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Abstract
Behavioral biometrics, such as gait patterns and keystroke dynamics, have been becoming increasingly used in human identity 
recognition research for enhancing the smartphone security. A new multimodal authentication method able to strengthen 
the smartphone authentication system is proposed in this paper. The proposed mechanism acquires gait patterns from the 
accelerometer, as well as keystroke dynamics, continuously without user intervention through simultaneous walk and text 
input. More specifically, features are extracted from both modalities. Afterward, a feature level fusion method is applied 
to build a multimodal biometrics profile for the user. Fused feature vectors are subjected to the sequential floating forward 
selection algorithm to reduce their dimensions as well as the computational complexity. The effectiveness of the proposed 
method is examined through a real multimodal dataset collected from 20 subjects under various scenarios, using different 
machine learning classifiers. The experimental results achieved a promising accuracy of 99.11% when using multilayer 
perceptron classifier with the average false acceptance rate, false rejection rate and equal error rate values of 0.684%, 7%, 
and 1%, respectively. Furthermore, the security strength of the proposed method was evaluated against two types of attacks, 
the zero-effort attack and minimal-effort mimicking attack. Results demonstrate that our approach represents a robust and 
secure authentication solution.
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1  Introduction

The prevalence of smartphones has rapidly increased due to 
their improved interactive features and sensing capabilities. 
People have come to rely on their smartphones to accom-
plish various tasks in their lives. With increasing smartphone 

dependence, increasing security measures has become an 
urgent need. Some of the most commonly addressed mobile 
security features are authentication mechanisms, tradition-
ally including explicit methods such as the personal identifi-
cation number (PIN), patterns, and passwords. However, all 
of these are single-time authentication methods that require 
active user participation which causes inconvenience to 
the user. Moreover, these types of authentications are easy 
to breach and could be effortlessly hacked by an attacker, 
including through shoulder surfing (Zakaria et al. 2011) 
and smudge attacks (Aviv et al. 2010). Recently, research-
ers have proposed new biometric authentication methods 
using built-in smartphone sensors such as accelerometers 
and gyroscopes. Currently proposed mechanisms have had 
greater reliance on the user’s physiological and behavioral 
characteristics. Physiological authentication mechanisms 
are related to the user’s body characteristics, such as their 
fingerprints, facial features or retina images. Unfortunately, 
physiological biometric-based authentication mechanisms 
are considered one-time authentication methods. The perfor-
mances of these solutions are heavily influenced by external 
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factors. Also, these methods require specialized equipment 
to perform biometric scanning (Salem et al. 2016), whereas 
behavioral authentication methods are based on user behav-
ior with the smartphone during everyday use, such as their 
touchscreen interaction (Frank et al. 2013; Kambourakis 
et al. 2016), gait (Damaševičius et al. 2016; Hoang et al. 
2013), hand motions (Sitová et al. 2016) and so on. This 
type of authentication adapts to identify features of the user’s 
behavior that do not vary over a period of time (Alzubaidi 
and Kalita 2016). The behavioral authentication mecha-
nisms continuously authenticate the user without his/her 
intervention. Moreover, no additional hardware is required 
to identify the smartphone’s owner. However, the majority 
of preexisting authentication methods use single behavioral 
biometrics which suffer from low accuracy and have not 
achieved performance good enough to allow real-world 
implementation (Do et al. 2014). Therefore, multimodal 
biometrics have been adopted in recent academic research 
to enhance authentication system performance. (Akhtar et al. 
2017; Galdi et al. 2016).

From the above, it is evident that there is a crucial need 
for multimodal authentication mechanisms that continuously 
authenticate the smartphone user without his/her interven-
tion. By leveraging the capacities of today’s multi-sensor 
smartphones, sensor inputs such as gait signals and key-
stroke dynamics are used as sources of user authentication 
which can be gathered without user awareness. Most people 
are used to walk and perform routine behaviors in which 
texting while walking is most common to do. Using data 
acquired from the built-in smartphone sensors during simul-
taneous walking and typing enable to build accurate behav-
ioral patterns for the user. As detailed in Sect. 2, academic 
research has demonstrated that keystroke dynamics and gait 
patterns are unique for each user. These two modalities are 
widely used in smartphone authentication studies, and most 
of this research uses keystrokes and gait as a single behav-
ioral biometric or in combination with other biometrics. 
However, none of the existing research actually combines 
these two biometrics to built a user profile for authentication 
purposes through using a real multimodal dataset, which is 
the main contribution of our work.

