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Abstract
People make decisions based on their cognitive information about the objective world. Zadeh’s Z-number allows people to 
better express their cognition of the real world by considering the fuzzy restriction and reliability restriction of information. 
However, the Z-number is a complex construct, and some important issues must be discussed in its study. Here, a compu-
tationally simple method of ranking Z-numbers for multi-criteria decision-making (MCDM) problems is proposed, and a 
comprehensive possibility degree of Z-numbers is defined, as inspired by the possibility degree concept of interval numbers. 
The outranking relations of Z-numbers are also discussed on the basis of the proposed method. Then, a weight acquisition 
algorithm relative to the possibility degree of Z-numbers is presented. Finally, an extended Preference Ranking Organization 
Method for Enrichment Evaluation II (PROMETHEE II) based on the possibility degree of Z-numbers is developed for the 
MCDM problem under Z-evaluation, and a numerical example about the selection of travel plans is used to illustrate the 
validity of the proposed method. The applicability and superiority of the proposed method is demonstrated through sensitiv-
ity and comparative analyses along with other existing methods.
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1  Introduction

Humans participate in relevant decision-making activities 
based on the information they perceive (Ji et al. 2018; Li 
and Wang 2017; Wang et al. 2017). However, the perceived 
information is usually fuzzy and partially reliable, which 
deeply affects humans’ decision-making activities (Hu et al. 
2017; Tian et al. 2017; Wang et al. 2015, 2017, 2018, 2019; 
Zadeh 1965). Zadeh (2011) proposed the Z-number in con-
sideration of the fuzzy restriction and information reliabil-
ity. A Z-number, Z , is composed of an ordered pair, (A,B) , 
which is used to describe a real-valued uncertain variable, 
X . The component A is a fuzzy restriction on the values of 
X , and B reflects the reliability restriction of the first com-
ponent. A Z-number can be denoted as ‘ X is Z = (A,B) ’ or 
(X,A,B) . According to Zadeh (2011), A and B in the natural 

language can be converted into trapezoidal fuzzy numbers 
(Bakar and Gegov 2015) or triangular fuzzy numbers (TFNs) 
(Aliev et al. 2016a, b) for computation purposes. Therefore, 
studying the Z-number-based decision-making problem is 
meaningful under uncertain linguistic environments.

Decision makers (DMs) are often more willing to express 
their decision-making perspectives by using natural lan-
guage terms rather than specific numerical scores due to 
the ambiguity of the decision-making process and its uncer-
tainties. Recently, many scholars have conducted in-depth 
research on uncertain linguistic decision-making problems 
(Hu et al. 2018; Huang et al. 2018; Li et al. 2018; Mardani 
et al. 2015; Xue et al. 2016). Ding and Liu (2018) used the 
decision-making trial and evaluation laboratory method to 
identify critical success factors in emergency management, 
in which evaluation values were represented by two-dimen-
sional uncertain linguistic variables. Liu et al. (2019) built a 
robot selection model by combining quality function devel-
opment theory and the qualitative flexible multiple criteria 
method, by which the DMs expressed their views through 
interval-valued Pythagorean uncertain linguistic sets. Peng 
and Wang (2018) studied the applications of Z-numbers and 
cloud model to address multi-criteria group decision-making 
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problems under uncertain linguistic environments. Peng 
et al. (2019) combined linguistic variables and Z-numbers 
to establish a multi-criteria game model.

Zadeh (2011) stressed that stating the problem described 
by Z-numbers is relatively easy, but solving for the Z-num-
bers is difficult in terms of computation. Many scholars have 
studied the generation and operation of Z-numbers (Kang 
et al. 2018a, b, c, d). For example, Yager (2012) studied 
specific underlying probability distributions to solve cer-
tain decision problems involving Z-numbers. Aliev et al. 
(2015) developed the basic arithmetic of discrete Z-num-
bers according to discrete fuzzy number theory (Casasnovas 
and Riera 2006; Chou 2003; Voxman 2001) and the general 
principle of Z-number calculation (Zadeh 2011). Aliev et al. 
(2016a, b) implemented a comprehensive study on continu-
ous Z-numbers. Shen and Wang (2018) constructed a com-
prehensively weighted Z-distance measure that only consid-
ers the reliability restriction and the underlying probability 
distribution of Z-numbers. The above studies focused on 
the direct calculation of Z-numbers according to the basic 
properties of the Z-number. However, these methods are 
complicated because of the need to satisfy the requirements 
of goal programming and convolution operations (Peng and 
Wang 2017).

Some scholars have attempted to simplify the operations 
of Z-numbers by converting them into simpler forms. Kang 
et al. (2012a, b) developed a typical method for converting 
the Z-number into a trapezoidal fuzzy number or a triangular 
fuzzy number. Kang et al. (2012a, b) and Kang et al. (2018a, 
b, c, d) constructed a formula for converting the Z-number 
into a crisp value. Aliyev (2016) proposed a single-distance 
measure by considering the Z-number as a pair of two classi-
cal fuzzy numbers. Different from the explanations of Aliev 
et al. (2015); Aliev et al. (2016a, b); Yang and Wang (2018), 
Kang et al. (2018a, b, c, d) regarded the Z-number as an 
ordered pair of two fuzzy numbers, and they proposed an 
improved fuzzy measure for calculating the uncertainty of 
this Z-number. The above conversion methods effectively 
reduced the complexity involved in Z-information fusion and 
hence can be applied to many practical decision problems 
(Kang et al. 2018a, b, c, d; Tavakkoli-Moghaddam et al. 
2015; Wu et al. 2018; Yaakob and Gegov 2016). However, 
the above studies ignored the different effects of both fuzzy 
and reliability restrictions of the Z-number on the decision-
making process.

The Preference Ranking Organization Method for Enrich-
ment Evaluation (PROMETHEE) method developed by 
Brans et al. (1986) is one of the most applicable outranking 
methods for solving decision-making problems. Many stud-
ies on fuzzy multi-criteria decision-making (MCDM) have 
used the PROMETHEE method. Liu et al. (2017) performed 
a failure mode and effect analysis of a risk identification 
problem by combining the cloud model and PROMETHEE. 

Liang et  al. (2018) proposed a projection-based PRO-
METHEE method with hesitant fuzzy linguistic term sets. 
Li and Wang (2017) extended the PROMETHEE method 
to hesitant probabilistic fuzzy environments. Peng et al. 
(2016) presented a novel MCDM method based on hesitant 
fuzzy sets and prospect theory. Tavakkoli-Moghaddam et al. 
(2015) investigated the problem of facility location selec-
tion under Z-evaluation by developing the Z-PROMETHEE 
method. Although the fuzzy PROMETHEE decision-making 
method has been thoroughly studied, the research on extend-
ing PROMETHEE by combining it with the Z-number and 
under Z-environments is still rare; hence, such research is 
necessary.

Here, a novel ranking method for Z-numbers is developed 
to deal with the MCDM problem under Z-evaluation. Firstly, 
the concept of possibility degree of TFNs is defined, as 
inspired by the possibility degree concept of interval num-
bers (Xu and Da 2003, 2002). Secondly, a joint possibility 
degree of Z-numbers is developed on the basis of the pos-
sibility degree of TFNs. In addition, a pairwise comparative 
matrix that reflects the additive preference relation is con-
structed to acquire the criteria weights (Xu 2001). Thirdly, 
an extended PROMETHEE method based on the proposed 
possibility degree of Z-numbers is presented for the MCDM 
problem, in which the evaluation values are described by 
using Z-numbers. Finally, as the most important research 
aspect, a numerical example about the selection of travel 
plans is used to illustrate the validity and feasibility of the 
proposed Z-PROMETHEE approach. Compared with those 
in the existing literature, some pivotal innovations can be 
derived from the present work as follows:

1.	 The possibility degree of two TFNs is developed, as 
inspired by the possibility degree concept of interval 
fuzzy numbers. Then, a comprehensively weighted pos-
sibility degree of two Z-numbers is constructed. This 
possibility degree is used to compare the fuzzy restric-
tion and the reliability restriction of two Z-numbers 
without converting the Z-number into a fuzzy number 
or a crisp value.

