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Abstract
Due to unforeseen variations in wind speed profiles, wind farm integrations are recognized as intermittent and uncertain 
energy contributors. More specifically, integration of such renewable energy resources aligned with the conventional ther-
mal units although reduces the emissions and brings about a clean environment, it introduces serious problems in assigning 
optimal and reliable level of these units in load supplying and spinning reserve provision. This situation is more intensified 
considering the uncertainties arisen by the power system loading demand. To facilitate such operational hurdles, the ongoing 
study puts forward an efficient model for assigning the optimal spinning reserve which accommodates the uncertainties in 
both the wind speed and load profiles. Stochastic behavior of these parameters is simulated by generating a proper number 
of scenarios through the Monte Carlo simulation (MCS) approach. Then, each of these scenarios is evaluated based on the 
established linear mixed integer approach in a deterministic fashion. Accordingly, a computationally efficient approach is 
obtained paving the way for real-world implementations and assuring the global optimum results. The proposed approach is 
applied to a 12-unit test system including 10 thermal units and 2 wind farms. Results are reflected in terms of the commit-
ment status, energy dispatches, and reserve contributions of each committed unit. A comprehensive discussion is conducted 
to disclose the possible improvements.

Keywords  Wind farm integrations · Wind speed and load uncertainties · Stochastic analysis · Mixed-integer linear 
programming · Increased wind energy deployment · Emission reduction.

List of symbols

Sets and indices
g	� Index of generating units.
t, T 	� Index and set of time intervals
s	� Index of scenarios
d	� Index of load points
w	� Index of wind farms

Constants and parameters
P
d
(t)	� Active power demand at load point d at time t

vi(t)	� Wind speed at wind farm i at time t
A(g)	� Coefficient of the piecewise linear production 

cost function of unit g
ag, bg, cg	� Coefficients of the quadratic production cost 

function of unit g
�g, �g, �g	� Coefficients of the quadratic emission function 

of unit g
f (l, g)	� Slope of block l of the piecewise linear produc-

tion cost function of unit g
NL	� Number of segments in piecewise linearization 

approach
OFC(g)	� Operation and maintenance fixed cost of ther-

mal unit g
OFC(w)	� Operation and maintenance fixed cost of wind 

farm w
OVC(g)	� Operation and maintenance variable cost of 

thermal unit g
OVC(w)	� Operation and maintenance variable cost of 

wind farm w
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Pmax
G

(g)	� Maximum power generating capacity of ther-
mal unit g

Pmin
G

(g)	� Minimum power generating limit of ther-
mal unit g

PrS	� Probability of scenario s
RW 	� A fraction of total wind power considered as 

the reserve requirement due to wind power 
prediction errors

Tg(l)	� Upper limit in each segment of the linearized 
cost function of thermal unit g

n(t)	� Number of hours at time interval t

Variables
PS
GD

(g, t)	� Load contribution of thermal unit g at time t in 
scenario s

PS
GR
(g, t)	� Reserve contribution of thermal unit g at time t 

in scenario s
PS
R
(t)	� Fraction of total system load as the reserve 

requirement at time t in scenario s
PS
W
(w, t)	� Generation of wind farm w at time t in scenario 

s
�S	� Probability of scenario s
uS
i,t

	� Decision variables of unit i at time t in scenario 
s. (on = 1, off = 0)

xS
i,t

	� State variables of unit i at time t in scenario s
�S	� Vector of scenario s

1  Introduction

In power system engineering, unit commitment (UC) prob-
lem is an important optimization process which is carried out 
to determine on/off state of generating units over a specific 
time horizon and also to indicate the contribution of thermal 
units in spinning reserve provision. The main purpose is to 
minimize the power system operation costs. However, the 
generation-consumption balance along with other technical 
constraints should be satisfied, too (Handschin and Slomski 
‎1990). Moreover, in recent years, the looming energy cri-
sis and the environmental concerns have expedited a swift 
integration of renewable energy resources in power systems. 
Among the existing renewable resources, wind energy stands 
as one of the prosperous resources in affording a remark-
able volume of clean and costless energy for the societies. 
Although, the wind energy contributes to an economically 
and environmentally friendly solution, its intermittent and 
uncertain nature poses serious technical concerns in power 
system studies (Liu et al. 2018). Moreover, the power system 
loading demand has a varying nature which could instigate 
the generation-consumption imbalances (Reddy et al. 2015). 
Although development of efficient forecasting mechanisms 
(Ghadimi et al. 2017) depresses such impediments, there is 
a substantial need for establishing well-defined operational 

platforms. Such a task is more highlighted in simultaneous 
commitment of wind farm integrations with the conventional 
thermal units. In these situations and considering the real-
time operations, several technical constraints such as the 
spinning reserve and the ramping capabilities could restrict 
these units from efficiently responding to the variations in 
wind power generation (Zou et al. 2015). Therefore, UC 
problem should be solved such that the optimal level of spin-
ning reserve would be determined to respond to the wind 
power uncertainties.