This paper makes use of gait patterns and keystroke 
dynamics to build a new multimodal authentication method. 
The proposed method continuously acquires the user’s gait 
signal with keystroke dynamics during simultaneous walk-
ing and text input, by using the smartphone’s built-in sensors 
without explicitly seeking user cooperation. Moreover, to 
reduce the impact of continuous sensing on battery life, the 
proposed mechanism only uses the accelerometer sensor to 
measure acceleration during movement, which is considered 
to be the most efficient sensor in terms of energy consump-
tion. To demonstrate the efficacy of the proposed mecha-
nism, a real multimodal dataset of keystroke dynamics and 

gait patterns has been collected from 20 volunteers through 
various scenarios. The results obtained from the experi-
ments show that the proposed authentication method is able 
to enhance the smartphone’s security.

The rest of this paper is organized as follows. Section 2 
addresses the related works. Section 3 describes the pro-
posed framework architecture, Sect. 4 details the proposed 
authentication method. Section 5 reports the experimental 
results. Section 6 discusses the usability of the approach. 
Finally, we conclude this paper and outline further directions 
for this work in Sect. 7.

2 � Related works

Already several studies on gait patterns and keystroke 
dynamics have been adopted within the field of continu-
ous authentication. In this section, we categorize them as 
follows.

2.1 � Gait patterns‑based authentication solutions

Gait modality had received considerable attention in pre-
vious works through the proposals of different gait pat-
tern authentication methods using accelerometer sensors 
for user identity recognition. Earlier studies (Derawi et al. 
2010; Mantyjarvi et al. 2005) demonstrated that gait sig-
nal acquired with three-dimensional accelerometers could 
be used to identify mobile phone users. Unlike previous 
work, (Hoang et al. 2013) proposed a new gait authenti-
cation mechanism regardless installation error using both 
the built-in accelerometer and magnetometer, where a novel 
segmentation algorithm was used to segment the signal into 
separate gait cycles. An experiment with the participation 
of 38 volunteers achieved approximately 94.93% accuracy 
under identification mode, also a false match rate (FMR), 
false non-match rate (FNMR) of 0%, 3.89% and a process-
ing time of less than 4 s under authentication mode. Later, 
(Choi et al. 2014) proposed a set of new gait signature met-
rics for recognizing different walking patterns in human gait 
that could efficiently extract distinctive gait characteristics 
and identify an individual from a list of subjects. Recently, 
(Zhang et al. 2015) introduced an accelerometer-based gait 
recognition method to avoid cycle detection failures and 
inter-cycle phase misalignment issues where it combined 
the multi-scale signature points (SP) extraction method, 
an SP sparse encoding scheme with implicit consideration 
of the phase propinquity, and the classifier for sparse-code 
collection (CSCC) for recognizing feature collection. The 
results from this methodology achieved an accuracy of 
95.8% for identification, and the equal error rate (EER) of 
2.2% for verification. (Zhong et al. 2015) proposed a new 
pace independent mobile gait biometric algorithm to address 
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the challenges of varying walking speed and sensor rota-
tion. The performance analysis of the algorithm on a real-
istic mobile gait dataset, which contained 51 subjects, had 
achieved an EER of 7.22% with a performance improvement 
of 37%. In addition to these studies, a number of different 
methods had been proposed for gait based recognition on 
mobile devices using various types of features or classifica-
tion algorithms (Damaševičius et al. 2016; Muaaz and May-
rhofer 2013, 2014; Zhao and Zhou 2017).