2.	 For the MCDM problem with the Z-number as the 
evaluation value, if the criteria weights are expressed 
by using Z-numbers, then a method of converting the 
Z-weight vector into a real-weight vector is necessary. 
In light of the possibility degree of Z-numbers, a weight 
acquisition algorithm is introduced on the basis of the 
fuzzy complementary judgment matrix to obtain the real 
weight vector.

3.	 The possibility degree between two Z-numbers can 
reveal their partial order relationship. The PRO-
METHEE II method, combined with the possibility 
degree of Z-numbers, is used to present a Z-valued 
multi-criteria PROMETHEE method under uncertain 
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linguistic environments. The extended Z-PROMETHEE 
method can provide the full order of all the alternatives. 
Moreover, a travel example is used to illustrate its effec-
tiveness

The remainder of this paper is constructed as follows. In 
Sect. 2, some basic concepts are reviewed for subsequent 
discussions. In Sect. 3, a possibility degree definition of 
Z-numbers is developed to construct their outranking rela-
tions. Furthermore, a Z-PROMETHEE approach based on 
the possibility degree concept of Z-numbers is presented for 
MCDM in Sect. 4. In Sect. 5, a numerical example is used 
to illustrate the feasibility of the proposed method. Sensitiv-
ity and comparative analyses are implemented to verify the 
validity and reasonability of the proposed approach. The 
conclusion is presented in Sect. 6.

2 � Preliminaries

For convenience of subsequent discussions, some basic 
concepts are presented for background information such as 
triangular fuzzy number, continuous Z-number, and interval 
number.

2.1 � Continuous fuzzy number and triangular fuzzy 
number

Definition 1  (Aliev et al. 2016a, b): Let X be a universe of 
discourse. The fuzzy set A on X, whose membership func-
tion is the mapping of �A ∶ R → [0, 1] , is a continuous fuzzy 
number if it fulfils the following conditions:

1.	 A is a normal fuzzy set;
2.	 A is a convex fuzzy set;
3.	 �-cut A� of A is a closed interval for any � ∈ [0, 1];
4.	 The support supp (A) of A is bounded.

Definition 2  (Abbasbandy and Hajjari 2009): Let X be a uni-
verse of discourse. The membership function of the TFN 
A = (a, b, c) is

Evidently, the TFN is a type of continuous fuzzy number.

(1)𝜇A(x)

⎧
⎪⎪⎨⎪⎪⎩

0 x < a
x−a

b−a
a ≤ x < b

1 x = b
c−x

c−b
b ≤ x < c

0 x > c

.

2.2 � Z‑number and continuous Z‑number

Definition 3  (Zadeh 2011): A Z-number is an ordered pair of 
fuzzy numbers, (A,B) , which is used to characterise a real-
valued uncertain variable X. The first component A , which is 
allowed to be taken by X , plays a role in the fuzzy restriction 
of values. The second component B is a reliability restriction 
of the first component. A Z-number is usually expressed as

‘X is (A,B) ’, ‘X is Z = (A,B) ’ or ‘ (X,A,B)’.

Definition 4  (Aliev et al. 2016a, b): A continuous Z-number 
is an ordered pair Z = (A, B), in which some conditions need 
to be satisfied as follows:

1.	 A is a continuous fuzzy number whose membership 
function is the mapping of �A ∶ R → [0, 1] , where RX is 
the support supp (A) of A;

2.	 B is a continuous fuzzy number whose membership 
function is the mapping of �B ∶ [0, 1] → [0, 1].

2.3 � Possibility degree of interval numbers

Definition 5  (Xu and Da 2003): Let X be a universe of dis-
course. An interval number a on X can be defined as

If a− = a+ , then the interval number a = [a−, a+] will 
degenerate to a real number. Moreover, for any two interval 
numbers a =

[
a−, a+

]
 and b =

[
b−, b+

]
 , a is strictly equiva-

lent to b marked as a = b if a− = b− and a+ = b+.

Definition 6  (Gao 2013; Xu 2001; Xu and Da 2003): Let 
a = [a−, a+] and b = [b−, b+] be any two interval numbers. 
The possibility degree of a ≥ b is defined as

For any real number a and any interval number 
b =

[
b−, b+

]
 , the possibility degree formula is also applicable 

to the calculation of the possibility degree of a ≥ b or b ≥ a , 
provided that the real number a is viewed as a =

[
a−, a+

]
.

According to Xu and Da (2003), the possibility degree 
between any two real numbers can be defined. However, 
some discordant points in the properties of the possibility 
degree may exist. For example, obtaining p(a ≥ b) = 0 is 
inappropriate when a and b are real numbers and equal, as 
the definition will not satisfy the reflexivity condition (i.e. 
p(a ≥ b) ≠ 1

2
 ). Therefore, the possibility degree of any two 

real numbers has been redefined according to Gao (2013).

(2)a = [a−, a+] =
{
x|a− ≤ x ≤ a+

}
.

(3)

p(a ≥ b) = max

{
1 −max

(
b+ − a−

(b+ − b−) + (a+ − a−)
, 0

)
, 0

}
.
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Definition 7  (Gao 2013): Let a and b be any two real num-
bers. The possibility degree of a ≥ b is defined as

Theorem  1  (Gao 2013): Let a =
[
a−, a+

]
(a− ≤ a+) , 

b =
[
b−, b+

]
(b− ≤ b+) and c =

[
c−, c+

]
(c− ≤ c+) be any three 

interval numbers. Some properties of the possibility degree 
are satisfied as follows:

1.	 Normative: 0 ≤ p(a ≥ b) ≤ 1;
2.	 Complementary: p(a ≥ b) + p(b ≥ a) = 1;
3.	 Reflexivity: p(a ≥ b) = p(b ≥ a) = 0.5 if a = b;
4.	 Transitivity: if p(a ≥ b) ≤ 0.5 and p(b ≥ c) ≤ 0.5 , then 

p(a ≥ c) ≤ 0.5.

3 � Outranking relations of Z‑numbers

A novel concept named possibility degree of Z-numbers is 
proposed on the basis of two closely connected subsections. 
Furthermore, the outranking relations between the Z-num-
bers are defined on the basis of the possibility degree of 
Z-numbers.

3.1 � Possibility degree of TFNs

Definition 8  Let ã =
(
a1, a2, a3

)
 and b̃ =

(
b1, b2, b3

)
 be any 

two TFNs. Some comparative relations can be defined as 
follows:

1.	 If a1 = b1 , a2 = b2 and a3 = b3 , then ã is strictly equiva-
lent to b̃ , and they are marked as ã = b̃.

2.	 If a1 ≥ b3 , then ã is strictly larger than b̃ , and it is marked 
as b−, b+.

Definition 9  Let ã = (a1, a2, a3) and b̃ = (b1, b2, b3) be any 
two TFNs. The possibility degree of ã ≥ b̃ is defined as 
follows:

(4)P(a ≥ b) =

⎧
⎪⎨⎪⎩

0 a < b

0.5 a = b

1 a > b

.

(5)
p(ã ≥ b̃) = �

1

0

p𝛼(ã ≥ b̃)d𝛼,

where p𝛼(ã ≥ b̃) is the possibility degree of the cut set [
a−, a+

]
 of ã and the cut set 

[
b−, b+

]
 of b̃ in � level (Yao and 

Chiang 2003; Yao et al. 2003), as shown in Fig. 1. The ana-
lytic solution of the possibility degree of TFNs is shown in 
the Appendix A.

