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Abstract
Fusion of multiple modalities from different sensors is an important area of research for multimodal human action recogni-
tion. In this paper, we conduct an in-depth study to investigate the effect of different parameters like input preprocessing, 
data augmentation, network architectures and model fusion so as to come up with a practical guideline for multimodal action 
recognition using deep learning paradigm. First, for RGB videos, we propose a novel image-based descriptor called stacked 
dense flow difference image (SDFDI), capable of capturing the spatio-temporal information present in a video sequence. 
A variety of deep 2D convolutional neural networks (CNN) are then trained to compare our SDFDI against state-of-the-art 
image-based representations. Second, for skeleton stream, we propose data augmentation technique based on 3D transfor-
mations so as to facilitate training a deep neural network on small datasets. We also propose a bidirectional gated recurrent 
unit (BiGRU) based recurrent neural network (RNN) to model skeleton data. Third, for inertial sensor data, we propose data 
augmentation based on jittering with white Gaussian noise along with deep a 1D-CNN network for action classification. 
The outputs of all these three heterogeneous networks (1D-CNN, 2D-CNN and BiGRU) are combined by a variety of model 
fusion approach based on score and feature fusion. Finally, in order to illustrate the efficacy of the proposed framework, we 
test our model on a publicly available UTD-MHAD dataset, and achieved an overall accuracy of 97.91%, which is about 4% 
higher than using each modality individually. We hope that the discussions and conclusions from this work will provide a 
deeper insight to the researchers in the related fields, and provide avenues for further studies for different multi-sensor based 
fusion architectures.

Keywords Human action recognition · Deep learning · Convolutional neural network · Recurrent neural network · 
Multimodal fusion

1 Introduction

Human action recognition is a hot topic in the area of com-
puter vision research as it has wide variety of application in 
surveillance, video indexing and retrieval, human–computer 
interactions, health monitoring, intelligent systems, and sim-
ilar other domains (Chikhaoui et al. 2017; Yan et al. 2018a, 
b). There have been several attempts in the past to recog-
nize actions using vision based RGB and Depth cameras 
(Donahue et al. 2015; Satyamurthi et al. 2018; Shahroudy 

et al. 2016; Simonyan and Zisserman 2014; Wang and Wang 
2017; Wang et al. 2016a, b; Zhang et al. 2017), as well as 
using wearable inertial sensors like accelerometer (Altun 
and Barshan 2010; Ermes et al. 2008; Lefebvre et al. 2013; 
Li et al. 2018a, 2009; Roy et al. 2016; Sarcevic et al. 2017). 
Though most of these approaches work quite well, yet they 
have their own limitations. For instance, RGB and depth 
cameras can effectively capture the high-dimensional visual 
and depth information of the scene. But they suffer from 
various drawbacks like occlusion (both self-occlusion and 
occlusion from other objects) as well as high dimensional 
feature space, thus, limiting their performance for real-time 
action recognition. At the same time, the actor needs to be 
present in the field of view (FOV) of the camera, so as to 
record and recognize different activities correctly. Wear-
able devices, on the other hand, are both view and occlu-
sion invariant, but can only capture low-dimensional sensor 
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data from accelerometer, gyroscope, etc. Moreover, very few 
attempts (Chen et al. 2016; Delachaux et al. 2013; Gaspar-
rini et al. 2016; Liu et al. 2014) have been made in the past 
for fusion of RGB, depth and inertial sensor data for human 
activity recognition.

During last several years, deep neural networks have 
shown extraordinary performance in a number of computer 
vision tasks because of their ability to learn hierarchal fea-
tures implicitly. CNNs have been successfully applied to 
image classification (He et al. 2016; Krizhevsky et al. 2012), 
image segmentation (Bi et al. 2018; Li et al. 2018b; Long 
et al. 2015), object detection (Girshick et al. 2014), object 
recognition (Zhou et al. 2018), facial expression recognition 
(Gogić et al. 2018; Yu et al. 2017) and video classification 
(Simonyan and Zisserman 2014) tasks, while RNNs are 
more suited to modeling sequential data like image caption-
ing (Jiang et al. 2018; Vinyals et al. 2015; Xu et al. 2015), 
language translation (Sutskever et al. 2014), video analysis 
(Alahi et al. 2016; Deng et al. 2016; Donahue et al. 2015) 
and 3D action recognition (Ma et al. 2018; Shahroudy et al. 
2016; Wang and Wang 2017; Zhang et al. 2017). Besides 
this, two-stream and multi-stream deep networks (Feichten-
hofer et al. 2016; Li et al. 2016; Simonyan and Zisserman 
2014; Wang et al. 2016a, b; Zhao et al. 2017) have signifi-
cantly outperformed the handcrafted based methods (Wang 
and Schmid 2013; Wang et al. 2011) in the field of video 
classification task. Therefore, this paper also proposes a 
three-stream architecture which intends to extract comple-
mentary features from RGB, skeleton and inertial streams 
for multimodal action recognition. To the best of our knowl-
edge, this is the first attempt for fusion of RGB, skeleton 
and inertial data using deep neural networks. Our proposed 
architecture is shown in Fig. 1. It consists of three differ-
ent types of neural networks: 1D-CNN for inertial sensor 
gyroscope data, 2D-CNN for RGB videos, and a two-layer 

BiGRU for skeleton stream. In order to come up with the 
best architecture, we investigate the performance of vari-
ous CNN and RNN architectures on validation set by incor-
porating suitable data augmentation techniques to prevent 
overfitting as much as possible. Finally, the output of all 
the three streams is combined by late fusion using either 
softmax score fusion or feature fusion.

To summarize, we made the following five contributions:

• A novel three-stream architecture is proposed for multi-
modal action recognition.

• A novel feature descriptor called Stacked dense flow dif-
ference image (SDFDI) is proposed for RGB videos.

• A systematic approach is presented to find the best neural 
network corresponding to each type of input modality.

• An in-depth analysis is performed to compare the per-
formance of different fusion schemes based on softmax 
score and feature fusion. A statistical feature fusion tech-
nique based on canonical correlation analysis (CCA) is 
also proposed.

• We achieve state-of-the art results on publicly available 
UTD-MHAD dataset.

In Sect. 2, we present the related work in the area of action 
recognition using RGB, skeleton and inertial sensor data. 
Section 3 presents the basic overview of CNN, RNN and 
Multi-stream fusion. Section 4 describes the details of pro-
posed approach. The experimental results and discussions 
are described in Sect. 5. Finally, Sect. 6 concludes this paper.

2  Related work

In this section, we review the related work in the area of 
action recognition using RGB, skeleton and inertial data.

