminate the 
chaotic characteristics and nonlinear characteristics of sea 
clutter, resulting in the nature of sea clutter changes being 
concealed. Since Lapedes and Farber (1987) first applied 
neural networks for prediction in 1987, the method of using 
neural networks for sequence prediction has received much 
attention. In 2006, a sea clutter prediction method based on 
radial basis function (RBF) and K-means clustering has been 
proposed (Chen et al. 2007; Xiaohong and Jidong 2006) 
Besides, Bin et al. (2007) also used the least squares-support 
vector machine (LS-SVM) algorithm to achieve sea clut-
ter prediction. Xie (2009) compared error back propagation 
method (BP) with RBF method, and verified the effective-
ness of above prediction method using sea clutter data. Ting 
(2015) proposed a chaotic time series prediction method 
based on genetic wavelet neural network (GA-WNN), and 
obtained good prediction results.

However, previous neural networks for sea clutter pre-
diction has short-term predictable and long-term unpredict-
able defects. Their accuracy is lower at the long distances. 
Besides, as the amount of data increases, the training model 
takes longer time, which reduces the efficiency of predict 
the sea clutter power. This paper proposes a new method of 
radar sea clutter prediction using long short-term memory 
(LSTM), compared with the previous method, LSTM has 
higher prediction accuracy and it takes less than one second 
to make predictions using the trained LSTM deep learning 
network, which is very efficient.

This paper discusses the principle of the LSTM net-
work model, and builds the sea clutter prediction model, 
and analyzes the factors affecting the prediction accuracy. 
The final prediction results show that the prediction of sea 
clutter using LSTM neural network can obtain higher preci-
sion results, and it also has better accuracy for predictions 
at farther distance.

2  Radar sea clutter power calculation

In order to apply the radar sea clutter to solve the inversion 
problem of atmospheric refractivity estimation, it is first 
necessary to model and calculate the radar sea clutter in the 
atmospheric duct environment (Guo et al. 2018), different 

duct environments and radar parameters will affect sea clutter 
power value. According to the basic radar theory (Gerstoft 
et al. 2003) and calculation theory of sea clutter power (Karim-
ian et al. 2016), M is used to represent the atmospheric duct 
profile structure in a maritime environment, the sea clutter 
power received by the radar can be expressed as follows:

where r is the distance between the radar receiving antenna 
and the sea surface scattering unit, Pt and Gt represents 
transmit power and transmit antenna gain, respectively. λ 
represents the known wave length,�0 is the radar scattering 
coefficient. Ac is the area of the radar unit, it has a linear 
relationship with the distance r as shown below:

�az is the azimuth beam width of the antenna, � is the inci-
dent angle and the product of c� is the distance resolution 
of the radar, these are all the radar system parameter. The 
propagation factor F(r, M) and propagation loss L(r, M) have 
the following relationship:

Substituting (2) and (3) into (1), the equation for calculating 
the sea clutter power can be obtained:

Then, the Eq. (4) can be expressed in logarithmic form as 
follows:

The propagation loss LdB(r, M) Equation in logarithmic 
form is shown in (6), C is a constant related to radar param-
eters such as transmit power and gain, after simplification, it 
can be expressed as Eq. (7):

The propagation factor F(r, M) can be solved by the par-
abolic equation model (Liu et al. 2011) and the �0 can be 
obtained by the NRL empirical model (Levis et al. 2010). 
Several groups of sea clutter power that varied with distance 
are shown in Fig. 1.
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3  LSTM network model principle

LSTM is a special type of recurrent neural networks 
(RNN). It was first proposed by Hochreiter and Schmid-
huber (1997) and improved by Kawakami (2008). It solves 
the problem of RNN echelon disappearance and explosion, 
it also compensates for the inability of RNN to predict 
distant sequences. LSTM is a popular part of the current 
deep learning field, it is mainly used to solve the timing 

prediction problem. It can predict the state of the next 
moment based on the state of the data at the previous 
moment.

Neural network consists of one input unit, one output unit 
and many intermediate units which are called hidden units. 
The output of the input unit forms the input of the unit of 
the first hidden layer, and the output of each hidden layer 
forms the input of each subsequent hidden layer (Tax et al. 
2017). One or more hidden layers make up the hidden unit, 
compared with the ordinary neural network, the biggest dif-
ference of RNN is that hidden unit will self-loop. RNN can 
be seen as multiple copies of the same neural network, and 
each neural network module will pass the information to the 
next one. For easy understanding, RNN can be unfolded as 
shown in Fig. 2.