Note 1 The TFNs in Definition 9 are regular fuzzy num-
bers, which indicates that the range of the integration inter-
val is from 0 to 1. If the uncertain information is expressed 
by irregular fuzzy numbers (e.g. the maximum membership 
is less than one), then the cut set of the irregular fuzzy num-
ber is assumed to be a crisp value when the level of cut set 
is greater than its maximum membership. For example, for 
an irregular fuzzy number (1, 2, 3;0.5) with the maximum 
membership of 0.5 , the interval of the cut set will always be 
[2, 2] or when the level � of the cut set belongs to (0.5, 1] . 
Therefore, Eq. (5) in Definition 9 can be used to rank two 
irregular fuzzy numbers.

Example 1  Let ã = (1, 2, 3) and b̃ = (2, 3, 4) be two TFNs.
According to Definition 9,

The possibility degree between TFNs can be directly 
computed by adopting the formula in Appendix A.

ã𝛼 = [1 + 𝛼, 3 − 𝛼]

b̃𝛼 = [2 + 𝛼, 4 − 𝛼];

p𝛼(ã ≥ b̃) = max

{
1 −max

{
(4 − 𝛼) − (1 + 𝛼)

[(4 − 𝛼) − (2 + 𝛼)] + [(3 − 𝛼) − (1 + 𝛼)]

}
, 0

}
;

p(ã ≥ b̃) = �
1

0

p𝛼(ã ≥ b̃)d𝛼 = 0.0767.

p(ã ≥ b̃)=
3-2

(4 − 2)+(3 − 1)
+

3-2

(4 − 2)+(3 − 1)
ln

3 − 2

(3 − 2) + (3 − 2)
=

1

4
+

1

4
ln

1

2
= 0.0767

X

μ

1

μ=α

O a1 a3b1 b3a- a+ b- b+

Fig. 1   Possibility degree of two TFNs
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Definition 10  Let ã = (a1, a2, a3) and b̃ = (b1, b2, b3) be any 
two TFNs. Some comparative relations can be defined as 
follows:

1.	 If p(ã ≥ b̃) = p(b̃ ≥ ã) = 0.5 , then ã is indifferent to b̃ , 
and it is marked as ã ∼ b̃.

2.	 If p(ã ≥ b̃) > 0.5 , then ã is weakly larger than b̃ , and it 
is marked as ã ≻ b̃.

Theorem 2  Let ã = (a1, a2, a3) and b̃ = (b1, b2, b3) be any 
two TFNs. Some properties of the possibility degree of 
TFNs are satisfied as follows:

1.	 Normative: 0 ≤ p(ã ≥ b̃) ≤ 1;
2.	 Complementary: p(ã ≥ b̃) + p(b̃ ≥ ã) = 1;
3.	 Reflexivity: p(ã ≥ b̃) = p(b̃ ≥ ã) = 0.5 if ã = b̃.

Proof 

1.	 On the basis of Definition 9 and the first property (nor-
mative property) of Theorem 1,

∀𝛼 ∈ [0, 1], 0 ≤ p𝛼(ã ≥ b̃) ≤ 1  .  C o n s e q u e n t l y , 
∫ 1

0
0d𝛼 ≤ p(ã ≥ b̃) = ∫ 1

0
p𝛼(ã ≥ b̃)d𝛼 ≤ ∫ 1

0
1d𝛼.

Therefore, 0 ≤ p(ã ≥ b̃) ≤ 1.
Thus, the first property (normative property) is proven.

2.	 In accordance with Definition 9 and the second property 
(complementary property) of Theorem 1,

∀𝛼 ∈ [0, 1], p𝛼(ã ≥ b̃) + p𝛼(b̃ ≥ ã) = 1 . Consequently, 

p(ã ≥ b̃) + p(b̃ ≥ ã) = �
1

0

p𝛼(ã ≥ b̃)d𝛼 + �
1

0

p𝛼(b̃ ≥ ã)d𝛼

= �
1

0

[
p𝛼(ã ≥ b̃) + p𝛼(b̃ ≥ ã)

]
d𝛼

= �
1

0

1d𝛼

.

Therefore, p(ã ≥ b̃) + p(b̃ ≥ ã) = 1.
Thus, the second property (complementary property) is 

proven.

3.	 According to Definition 9 and the third property (reflex-
ivity) of Theorem 1,

if ã = b̃ , then ∀𝛼 ∈ [0, 1], p𝛼(ã ≥ b̃) = 0.5 and p𝛼(b̃ ≥ ã) 
= 0.5 Consequently, p(ã ≥ b̃) = ∫ 1

0
p𝛼(ã ≥ b̃)d𝛼 = ∫ 1

0
0.5d𝛼 

and p(b̃ ≥ ã) = ∫ 1

0
p𝛼(b̃ ≥ ã)d𝛼 = ∫ 1

0
0.5d𝛼.

Therefore, P(ã ≥ b̃) = P(b̃ ≥ ã) = 0.5 if ã = b̃.
Hence, the reflexivity property of Theorem 1 is proven.

Remark 1  The normative, complementary and reflexivity 
properties of the defined possibility degree of TFNs have 
been discussed in Theorem 2. Here, the transitivity property 
is demonstrated below.

A classic example is shown in Fig. 2. In many studies 
of fuzzy MCDM, a sequence of TFNs is often used as an 
uncertain information expression to evaluate alternatives. 
A TFN is a special interval fuzzy number. The TFNs 
in such a sequence are usually partially intersecting or 
non-intersecting.

The sequence of TFNs shown in Fig. 2 is represented by 
Ai, i = 1, 2, 3, 4 . For any three different TFNs such as Ai , Aj 
and Ak , finding p

(
Ai ≥ Aj

)
< 0.5 is easy if and only if i < j 

Fig. 2   Sequence of TFNs
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(see brief proof in Appendix B). Thus, if p
(
Ai ≥ Aj

)
< 0.5 

and p
(
Aj ≥ Ak

)
< 0.5 , then i < j and j < k . Consequently, 

i < k is satisfied. Therefore, p
(
Ai ≥ Ak

)
< 0.5.

3.2 � Possibility degree of Z‑numbers

Definition 11  Let Z1 = (A1,B1) and Z2 = (A2,B2) be any 
two Z-numbers where all the elements in 

{
A1,B1,A2,B2

}
 

are TFNs. Some comparative relations can be defined as 
follows:

1.	 If A1 = A2 and B1 = B2 , then Z1 is absolutely equivalent 
to Z2, and they are marked as Z1 ≡ Z2.

2.	 If A1 ∼ A2 and B1 ∼ B2 , then Z1 is strictly equivalent to 
Z2, and they are marked as Z1 = Z2.

3.	 If A1 > A2 and B1 > B2 , then Z1 is absolutely larger than 
Z2, and they are marked as Z1 ≫ Z2.

4.	 If A1 ≻ A2 and B1 ≻ B2 , then Z1 is strictly larger than Z2, 
and they are marked as Z1 > Z2.

Definition 12  Let Z1 = (A1,B1) and Z2 = (A2,B2) be any 
two Z-numbers where all the elements in 

{
A1,B1A2,B2

}
 are 

TFNs. The possibility degree of Z1 ≥ Z2 can be defined as

where the value of � lies in the interval of [0,1], and it rep-
resents the concern degree of a DM towards the first compo-
nent A of the Z-number. The equivalent formula is given by

The parameter � in Eq. (6) can reflect the varying prefer-
ences of different DMs. When 0 < 𝜔 < 0.5 , a DM perceives 
the reliability of an information as more important than the 
other properties. When � = 0.5 , the ambiguity and reliabil-
ity of information are equally significant for the DM. When 
0.5 < 𝜔 < 1 , the DM is more concerned on the ambiguity of 
the information. In particular, � = 0 indicates that the DM 
only considers the reliability restriction of the information, 
whereas � = 1 indicates that the DM is only concerned with 
the fuzzy restriction of the information.