Fig. 1  Our proposed three-
stream architecture consisting 
of RGB, inertial and skeleton 
streams. The input to inertial 
stream is 3-axis gyroscope 
signal. For RGB stream, each 
video clip is first converted 
into SDFDI, and then given as 
input. For skeleton stream, 3D 
joint coordinates acts as the 
input feature vector. Finally, 
the outputs of all the streams 
are combined by late fusion to 
predict the final class label
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2.1  Action recognition using RGB data alone

RGB videos are the most common source of input for human 
action recognition due to a wide variety of available video 
datasets like UCF101 (Soomro et al. 2012) and ActivityNet 
(Caba Heilbron et al. 2015). Several handcrafted features 
(Sargano et al. 2017) have been proposed for video clas-
sification task. Among them, improved dense trajectories 
proposed by Wang and Schmid (2013) gives the best result. 
However, after the breakthrough performance of deep neural 
networks for image classification (Krizhevsky et al. 2012), 
CNNs have been successfully applied for video classifica-
tion as well. Karpathy et al. (2014) proposed a one-stream 
network for action recognition in videos. Consecutive frames 
are given as input to the network, and then features are com-
bined at different levels using late, early and slow fusion. 
However, this approach lacks learning the motion features, 
which are absolutely necessary for modeling any action rec-
ognition task. Simonyan and Zisserman (2014) explicitly 
model the motion information by adding a temporal-stream 
based on stacked optical flow vectors, along with spatial-
stream based on single frame. The output of both the streams 
is then combined by late fusion. Donahue et al. (2015) added 
a long short-term memory (LSTM) unit on top of a CNN 
network, and proposed an end-to-end network for video 
classification. Tran et al. (2015) proposed a C3D network 
to simultaneously learn spatial and temporal features from 
raw RGB frames by extending 2D convolutional and pooling 
operation in temporal domain. However, the amount of tem-
poral information learnt by C3D network was limited to 16 
frames only. Feichtenhofer et al. (2016) improved the two-
stream architecture by proposing fusion at multiple levels. 
Wang et al. (2016a) proposed a temporal segment network 
(TSN) along with some good practices like pre-training, 
use of batch normalization and better data augmentation 
techniques. To learn long-term temporal information, Varol 
et al. (2018) proposed a network with long-term temporal 
convolutions. They experimented with different temporal 
resolutions ranging from t = 16–100, and found that network 
accuracy increases with increasing value of t.

One common element in most of the aforementioned 
work is the use of stacked dense optical flow to learn short-
term motion information. Our proposed RGB stream differs 
from these methods by stacking difference of optical flows, 
which enables learning global motion information for the 
entire video sequence.

2.2  Action recognition using skeleton data alone

With the release of depth sensors like Kinect, along with 
deep neural networks like CNN and RNN, a large boost 
in recognition accuracy is achieved in action recognition 
task. Skeleton stream can be assumed as temporal data, so 

most of the previous attempts have used RNN or its vari-
ants like LSTM for recognizing actions using skeleton data. 
Chikhaoui et al. (2017) extracted joint-based and body-based 
features from skeleton data, and then combine them using 
ensemble learning based rotation forests. Du et al. (2015) 
divided the human skeleton into five different parts accord-
ing to the human physical structure, and separately fed them 
into five LSTMs. The representations from each subnet are 
then hierarchically fused so as to obtain the higher level 
representation. Zhu et al. (2016) proposed an LSTM net-
work which can learn co-occurrence features of skeleton 
joints directly. They also incorporated dropout regulariza-
tion scheme within the LSTM unit so as to facilitate the 
training of deep model. Shahroudy et al. (2016) proposed a 
part-aware LSTM (P-LSTM) where the local dynamics of 
five body parts (torso, two hands, and two legs) are indepen-
dently modeled. The global information of the entire body 
structure is obtained by concatenating these five different 
memory cells. Zhang et al. (2017) extracted various geo-
metrical features from skeleton data to train a 3-layer LSTM 
network. The feature based on distance between joints and 
selected lines resulted in sparse distribution of weights 
learned by the first layer of LSTM, and gives the best recog-
nition accuracy. Liu et al. (2016) proposed a spatio-temporal 
LSTM (ST-LSTM) to model the skeleton stream based on 
previous frames as well as neighboring joints. They also 
added trust-gate mechanism within the LSTM cell so as to 
handle the noisy 3D coordinates without affecting the long-
term joint dependencies. Wang and Wang (2017) proposed 
a two-stream RNN network to model the spatial and tem-
poral dynamics of the skeleton data. They also proposed 
data augmentation techniques based on 3D transformation 
of skeletons so as to avoid overfitting.

Different from above mentioned approaches, we use 
Gated Recurrent Unit (GRU) for implementing our skeleton 
stream. GRU has fewer number of parameters than LSTM 
(as discussed in Sect. 3.2), thus overfits less. Moreover, we 
apply GRU in both forward and backward directions to pro-
cess the input skeletons. This bi-directional GRU approach 
performs better than traditional one-directional LSTM 
models.

2.3  Action recognition using inertial data alone

Inertial sensors like data like accelerometers, gyroscopes and 
magnetometers have been actively used in the past in areas 
like action classification (Altun and Barshan 2010; Ordóñez 
and Roggen 2016), gesture recognition (Lefebvre et al. 2013; 
Li et al. 2018a), fall detection (Li et al. 2009), sports activi-
ties (Ermes et al. 2008) and aggressive behavior recognition 
(Chikhaoui et al. 2017, 2018). Ermes et al. (2008) proposed 
a decision tree and artificial neural network based hybrid 
classifier for recognizing daily and sports activities. They 
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recorded data both in supervised and unsupervised mode, 
and found that higher recognition rate is achieved when both 
supervised and unsupervised data is used for activity recog-
nition. Altun and Barshan (2010) recorded different daily 
and sports activities using eight body worn inertial sensors. 
A comparative study is then performed by using different 
classifiers like Bayesian decision, k-nearest neighbor, SVM, 
etc. Li et al. (2009) presented a fall detection system based 
on static postures and dynamic transition between these 
postures. Chikhaoui et al. (2018) proposed an aggressive 
behavior recognition system using accelerometer data. The 
first extracted several statistical features like mean, variance, 
entropy, etc., and then feature reduction is performed using 
non-negative matrix factorization method. Rotation random 
forest based ensemble method is finally used for classifica-
tion. Sarcevic et al. (2017) build a wireless prototype system 
to monitor human movement using different inertial sen-
sors. An extensive study is conducted on multiple datasets 
so as to explore the affect of different feature extraction and 
processing techniques on the recognition accuracy. Ordóñez 
and Roggen (2016) proposed a deep Convolutional LSTM 
network for wearable sensor based activity recognition. They 
also demonstrated how fusion of more than one sensor can 
increasing recognition accuracy. In the field of gesture rec-
ognition, Lefebvre et al. (2013) proposed a Bidirectional 
LSTM for 3D gesture recognition using six dimensional 
values from accelerometer and gyroscope data. Similar to 
this, Li et al. (2018a) proposed a fisher discriminant based 
Bidirectional LSTM (F-BiLSTM) and Bidirectional GRU 
(F-BiGRU) for gesture recognition using mobile devices. 
They augmented traditional softmax loss function with 
fisher criterion, and achieved better recognition accuracy 
than plain BiLSTM or BiGRU.

Although, as discussed above, RNN and its variants like 
LSTM and GRU have given encouraging results for iner-
tial sensor based activity recognition, yet we have used a 
1D-CNN network in our inertial stream. The reason for 
doing this is to increase diversity of deep models used in 
our three-stream architecture.

2.4  Action recognition using RGB, skeleton 
and inertial data

In order to develop a more robust activity recognition 
system, fusion of RGB, depth and inertial sensor is also 
reported in the literature. Delachaux et al. (2013) proposed 
an indoor activity recognition strategy by combining skele-
ton and accelerometer data using one-vs-all neural networks. 
Liu et al. (2014) proposed a hand gesture recognition system 
using accelerometer, gyroscope and skeleton joint coordi-
nates as feature vectors, followed by HMM based probabil-
istic classification. Gasparrini et al. (2016) proposed a fall 
detection system by combining variation in skeleton joint 

position and acceleration magnitude. Chen et al. (2016) 
extracted features from depth, skeleton and inertial sensor 
data, and then fed it to collaborative representation classi-
fier. Using decision level fusion, an accuracy of 93.7% is 
obtained on a dataset with ten action classes. Zhang et al. 
(2018) used 3D-CNN to extract spatio-temporal features 
from RGB and depth data for hand gesture recognition. The 
features obtained are then fused together followed by clas-
sification using SVM. Zhao et al. (2017) designed a two-
stream RNN/CNN architecture based on Bidirectional GRU 
and 3D-CNN (Tran et al. 2015). Using NTU-RGBD dataset 
(Shahroudy et al. 2016), RNN stream is used to model skel-
eton data, while 3D-CNN stream is finetuned using RGB 
modality.