UC problem demonstrates a nonlinear, large-scale, and 
mixed integer feature which could be tackled based on dif-
ferent approaches. Devising efficient UC approaches grants 
extra monetary savings for power system operators and gen-
erating companies. To assure such economic improvements, 
this problem has been explored by several academicians and 
industry researchers in the past decades. Heuristics meth-
ods (Kjeldsen and Chiarandini 2012), dynamic program-
ming (Kumar and Palanisamy 2007), intelligent algorithms 
such as particle swarm optimization (Zhang et al. 2016), 
harmony search (Afkousi et al. 2010), neural networks (Dieu 
and Ongsakul 2007), mixed integer non-linear programming 
(MINLP) (Yang et al. 2012), mixed integer linear program-
ming (MILP) (Li et al. 2014), and Lagrangian relaxation (Yu 
and Zhang 2014) are some of the implemented approaches. 
Lagrangian relaxation approach is more consistent for large-
scale and sizeable problems. Thus, it is one of the mostly 
deployed approaches for solving UC problems. What should 
be mentioned is that this method requires the application of 
heuristics algorithms to achieve a feasible solution. Conse-
quently, the obtained results might be steered to suboptimal 
solutions which could be intensified due to nonconvex nature 
of the UC problem. Likewise, some authors have proposed 
the application of commercial solvers to obtain the numeric 
solution of the proposed UC model. In this regard, Vieira 
et al. have developed a UC formulation taking into account 
the presence of wind farms and pump storage units (Vieira 
et al. 2016). The developed model points out a determin-
istic nature with MINLP fashion. Similar to Lagrangian 
relaxation approach, the MINLP problems are faced with 
optimality concerns and do not grant the global optimum 
solutions. Contrarily, the MILP formulation is shown to be 
explicitly handled by the available solvers and guarantees 
global optimal solutions. As well, the convergence process 
is terminated at a more reduced computational time (Li and 
Shahidehpour 2005).

In the literatures, different strategies have been devised to 
accommodate the uncertain nature of wind speed and load 
profiles. The two most applicable approaches are reported as 
fuzzy modeling and stochastic evaluation mechanism (Aien 
et al. 2016). Stochastic programming considers the exist-
ing uncertain parameters which could be integrated in the 
developed UC mechanisms. In this approach, the uncertain 
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behaviour of different parameters is modeled based on 
probability density functions (PDFs). Then, adequate sce-
narios are generated based on these PDFs and included in 
the probabilistic analysis of the problem. Several authors 
have endeavoured to include the existing uncertainties in 
assessing the UC problem. Although the authors in Siahkali 
and Vakilian (2010) have considered the wind power and 
load uncertainties in UC problem, the established models lie 
within the MINLP manners. Thus, the optimality concerns 
of the obtained results are still present and the computa-
tional burden of the problem could depreciate the practical 
worth of the proposed approaches. In an attempt to avert 
the nonlinearity feature of UC problem, authors in Carrión 
and Arroyo (2006) have presents a new MILP formulation 
for the unit commitment problem of thermal units where 
the cost function of thermal unit is accurately approximated 
by a set of piecewise blocks. However, all of the parameter 
are considered deterministic. A two-stage linear model is 
explored in Huang et al. (2014) which addresses the possible 
uncertainties in load demand and storage units although no 
any attention is paid on renewable and intermittent energy 
resources. Moreover, a linear formulation is adopted for 
stochastic UC problem which includes the uncertainties in 
demand response participation by end users (Liu and Tomo-
sovic 2015). The proposed model although is a well-estab-
lished approach, it does not address the substantial trend in 
renewable and intermittent energy resources. Besides, the 
authors in Kazemi et al. (2016) have developed a stochastic 
UC problem which includes the uncertainties contributed by 
renewable energy resources. The established approach how-
ever deploys the priority list of generating units in assigning 
the on/off state of generating units. This practice although 
lessens the computational burden of the problem, could 
depreciate the optimality of the results.