A Z-number simultaneously considers the ambiguity and 
reliability properties of an information. According to Zadeh 
(2011), the first component of Z-number reflects the fuzzy 
restriction, whereas the second component plays a role in 
reliability restriction. These two characteristics must be 
considered when ranking Z-numbers. Furthermore, different 

(6)p(z1 ≥ z2) = �p(A1 ≥ A2) + (1 − �)p(B1 ≥ B2),

(7)

p(Z1 ≥ Z2) = ��
1

0

p�(A1 ≥ A2)d� + (1 − �)�
1

0

p�(B1 ≥ B2)d�.

DMs have varying risk preferences towards fuzziness and 
reliability. Therefore, the associated possibility degree for-
mula that has been developed is rational.

Example 2  Let Z1 = ((0.1, 0.2, 0.3), (0.2, 0.3, 0.4)) and 
Z2 = ((0.2, 0.3, 0.4), (0.1, 0.2, 0.3)) be two Z-numbers. Then, 
p(Z

1
≥ Z

2
)|�=0.5 = �p(A

1
≥ A

2
) + (1 − �)p(B1

≥ B
2
) =

0.5 × 0.0767 + (1 − 0.5) × 0.9233 = 0.5, 
p(Z1 ≥ Z2)|�=0.4 = 0.5847 and p(Z1 ≥ Z2)|�=0.6 = 0.4153.

Definition 13  Let Z1 = (A1,B1) and Z2 = (A2,B2) be any 
two Z-numbers where all the elements in 

{
A1,B1,A2,B2

}
 

are TFNs. Some comparative relations can be defined as 
follows:

1.	 If p(Z1 ≥ Z2) = p(Z2 ≥ Z1) = 0.5 , then Z1 is indifferent 
to Z2, and it is marked as Z1 ∼ Z2.

2.	 If p(Z1 ≥ Z2) > 0.5 , then Z1 is weakly larger than Z2, and 
it is marked as Z1 ≻ Z2.

Theorem 3  Let Z1 = (A1,B1) and Z2 = (A2,B2) be any two 
Z-numbers where the components A and B are TFNs. Some 
properties about the possibility degree of Z-numbers are 
satisfied as follows:

1.	 Normative: 0 ≤ p(Z1 ≥ Z2) ≤ 1;
2.	 Complementary: p(Z1 ≥ Z2) + p(Z2 ≥ Z1) = 1;
3.	 Reflexivity: p(Z1 ≥ Z2) = p(Z2 ≥ Z1) = 0.5 if Z1 = Z2.

Proof 

1.	 In accordance with Definition 12 and the first property 
(normative property) of Theorem 2,

0 ≤ p(A1 ≥ A2) ≤ 1 and 0 ≤ p(B1 ≥ B2) ≤ 1 Consequently, 
� × 0 + (1 − �) × 0 ≤ p(Z

1
≥ Z

2
) = �p(A

1
≥ A

2
) + (1−

�)p(B
1
≥ B

2
) ≤ � × 1 + (1 − �) × 1.

Therefore, the first property (normative property) is 
proven.

2.	 According to Definition 12 and the second property 
(complementary property) of Theorem 2,

p(A1 ≥ A2) + p(A2 ≥ A1) = 1 and p(B
1
≥ B

2
) + p(B

2
≥

≥ B
1
) = 1 . Consequently,
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Hence, the second property (complementary property) 
is proven.

(i)	 On the basis of Definition 12 and the third property 
(reflexivity property) of Theorem 2,

if Z1 = Z2 , then p(A1 ≥ A2) = 0.5 , p(A2 ≥ A1) = 0.5 , 
p(B1 ≥ B2) = 0.5 and p(B2 ≥ B1) = 0.5 . Consequently, 
p(Z

1
≥ Z

2
) = �p(A

1
≥ A

2
) + (1 − �)p(B

1
≥ B

2
) = � × 0.5

+(1 − �) × 0.5.  a n d  p(Z
2
≥ Z

1
) = �p(A

2
≥ A

1
) + (1−

�)p(B
2
≥ B

1
) = � × 0.5 + (1 − �) × 0.5.

Therefore, the third property (reflexivity property) is 
proven.

R e m a r k  2   L e t  Z1 =
(
A1,B1

)
 ,  Z2 =

(
A2,B2

)
 a n d 

Z3 =
(
A3,B3

)
 be any three Z-numbers, in which 

A1 = (ai
1
, ai

2
, ai

3
)(i = 1, 2, 3) and B1 = (bi

1
, bi

2
, bi

3
)(i = 1, 2, 3) 

are TFNs. Moreover, p
(
A1 ≥ A2

)
< 0.5 , p

(
A2 ≥ A3

)
< 0.5 , 

p(B1 ≥ B2) < 0.5 and p(B2 ≥ B3) < 0.5 are satisfied. 
Consequently, p(Z1 ≥ Z2) ≤ 0.5 , p(Z2 ≥ Z3) ≤ 0.5 and 
p(Z1 ≥ Z3) ≤ 0.5.

E x a m p l e  3   L e t  Z1 = ((1, 2, 3), (0.2, 0.3, 0.4))  , 
Z2 = ((2, 3, 4), (0.4, 0.6, 0.7)) and Z3 = ((3, 4, 5), (0.7, 0.8, 1)) 
be three given continuous Z-numbers.

According to Definition 12, p(Z1 ≥ Z2) = 0.0384 < 0.5 , 
p(Z2 ≥ Z3) = 0.0442 < 0.5 and p(Z2 ≥ Z3) = 0 < 0.5.

4 � Z‑PROMETHEE approach for solving 
MCDM problems

The possibility degree of Z-numbers can meaningfully solve 
the MCDM problem based on Z-numbers. The possibility 
degree of Z-numbers can also reflect the difference between 
two Z-numbers. An extended Z-PROMETHEE approach is 
therefore developed as follows.

For a MCDM problem using Z-numbers, let 
A = {ai|i = 1, 2,… ,m} be a set that includes all the pro-
vided alternatives; c = {cj|j = 1, 2,… , n} be the col-
lection of criteria; D = [zij]m×n =

[
(Aij,Bij)

]
m×n

 be the 
decision-making matrix, in which zij = (Aij,Bij) denotes 
the evaluation of alternative ai under the criteria cj ; and 

p(Z1 ≥ Z2) + p(Z2 ≥ Z1)

= �p(A1 ≥ A2) + (1 − �)p(B1 ≥ B2) + �p(A2 ≥ A1) + (1 − �)p(B2 ≥ B1)

= �
[
p(A1 ≥ A2) + p(A2 ≥ A1)

]
+ (1 − �)[p(B1 ≥ B2) + p(B2 ≥ B1)]

= � + (1 + �)

= 1

W = [Zj]1×n =
[
(Aj,Bj)

]
1×n

 be the weight matrix, in which 
zij = (Aj,Bj) reflects the importance of criteria cj.