2.2 � Keystroke dynamics based authentication 
solutions

The application of keystroke dynamics for continuous authen-
tication is not entirely new, as it is derived from research on 
authenticating computer access (Brown and Rogers 1993; 
Gunetti and Picardi 2005; Monrose and Rubin 2000). With the 
new interactive features of present-day touchscreen-equipped 
smartphones, typing behavior has become easier to extract 
from smartphone virtual keyboards with additional features 
such as pressure and the finger area. (Antal et al. 2015) exam-
ined the effect of these additional touchscreen features in iden-
tification and verification performance, it was concluded that 
the addition of these feature sets enhances the accuracy of 
both processes. Whereas (Buschek et al. 2015) proved that 
including spatial touch features reduces implicit authentication 
EER by 26.4–36.8% relative to the previously used temporal 
features. Keystroke dynamics are also used in Multi-factor 
authentication methods to strengthen user authentication 
on smartphones, where (Salem et al. 2016) proposed a user 
verification and identification system on touchscreen mobile 
devices, using keystroke dynamics as a second authentication 
factor with a password, The model achieved false acceptance 
rate (FAR) of 2.2%, false rejection rate (FRR) of 8.67%, and 
an EER of 5.43% and proved that keystroke dynamics pro-
vide an acceptable level of performance measures as a second 
authentication factor. (Kambourakis et al. 2016) proposed two-
factor touch stroke user authentication method to discriminate 
between the legitimate user and intruders, the achieved experi-
mental results of 20 participants showed that touch stroking 
has significant potential in designing enhanced authentication 
systems for smartphone devices. For investigating the effec-
tiveness of sensor-enhanced keystroke dynamics, (Stanciu 
et al. 2016) implemented a statistical attack against sensor 
enhanced keystroke dynamics and evaluated its impact on 
detection accuracy. The results showed that sensor-enhanced 
keystroke dynamics are generally robust against statistical 
attacks with a marginal EER impact (< 0.14%). Moreover, 
several other research studies using different authentication 
algorithms and classification features also achieved promising 
results in continuous smartphone authentication based on key-
stroke dynamics (Alsultan et al. 2016; Antal and Szabó 2015; 
Bours and Mondal 2015; Kang and Cho 2015).

2.3 � Gait patterns and keystroke dynamics 
in multimodal based authentication solutions

The majority of the aforementioned works on authentica-
tion use gait patterns or keystroke dynamics as a single 
behavioral biometric to recognize the user identity. Despite 
having many inherent advantages, there are numerous chal-
lenges such as the susceptibility of the biometric sensor to 
outside factors, the changing emotional or physical state of 
the user or poor data acquisition. To overcome these limi-
tations, research has moved from unimodal biometrics to 
multimodal biometrics to increase authentication perfor-
mance. In (Saevanee et al. 2012), keystroke dynamics were 
used with behavioral and linguistic profiling to discriminate 
users, where matching-level fusion methods were applied 
to study the feasibility of the proposed system. The results 
showed that matching-level fusion could improve classifica-
tion performance with an overall EER of 8%. Later, (Craw-
ford and Renaud 2014; Crawford et al. 2013) combined 
keystroke dynamics and voice recognition for mobile sys-
tems to identify the device owner, the initial results showed 
that the described transparent authentication framework 
is effective in increasing both usability and security. Fur-
thermore, (Damer et al. 2016) introduced a multi-biometric 
continuous authentication solution that includes informa-
tion from the face images and the keystroke dynamics of 
the user. Whereas, most of the existing studies based on gait 
patterns for multimodal authentication use video-cameras 
from a distance to capture gait coupled with face recogni-
tion (Almohammad et al. 2012; Guan et al. 2013; Hofmann 
et al. 2012; Hossain and Chetty 2011; Nanda et al. 2017; 
Xing et al. 2015), or body-worn motion recording sensors 
(Tao et al. 2018), such the work in (Vildjiounaite et al. 2006) 
where gait patterns had been combined with voice recogni-
tion for user authentication. The only related study within 
our scope of research is by (Do et al. 2014), which com-
bined gait biometrics acquired by use of the smartphone’s 
built-in accelerometer and magnetometer sensors with key-
stroke dynamics. A virtual dataset was created by fusion 
gait and keystroke dynamics where fusion operated at both 
the feature extraction level and the matching score level. 
The proposed methodology achieved a recognition rate of 
approximately 97.86% under identification mode and an 
EER approximately 1.11% under authentication mode.