With respect to the outlined context, this paper intends 
to develop a linear stochastic approach for UC problem in 
thermal power plants along with the wind farm integra-
tions so that the optimal spinning reserves are assigned 
to thermal units. To preserve the mixed integer linear 
characteristics of the proposed model, a set of piecewise 
and linear representations are replaced with the nonlinear 
expressions. The proposed approach not only considers 
the typical constraints in thermal power plants but also 
accommodates the relevant constraints of wind power gen-
eration. At each time interval, wind speed uncertainty is 
modeled based on several scenarios extracted from the 
corresponding PDFs based on Monte Carlo simulation 
(MCS) approach. Each of these scenarios is then evalu-
ated based on the established approach in a determinis-
tic fashion. Considering the stochastic nature of the wind 
power generation and also the variations in power system 
loading demand, the proposed approach determines the 

commitment status, energy dispatches, and reserve con-
tributions of each committed unit. Thus, an optimal com-
mitment strategy is obtained which minimizes the overall 
costs of energy and reserve provisions. In brief, the main 
contributions of this approach could be listed as follows:

•	 Considering the uncertainties of load profile and wind 
speed in UC problem with MILP formulation;

•	 The application of MCS approach affords a proper han-
dling of uncertainties in wind speed and load profiles;

•	 The linear feature of the proposed approach assures the 
global optimum result for the commitment solution of 
the thermal units and wind farm integrations;

•	 The linear feature of the proposed model is consist-
ent with several commercial solvers paving the way for 
real-world implementations of the proposed approach.

This papers proceeds as follow. Section 2 addresses the 
uncertainty modeling and scenario generation approaches. 
Section 3 develops the proposed stochastic UC approach 
adopted for the thermal and wind farm integrations. The 
fundamental mathematical formulation, running con-
straints, and the linearization schemes are discussed in 
depth. Section  4 presents extensive numerical results 
to validate the anticipated performance of the proposed 
model. Precise discussions are provided to highlight the 
outperformance of the proposed approach. Eventually, the 
concluding remarks are provided in the last section.

2 � Uncertainty considerations

A brief glossary of this section could be found as follows. 
As clarified earlier, the inevitable partial imperfectness of 
forecasting mechanisms introduces several uncertainties 
in UC problem. In wind-thermal generating combinations, 
as the case of the ongoing study, the wind speed and load 
uncertainties are recognized as the most effective param-
eters in UC solutions. Generally, the stochastic behavior 
of these parameters is studied based on properly devised 
PDFs. Deploying the MCS approach, a set of scenarios are 
generated based on the founded PDFs. To assure the global 
optimal solutions and also to decrease the computational 
burden of the problem, the proposed UC approach is made 
linearized. Then, each of the scenarios is analyzed to com-
pute the total operation cost based on the proposed model 
on mid-term intervals. Eventually, the expected values are 
determined according to the obtained solutions and con-
sidering the corresponding probability of each scenario. 
A detailed representation of these procedures is provided 
in the following subsections.
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2.1 � Load uncertainty modeling

Typically, the normal distribution function is the most 
widely deployed PDF for representing the uncertainties in 
load forecasting errors. Let assume that Pd(t) is the fore-
casted weekly peak load at time interval t. Then, its forecast-
ing error is modeled with a normal distribution function in 
which �d(t) and �d(t) are the mean and standard deviation of 
the forecasted load patterns, respectively. Equation (1) is the 
mathematical representation of these statements (Billinton 
and Allan ‎1992). At each time interval of t, these quanti-
ties could be determined based on the historic statistical 
analyses.

2.2 � Uncertainty modeling in wind farm integrations

In a similar manner, the wind speed forecasting error is 
represented through a suitable PDF. Generally, the Gauss-
ian distribution is recognized as the most suitable one for 
representing the differences among the predicted and the 
measured wind speeds (Lange 2005). A simple mathemati-
cal modification of the Gaussian PDF ends in the Rayleigh 
distribution represented based on the average wind speed 
v̄i(t) . Equation (2) is the mathematical representation of the 
Rayleigh distribution at time interval of t adopted for ith 
wind farm (Liang ‎2014).

Considering a specific wind speed value, the output 
power of each wind turbine is determined based on the cor-
responding power curve depicted in Fig. 1. As can be seen, 
a wind turbine is designed such that it starts the power gen-
eration at a specific wind speed called as cut-in speed vci . 
Moreover, the maximum generating capacity of a wind tur-
bine is occurred at the rated wind speed denoted by vr . For 
the wind speeds extended in the span of vci to vr , this figure 
reveals a nonlinear relationship for the output power genera-
tion versus the wind speed value. This notice is mathemati-
cally represented based on Eq. (3) (Siahkali and Vakilian 
2010). At each time interval of t and considering one specific 
wind turbine, the maximum durable wind speed is limited 
to vco known as the cut-out speed. At this point, the output 
power generation of wind turbine is stopped due to safety 
reasons. It should be mentioned that for the wind speeds 
located between the rated and cut-out speeds, the wind tur-
bine produces its rated output power.