Step 1. Normalise the decision-making matrix.
Different criteria require different scales. Moreover, two 

different sets of criteria exist (i.e. benefit criteria and cost 
criteria). For discussion purposes, the linear transformation 
(Kang et al. 2018a, b, c, d; Yaakob and Gegov 2016) is used 
to eliminate the effects of the differentiations.

where B and C are the collections of benefit criteria and cost 
criteria, respectively, and C+

j
= max

i

{
a3
ij

}
 . Thus, the nor-

m a l i s e d  m a t r i x  c a n  b e  d e n o t e d  a s 
DN =

[
zN
ij

]
m×n

=

[(
AN

ij
,Bij

)]
m×n

.
Step 2. Compute the criteria weights.
When the importance of the criteria is evaluated by using 

Z-numbers, an appropriate method for acquiring the crite-
ria weight vector must be developed under Z-environment. 
Xu (2001) proposed an algorithm for the priority of fuzzy 
complementary judgment matrix. The discussion in Sect. 3 
suggests that the possibility degree of Z-numbers is suit-
able in Xu’s algorithm. Hence, the criteria weights can be 
obtained as follows:

where p(ci, cj) = p(zi ≥ zj) = �p(Ai ≥ Aj) + (1 − �)p(Bi ≥ Bj) ; wi 
reflects the importance of criteria ci ; and 

∑n

i=1
wi = 1.

Step 3. Calculate the priority index �
(
ai, ak

)
 of the alter-

native ai over the alternative ak.

where pj(ai, ak) = p(zij ≥ zkj) − 0.5 . If pj
(
ai, ak

)
> 0 , which 

indicates that p(zij ≥ zkj) > 0.5 , then ai is better than relative 
to cj . Thus, ai is undifferentiated from ak for criterion cj if 
pj(ai, ak) = 0 (i.e. pj(zij, zkj) = 0.5 ). In addition, ai is inferior 

(8)AN
ij
=

⎧⎪⎨⎪⎩

�
a1
ij

c+
j

,
a2
ij

c+
j

,
a3
ij

c+
j

�
j ∈ B

�
1 −

a3
ij

c+
j

, 1 −
a2
ij

c+
j

, 1 −
a1
ij

c+
j

�
j ∈ C

,

(9)wi =

∑n

j=1
p(ci, cj) +

n

2
− 1

n(n − 1)
, i = 1, 2,… n,

(10)�(ai, ak) =

∑n

j=1
wjpj(ai, ak)∑n

j=1
wj

,
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to ak under cj if the condition is pj
(
ai, ak

)
< 0 , which indi-

cates that pj(Zij ≥ Zkj) < 0.5.
Step 4. Compute the outgoing flow, the incoming flow 

and the net flow of alternative ai.

(i)	 Outgoing flow:

	 (ii)	 Incoming flow:

	 (iii)	 Net flow:

Step 5. Rank all of the provided alternatives.
The ranking of alternatives can be acquired in light of 

each alternative’s net flow. The larger �
(
ai
)
 is, the better ai 

will be.

5 � Illustrative example

The living standards of people in China have further 
improved with the prosperity of the Chinese economy. In 
accordance with Maslow’s hierarchy of needs (Maslow 
1972), human beings pursue higher spiritual enjoyment 
to enhance their happiness. The Chinese government has 
attempted to increase statutory holidays to encourage con-
sumption, indicating a solution akin to ‘two birds hit with 
one stone’. On the one hand, the economy of China has 
become increasingly dynamic. On the other hand, the life 
quality of the people has also been greatly improved.

The celebration of the National Day of China is the long-
est festival in the country. During National Day, many peo-
ple prefer to go on a short trip with family or friends. To 
enhance the planned tour, the most suitable travel option 
should be considered. The selection of travel plans often 

(11)�+
(
ai
)
=
∑m

k=1
�
(
ai, ak

)

(12)�−
(
ai
)
=
∑m

k=1
�
(
ak, ai

)

(13)�
(
ai
)
= �+

(
ai
)
− �−

(
ai
)

involves some major factors (Gardashova 2014; Kang et al. 
2018a, b, c, d), such as price, service and destination. When 
evaluating the different travel plans, uncertainties are impor-
tant aspects of the decision information. On the one hand, 
the evaluation values of travel planning by using the above 
criteria are usually fuzzy and imprecise. On the other hand, 
the reliability of decision information must be considered 
due to the subjectivity of the evaluation. The issue of travel 
plan selection can be described appropriately by using 
Z-numbers combined with a natural language (Zadeh 2011).

A particular example on travel plan selection is used to 
explain the proposed method. Moreover, to evaluate the dif-
ferent travel plans, the five most critical criteria are deter-
mined: c1 (basic budget), c2 (location preference), c3 (scenic 

Table 1   Decision matrix with 
linguistic values

c
1

(VS,C)
c
2

(S,VC)
c
3

(S,C)
c
4

(S,C)
c
5

(S,VC)

a
1

((115,120,125),VU) (F,C) (SD,C) (F,U) ((200,225,250),C)
a
2

((85,90,95),C) (S,VC) (D,VU) (SD,C) ((100,150,200),VC)
a
3

((105,110,115),U) (VS,C) (F,C) (SD,U) ((50,100,150),C)
a
4

((75,80,85),VC) (F,C) (S,C) (S,C) ((100,150,200),N)
a
5

((95,100,105),U) (VS,N) (SD,U) (F,N) ((225,250,300),U)
a
6

((75,80,85),C) (S,U) (VS,C) (F,C) ((50,75,100),C)
a
7

((105,110,115),VU) (F,C) (VS,U) (S,VC) ((150,200,225),U)
a
8

((95,100,105),U) (SS,U) (F,VU) (VS,U) ((50,75,100),VC)

Table 2   Codebook of linguistic 
terms for fuzzy restriction

Linguistic term in S TFN

VD: very dissatisfied (0,1,2)
D: dissatisfied (1,2,3)
SD: slightly dissatisfied (2,3,4)
F: fare (3,4,5)
SS: slightly satisfied (4,5,6)
S: satisfied (5,6,7)
VS: very satisfied (6,7,8)

Table 3   Codebook of linguistic terms for reliability restriction

Linguistic term in S′ TFN

VU: very uncertain (0,0.1,0.3)
U: uncertain (0.1,0.3,0.5)
N: neutral (0.3,0.5,0.7)
C: certain (0.5,0.7,0.9)
VC: very certain (0.7,0.9,1)

Table 4   Criteria weight distribution matrix

Criterion c
1

c
2

c
3

c
4

c
5

Weight value 0.2217 0.2203 0.1688 0.1688 0.2203
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security), c4 (scenic service) and c5 (invisible consumption). 
The decision matrix with linguistic values shown in Table 1 

is based on these five criteria. The codebooks of linguistic 
terms are shown in Tables 2 and 3.

5.1 � Application of the proposed approach

A numerical example is used to illustrate the feasibility 
of the proposed approach. The particular procedure is as 
follows.

Note 2. The DM’s risk preference parameter � is set to 
be equal to 0.5.

Step 1. Normalise the decision-making matrix.
For simplicity, criteria c1 and c5 denote the cost crite-

ria, whilst criteria c2 , c3 and c4 represent the benefit criteria. 
Therefore, the decision matrix can be normalised by using 
Eq. (8).

Step 2. Compute the criteria weights.
On the basis of Eq. (9) in Sect. 3, the weight values of the 

criteria are calculated (Table 4).
Step 3. Construct the possibility degree matrix under each 

criterion and calculate the priority index �
(
ai, ak

)
 of alter-

native ai over alternative ak . The obtained results are shown 
in Table 5.

Step 4. Compute the outgoing flow, incoming flow and 
net flow of each alternative (Table 6).

Step 5. Rank all of the provided alternatives.
On the basis of Table 6, the order of all the provided 

alternatives is obtained.

5.2 � Sensitivity analysis

A sensitivity analysis of � for the possibility degree between 
Z-numbers is implemented to determine the influence of this 
parameter to the ranking result. As stated in Definition 12, 
the value of � reflects the concern degree towards the fuzzy 
restriction A of a Z-number. For simplicity, the values of � 
are acquired in the collection of {�|� = 0.1k, 0 ≤ 10, k ∈ N} . 
The results are shown in Tables 7 and 8.