However, all the aforementioned approaches combine 
either RGB with skeleton data or inertial with skeleton data 
for multi-modal action recognition. In Sect. 4, we present a 
three-stream deep neural network for combining RGB, skel-
eton and inertial data into a true multi-modal multi-stream 
fusion framework.

3  Overview of CNN, RNN and multi‑stream 
fusion

To make this paper self-contained, in this section we briefly 
review the convolutional neural network (CNN) and recur-
rent neural network (RNN), based on which our three-stream 
architecture is built. We also discuss various fusion strate-
gies to combine the outputs of multi-stream network.

3.1  Convolutional neural network

CNN is a feedforward artificial neural network with multiple 
hidden layers such as convolutional, pooling, normalization 
and fully connected layers. A convolutional layer consists 
of a set of learnable filters, capable of learning a particular 
type of feature in the given input. Pooling layer is used to 
reduce the spatial size of the representation, thus reducing 
the workload of successive layers. For normalization, Batch 
Normalization (BN) (Ioffe and Szegedy 2015) is the most 
commonly used layer, as it helps to achieve faster conver-
gence by reducing internal covariate shift. Finally, one or 
more fully connected layers are added at the end of a CNN 
to learn high-level reasoning from the features extracted by 
the previous layers.

3.1.1  2D‑CNN

Table 1 shows the details of state-of-the-art 2D-CNNs along 
with their top-1 accuracy on ImageNet dataset (Deng et al. 
2009). InceptionV3 (Szegedy et  al. 2016), proposed by 
Google, is the first 2D-CNN with more than 100 layers. Such 
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is deep architecture is accomplished by using the concept of 
Inception module (Fig. 2a), which is based on 1 × 1 , 3 × 3 and 
5 × 5 convolutions. Such large variety of convolutions facili-
tates learning global as well as local information throughout 
an input image. Further, a large reduction in the number of 
parameters is achieved by using averaging pooling instead of 
traditional fully connected layers. Apart from this, He et al. 
(2016) from Microsoft Research, proposed ResNet50 architec-
ture based on residual learning. As shown in Fig. 2b, a resid-
ual connection is used between the input � and the output  (�) , 
as it easier to optimize this residual mapping  (�) + � than 
the original unreferenced mapping. This is because a residual 
connection helps to propagate gradients both in forward and 
backward direction, making the vanishing gradient problem 
less severe. In terms of performance, InceptionResNetV2 
(Szegedy et al. 2017) has the highest accuracy of 80.3% on 
ImageNet dataset, as it incorporates the advantages of both 
Inception and ResNet architecture. But the downside is the 
large number of parameters, making it unsuitable for memory 
constraint environments.

Recently, Howard et al. (2017) proposed a 2D-CNN called 
MobileNet, specifically designed for mobile vision applica-
tions. The architecture of MobileNet is based on depthwise 
separable convolutions (Chollet 2017), in which the traditional 
3 × 3 convolution operation is split into a 3 × 3 depthwise con-
volution and a 1 × 1 pointwise convolution. Such a formula-
tion leads a significant reduction in the number of parameters, 
while decreasing the network accuracy only marginally.

3.1.2  1D‑CNN

A 1D-CNN is a CNN in which all the operations are per-
formed in one-dimension. For instance, a 1D convolution 
operation can be assumed as the dot product between weight 
vector � ∈ ℝ

m and input vector � ∈ ℝ
s , where m is the size 

of the filter and s denotes the dimension of the input sequence.

Here, b is the bias and oi is the output of convolution opera-
tion, which is followed by a non-linear activation function 
f (such as ReLU) and pooling operation (like max pooling). 
Furthermore, a batch normalization layer can also be added 

(1)oi = f

(∑
i

wi ⋅ xi + b

)

after every pooling operation in order to achieve faster con-
vergence. However, since there are no pre-trained 1D-CNNs 
available, so in our proposed approach (Sect. 4), a novel 
1D-CNN with five convolutional blocks is presented for 
inertial sensor stream.

3.2  Recurrent neural network

3.2.1  Vanilla recurrent neural network

Recurrent neural network (RNN) is a class of artificial neu-
ral network which can map an input sequence X to another 

Table 1  Comparison of 
recognition accuracy of 
different state-of-the-art 
2D-CNNs on ImageNet dataset 
(Deng et al. 2009)

Model Size (MB) Accuracy (%) Parameters (M) Depth

MobileNet (Howard et al. 2017) 16 70.4 4.2 88
ResNet50 (He et al. 2016) 99 74.9 25.6 168
InceptionV3 (Szegedy et al. 2016) 92 77.9 23.8 159
Xception (Chollet 2017) 88 79.0 22.9 126
InceptionResNetV2 (Szegedy et al. 2017) 215 80.3 55.8 572

(a)

(b) (c)

Fig. 2  Basic building blocks of various state-of-the-art 2D-CNNs. 
a InceptionV3 is based on 1 × 1 , 3 × 3 and 5 × 5 convolutions. Such 
large variety of convolutions facilitates learning global as well as 
local information. b Resnet50 employs a residual connection between 
the input � and the output  (�) . Such a configuration helps the gradi-
ent to propagate to deeper layers. c MobileNet architecture is based 
on depthwise separable convolutions, in which the traditional 3 × 3 
convolution operation is split into a 3 × 3 depthwise convolution and 
a 1 × 1 pointwise convolution
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output sequence Y. RNNs implements a form of memory 
which makes them suitable to process sequences of arbitrary 
length. The current hidden state ht and output yt of an RNN 
cell is generated as

where xt is the current input, ht−1 is the previous hidden state, 
and W, U and b are parameter matrices and biases. F is the 
activation function (like ReLU or sigmoid) to provide non-
linearity to the system.

However, vanilla RNN suffers from vanishing gradient 
problem, making them unsuitable for storing long range of 
information. To overcome this limitation, two variations of 
RNN, namely LSTM (Hochreiter and Schmidhuber 1997) 
and GRU (Cho et al. 2014) are proposed in the literature.

3.2.2  Long short‑term memory

As shown in Fig. 3a , an LSTM unit contains following 
components:

• memory cell ( ct ): stores a value/state for either long or 
short period of time,

• input gate ( it ): controls the flow of new information into 
the cell,

• output gate ( ot ): controls the flow of information out of 
the cell,

• forget gate ( ft ): determines when to forget the contents 
corresponding to the internal state of the cell.

(2)ht =F(Whht−1 + Uhxt + bh),

(3)yt =F(Wyht + by),

(4)ft = �(Wf xt + Uf ht−1 + bf ),

(5)it = �(Wixt + Uiht−1 + bi),

(6)ot = �(Woxt + Uoht−1 + bo),

(7)ct = ft◦ct−1 + it◦�(Wcxt + Ucht−1 + bc),

(8)ht = ot◦�(ct).