(1)f
(
Pd(t)

)
=

1√
2� × �d(t)

2

exp

(
−
(
Pd(t) − �d(t)

)2
2�d(t)

2

)

(2)f
(
vi(t)

)
=

(
𝜋 × vi(t)

2 × v̄i(t)
2

)
exp

(
−
𝜋

4

(
vi(t)

v̄i(t)

)2
)

In this study, the cut-in, rated, and cut-out wind speeds are 
respectively equal to 3, 11.5, and 25 m/s. Also, the rated output 
power of each wind turbine equals to 2 MW. Moreover, each 
wind farm is assumed to contain 40 identical wind turbines.

2.3 � Scenario generation approach

To attain the most proper arrangement of scenarios, the inverse 
transform approach is deployed in scenario generation task 
(Siahkali and Vakilian 2010). In this process, it is assumed 
that at each time interval of t, the load profile and wind speed 
PDFs are known. Consequently, the cumulative distribution 
functions (CDFs) are easily attained for each of the embedded 
PDFs. Then, a random decimal number located between zero 
and one is selected and mapped to the CDF curves. By this 
way, it is possible to capture the corresponding value of each 
uncertain parameter. In this study, there are 3 uncertain param-
eters. One refers back to the loading demand of the system and 
the next two parameters allude to the wind speed values at 2 
different farms. As well, in mid-term commitment horizon, 
12 time intervals are assumed in a weekly basis. Accordingly, 
each scenario ( �S ) contains 36 components and is described 
by �S = {�S

d
, �S

W1
, �S

W2
} constructed over the hole time period. 

Each component is a random variable generated based on 
the clarified approach and dealt within the established UC 
framework.

(3)

Pwi(t) =

⎧⎪⎨⎪⎩

0 0 ≤ vi(t) ≤ vci
Pr ×

�
A + B × vi(t) + C × vi(t)

2
�
vci ≤ vi(t) ≤ vr

Pr

0

vr ≤ vi(t) ≤ vco
vi(t) ≥ vco

Fig. 1   Power curve of a single wind turbine unit
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3 � Stochastic UC approach: mathematical 
formulation and linearization process

To determine the optimal spinning reserve of thermal 
power plants, solving UC problem is required since in 
reserve provision only those thermal units could contribute 
which are committed. In this section, the stochastic model 
of UC problem is introduced.

3.1 � Objective function and the running constraints

This section develops the fundamental mathematical basis 
adopted for the stochastic mid-term UC problem. The 
time horizon is assumed as one season in a weekly basis. 
With respect to the mid-term scheduling time intervals, 
the ramping constraints and the minimum up/down con-
cerns are overlooked. The proposed UC problem seeks for 
the minimum cost operational commitment of generating 
units. Equation (4) formulates the contemplated objective 
function. As can be seen, at each scenario of s, the total 
costs includes the following:

•	 Fuel cost of thermal units;
•	 Variable operation cost for generating power and spin-

ning reserve in thermal units;
•	 Fixed operation cost of thermal power plants;
•	 Variable and fixed operation cost of wind turbines.

where decision variables uS
i,t

 indicate the units’ status (on/
off) and the state variables xS

i,t
 determine the units’ genera-

tion including both thermal units and wind farms. To assure 
a technically satisfied solution, the established approach 

(4)

Min J(xs
i,t
, us

i,t
, �s)

=

T∑
t=1

NG∑
g=1

{
FC

(
PS
GD

(g, t)
)
× n(t)

}
× us

g,t

+

T∑
t=1

NG∑
g=1

{(
PS
GD

(g, t) + PS
GR
(g, t)

)
× OVC(g) × n(t)

}
× us

g,t

+

T∑
t=1

NG∑
g=1

{
Pmax
G

(g) × OFC(g) ×
n(t)

8760

}

+

T∑
t=1

NW∑
w=1

{
PS
W
(w, t) × OVC(w) × n(t)

}
× us

w,t

+

T∑
t=1

NW∑
w=1

{
Pmax
W

(w) × OFC(w) ×
n(t)

8760

}

should satisfy the generation-consumption balance. Also, it 
should preserve the constraints due to the required reserve 
quantities and the constraints in wind power generation and 
also the thermal generating units. These constraints can be 
formulated as follows.