For the sea clutter prediction problem to be solved in this 
paper, the input data is a set of sea clutter power sequence. 
As the sequence progresses, the hidden unit of the previ-
ous distance will affect the hidden unit of the latter distance 
point, this feature is of great help to the sea clutter power 
that has a certain nonlinear relationship between the previ-
ous data and the latter data. So the network can predict the 
sea clutter power value at the next distance based on the 
values at the previous few distance points. The state of the 
hidden unit at each distance point in the Fig. 2 is related to 

Fig. 1  Sea clutter power

Fig. 2  Unfolding of single RNN network
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the previous point, where Xt is the clutter power value at the 
distance t, ht is the predicted value at the distance.

But RNN has such a problem (Zhang et al. 2017): for 
the standard RNN architecture, the influence of the “fea-
tures” at a farther moment on the output is either attenuated 
to a small extent or exponentially exploding. This problem 
is often referred to as the “gradient demise and explosion 
problem”. The cleverest thing about the LSTM network is 
that the weight of the self-loop is changed by adding the 
input gate, the forget gate and the output gate into the hidden 
unit. In this way, when the model parameters are fixed, the 
integral scale at different times can be dynamically changed, 
avoiding the “gradient demise and explosion problem”.

The LSTM unit structure (Kawakami 2008) is shown in 
Fig. 3. One or more cells exist in one LSTM unit to describe 
the current state of the LSTM unit. There are three control 
gates in Fig. 3 that control the input, output of the network 
and the status of the cell unit. After getting the output  h1 at 
the initial time, as long as the Input Gate is kept off (equiva-
lent to a multiplication coefficient of 0) and the Forget Gate 
is open (equivalent to a multiplication coefficient of 1), the 
output of the network will continues to be affected by  h1. 

Therefore, using LSTM to establish a sea clutter prediction 
model, it is possible to obtain a highly accurate prediction 
result at farther distance.

4  Establishment of radar sea clutter 
prediction model

The specific process of establishing and training the LSTM 
network model is shown in Fig. 4 for the sea clutter predic-
tion problem in the atmospheric duct environment. It can 
be seen that the LSTM can continuously circulate the sea 
clutter information, pass it from the current step to the next 
step, and predict the next state according to the previous 
state, thus realizing the prediction of the horizontal distance 
sea clutter.

When establishing the LSTM prediction model, the input 
data is a set of radar sea clutter power values calculated 
by formula (6). We select a sea clutter power value every 
100 m from the horizontal distance range of 3–200 km, 
finally a total of 1970 data constitutes the input data set. 
The radar system parameters used for the calculation are 
listed in Table 1.

As shown in Fig. 5, it is a set of sea clutter power values 
for training. It can be seen that as the distance increases, the 
sea clutter power has a certain attenuation characteristic, 
and there is some periodic change. Therefore, it is feasible 
to use the LSTM neural network model to fit this nonlinear 
relationship.

Fig. 3  Structure of LSTM unit

Fig. 4  Flow chart for establish-
ing LSTM sea clutter prediction 
model

Table 1  Radar system parameters

Frequency (GHz) 3.0
Antenna elevation angle 0.57°
Antenna height (m) 169
Transmit power (kW) 700
Transmitting antenna gain (dB) 45
Antenna beam width 1.0°
Pulse width (μs) 1.0
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In order to evaluate the accuracy and generalization 
ability of the established model, it is necessary to select 
the first 80% as the training set from the input sea clutter 
data, the last 20% as the test set. And select the root mean 
square error function (RMSE) as the evaluation function 
to evaluate the prediction results:

where predicted represents the sea clutter prediction value, 
and real represents the supposed sample value.

The quality of the model can be judged by calculat-
ing the result of the RMSE on the test set. The smaller 
the result of RMSE, the higher accuracy of the prediction 
model established. In order to select the optimal param-
eters to train the LSTM radar sea clutter prediction model, 
the following factors which easily affect the accuracy of 
the prediction results are analyzed.

1) The influence of epochs on prediction accuracy

When the input sea clutter data set passes through the 
LSTM network once and returns once, the process is called 
an epoch (Lecun et al. 2015). As shown in Fig. 6, as the 
epoch increases, the RMSE value on the test set and train-
ing set both decreases, it shows that there is no overfitting 
problem in the process of establishing the LSTM model. 
Eventually, the RMSE converges after about 100 epochs, 
because every time an epoch is passed, the LSTM network 
model updates its weight parameters based on the results, 
making the predictions closer to the true value. At the 
same time, the more epoch, the longer the training time, 
so you need to choose an appropriate epoch number based 
on the number of input sea clutter sample data set.