3.2.3  Gated recurrent unit

GRU, which is a simplified version of LSTM, performs almost 
at the same level (or even better), especially for small datasets. 
As shown in Fig. 3b, it is obtained by combining three gates 
of LSTM into two gates: update gate ( zt ) and reset gate ( rt ). 
Mathematically, the forward pass of GRU can be written as

3.3  Multi‑stream fusion

Fusion of multi-stream networks is a crucial step in build-
ing any multi-modal system. The main idea is to exploit the 
complementary information extracted from different modali-
ties, and combine that in such a manner so as to improve the 
overall recognition performance. The most common tech-
nique of achieving this is to apply late fusion using either 
Score fusion or Feature fusion.

3.3.1  Score fusion

Softmax score fusion is the most commonly used technique for 
combining the results of multi-stream networks (Khaire et al. 
2018; Simonyan and Zisserman 2014; Wang et al. 2016b). Kit-
tler et al. (1998) proposed a theoretical framework for combin-
ing the scores obtained from different classifiers using methods 
like sum rule, product rule and max rule. Let the posterior prob-
ability generated by softmax layer of i-th stream for a given 
input �i belonging to class �j be P(�j|�i) . Let c ∈ {1, 2, ...,m} 
be the class to which the input � is finally assigned. Then, the 
different rules of score fusion can be defined as follows:

• Sum rule:

• Product rule:

• Max rule:

where �j denotes the j-th class. The main advantage of score 
fusion based rules is their fast and easy calculation, without 
requiring training an external classifier.

(9)zt = �(Wzxt + Uzht−1 + bz),

(10)rt = �(Wrxt + Urht−1 + br),

(11)ht = (1 − zt)◦ht−1 + zt◦�(Whxt + Uh(rt◦ht−1) + bh).

(12)c = argmax
j

n∑
i=1

P(�j|�i).

(13)c = argmax
j

n∏
i=1

P(�j|�i).

(14)c = argmax
j

max
i

P(�j|�i),

(a) (b)

Fig. 3  Left: An LSTM block with input (i), output (o), and forget (f) 
gates. Right: A GRU block with update (z) and reset (r) gates
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3.3.2  Feature fusion

Another alternative approach to combine outputs of multi-
stream network is to extract features from fully-connected 
layers, combine them, and feed them to any classical machine 
learning classifier like linear support vector machine (LSVM) 
or kernel extreme learning machine (KELM). Let fi ∈ ℝ

d 
be the d-dimensional feature vector extracted from the last 
fully connected layer of the i-th stream for an input Z. Then 
all theses feature vectors can be combined together either by 
stacking them horizontally as F = [f1, f2, ..., fn] or by taking 
their average F =

1

n

∑n

i=1
fi , where n is the number of streams. 

Furthermore, to scale all the dimensions of resulting feature 
vector F within a common range, L2-normalization is also 
commonly performed before training a classifier. The fusion 
results obtained using this approach generally performs better 
than score fusion.

4  Methodology

As shown in Fig. 1, our proposed approach can be divided 
into four main components: (1) RGB stream using 2D-CNN, 
(2) Inertial stream using 1D-CNN, (3) Skeleton stream using 
RNN, and (4) Three-stream network fusion.

4.1  RGB stream using 2D‑CNN

Our proposed RGB stream is composed of three stages. 
First, conversion of input video into a single image-based 
representation called SDFDI. Second, data augmentation to 
generate more training samples. And third, fine-tuining a 
2D-CNN using generated SDFDIs.

4.1.1  RGB video to image‑based representation

The input to RGB stream is traditional 3-channel RGB videos 
captured using Kinect camera. Contrary to the video sam-
ples present in large video action recognition datasets like 
UCF101 (Soomro et al. 2012) or ActivityNet (Caba Heilbron 
et al. 2015), the input videos of our RGB stream differs in 
two manners. First, our video clips are of very short duration 
(typically in the range of 2–8 s). Second, these clips do not 
contain any spatial information (Simonyan and Zisserman 
2014) which could be an important source of discrimina-
tive cue for activity classification. For instance, as shown in 
Fig. 4, certain activities like cutting in kitchen and clean and 
jerk can be easily recognized from the presence of knife and 
dumbbells, respectively, in a video frame.

Based on the above two observations, we argue that RGB 
stream should be built using global temporal information 
only. In deep learning literature (Feichtenhofer et al. 2016; 
Simonyan and Zisserman 2014; Wang et al. 2016a), temporal-
stream based on stacked dense optical flow fields has given 
state-of-the-art performance for video action recognition. To 
be more specific, if ux

i
 and uy

i
 represents the horizontal and 

vertical components of the optical flow field calculated using 
a pair of two consecutive frames i and i + 1 , then the motion 
across a sequence of L consecutive frames can modeled by 
stacking the flow field uxy

i
 to form a total of 2L input chan-

nels. But such a formulation has two main drawbacks. First, 
the amount of temporal information captured is limited by the 
number of frames L to form stacked dense optical flow. For 
instance, a small value of L=10 [used in (Feichtenhofer et al. 
2016; Simonyan and Zisserman 2014)] cannot model actions 
with long temporal extents (Wang et al. 2016a). Second, all the 
standard 2D-CNNs use 3-channel RGB input image. So fine-
tuning a pretrained 2D-CNN require changing the dimension 
of input layer from w × h × 3 to w × h × 2L , where w and h are 
height and width of input video sample.

Fig. 4  Samples of RGB videos. The top two rows shows swipe left 
and baseball swing actions from UTD-MHAD dataset (Chen et  al. 
2015), while bottom two rows shows cutting in kitchen and clean 
and jerk actions from UCF101 dataset (Soomro et  al. 2012). It is 

evident that both cutting in kitchen and clean and jerk can be eas-
ily distinguished using spatial information like knife and dumbbells, 
respectively. However, no such discriminative spatial cue is present 
for actions present in top two rows
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To overcome the aforementioned drawbacks, we propose a 
novel RGB descriptor called stacked dense flow difference 
image (SDFDI), capable of representing global temporal infor-
mation using differences of adjacent dense optical flow fields. 
Formally, if �i represents the optical flow image constructed by 
stacking horizontal component ux

i
 as first channel, vertical com-

ponent uy
i
 as second channel and magnitude 

√
(ux

1
)2 + (u

y

1
)
2 as 

the third channel, then SDFDI is calculated as

The detailed formulation of constructing an SDFDI is given 
in Algorithm 1. The horizontal and vertical optical flow 
components computed in Step 1 can be obtained using any 
one of the commonly used methods like Brox (Brox et al. 
2004), TV-L1 (Zach et al. 2007) or Farneback (Farnebäck 
2003) algorithm. The resulting SDFDI (see Fig. 5) is a 

(15)SDFDI =

n−1∑
i=2

i × |�i − �i−1|.

3-channel image, and can be directly used to fine-tune any 
pre-trained 2D-CNN.

Fig. 5  Comparison of proposed 
SDFDI against state-of-the-art 
video to image based represen-
tations

Fig. 6  Illustration of data augmentation for RGB stream. From each 
SDFDI of size 480 × 640 , three SDFDIs are generated with size 
224 × 224 , thereby increasing the training set size by 3 times

Algorithm 1 Generation of Stacked Dense Flow Difference Image (SDFDI)
Input: A video sample V with n frames: f1, f2, ..., fn
Output: SDFDI of input video sample
1: for each pair of consecutive frames fi and fi+1, extract horizontal flow component ux

i and
vertical flow component uy

i

2: Compute mag =
√

(ux
1 )

2 + (uy
1)

2

3: Compute first optical flow image d1 by stacking ux
1 as first channel, uy

1 as second channel,
and mag as third channel.