This constraint describes the balance of generated power 
by thermal units and wind turbines versus the load demand 
within each scenario.

To compensate the fluctuations in wind power generation, 
a suitable percentage of its total generation is included as 
reserve capacity. This point is modeled by RW  in Eq. (6). In 
this study, 10% fluctuation is considered in wind power gen-
eration. Also, the second term in Eq. (6) covers the uncer-
tainties arisen by the forecasting mechanisms errors. It is 
assumed to be a specified percentage of total load demand 
e.g. 5%.

The generated power of thermal units should be greater 
than a lower limit when they are committed due to technical 
issues. In addition, the summation of generated power and 
spinning reserve should be lower than thermal unit capacity. 
These two constraints determine the lower and upper lim-
its for thermal power plant described in above equations. It 
should be mentioned that some UC constraints such as unit 
ramp up/ramp down and also the unit starting cost are not 
considered in this study as the investigated horizon lies in 
a mid-time basis. These assumptions are in accordance to 
Siahkali and Vakilian (2010). Specifically speaking, within 
a weekly time interval in mid-term UC, these constraints do 
not affect the results.

3.2 � Linearization process

In UC problem, the fuel cost function of thermal units is 
typically represented based on a quadratic function. This 
feature is represented by the following equation.

(5)
NG∑
g=1

PS
GD

(g, t) +

NW∑
w=1

PS
W
(w, t) = PS

d
(t) t = 1, 2,… , T

(6)
NG∑
g=1

PS
GR
(g, t) ≥ RW ×

NW∑
w=1

PS
W
(w, t) + PS

R
(t)

(7)PS
GD

(g, t) + PS
GR
(g, t) ≤ Pmax

G
(g) × us

g,t

(8)Pmin
G

(g) × us
g,t

≤ PS
GD

(g, t)

(9)
FC

(
PGD(g, t)

)
= ag + bg × PGD(g, t) + cg ×

(
PGD(g, t)

)2



1570	 M. Esmaeeli et al.

1 3

This expression demonstrates a nonlinear feature which 
threatens the optimality conditions and increases the compu-
tational burden of the problem. To avert such impediments, 
a linear representation is devised for this equation. The main 
notion is based on the piecewise linear segmentation of the 
quadratic curve represented in Fig. 2.

Equations (10)–(16) address the mathematical statements of 
the proposed approach. It should be mentioned that adequate 
number of pieces ends in negligible approximation errors with-
out sacrificing the modeling precision (Carrión and Arroyo 
2006).

(10)FC
(
PGD(g, t)

)
= A(g) × u

g,t
+

NL∑
l=1

f (l, g) × Pl(l, g, t)

(11)A(g) = ag + bg × Pmin
G

(g) + cg ×
(
Pmin
G

(g)

)2

(12)PG(g, t) =

NL∑
l=1

Pl(l, g, t) + Pmin
G

(g) × u
g,t

(13)Pl(1, g, t) ≤ Tg(1) − Pmin
G

(g)

(14)Pl(l, g, t) ≤ Tg(l) − Tg(l − 1) , l = 2,… ,NL − 1

(15)Pl(NL, g, t) ≤ Pmax
G

(g) − Tg(NL − 1)

(16)Pl(l, g, t) ≥ 0

3.3 � Thermal units emission

Thermal power plants are one of the main sources of 
emissions. Therefore, development of renewable energy 
resources could reduce the emission and help to realize 
a clean environment. The amount of emission due to a 
thermal power plant could be expressed as a polynomial 
function whose order depends on the preferred accuracy 
(Saber and Venayagamoorthy 2012). In this study, a quad-
ratic function is considered for emission estimation which 
is represented as follows (Saber and Venayagamoorthy ‎ 
2012).

By increasing the share of wind power in demand sup-
ply, the generated power from thermal units and hence the 
emission would be diminished.

3.4 � Stochastic UC approach

The stochastic UC problem analyzes a different set of sce-
narios, stochastically. Mathematically speaking, each of 
the investigated scenarios is assessed in a deterministic 
manner based on the developed UC formulation abbrevi-
ated in Eq. (18).