3 � The system framework

Figure 1 represents the proposed framework architecture. 
Specifically, the proposed framework is divided into two 
phases: enrolment and authentication.

-Enrolment phase: initiated by the text input and walking 
of the user, the system acquires gait signals and keystroke 



4420	 I. Lamiche et al.

1 3

dynamics from the built-in smartphone sensors. The col-
lected biometrics are first separately preprocessed and ana-
lyzed to extract features. Then the extracted features are 
processed to get the final data that will be used to built the 
behavioral profile template of the user.

-Authentication phase: the system autonomously collects 
the new sensor samples through any attempt to manipulate 
the smartphone, and compare them with the stored template. 
The user is only authorized to access to the smartphone ser-
vices upon a successful match, otherwise, the user is classi-
fied as an imposter.

A detailed description of the authentication process will 
be explained in the following sections.

4 � The methodology

4.1 � Data acquisition

Many dataset resources containing several unimodal biom-
etrics have been accessible for the academic research, 
however, no realistic multimodal dataset based gait and 
keystroke dynamics is available. In this paper, we collected 
a real multimodal dataset from 20 subjects with a bal-
anced gender distribution, aged 22–33 years old, using 
the Xiaomi 2S mobile phone with the Android version 
(5.0.2). For the data collection task, we developed a cus-
tomized Android application with a virtual keyboard for 
accelerometer and keystroke data collection (see Fig. 2). 
The application collects three-dimensional accelerom-
eter data (X, Y, and Z axis) when the smartphone user is 
walking, with the user’s input rhythm at the same time. 
As it is known, the default android keyboard is allowed 
to only collect pressed key IDs. As detailed in Sect. 5, 
more features like the pressure and the size of touch area 
are required in our work to construct the behavioral pro-
file template of the user. Hence, a virtual keyboard was 

designed using MotionEvent and Gesture classes provided 
by Android SDK (Software Development Kit) and used 
instead of the default keyboard in the settings of the device 
so that additional keystroke features could be collected 
from all types of applications that required typing.

To evaluate the effectiveness of the proposed method, a 
real dataset is constructed under realistic acquisition sce-
narios, based on how users interact with their smartphones 
during their routine activities. In this paper, data is collected 
from each participant using the following four scenarios:

•	 In the first scenario, the participants were asked to put the 
smartphone into their trouser pocket and walk as natu-
rally as possible in a straight corridor.

•	 In the second scenario, the participants were asked to 
hold the smartphone freely in hand and walk.

•	 In the third scenario, the participants were asked to 
answer a call while walking.

•	 In the last scenario, the participants were asked to walk 
in their usual manner and type the following phrase “the 
quick brown fox jumped over the lazy ghost.” which con-
tains every letter of the alphabet, spaces and a period at 
the end of the sentence to indicate the completion of the 
typing process. This sentence has come widely known 
within keystroke analysis and has been adopted by many 
studies (Kambourakis et al. 2016; Lau et al. 2004). This 
set text provided a controlled variable to ensure a similar 
amount of data for all participants.

In this scenario, participants had the choice to use any 
application that requires typing as long they used the 
designed keyboard. They also were allowed to make mis-
takes and use the backspace key for any corrections. It 
should be mentioned that each scenario had to be repeated 
five times and that the participants activated the acceler-
ometer when they started walking and stopped it upon their 
arrival at the end of the corridor.

Fig. 1   The proposed smart-
phone user authentication 
framework
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4.2 � Gait data pre‑processing and feature extraction

4.2.1 � Data interpolation

As it is known, only when forces acting on the three axes of 
the smartphone have considerable change does the acceler-
ometer sensor report output values, which enables low power 
consumption. Hence, acceleration signals are acquired with 
variable sampling rate. In our study, the sampling rate of the 
device is not stable which causes non-constant time interval 
between two successive samples. Therefore, the acquired 
signal is resampled to 50 Hz using Linear-interpolation to 
correct the irregular time interval problem.