4: Initialize SDFDI = 0
5: for i = 2 to n− 1 do

6: Compute mag =
√

(ux
i )

2 + (uy
i )

2

7: Compute next optical flow image d2 by stacking ux
i as first channel, uy

i as second
channel, and mag as third channel.

8: SDFDI = SDFDI + i ∗ |d2 − d1|
9: d1 = d2
10: end for
11: return SDFDI
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4.2  Inertial stream using 1D‑CNN

The inertial stream can consists of accelerometer, gyroscope, 
magnetometer or similar other sensor data captured using 
wearable devices like smartphones, smartbands, etc. Our 
inertial stream is comprised of two steps. First, proposing 
an appropriate data augmentation scheme, and second, pro-
posing a 1D-CNN for network training.

4.2.1  Data augmentation

In our proposed approach, we have utilized only 3-axis 
gyroscope data as input to the inertial stream, where 
each axis can be assumed as a one-dimensional signal. 
Analogous to color jittering (Krizhevsky et  al. 2012) 
data augmentation technique for image dataset (where 
an image can be assumed as a two-dimensional signal), 
we propose a signal jittering based data augmentation 
for inertial data. Specifically, as given in Algorithm 2 , 
each axis of gyroscope data (denoted by G) is jittered with 
white Gaussian noise based on an input jitter factor and 
the calculated smallestDifference equal to the minimum 
difference between adjacent values for that correspond-
ing axis (Chambers et al. 1983). Figure 7 illustrates the 
result obtained after signal jittering. It can be observed 
that although slight perturbations are added to the original 
signal, yet the resulting signal still belongs to the origi-
nal class. In our proposed inertial stream, we repeat this 
process three times so as to triple the size of our training 
dataset.

Fig. 7  Left: original gyroscope 
signal. Right: signal obtained 
after jittering with Gaussian 
noise

(a) (b)

4.1.2  Data augmentation

Data augmentation is a necessary step when training a deep 
neural network. For our RGB stream, each of the generated 
SDFDI is augmented based on the traditional data augmen-
tation techniques proposed for image and video classification 
(Krizhevsky et al. 2012; Wang et al. 2016a). Figure 6 shows 
the three types of augmentation. In each case, the final size 
is kept as 224 × 224 so as to match the input size of standard 
pre-trained 2D-CNNs. It is also worth to mention here that 
in all the three types of data augmentation, no horizontal 
flipping is done. This is important as there are certain pair 
of actions (like draw circle clockwise and draw circle anti-
clockwise) which are mirror image of each other. Flipping 
images horizontally would lead to confusion in recognizing 
such pair of actions.

4.1.3  Fine‑tuning a 2D‑CNN

The final step is to use any pre-trained 2D-CNN and fine-
tune it using the generated SDFDIs. Fine-tuning prevents 
overfitting and also reduces the training time considerably. 
In our proposed RGB stream, we evaluated all the state-of-
the-art pretrained CNNs listed in Table 1 so as to come up 
with the best network configuration. We add two fully con-
nected (FC) layers and a Softmax layer at the end of global 
average pooling (GAP) layer of each model. For direct clas-
sification using CNN, posterior probabilities generated by 
softmax layer are used; for feature extraction, output of the 
last fully connected layer is extracted.
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Algorithm 2 Data augmentation for Inertial stream

Input: 3-axis gyroscope data G with m timesteps (G ∈ m×3), jitter factor (factor)
Output: A vector G′ ∈ m×3 obtained after jittering G with white Gaussian noise.
1: for i = 1 to 3 do
2: data = G(1 : m, i) // read the ith axis of G for all timesteps
3: dataUnique = unique(sort(data)) // sort data and find unique values
4: dataDifferences = diff(dataUnique) // calculate differences between adjacent ele-

ments of dataUnique
5: smallestDifference = min(dataDifferences) // find the smallest difference
6: scaleFactor = 0.2 ∗ factor ∗ smallestDifference
7: G′(1 : m, i) = data+ scaleFactor ∗ randn(m)
8: end for
9: return G′

Fig. 8  Proposed 1D-CNN 
network for inertial stream. 
There are five convolutional 
blocks with the following 
notations: f = no_of_filters, k 
= kernel_size, s = stride, p = 
pool_size, n = no_of_neurons, d 
= dropout_ratio

4.2.2  1D‑CNN network

Since sensor output can be assumed to be a time-series data, 
so the most obvious choice to model it is to use an RNN 
or its variant like LSTM. However, in our implementation, 
a 1D-CNN is employed to model inertial sensor data. The 
main reason for doing this is to increase the diversity of 
deep networks used in our proposed three-stream architec-
ture, thus leading to more complementary feature extraction 
from different modalities.

The 1D-CNN network used in our prposed approach is 
shown in Fig. 8. An extensive set of experiments are con-
ducted in Sect. 5 to determine the number of convolutional 
blocks in the proposed 1D-CNN network. The final con-
figuration consists of five convolutional blocks (each made 
up of a convolutional, batch normalization and ReLU layer) 
followed by two fully connected layers. The number of fil-
ters in each convolutional layer is increased as the power of 
2, starting from 25 = 32 filters in first layer, and so on. The 
kernel size is kept as 3 and stride as 2. Max pooling is done 
with pool size as 2 and stride as none. A softmax layer, 
which is basically a combination of a fully connected layer 
(with neurons equal to number of classes C) and softmax 

activation function is placed at the end to obtain the poste-
rior probability P for the c-th class as:

4.3  Skeleton stream using RNN

Similar to inertial stream, our proposed skeleton stream 
is composed of two stages. First, data augmentation using 
3D transformations of skeleton joints. Second, proposing 
an RNN based Bi-directional gated recurrent unit (BiGRU) 
network for action classification.

4.3.1  Data augmentation

For skeleton stream, 3D rotation transformation is used for 
data augmentation. Each 3D joint is rotated around x and 
y-axis by using Euler’s rotation theorem

(16)P(y = c��) = e�
T
�c

∑C

i=1
e�

T�i

.

(17)Rx(�) =

⎡⎢⎢⎣

1 0 0

0 cos� −sin�

0 sin� cos�

⎤⎥⎥⎦
,



199Evaluating fusion of RGB-D and inertial sensors for multimodal human action recognition  

1 3

By combining (17) and (18) using matrix multiplication as 
R = Rx(�)Ry(�) , a general rotation matrix can be obtained 
to rotate a skeleton sequence around x and y-axis simul-
taneously. Such a transformation provides view-invariance 
and leads to higher performance in cross-view experimental 
settings.

4.3.2  RNN network

Our proposed skeleton stream is based on BiGRU, in which 
an input sequence is processed both in forward and backward 
direction. While keeping the number of neurons fixed to 512, 
we experimented with one, two and three layers network, 
and found that two layer BiGRU gives the best validation 
accuracy (Sect. 5). For classification, one fully connected 
layer is added at the top, followed by a softmax layer.

4.4  Three‑stream network fusion

The final step of our proposed method is to combine the 
complementary information from all the three streams using 
an efficient fusion framework. We propose two modes of late 
fusion: (1) Score fusion, and (2) Feature fusion. In score 
fusion, the softmax scores are combined using either sum, 
product or max rule as discussed in Sect. 3.3. For feature 
fusion, 2048-dimensional feature vectors are extracted from 
the last fully connected layers of all three streams, and then 
can be combined by concatenating horizontally or by taking 
their average. However, these methods of feature aggregation 
do not take into account the statistical correlations between 
pairwise features from different modalities. The averaging 
method may reduce the effect of one good feature due to 
the addition of another one, while concatenating method 
increases redundancy as well as the dimension of resulting 
feature vector; ultimately slowing down the training process.