For each of the scenarios, an optimal solution is 
obtained which is denoted byus

i,t
= us

i,1
, us

i,2
,… , us

i,T
 and 

xs
i,t
= xs

i,1
, xs

i,2
,… , xs

i,T
 . However, considering the overall 

scenarios, a combination of the obtained results with the 
corresponding probabilities ( �S ) determines the stochas-
tic solution. Thus, the objective function of stochastic 
UC will be the weighted average of the obtained solution 
in Eq. (18) for each scenario. In the same manner, the 
expected output for each variable is the weighted average 
of those solutions. In brief, the simulation process of the 
proposed approach contains the following steps:

•	 Scenario generation process considering the uncertain-
ties in load profiles and wind speed values at different 
time intervals;

•	 Computing a deterministic solution based on the pro-
posed UC formulation for each of the generated sce-
narios;

•	 Computing the expected values for the output variables 
based on the obtained solutions at each scenario and its 
corresponding probability.

(17)
EW

(
PGD(g, t)

)
= �g + �g × PGD(g, t) + �g ×

(
PGD(g, t)

)2

(18)
Min J(xS

i,t
, uS

i,t
, �S

t
)

s.t. all constraints (5) to (8)

Fig. 2   Piecewise linearization approach adopted for the quadratic cost 
function representation
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As clarified, in stochastic UC problem each output varia-
ble is determined based on weighted mean of those values at 
each scenario. Decision variable of a unit ( uS

i,t
 ) is considered 

as one of the investigated output variables. This variable 
determines the commitment state of each unit (on = 1,off 
= 0). It should be mentioned that this variable is a binary 
one. This is while; the obtained mean value may not contain 
a binary feature. Accordingly, same decision variables are 
deployed for all scenarios while the state variables could 
adopt different continuous values. Hence, the established 
objective function is renewed as follows to consider the over-
all scenarios. As can be seen, the expected cost is used and 
the decision variable is the same for all scenarios.

4 � Numerical studies: performance 
validations and general discussions

To attest the expected functionalities of the proposed 
approach, a typical 12-unit test system is numerically ana-
lyzed in depth. This system contains 10 thermal units and 2 
wind farm integrations. The input data for the thermal units 
and their emission coefficients are given in Kazarlis et al. 
(1996) and Saber and Venayagamoorthy (2010), respec-
tively. Moreover, the technical information of two wind farm 
integrations is added to this system. As mentioned earlier, 
the fuel cost function of thermal units is linearized based on 
the presented piecewise linear representation. The mean val-
ues and the standard deviations of weekly peak load and esti-
mated wind speeds at each of the wind farms are extracted 
based on the results in Siahkali and Vakilian (2010).

To provide a fruitful numerical analysis, at first the devel-
oped piecewise linear approach is studied against the non-
linear UC model in a deterministic manner. The obtained 

(19)
Min

Ns∑
s=1

�S × J(xS
i,t
, u

i,t
, �S

t
)

s.t. all constraints (5) to (8)

results are discussed in terms of the reduced computational 
time and attaining the global optimal solutions. Afterwards, 
the linear and nonlinear stochastic UC problem is tailored 
and the obtained results are compared in detail.

4.1 � Optimization without renewable resources

In this case, there is no renewable energy resource and the 
demand is supplied by thermal units, totally. A MINLP 
solver in GAMS software is used to calculate the schedule 
and dispatch the power and the corresponding emission. 
Total operation cost and emission are obtained as M$57.81 
and 2,562,753 tons, respectively. In this case, the spinning 
reserve which us required to compensate the uncertainty of 
wind power is not of significance.

4.2 � Deterministic solution

In deterministic analyses, the intermittency of the wind 
power generation and the uncertainties in loading demands 
are overlooked. Thus, the mean values of these parameters 
are considered at each time interval and the UC problem 
is analyzed based on the proposed deterministic approach. 
The standard branch and bound (SBB) method is deployed 
to tackle the nonlinear feature of the developed UC prob-
lem. Table 1 reports the commitment states of the generat-
ing units over the planning horizon. This problem is then 
analyzed based on the proposed linear model. Thus, linear 
programming methods are deployed efficiently to handle 
the optimization processes. The commitment state of each 
generating unit is represented in Table 2. A slight differ-
ence is occurred at weeks 8 and 9 in which the 6th unit is 
replaced with the 5th unit in nonlinear programming results. 
These differences are highlighted in Tables 1 and 2 by shady 
region.