As shown in Tables 7 and 8, the ranking results of all 
travel plans change as � changes. When 0 ≤ � ≤ 0.2 , the 
optimal travel plan is a2 ; when 0.5 < 𝜔 ≤ 1 , the optimal 

(14)a6 ≻ a4 ≻ a2 ≻ a3 ≻ a8 ≻ a7 ≻ a5 ≻ a1

Table 5   Priority index matrix
�
(
ai, ak

)
a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
1

0 − 0.2404 − 0.2113 − 0.2459 − 0.0095 − 0.2503 − 0.1331 − 0.2289
a
2

0.2404 0 0.0662 − 0.0721 0.1590 − 0.1301 0.1579 0.1153
a
3

0.2113 − 0.0662 0 − 0.0891 0.1079 − 0.1678 0.1266 − 0.0292
a
4

0.2459 0.0721 0.0891 0 0.3665 − 0.0495 0.1746 0.1000
a
5

0.0095 − 0.1590 − 0.1079 − 0.3665 0 − 0.2479 − 0.0691 − 0.0159
a
6

0.2503 0.1301 0.1678 0.0495 0.2479 0 0.1862 0.1965
a
7

0.1331 − 0.1579 − 0.1266 − 0.1746 0.0691 − 0.1862 0 − 0.1194
a
8

0.2289 − 0.1153 0.0292 − 0.1000 0.0159 − 0.1965 0.1194 0

Table 6   Flow matrix

Outgoing flow Incoming flow Net flow

a
1

− 1.3195 1.3195 − 2.6389
a
2

0.5365 − 0.5365 1.0730
a
3

0.0934 − 0.0934 0.1867
a
4

0.9987 − 0.9987 1.9973
a
5

− 0.9566 0.9566 − 1.9132
a
6

1.2284 − 1.2284 2.4568
a
7

− 0.5625 0.5625 − 1.1249
a
8

− 0.0184 0.0184 − 0.0368

Table 7   Ranking results when 
0 ≤ 𝜔 < 0.5

Ranking 0 0.1 0.2 0.3 0.4

1 a
2

a
2

a
2

a
4

a
6

2 a
4

a
4

a
4

a
2

a
4

3 a
6

a
6

a
6

a
6

a
2

4 a
3

a
3

a
3

a
3

a
3

5 a
1

a
1

a
1

a
8

a
8

6 a
7

a
7

a
8

a
7

a
7

7 a
8

a
8

a
7

a
1

a
5

8 a
5

a
5

a
5

a
5

a
1

Table 8   Ranking results when 
0 < 𝜔 ≤ 0.5

Ranking 0.6 0.7 0.8 0.9 1

1 a
6

a
6

a
6

a
6

a
6

2 a
4

a
4

a
4

a
4

a
4

3 a
2

a
8

a
8

a
8

a
8

4 a
8

a
2

a
2

a
3

a
3

5 a
3

a
3

a
3

a
2

a
7

6 a
7

a
7

a
7

a
7

a
2

7 a
5

a
5

a
5

a
5

a
5

8 a
1

a
1

a
1

a
1

a
1
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travel plan is a6 . Therefore, � affects the ranking of travel 
plans, which preliminarily illustrates the rationality of set-
ting the � parameter. The ranking diagram of all travel plans 
under different � values is shown in Fig. 3.

As shown in Fig. 3, the ranking results of all travel plans 
vary when � takes different values. In the diagram, the 
optimal travel plan is a2 when 0 ≤ � ≤ 0.2 . The DM at this 
time pays more attention to the reliability restriction rather 
than the fuzzy restriction of information. Consequently, the 

criteria, including c2 and c5 , become even more important. 
Criteria c2 and c5 considerably affect the travel plan rankings 
compared with the c1 , c3 and c5 . Moreover, on the basis of 
Table 1, the reliability restriction of the evaluation values of 
travel plan a2 under criteria c2 and c5 is more positive than 
those of the other travel plans. Thus, the optimal travel plan 
is a2 when 0 ≤ � ≤ 0.2.

As shown in Fig. 3, the optimal travel plan becomes a6 
when � is larger than 0.3. The increase in � indicates that 
the DM has focused on the fuzzy restriction of informa-
tion whilst reducing the concern for information reliability, 
thereby providing a two-pay impact on the ranking of travel 
plans. On the one hand, the weight of criterion c1 continues 
to increase. Moreover, as shown in Table 1, the evaluation 
value of travel plan a6 under criterion c1 is better than any 
other travel plans. Therefore, the increase in � is a positive 
contribution to a6 , which becomes the optimal option. On 
the other hand, the fuzzy restriction of the evaluation values 

Fig. 3   Ranking results of all 
travel plans under different � 
values

Table 9   Rankings acquired 
from different methods

Method Ranking

Aliyev’s method in Aliyev (2016) a
6
≻ a

4
≻ a

2
≻ a

3
≻ a

8
≻ a

7
≻ a

1
≻ a

5

Yaakob’s method in Yaakob and Gegov (2016) a
7
≻ a

6
≻ a

3
≻ a

4
≻ a

8
≻ a

5
≻ a

1
≻ a

2

Kang’s method in Kang et al. (2012a, b) a
4
≻ a

6
≻ a

2
≻ a

3
≻ a

8
≻ a

7
≻ a

5
≻ a

1

Kang’s method in Kang et al. (2018a, b, c, d) a
4
≻ a

6
≻ a

2
≻ a

3
≻ a

8
≻ a

7
≻ a

5
≻ a

1

The proposed approach ( � = 0.5) a
6
≻ a

4
≻ a

2
≻ a

3
≻ a

8
≻ a

7
≻ a

5
≻ a

1

Table 10   Comparison of evaluation information among different 
PROMETHEE methods

Method I: Fuzzy 
PROMETHEE

Method II: 
Z-PRO-
METHEE

Proposed method

Criteria TFNs Z-numbers Z-numbers
Alternatives TFNs TFNs Z-numbers

Table 11   Rankings acquired 
from different methods

Methods Rankings

Fuzzy PROMETHEE in Chen et al. (2011) a
6
≻ a

8
≻ a

4
≻ a

7
≻ a

3
≻ a

2
≻ a

5
≻ a

1

Z–PROMETHEE in Tavakkoli-Moghaddam et al. (2015) a
6
≻ a

8
≻ a

4
≻ a

3
≻ a

7
≻ a

2
≻ a

5
≻ a

1

The proposed PROMETHEE approach ( � = 0.5) a
6
≻ a

4
≻ a

2
≻ a

3
≻ a

8
≻ a

7
≻ a

5
≻ a

1
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of travel plan a6 under the other criteria is generally better 
than those of the other travel plans. Thus, travel plan a6 is 
the optimal solution. Consequently, travel plan a6 is more 
likely to be the most satisfactory plan when DMs focus on 
information reliability.

The proposed Z-PROMETHEE approach shows good 
stability and feasibility when � is used as a parameter in 
sensitivity analysis. On the one hand, the ranking results 
are relatively consistent when � lies in some intervals. On 
the other hand, the ranking results change when � changes. 
This finding is generally consistent with our expectation. 
Therefore, setting � as a parameter is necessary to rationally 

reflect a DM’s preference. Consequently, the decision-mak-
ing method based on the possibility degree of Z-numbers 

can be effectively applied to actual decision scenarios.

6 � Comparative analysis

Other methods are for comparison with the proposed 
method. Here, the comparative analysis has two components. 
The first component compares the proposed method with 
the existing method, whilst the second component compares 
the proposed method with the previously developed PRO-
METHEE method.

Part I: Comparison of the proposed method with existing 
methods of Z-information fusion.