(8)RMSE =

√

√

√

√

1

n

n
∑

i=1

(predictedi − reali)
2

2) The influence of batchsize on prediction accuracy

The input data set has nearly 2000 values, if the com-
plete data set is used in each training process, the gradient 
cannot be corrected, and the network cannot converge to 
the global optimum. Therefore, when training the LSTM 
prediction network, need to choose a suitable batchsize 
(Lecun et al. 2015) value. Batchsize represents the number 
of sea clutter power samples that are input to the network 
each time. The data set is divided into multiple batches 
according to the value of batchsize. These batches are 
input into the network for training in stages. Choosing the 
right batchsize not only improves memory utilization, but 
also reduces the time required for training.

Within a reasonable range, different batchsize values 
were selected to train the LSTM sea clutter prediction 
model. As shown in Fig. 7, when the value of batchsize is 
16, the RMSE on the test set is the smallest, that is, when 
batchsize is selected 16, the optimal prediction result can 
be obtained.

Fig. 5  Radar sea clutter Fig. 6  RMSE varies with the number of epochs

Fig. 7  RMSE varies with the number of batchsize
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3) The influence of neurons on prediction accuracy

Figure 8 shows the change curve of RMSE with epochs 
under different number of neurons. As shown in Fig. 8, 
the number of neurons increases, the RMSE of the sea 
clutter prediction model on the test set decreases, which 
means that the prediction accuracy is increasing. This 
is because increasing the number of neurons allows the 
LSTM neural network model to learn more training data 
features, thereby more accurately fitting the nonlinear 
relationship between sea clutter powers, and the predic-
tion results will be more accurate. However, it can be seen 
from the figure, when the number of neurons reaches 256 
and 512, the accuracy on the test set decreases, which 
indicates that the number of neurons is not the more the 
better. Too many neurons sometimes lead to over-fitting, 
because too many neurons will learn too many features 
between training data, resulting in poor generalization 
of the network model, the accuracy on the test set will 
decrease. In addition, the more neurons, the longer the 
training time, reducing the efficiency. So the number of 
neurons is not the more the better.

Through the above analysis of the data, when the num-
ber of neurons = 128, epoch = 100, the optimal results 
can be achieved, and the training time will not be too 
long. SO this paper selects epochs as 100, batching as 
16 and neuron as 128, then training LSTM sea clutter 
prediction model based on tensorflow (Hope et al. 2017) 
framework in Python language environment. After train-
ing, the obtained model can be saved, and the model can 
be directly used to predict when needed without repeated 
training process, it is very flexible to use, and greatly 
improves the efficiency of sea clutter prediction.

5  Prediction results and analysis

According to the analysis results in the previous section, four 
sets of the sea clutter power data in the different atmospheric 
duct environments are selected to train the LSTM predic-
tion model. Then, the trained prediction model is used to 
predict the sea clutter power data of each group from 160 
to 200 km, in order to reflect the prediction accuracy of the 
LSTM network model at a long distance. In addition, we also 
use the traditional BP neural network to predict the sea clut-
ter power. Figure 9 shows the comparison of the predicted 
results of the two methods and their relative error curves.

It can be seen from the Fig. 9 that the relative error of sea 
clutter prediction using LSTM network is much lower than 
that of BP neural network, which fully proves the validity 
of the LSTM model. And the relative error curve shows that 
although the relative error varies with distance, the relative 
error generated by the four sets of data all does not exceed 
0.5%, and some even far below 0.5%, which proves that the 
LSTM network model still has high prediction accuracy even 
at a long distance. In addition, it takes less than 1 ms to call 
the trained LSTM for prediction, while it takes longer to use 
BP neural network, which fully proves the efficiency of sea 
clutter prediction using LSTM.

6  Conclusion

In this paper, a new method for predicting radar sea clutter 
power over horizontal distance is proposed. Firstly, based 
on the theoretical basis of radar sea clutter calculation in 
the atmospheric duct environment, a large amount of sea 
clutter power values are generated to form the training 

Fig. 8  RMSE varies with the 
number of neurons and epochs
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data set. Then, the factors affecting the accuracy of the 
prediction result are analyzed in many aspects. According 
to the analysis result, the optimal parameters are selected 
to train the LSTM network, and finally an optimal predic-
tion model is obtained, which is applied to the prediction 
problem of sea clutter at in horizontal distance. According 
to the final prediction results, compared with the previous 
method (like BP neural network), the prediction of radar 

sea clutter using LSTM has the advantages of high preci-
sion and high efficiency, and accurate prediction results 
can be obtained even at a long distance. The new method 
proposed in this paper lays the foundation for the next 
step of using sea clutter to invert the atmospheric ducts. 
At the same time, because of the high-precision predic-
tion ability of LSTM for radar sea clutter, we can try to 
apply LSTM to the subsequent target signal detection in 

Fig. 9  The sea clutter prediction result and the relative error curve
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the background of sea clutter, which has certain signifi-
cance for the research of ocean radar clutter.
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