Moreover, the generated power of each thermal unit based 
on the proposed nonlinear and linear models are demon-
strated in Figs. 3 and 4. As can be seen, the obtained results 

Table 1   Commitment states 
of units based on deterministic 
nonlinear model, bold italic 
region indicates the difference 
of linear and nonlinear model 
(1 = on, 0 = off)

Units Time interval

1 2 3 4 5 6 7 8 9 10 11 12

Th1 1 1 1 1 1 1 1 1 1 1 1 1
Th2 1 1 1 1 1 1 1 1 1 1 1 1
Th3 1 1 0 1 1 1 1 1 1 1 1 1
Th4 1 1 1 1 1 1 1 1 1 1 1 1
Th5 1 1 1 1 1 1 1 1 1 1 1 1
Th6 1 1 0 0 1 1 1 0 0 1 1 1
Th7 0 0 0 0 0 0 0 0 0 0 1 1
Th8 0 0 0 0 0 0 0 0 0 0 0 1
Th9 0 0 0 0 0 0 0 0 0 0 0 0
Th10 0 0 0 0 0 0 0 0 0 0 0 0
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are in close agreement with each other assuring the accurate 
linearization of the quadratic expressions.

4.2.1 � Cost and emission

It should be mentioned that the total operation cost is 
obtained as M$56.67 based on the executed nonlinear UC 
approach. This is while; the linear approach yields lower 
cost equal to M$56.66. In other words, the global optimal 
solution is granted based on the linear approach. In addition, 

the total amount of emission in the presence of renewable 
resources is reduced to 2,508,814. It means that if 10% of 
power sources are of renewable resources type, e.g., wind 
farms, then the emission volume is reduced by more than 
2%. Accordingly, wind farm integration can significantly 
decrease the emission and contribute to a clean environment.

4.2.2 � Computational burden

Regarding the computational burden of the problem, Table 3 
reports the calculation times achieved based on the proposed 
approaches. As can be seen, the linearization trick dimin-
ishes the computational burden of the problem, drastically. 
Thus, an efficient approach is developed more suitable for 
recently evolved real-time mechanisms.

4.2.3 � Spinning reserve

The reserve contributions of each thermal unit based on the 
proposed nonlinear and linear models are demonstrated in 
Figs. 5 and 6 which are in close agreement with each other. 
As can be seen, 5th and 6th units contribute for supplying 
the spinning reserve in most of the intervals. However, some 
units never contribute for spinning reserve and some of them 
e.g. the 2nd and 7th contribute only in two intervals.

As described in Eq. (6), the RW factor is taken to deter-
mine the reserve capacity for compensating the fluctuations 
in wind power. The typical value of RW is assumed to be 
0.1. By increasing the RW, additional spinning reserve is 

Table 2   Commitment states 
of units based on deterministic 
linear model, bold italic region 
indicates the difference of linear 
and nonlinear model (1 = on, 
0 = off)

Units Time intervals

1 2 3 4 5 6 7 8 9 10 11 12

Th1 1 1 1 1 1 1 1 1 1 1 1 1
Th2 1 1 1 1 1 1 1 1 1 1 1 1
Th3 1 1 0 1 1 1 1 1 1 1 1 1
Th4 1 1 1 1 1 1 1 1 1 1 1 1
Th5 1 1 1 1 1 1 1 0 0 1 1 1
Th6 1 1 0 0 1 1 1 1 1 1 1 1
Th7 0 0 0 0 0 0 0 0 0 0 1 1
Th8 0 0 0 0 0 0 0 0 0 0 0 1
Th9 0 0 0 0 0 0 0 0 0 0 0 0
Th10 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3   Mid-term load supplying contributions of units based on deter-
ministic nonlinear model

Fig. 4   Mid-term load supplying contributions of units based on deter-
ministic linear model

Table 3   Computational burden of the deterministic UC problem

UC modeling approach Computa-
tion time 
(s)

Nonlinear 7
Piecewise linear 1
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required and hence, the operational cost is increased. The 
procedure of these variations are described in Fig. 7.

4.3 � Stochastic solution

As mentioned earlier, the wind speed and load uncertain-
ties are modeled based on a number of dissimilar scenarios. 
The MCS-based inverse transform approach assigns equal 
occurrence probabilities for these scenarios. The number 
of scenarios is selected such that the variation coefficient 
approaches to its minimum value and stabilizes around it. 
Considering an uncertain parameter X, the variation coef-
ficient is defined as follows (Billinton and Allan 1992):

Figure 8 depicts the variation coefficient versus the num-
ber of scenarios. As can be seen, the number of 180 sce-
narios is adequate to assess the stochastic UC problem.