Method I. Yaakob and Gegov (2016) presented a TOPSIS 
method in Z-environments by converting the Z-number into 
a classical fuzzy number (Kang et al. 2018a, b, c, d). The 
following formula is used to convert the reliability restriction 
B of the Z-number into a real number:

(15)� =
∫ x�Bdx

∫ �Bdx
.

Method II. The method proposed by Kang et al. (2012a, 
b) is based on another conversion concept, and it is expressed 
as

Method III. Kang et al. (2018a, b, c, d) argued that a 
Z-number can be evaluated by using a real value based on 
utility theory. The utility formula of a Z-number is

Method IV. The decision-making method developed by 
Aliyev (2016) is based on their proposed distance measure 
for Z-numbers, and it is expressed as

The rankings acquired from the abovementioned four 
methods are shown in Table 9.

The four other methods, which result in the different rank-
ings, can be further explained as follows.

As shown in Table 9, the ranking result obtained by Ali-
yev (2016) is somewhat identical to that of the proposed 
method. In addition, the optimal travel plans of the two 
methods are the same. The ranking method developed by 
Aliyev (2016) and the proposed ranking method are used to 
compare the fuzzy restriction and the reliability restriction 
of the Z-numbers based on the cut-set theory of trapezoi-
dal/triangular fuzzy numbers. However, Aliyev considered a 
Z-number as a pair of equally important trapezoidal/triangu-
lar fuzzy numbers. This approach is inconsistent with that of 
actual decision-making. In general, DMs have different risk 
preferences and different degrees of emphasis towards infor-
mation reliability. Therefore, the ranking result generated 
by Aliyev (2016) may deviate from actual decision-making.

The ranking result generated in Yaakob’s method is some-
what inconsistent with the proposed method. Yaakob and 
Gegov (2016) presented an extended Z-TOPSIS based on 
the conversion method of Kang et al. (2012a, b). The conver-
sion method shows two characteristics. Firstly, it fully retains 
the information of fuzzy restriction A in the Z-number. 

(16)

P(Ã⊗ B̃)

= P(Ã) × (B̃)

=
1

6
(a1 + 4 × a2 + a3) ×

1

6
(b1 + 4 × b2 + b3)

(17)

TU(Z)

= TU
�
Ã, R̃

�

= ∫ 1

0
∫ 1

0
∫ 1

2

−
1

2

∫ 1

2

−
1

2

⎧⎪⎨⎪⎩

�
Ã−(𝛼)+Ã+(𝛼)

2
+ x

�
Ã+(𝛼) − Ã−(𝛼)

��
e−[Ã

+(𝛼)−Ã−(𝛼)]
2

×

�
R̃−(𝛽)+R̃+(𝛽)

2
+ x

�
R̃+(𝛽) − R̃−(𝛽)

��
e−[R̃

+(𝛽)−R̃−(𝛽)]
2

⎫⎪⎬⎪⎭
dxdyd𝛼d𝛽

.

(18)D(Z1, Z2) =
1

n + 1

n∑
k=1

{|||a
L
1ak

− aL
2ak

||| +
|||a

R
1ak

− aR
2ak

|||
}
+

1

m + 1

m∑
k=1

{|||b
L
1ak

− bL
2ak

||| +
|||b

R
1ak

− bR
2ak

|||
}
.
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Secondly, reliability restriction B is converted into a real 
number. Although this conversion method has attempted to 
reduce the complexity of comparing Z-numbers, it results 
in the information loss of Z-numbers to some extent in rela-
tion to the reliability restriction. Therefore, the ranking 
result produced by the above decision-making method is 
unconvincing.

The optimal travel plans acquired by the methods 
of Kang et  al. (2018a, b, c, d); Kang et  al. (2012a, b) 
are inconsistent with that of the proposed method. The 
extant two methods developed two formulas to con-
vert the Z-number into a real value. Consequently, some 
unreasonable decision results may arise if these two 
ranking methods are followed. For example, no differ-
ence exists between Z1 = ((0.1, 0.2, 0.3), (0.4, 0.5, 0.6)) 
and Z2 = ((0.4, 0.5, 0.6), (0.1, 0.2, 0.3)) when the methods 
by Kang et al. (2018a, b, c, d); Kang et al. (2012a, b) are 
adopted. Obviously, the decision results do not accord with 
actual decision-making. In fact, the fuzzy restriction and 
reliability restriction of Z-numbers represent completely dif-
ferent meanings. Therefore, their ranking results may have 
some deviation from the actual decision-making.

The proposed method based on the possibility degree of 
Z-numbers does not convert the Z-number into a classical 
fuzzy number or crisp value. Furthermore, it can cater to the 
different risk preferences of DMs by adjusting the decision 
preference parameter. Therefore, the proposed method of 
ranking Z-numbers based on the possibility degree is more 
applicable when considering the risk preferences of DMs.

Part II: Comparison of the proposed method with the 
existing PROMETHEE methods.

Method I. Chen et  al. (2011) developed an extended 
multi-criteria PROMETHEE approach based on Zadeh’s 
fuzzy logic. In their approach, TFNs were used as the uncer-
tain information for criteria and alternative evaluation. The 
maximum set and minimum set method proposed by Chen 
(1985) was used to rank TFNs when the net flow of each 
alternative was calculated.

Method II. Tavakkoli-Moghaddam et al. (2015) proposed 
an extended multi-criteria Z-PROMETHEE group decision-
making method. Criteria evaluation was conducted by using 
the Z-number, and the alternative evaluation under each 
criterion was expressed by TFNs. The conversion method 
in Kang et al. (2012a, b) was initially used to convert the 
Z-information of the evaluation criteria into TFNs, and the 
subsequent steps of their Z-PROMETHEE method were the 
same as those performed by Chen et al. (2011).

A comparison of different sets of evaluation informa-
tion from the various PROMETHEE methods is shown in 
Table 10.

The rankings acquired from the different methods are 
shown in Table 11.

Z-numbers consider the fuzzy restriction and the reliabil-
ity restriction of the decision information, and this approach 
differs from those that use traditional fuzzy sets. To effec-
tively compare and analyse the extended PROMETHEE 
approaches under different information situations, the infor-
mation for alternative evaluation is obtained and adjusted. 
Firstly, the reliability restrictions of the evaluation informa-
tion of the alternatives and the criteria were ignored, and 
only the fuzzy restriction was considered when all the pro-
vided alternatives were sorted by the fuzzy PROMETHEE 
method of Chen et al. (2011). For example, for the evalua-
tion ((115, 120, 125),VU) of a1 under c1 , the reliability ‘VU’ 
was removed, and only the fuzzy restriction (115, 120, 125) 
was retained. Secondly, in the Z-PROMETHEE method of 
Tavakkoli-Moghaddam et al. (2015), the evaluation informa-
tion of the criteria was adjusted to render it fully reliable, 
and only the fuzzy restriction was retained. For instance, 
after removing the reliability restriction during criteria eval-
uation, all of the criteria except c1 were regarded equally 
important because their fuzzy restriction was ‘S’.

As shown in Table 11, the best and worst alternatives 
(i.e. a6 and a1 , respectively) derived from the two existing 
PROMETHEE methods are the same as those obtained by 
the proposed method. Thus, the proposed method and the 
existing methods are consistent to some extent.