To overcome these limitations, we propose to fuse fea-
tures extracted from different streams using canonical cor-
relation analysis (CCA) (Sun et al. 2005), so that the result-
ing feature vector has maximum pair-wise correlation with 
each other. Let X ∈ ℝ

p×n and Y ∈ ℝ
q×n are two matrices 

containing n feature vectors extracted from two different 

modalities. The covariance matrix of 
(
X

Y

)
 can be written 

as:

(18)Ry(�) =

⎡
⎢⎢⎣

cos� 0 sin�

0 1 0

−sin� 0 cos�

⎤
⎥⎥⎦
.

(19)S =

(
Var(X) Cov(X, Y)

Cov(Y ,X) Var(Y)

)
=

(
Sxx Sxy
Syx Syy

)
,

where Sxx ∈ ℝ
p×p and Syy ∈ ℝ

q×q represents the within-set 
covariance matrices of X and Y, and Sxy ∈ ℝ

p×q denotes 
between-set covariance matrix 

(
Syx = S�

xy

)
 . However, it is 

possible that these two sets of feature vectors may not follow 
consistent pattern (Haghighat et al. 2016), leading to diffi-
culty in finding a relationship between them directly through 
S. CCA aims to find the linear combinations, 

∗

X = WT
x
X and ∗

Y = WT
y
Y  , that maximize the pair-wise correlations across 

the two feature sets:

where Cov(
∗

X,
∗

Y) = W�

x
SxyWy ,  Var(

∗

X) = W�

x
SxxWx  and 

Var(
∗

Y) = W�

y
SyyWy . After evaluating Wx and Wy , the fused 

feature vector Z is obtained as:

Finally, Z is L2 normalized, and fed to LSVM or KELM for 
classification.

5  Experiments

In this section, we evaluate our proposed framework on 
UTD-MHAD dataset (Chen et al. 2015). We first evalu-
ate the different parameters and network configurations for 
RGB, inertial and skeleton stream using cross-validation. 
Then based on the best validation parameters, we conduct 
experiments on test set and fuse the results using the pro-
posed approach (Sect. 4.4). Finally, the results obtained are 
compared with the current best methods.

5.1  UTD‑MHAD dataset

UTD-MHAD (Chen et al. 2015) is a multimodal human 
action dataset1. To the best of our knowledge, this is the only 
publicly available dataset that contains RGB, depth, skeleton 
and inertial sensor modalities. Eight subjects (4 males and 4 
females) are used to collect 27 different actions with at most 
4 repetitions. RGB data contains videos with a resolution of 
480 × 640; skeleton data consists of 3D coordinates of 20 
joint points; inertial data consists of 3-axis acceleration and 
3-axis gyroscope signals. For evaluation (Chen et al. 2015), 
we used subjects 1, 3, 5, 7 for training and subjects 2, 4, 6, 
8 for testing.

(20)Corr(
∗

X,
∗

Y) =
Cov(

∗

X,
∗

Y)

Var(
∗

X).Var(
∗

Y)

,

(21)Z = W�

x
X +W�

y
Y =

(
Wx

Wy

)�(
X

Y

)
.

1 This dataset can be downloaded from http://www.utdal las.
edu/~cxc12 3730/UTD-MHAD.html.

http://www.utdallas.edu/%7ecxc123730/UTD-MHAD.html
http://www.utdallas.edu/%7ecxc123730/UTD-MHAD.html
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5.2  Implementation details

5.2.1  Experimental environment

We conduct our experiments on a PC with Intel Core i5 CPU 
@ 2.8 GHz × 4, 16 GB RAM and NVIDIA Geforce GTX 
1060 GPU with 6GB VRAM. For data preprocessing we use 
Matlab R2017b, while Keras library (Chollet 2015) is used 
for CNN and RNN implementation.

5.2.2  Data augmentation

For all the three input modalities (i.e., RGB, gyroscope and 
skeleton data), data augmentation is performed in such a 
manner so as to increase the training set size by three times. 
In case of RGB data, each training video is first converted 
into its corresponding SDFDI. To extract dense optical 
flow during SDFDI generation, OpenCV GPU implementa-
tion of Brox, TV-L1 and Farneback algorithms [provided 
by Wang (2017)] is used. Then as discussed in Sect. 4.1.2, 
data augmentation is done by generating three 224 × 224 
SDFDIs from the original 480 × 640 SDFDI. For inertial 
stream, each gyroscope data is jittered three times with white 
Gaussian noise ( jitter factor = 500 ) using Algorithm 2. For 
skeleton stream, each skeleton joints is rotated three times 
in the range − 5 ◦:5:5◦ . Since the original UTD-MHAD data-
set contains 431 training samples, so after augmentation, 
the training set size becomes 431 × 3 = 1293 samples. For 
test set, we did not perform any augmentation, and its size 
remains as 430.

5.2.3  Network training

For RGB stream, all the 2D-CNN models (listed in Table 1) 
are trained using Adam optimizer with initial learning rate 
set to 0.0001. For MobileNet, batch size is kept as 32, while 
for the rest of the models, a batch size of 16 is used. Regular-
ization is achieved by dropping 80% of the neurons between 

FC1 and FC2 layers, and similarly between FC2 and softmax 
layer. All the networks are optimized within 50 epochs.

For inertial stream, 3-axis gyroscope data is used as input. 
The input length (L) and the number of layers in 1D-CNN 
network is fixed by cross-validation. The number of neurons 
in both the fully connected layers is fixed as 2048. Dropout 
layer is also added between the fully connected and soft-
max layer with 80% keep probability. Stochastic Gradient 
Descent (SGD) with batch size as 16, initial learning rate as 
0.0002, momentum as 0.9 and weight decay as 0.0 is used to 
optimize the network. Training is stopped after 200 epochs.

For skeleton stream, the input frame length (T) and the 
number of BiGRU layers is fixed by cross-validation. On 
the top, there is a fully connected layer with 2048 neurons, 
followed by a softmax layer. To prevent complex co-adap-
tations, 80% of the neurons are randomly dropped from FC 
layer during training. The entire RNN stream is trained using 
Backpropagation Through Time (BPTT) and RMSprop opti-
mizer with learning rate as 0.001, weight decay as 0.0 and 
batch size as 16. The network is converged within 50 epochs.