Each of these scenarios is assessed based on the pro-
posed deterministic linear approach. The stochastic solu-
tions are then computed based on the expected values 
considering the overall scenarios and their occurrence 
probabilities. Figure 9 demonstrates the probability dis-
tribution function of the operation cost based on the linear 

(20)cvX =
�X

�X .
√
Ns

Fig. 5   Mid-term reserve contributions of units based on deterministic 
nonlinear model

Fig. 6   Mid-term reserve contribution of units based on deterministic 
linear model

Fig. 7   Total operation cost for 
different values of compensat-
ing factor for wind uncertainty

Fig. 8   The variation coefficient 
curve to determine the suitable 
number of scenarios
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UC approach. The indices related to total cost analysis 
are presented in Table 4. The investigated indices include 
mean value, standard deviation, and variation coefficient 
at different number of scenarios. As can be seen, the 
total operation cost decreases as the number of scenarios 
increases. This notice is emanated by the increased preci-
sion of the proposed model as the higher number of sce-
narios gives a proper sense of uncertainties.

The commitment states of all generating units in linear 
stochastic UC approach is obtained based on Table 5. As 
can be seen, there are some record of dissimilar commit-
ment patterns against the proposed linear deterministic 
UC approach in Table 2. These differences, highlighted 
by shady region are noticed due to uncertainty handlings.

By comparing Tables 5 and 2, it can be noticed that 
the committed thermal units and hence the capability 
of power generating is increased in stochastic approach 
to compensate the uncertainty of wind power. The total 
capacity of committed units in both approaches and the 
expected values of load demand are presented in Table 6. 
The difference between the total capacity and the expected 
demand can be defined as the spinning reserve. The values 
of spinning reserve in each interval is presented in Fig. 10.

Table 4   Stochastic UC results at different scenarios based on linear 
model

Number of 
scenarios

Total cost 
(
M$

)
Variation 
coefficient 
(%)Mean (�) Standard devia-

tion (�)

30 57.414 1.762 0.560
60 56.962 1.699 0.385
90 56.952 1.562 0.289
120 56.827 1.612 0.259
150 56.731 1.619 0.233
180 56.688 1.638 0.215

Fig. 9   Distribution of total operation cost based on the proposed lin-
ear model

Table 5   Committing states of 
units based on stochastic UC 
approach, bold italic regions 
indicate the differences of 
stochastic and deterministic 
results (1 = on, 0 = off)

Units Time interval

1 2 3 4 5 6 7 8 9 10 11 12

Th1 1 1 1 1 1 1 1 1 1 1 1 1
Th2 1 1 1 1 1 1 1 1 1 1 1 1
Th3 1 1 1 1 1 1 1 1 1 1 1 1
Th4 1 1 1 1 1 1 1 1 1 1 1 1
Th5 1 1 1 1 1 1 1 1 1 1 1 1
Th6 1 1 0 1 1 1 1 0 0 1 1 1
Th7 1 1 0 0 1 1 1 0 0 1 1 1
Th8 0 0 0 0 0 0 0 0 0 0 1 1
Th9 0 0 0 0 0 0 0 0 0 0 0 1
Th10 0 0 0 0 0 0 0 0 0 0 0 1

Table 6   Total capacity of committed units in deterministic and stochastic UC approach

Time intervals

1 2 3 4 5 6 7 8 9 10 11 12

Expected demand 1317 1320 1125 1255.5 1350 1344 1320 1200 1170 1321.5 1410 1500
Total cap. in deterministic 1412 1412 1202 1332 1412 1412 1412 1250 1250 1412 1497 1552
Total cap. in stochastic 1497 1497 1332 1412 1497 1497 1497 1332 1332 1497 1552 1662
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5 � Concluding remarks

Optimal spinning reserve was assigned to thermal units 
using a linear optimization approach proposed for stochas-
tic UC problem. The uncertainties in wind power generation 
and power system’s loading demand are considered through 
some scenarios. In this context, the quadratic cost functions 
were represented based on suitable number of piecewise 
linearized segmentations. At first, the technical superiority 
of the linear approach was deduced against the nonlinear 
method in a deterministic manner. Results demonstrated a 
decreased computational burden along with an improved 
economical metric. As well, the linear approach granted 
a global optimal solution and averted the divergence issue 
in nonlinear problems. The initial model was extended to 
include the possible uncertainties in wind speed and load 
profiles. MCS-based inverse transform was applied to gen-
erate different scenarios whose number was assigned based 
on the proposed variation coefficient index. Each of the 
scenarios was investigated based on the established model 
and the stochastic solutions were attained in the form of 
expected values considering the overall scenarios and their 
specific occurrence probabilities. The spinning reserve in 
the stochastic approach was increased to compensate the 
uncertainties of wind power. The obtained results revealed 
the practical merits of the proposed approach in real-world 
stochastic UC problems.
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