However, some inconsistencies exist between the pro-
posed method and the existing PROMETHEE methods. 
Firstly, a3 and a7 have different priorities when the two exist-
ing PROMETHEE methods are used to rank the alternatives. 
Although the fuzzy restriction of the evaluation informa-
tion of all the criteria is the same except for c1 , the reli-
ability restrictions of the evaluation information of c2 and 
c5 are higher. Consequently, c2 and c5 are more important. 
Moreover, Table 1 shows that the evaluations of a3 under 
c2 and c5 are better than those of a7 . Therefore, the existing 
Z-PROMETHEE methods yielded a3 with a higher prior-
ity compared that of the fuzzy PROMETHEE method. Sec-
ondly, the priority of a8 obtained by the proposed method is 
lower than the priority of a8 generated by the two existing 
methods, particularly because the two existing methods did 
not consider the reliability of their alternatives’ evaluation 
information. Evidently, as shown in Table 1, the reliability 
restriction of the evaluation information of a8 under most 
criteria is very low. Therefore, a8 in the proposed approach 
has a lower priority than the previously developed PRO-
METHEE methods.

The fuzzy PROMETHEE method proposed by Chen et al. 
(2011) did not consider the influence of information reliabil-
ity on MCDM problems. In addition, in the Z-PROMETHEE 
method of Tavakkoli-Moghaddam et al. (2015), only the cri-
teria were evaluated by the Z-number, whereas the alterna-
tive evaluation was expressed by TFNs. The comparative 
analysis shows that the proposed PROMETHEE method 
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is better than the existing method when the information 
of the alternatives and the criteria are evaluated by using 
a Z-number. Furthermore, the proposed PROMETHEE 
approach is based on the comprehensively weighted pos-
sibility degree of Z-numbers, which considers the different 
effects of fuzzy and reliability restrictions of information 
during actual decision-making. The previously developed 
Z-PROETHEE method converted the Z-number into a TFN, 
which caused information loss to some extent. Overall, the 
proposed PROMETHEE method is better than the existing 
PROMETHEE methods.

On the basis of the comparative analysis, some conclu-
sions about the proposed method can be drawn.

1.	 Adopting the different preferences of DMs indicates 
good applicability. The numerical example shows that 
although the decision matrix does not change all the 
time, the ranking results can vary when � changes. In 
other words, even if two DMs use the same Z-evaluation, 
their expressions can still differ because of their varying 
preferences. The proposed ranking method is valid and 
therefore applicable in this case.

2.	 The information loss of Z-numbers can be reduced to 
some extent. In particular, the proposed approach does 
not convert the Z-number into a classical fuzzy number 
and/or a real number but instead considers the relation 
between two components of the Z-number. Thus, the 
proposed method is more faithful to the original concept 
of the Z-number, and it reduces information distortion.

3.	 Each extended PROMETHEE method has its own 
application scope. When the reliability restriction of 
an information is difficult to obtain under certain deci-
sion-making environments, using the traditional fuzzy 
PROMETHEE decision-making method may be more 
appropriate. The existing Z-PROMETHEE approach 
only considered the reliability restriction during criteria 
evaluation but not during alternative evaluation, which 
indicates research deficiency. By contrast, as an innova-
tive work, the proposed PROMETHEE method simulta-
neously considers the reliability restriction during both 
alternative evaluation and criteria evaluation. Therefore, 
the proposed PROMETHEE is superior to the existing 
Z-PROMETHEE methods.

7 � Conclusions

Z-number simultaneously considers the ambiguity and the 
reliability of an information. To fully use Z-numbers, effi-
cient methods for Z-information fusion must be developed to 

support decision-making activities. A novel concept called 
the possibility degree of Z-numbers is proposed on the 
basis of the possibility degree concept of interval numbers 
to discuss the outranking relations of Z-numbers. The pos-
sibility degree formula for the Z-numbers is constructed in 
two steps. Firstly, the possibility degree of TFNs based on 
cut-set theory and the possibility degree of interval num-
bers is defined to serve as the basis of the proposed method. 
Secondly, the possibility degree formula of the Z-numbers 
is constructed by combining the possibility degrees of two 
restriction components of the Z-number by using a single 
adjustable risk preference parameter. In addition, the numer-
ical example also illustrates the effectiveness of the proposed 
method to enhance the practical application of cognitive 
information during decision making under Z-evaluation.

The topics about the possibility degree of Z-numbers are 
worth studying in future research. Firstly, parameter deter-
mination, as a manner of reflecting the varying preferences 
of different DMs, continues to be important, especially in 
group decision making. The possible future direction is 
to determine the value of the risk preference parameter by 
using intelligent optimisation algorithms. Secondly, consid-
ering that Z-numbers can much better describe the objective 
world when combined with natural language, the proposed 
ranking method for Z-numbers may play a significant role 
in the fields of computing with words, artificial intelligence 
and cognitive computing.

Acknowledgements  The authors would like to thank the editors and 
anonymous reviewers for their great help on this study. This work was 
supported by the National Natural Science Foundation of China (No. 
71871228).

Compliance with ethical standards 

Conflict of interest  The authors declare that there is no conflict of in-
terest regarding the publication of this paper.

Appendix A. Special computation 
of the possibility degree of triangular fuzzy 
numbers

Let ã = (a1, a2, a3) and b̃ = (b1, b2, b3) be any two TFNs. The 
possibility degree of ã ≥ b̃ can be computed as follows:

If a1 = a2 , a2 = a3 , b1 = b2 and b2 = b3 , then

p(ã ≥ b̃) =

⎧
⎪⎨⎪⎩

0 a2 < b2
0.5 a2 = b2
1 a2 > b2
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Otherwise,

p(ã ≥ b̃) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 a2 < b2 and a3 ≤ b1
a3−b1

(b3−b1)+(a3−a1)
+

b2−a2

(b3−b1)+(a3−a1)
ln

�
b2−a2

(b2−b1)+(a3−a1)

�
a2 < b2 and a3 > b1

a3−b1

(b3−b1)+(a3−a1)
a2 = b2

a3−b1

(b3−b1)+(a3−a1)
+

a2−b2

(b3−b1)+(a3−a1)
ln

�
a2−b2

(a2−a1)+(b3−b2)

�
a2 > b2 and b3 > a1

1 a2 < b2 and b3 > a1

Appendix B. Proof for the conclusion 
in Remark 1.

As shown in Fig. 2, two TFNs, denoted by Ai and ( i < j ), 
exist.

If Ai and Aj are non-intersecting (e.g. A3 and A4 ), then 
p�(Ai ≥ Aj) = 0, ∀� ∈ [0, 1] Consequently, p(Ai ≥ Aj) < 0.5 
is satisfied according to Definition 9.

If Ai and Aj are partially intersecting (e.g. A1 and A2 ), 
whose cut sets under level � are 

[
A−
i�
,A+

i�

]
and 

[
A−
j�
,A+

j�

]
 , then 

p𝛼(Ai ≥ Aj) =

⎧
⎪⎨⎪⎩

0 A+

i𝛼
− A−

j𝛼
≤ 0

A+

i𝛼
−A−

j𝛼

(A+

j𝛼
−A−

j𝛼
)+(A+

i𝛼
−A−

i𝛼
)
A+

i𝛼
− A−

j𝛼
> 0

 .  Fur ther-

more, the following is obtained:

A+

i�
−A−

i�

(A+

j�
−A−

j�
)+(A+

i�
+A−

i�
)
≤ A+

i�
−A−

j�
+

[
A+
j�
+A−

j�

2
−

A+
i�
+A−

i�

2

]

(A+

j�
−A+

j�
)+(A+

i�
−A−

i�
)

=

1

2

[
(A+

j�
−A−

j�
)+(A+

i�
−A−

i�
)

]

(A+

j�
−A−

j�
)+(A+

i�
−A−

i�
)

= 0.5.Consequently, p�(Ai ≥ Aj) ≤ 0.5,

∀� ∈ [0, 1] is always true. Therefore, p(Ai ≥ Aj) < 0.5 is sat-
isfied according to Definition 9.

On the basis of the above definitions, the relevant conclu-
sion can be obtained.
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