5.3  Experimental results

5.3.1  Experiments on RGB data

After encoding each RGB video into an SDFDI, we con-
duct an exhaustive set of experiments with five differ-
ent types of pre-trained CNNs: MobileNet (Howard et al. 
2017), ResNet50 (He et al. 2016), InceptionV3 (Szegedy 
et al. 2016), Xception (Chollet 2017), InceptionResNetV2 
(Szegedy et al. 2017). Furthermore, we also compare the 
performance of our proposed SDFDI against other state-
of-the-art image-based representations like Dynamic Image 
(DI) (Bilen et al. 2016) and Jet-colored Motion History 
Image (Jet-MHI) (Imran and Kumar 2016). Table 2 shows 
the results obtained for the RGB stream. It is evident that 
proposed SDFDI clearly outperforms DI and Jet-MHI. 
Among the three type of dense optical flow algorithm used 
to generate SDFDI, Brox algorithm performs best due to it 

Table 2  Empirical study of 
performance of different pre-
trained CNN models on our 
proposed RGB stream

Bold represents the highest result
Among different input representations, SDFDI

brox
 using MobileNet model performs best

Input representation Accuracy (%)

InceptionV3 Xception Resnet50 Inception-
ResNetV2

MobileNet

DI (Bilen et al. 2016) 62.55 67.67 67.67 69.30 69.53
Jet-MHI (Imran and 

Kumar 2016)
72.55 73.72 70.69 75.34 73.02

SDFDI
farn

74.76 74.76 71.49 73.83 75.71
SDFDI

tvl1
79.53 81.06 83.12 82.79 82.09

SDFDI
brox

79.76 81.16 83.25 83.02 83.48
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capability to capture motion more accurately (Varol et al. 
2018). Finally, on comparing different CNN models, it can 
be observed that MobileNet generally overfits less due to 
its fewer number of parameters. So in our final three-stream 
architecture, we use SDFDIbrox with MobileNet as our RGB 
stream. The corresponding confusion matrix is also shown in 
Fig. 9. Out of 27 actions, our proposed RGB stream achieves 
100% accuracy on 10 actions. The least accuracy is obtained 
on tennis swing and throw actions (37.5% and 43.75%, 
respectively). This is because both of these actions involve 
strong movement in depth (or z-axis) direction, which is not 
possible to learn from 2D RGB videos.

5.3.2  Experiments on inertial data

The length (L) of 3-axis gyroscope signal present in UTD-
MHAD dataset varies from 107 to 326. Since a 1D-CNN 
network takes fixed length input for batch training, so we 
performed fourfold cross validation using our training set 
with four subjects: 1, 3, 5, 7 to find the optimal L. In other 
words, we select one subject for validation, and remaining 
three subjects for training and repeat experiments four times. 
In each fold, L is varied as {107, 180, 250, 326} by random 
sampling and zero-padding. Further, we also investigated 
two different network configurations: (1) 1D-CNN with four 
convolutional blocks (C32-64-128-256), and (2) 1D-CNN 
with five convolutional blocks (C32-64-128-256-512).

Table 3 shows the results of fourfold cross validation on 
inertial stream, from which following two conclusions can 
be drawn:

1. Zero-padding the signal length has negative effect on the 
accuracy of both the network configurations.

Fig. 9  Confusion matrix for 
RGB stream. Average accuracy 
obtained is 83.48%

Table 3  Empirical study of different 1D-CNN configurations using 
fourfold cross-validation

Bold represents the highest result
L denotes the accelerometer signal length. C32-64-128-256 denotes 
four convolutional layers with 32, 64, 128, 256 filters, and similarly 
C32-64-128-256-512 denotes five convolutional layers with 32, 64, 
128, 256, 512 filters

Length (L) Accuracy (%)

C32-64-128-256 C32-64-
128-256-
512

107 83.76 83.99
180 76.80 80.05
250 75.42 78.42
326 74.48 77.04

Table 4  Test accuracy obtained on inertial stream with and without 
data augmentation

Bold represents the highest result

Inertial stream Accuracy (%)

w/o Augmentation 83.02
w/Augmentation 86.51
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2. 1D-CNN with five convolutional blocks performs better 
than 1D-CNN with four convolutional blocks.

Based on the above observations, we select five layer net-
work configuration (C32-64-128-256-512) for conducting 
our experiments. Taking L = 107, the size of input feature 
vector is 3 (axis) × 107 (signal length) = 321. The results 
obtained are presented in Table 4. Using proposed data 
augmentation technique, we achieve 86.51% accuracy, 
which is about 3% higher than without augmentation. The 
corresponding confusion matrix is also shown in Fig. 10. 
Out of 27 actions, our proposed inertial stream achieves 
100% accuracy on 10 actions. The least accuracy is 
obtained on catch (56.25%) and draw X (62.50%) actions, 
due to their similar 3D rotational movement as punch and 
draw circle clockwise actions, respectively.

5.3.3  Experiments on skeleton data

The skeleton data consists of 3D coordinates of 20 joints. 
To find out whether all the joints are important for action 
classification, we conduct two sets of experiments: (1) 

Fig. 10  Confusion matrix for 
inertial stream. Average accu-
racy obtained is 86.51%

Table 5  Empirical study of 
different RNN configurations 
using fourfold cross-validation

Bold represents the highest result
T denotes the frame length. R1-512 denotes one RNN layer with 512 neurons, R2-512 denotes two RNN 
layers each with 512 neurons, and R3-512 denotes three RNN layers each with 512 neurons

#Frames (T) All joints accuracy (%) Imp joints accuracy (%)

R1-512 R2-512 R3-512 R1-512 R2-512 R3-512

41 90.95 90.04 91.18 88.63 91.88 92.34
70 87.94 87.25 87.71 90.03 89.10 86.79
100 90.03 89.56 90.27 92.33 90.26 92.12
125 90.50 91.65 89.79 91.19 92.35 87.24

Table 6  Test accuracy obtained on skeleton stream with and without 
data augmentation

Bold represents the highest result
Based on fourfold cross-validation, frame length T is kept as 125, 
while an RNN with two layer 512 BiGRU (R2-512) units is used to 
train the network

Skeletonstream Accuracy (%) using 
BiLSTM

Accuracy (%) 
using proposed 
BiGRU 

w/o Augmentation 83.16 89.76
w/Augmentation 86.65 93.48
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with all the 20 joints, and (2) by keeping only 9 most 
important joints: head, left elbow, left hand, right elbow, 
right hand, left knee, left foot, right knee and right foot. 
Further, the minimum and maximum number of skeleton 
frames (T) in UTD-MHAD dataset varies from 41 to 125. 
Since RNN takes fixed length input, so similar to inertial 
stream, we perform 4-fold cross validation and vary T ∈ 
{41, 70, 100, 125} by random sampling and zero pad-
ding. Finally, to come up with best network configuration, 
we experimented with one, two and three layer BiGRU 
(denoted as R1-512, R2-512 and R3-512, respectively), 

while keeping the number of neurons fixed to 512 in each 
layer.

Table 5 shows the results of fourfold cross validation on 
skeleton stream, from which following three conclusions can 
be drawn:

1. In most cases, zero padding increases the accuracy 
slightly, with highest accuracy achieved with T = 125 
frames.

2. Two layer RNN (R2-512) generally performs better than 
one and three layers RNN.

Fig. 11  Confusion matrix for 
skeleton stream. Average accu-
racy obtained is 93.48%

(a) (b)

Fig. 12  Performance comparison between BiLSTM (left) and BiGRU (right). After 50 epochs, our proposed BiGRU achieves about 93.48% 
accuracy, while BiLSTM manages only 86.65% accuracy
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3. Input feature vector based on important joints performs 
better than all joints. This is due to the fact that out of 
the total 20 joints, some are redundant, or even noisy, 
which degrades classification accuracy. Furthermore, 
retaining only important joints reduces input feature 
length, resulting in less overfitting.

Based on the above three observations, we select T = 
125 and number of joints = 9, which yields an input fea-
ture vector of length = 3 (axis) × 9 (joints) × 125 (frame 

length) = 3375. Two layer RNN with 512 neurons is used 
to conduct experiments on test set, and the results obtained 
are shown in Table 6. With BiGRU, data augmentation 
using 3D rotation achieves 93.48% accuracy, which is 
about 4% higher than without augmentation. The corre-
sponding confusion matrix is shown in Fig. 11. Out of 27 
actions, our proposed skeleton stream achieves 100% accu-
racy on 13 actions. The least accuracy of 75% is obtained 
for throw and catch actions, due to their confusion with 
draw X and swipe left actions, respectively.