4.2.2 � Noise elimination

Gait signal acquirement using the built-in accelerometer 
sensor is sensitive to noise. Mobile accelerometers produce 
numerous noises as compared with standalone sensors since 
its functionality is fully governed by the mobile OS layer 
(Hoang et al. 2013). Therefore, noise must be eliminated to 
improve the quality of the acquired signal. In our study, first 
Outliers observations are detected and removed from data, 
then a FIR low-pass filter with passband cutoff frequency 
fp = 0.9 Hz designed using MATLAB is applied to the 
acquired signal. The Low pass filter is the most frequently 
used because it can implement linear-phase filtering which 
means that the filter has no phase shift across the frequency 
band1.

4.2.3 � Segmentation and feature extraction

In this paper, the adopted segmentation method is based on 
a sliding-window algorithm where sliding-window-based 
methods are most commonly used in activity recognition 
studies (Bersch et al. 2014; Niazi et al. 2017; Ravi et al. 
2005). The raw data is divided into windows (i.e., segments) 
with a fixed length of 10 s and 50% overlap. Then a feature 
extraction method is applied to construct a feature vector 
that is later fed to the classifier. A combination of features 
from both time and frequency domains are extracted from 
four components, as shown in Fig. 3 which represents the 
accelerometer data reading for two randomly selected users 
on the X-axis, Y-axis, Z-axis and the magnitude-axis axyz 
Where axyz is defined as: 

Frequency-domain features can be derived from the Fast 
Fourier Transform (FFT) performed on each window for 
the four types of acceleration. Multiple statistic features set 
includes maximum, minimum, mean, median and standard 
deviation values are derived from each type of acceleration 
that is mentioned above within each window for both time 
and frequency domains. We extended this set by adding the 
following features:

•	 Average absolute difference

where
xt is the data point in time series of a window.
x ̄ is the mean.

(1)axyz =
√

a2
x
+ a2

y
+ a2

z
.

(2)MD = avg
(||xt − x||

)
,

Fig. 2   The proposed application 
and the keyboard interface used 
for accelerometer and keystroke 
data collection

1  https​://www.minid​sp.com/appli​catio​ns/dsp-basic​s/fir-vs-iir-filte​ring.

https://www.minidsp.com/applications/dsp-basics/fir-vs-iir-filtering
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•	 Spectral Centroid: In this case, spectrum refers to the 
identification window of acceleration values (Singha 
et al. 2017). For the four types of acceleration. The 
spectral centroid of each window is calculated as in 
following:

where
xtk is the data point in time series of a window
ftk is the data point in frequency series of a window
l length of the window

•	 Cross-correlation refers to the correlations between the 
entries of two vectors. In this paper, three types of cor-
relation are calculated.

Corrxy Cross-correlation of x axis and y-axis
Corrxz Cross-correlation of x axis and z-axis
Corrxz Cross-correlation of y axis and z-axis

•	 Energy: is the normalized summation of absolute val-
ues of Discrete Fourier Transform of a windowed sig-
nal sequence.

•	 The first ten FFT coefficients:

(3)C =
1

l

l∑
k=1

xtk ∗ ftk∕l,

(4)Xk =

N−1∑
n=0

xne
−

i2�kn

N , k = 0,… 9

•	 The first ten DCT coefficients:

4.3 � Keystroke dynamics data pre‑processing 
and feature extraction

Once the keystrokes input data has been collected, data is 
cleaned by eliminating missing data. Various feature extrac-
tion methods are used in keystroke analysis research where 
the most widely-employed features in keystroke dynamics 
focus on the timing information such as the moment when 
the keys are pressed and released. In this work, the following 
timing features have been extracted:

•	 Digraphs: which are the time latencies between two suc-
cessive keystrokes (Zhong and Deng 2015), including 
dwell time (holding time of a key) and flight time. The 
following types of latencies are used:

•	 Down–up (hold time) (DU): is the time interval between 
pressing and releasing the same key.

•	 Down–down key latency (DD): is the time interval 
between a key press and the next key press.

•	 Up–down key latency (UD): is the time interval between 
the release of a key and the pressing of the next key.

•	 Up–up key latency (UU): is the time interval between the 
release of a key and release of the next key.