Table  6 also shows the performance comparison 
between BiLSTM and BiGRU. Our proposed skeleton 
stream using BiGRU gives about 7% higher result than 
BiLSTM when the network is trained for 50 epochs (see 
Fig. 12). This is due to the fact that GRU have lesser num-
ber of parameters than LSTM (as discussed in Sect. 3.2), 
thus leading to lesser overfitting. That is why we have 
only considered Bidirectional GRU as the RNN model for 
sensor stream.

5.3.4  Fusion of three streams

Based on the results obtained in Tables 2, 4 and 6, we select 
MobileNet as 2D-CNN, C32-64-128-256-512 as 1D-CNN 
and R2-512 as RNN for fusion of RGB, inertial and skeleton 
streams, respectively. We evaluate different late fusion tech-
niques based on Score and Feature fusion, and the results 
obtained are presented in Table 7. For Score fusion, softmax 
scores from all the streams are combined by max rule (row 
7), product rule (row 8) and sum rule (row 9). For Feature 
fusion, 2048-dimensional feature vector is extracted from 
last fully connected layer of each stream. These three fea-
ture vectors are then combined by either performing sim-
ple averaging (row 10 and 11) or by using proposed CCA 

Table 7  Comparison of two types of late fusion on UTD-MHAD 
dataset

Bold represents the highest result
Rows 7, 8 and 9 correspond to Score fusion using max, product and 
sum rule. Rows 10 and 11 correspond to simple feature averaging fol-
lowed by classification using Linear SVM and KELM. Rows 12 and 
13 shows the result of proposed CCA based fusion followed by clas-
sification using Linear SVM and KELM

Row# Stream Accuracy (%)

1 RGB 83.48
2 Inertial 86.51
3 Skeleton 93.48
4 RGB + inertial 92.32
5 Inertial + skeleton 96.04
6 RGB + skeleton 96.27
7 Max rule 96.51
8 Product rule 96.97
9 Sum rule 97.20
10 Feature avg with linear SVM 97.44
11 Feature avg with KELM 97.44
12 CCA with linear SVM 97.20
13 CCA with KELM 97.91

Fig. 13  Best class-wise accuracy obtained on UTD-MHAD using CCA with KELM (row 13 of Table 7)
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based fusion (row 12 and 13). For classification, we fixed 
regularization coefficient as C = 100 for both LSVM and 
KELM. It is clear that Feature fusion performs better than 
Score fusion. The best accuracy (97.91%) is obtained when 
features are combined with CCA, followed by classification 
using KELM. We can see that CCA with Linear SVM (row 
12) performs lower than Feature averaging with Linear SVM 
(row 10). This is due to the fact that Linear SVM works well 
with high dimensional features, while CCA preprocess data 
with principal component analysis (PCA) to reduce feature 

dimension before performing feature fusion. Because of this, 
row 12 result is lower than row 10 result.

Figure 13 shows the class-wise accuracy obtained using 
the fusion result obtained in row 13 of Table 7. Out of 27 
actions, we achieve 100% accuracy on 23 classes. The least 
accuracy is obtained on throw action because of its similar 
spatial and temporal variation with many other actions like 
catch, draw X, swipe left, etc.

5.3.5  Comparison with the state‑of‑the‑art

Table 8 shows the comparison of our three-stream method 
against other recent results on UTD-MHAD dataset. It is 
clear that just by using only skeleton data, our proposed 
RNN stream outperforms most of the previous methods. 
By combining RGB + inertial + skeleton stream, we 
achieve 97.91% accuracy, which is about 4% higher than 
the individual streams. This proves that features learned 
by our three-stream architecture are highly complementary 
to each other.

5.3.6  Computational complexity

Table 9 shows the memory requirement of our proposed 
three-stream architecture. The total number of trainable 
parameters are 24.1 M, while the space requirement is just 
230.2 MB. This shows that our proposed framework can not 
only be deployable on desktops, but also on mobile devices 
as well. Further, if we analyze the computational speed given 
in Table 10, the total inference time of one input sample is 
4629.40 ms ≈ 4.7 s. The majority of the time is spent in 
RGB stream, as it involves extraction of computationally 
expensive dense optical flow for SDFDI generation. How-
ever, it can be reduced by replacing dense optical flow with 
other less accurate technique like Enhanced Motion Vectors 
(Zhang et al. 2016). Apart from this, our inertial and skel-
eton stream takes only 0.08 and 2.22 ms, respectively, and 
thus can be easily implemented in real-time applications.

6  Conclusion

In this paper, we propose a three-stream architecture for 
fusion of RGB, inertial and skeleton data. We conduct an 
exhaustive set of experiments, and the conclusions derived 
can be summarized as follows:

• Proposed SDFDI for RGB video-to-image based repre-
sentation outperforms current state-of-the-art techniques 
like DI and Jet-MHI.

• For RGB stream, MobileNet should be employed as the 
2D-CNN model because of its less chance of overfitting 
as well as better inference time.

Table 8  Comparison of accuracies of the proposed approach with the 
previous methods on UTD-MHAD dataset

Bold represents the highest result

Method Modality Accuracy (%)

Chen et al. (2015) Depth + inertial 79.10
Hussein et al. (2013) Skeleton 85.58
Wang et al. (2016c) Skeleton 85.81
Hou et al. (2018) Skeleton 86.97
Wang et al. (2017) Depth + skeleton 89.04
Imran and Kumar (2016) RGB + depth 91.20
El Madany et al. (2016) Depth + Inertial + skel-

eton
93.26

Khaire et al. (2018) RGB + depth + skeleton 95.11
Proposed method RGB 83.48

Inertial 86.51
Skeleton 93.48
RGB + inertial + skeleton 97.91

Table 9  Memory requirement of the proposed three-stream architec-
ture

Model Params (M) Space (MB)

1D-CNN 5.9 46.7
2D-CNN 9.6 115.2
RNN 8.6 68.3
Total 24.1 230.2

Table 10  Average computational speed of different blocks of our pro-
posed three-stream architecture

Row# Block Speed (ms)

1 RGB stream (generation of SDFDI + infer-
ence time of 2D-CNN)

4624.06

2 Inertial stream (inference time of 1D-CNN) 0.08
3 Skeleton stream (inference time of RNN) 2.22
4 3-Stream fusion using CCA 2.99
5 Classification using KELM 0.05
6 Total 4629.40
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• To convert all the input sequences to same length for 
batch processing, random sampling works well for iner-
tial data, while zero-padding should be used for skeleton 
data.

• Signal jittering using white Gaussian noise proves an 
effective way for inertial stream data augmentation.

• For skeleton stream, not all body joints are useful for rec-
ognition. Important joints, when selected, reduce input 
feature dimension, as well as give better classification 
accuracy.

• Incorporating different variety of deep neural networks 
(like 1D-CNN, 2D-CNN and BiGRU) help to extract 
more diverse and complementary features.

• Instead of simply averaging or concatenating the feature 
vectors extracted from different streams, statistical meth-
ods like CCA should be employed for maximum pair-
wise correlation feature fusion.

In future, this work can be extended to other modalities 
like depth and infrared videos, as well as other application 
domains like gesture recognition and video surveillance.
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