•	 Trigraph: is the interval time between every other suc-
cessive key press.

In our study, additional non-timing features are extracted 
from keystroke data, such as

•	 Pressure: the pressure exerted on the keyboard when the 
key is pressed.

•	 Size of the touch area: size of the touch area when the 
user’s finger presses a key.

•	 Typing speed: the average time to press and release a key.
•	 Typing error: the number of times the backspace key is 

pressed.

(5)

Xk = wk

N�
n=1

xncos
�(2n−1)(k−1)

2N , k = 1, ...9

where

wk =

⎧
⎪⎪⎨⎪⎪⎩

1√
N

k = 1

�
2

N
2 ≤ k ≤ N

⎫
⎪⎪⎬⎪⎪⎭

.

0 500 1000 1500
number of samples (n)

-5

0

5
Acceleration along X-axis 

user 1 user 2

0 500 1000 1500
number of samples (n)

-5

0

5
Acceleration along Y-axis

user 1 user 2
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number of samples (n)

5
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15
Acceleration along Z-axis

user 1 user 2

0 500 1000 1500
number of samples (n)

5

10

15
Acceleration along a-axis

user 1 user 2

Fig. 3   Example of data samples captured from two randomly selected 
users
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4.4 � Fusion method

After preprocessing and analyzing the acquired gait and 
keystroke dynamics data, the constructed feature vectors 
are combined to get a final feature vector that will be fed to 
machine learning classifier to determine if the user is genu-
ine or an imposter. Feature level fusion is believed to be 
more effective owing to the fact that a feature set contains 
richer information about the input biometric data than the 
matching score or the output decision of a classifier (Ross 
and Jain 2004). A simple feature fusion method is to concat-
enate various feature vectors to a single feature vector. Let 
X = {x1, x2, …., xm} and Y = {y1, y2, ., yn} represent the 
gait and keystroke feature vectors respectively, the resultant 
feature vector Z can be obtained by concatenating the nor-
malized vectors X′ and Y′, then applying feature selection 
on the fusion feature vector. In this paper, the concatenated 
feature vector is normalized by applying the Min–Max nor-
malization technique where all values are scaled within the 
range − 1 to 1.

4.5 � Feature selection

The feature selection approaches aims to select a small 
subset of features that minimize redundancy and maximize 
relevance to the target such as the class labels in classifica-
tion (Tang et al. 2014). In this study, Fusion of gait and 
keystroke vectors through concatenation produces a feature 
vector with a large dimension leading to increasing com-
plexity of the classifier. Therefore, the sequential floating 
forward selection (SFFS) Algorithm (Somol et al. 1999) 
is applied to perform feature selection on the resultant 
vector. The SFFS algorithm is an extension of the Sequen-
tial Forward Selection (SFS) algorithm where it consists 
of an additional forward or backward step to remove fea-
tures once they were included or excluded so that a larger 

number of feature subset combinations can be sampled. 
We have used selected features instead of using all features 
to decrease the training time of the algorithm, taking into 
consideration the susceptibility of smartphones to memory 
and computational costs. Although reducing the feature 
subset into 24 features has decreased the accuracy of the 
proposed method (0.9%), it is still acceptable when look-
ing at its gains, such as lower memory and processing 
time costs (the time taken to build a model decreased from 
72.478 s to less than 1 s). Table 1 illustrates components 
of the final feature subset with the information gain of 
each feature. The dimension of the final feature vector is 
reduced to 24 features by using SFFS algorithm.

5 � Evaluation

5.1 � Database description

The data was collected from 20 participants in a single 
session under a controlled environment using a Xiaomi 2S 
mobile phone. A total of 63,500 samples from the accel-
erometer sensor and more than 8600 keystrokes were col-
lected from all participants. After the data preprocessing 
task, a dataset of 24 features was constructed with a sepa-
rate file for each user per scenario. In total 80 files were 
created, where each file contained samples of the genuine 
user and samples of all the remained 19 users which are 
considered as impostors. Each data row is composed of the 
24 features and the binary representation of the genuine 
and imposter classes ‘TRUE’ and ‘FALSE’, respectively.

Table 1   List of the final feature subset

Feature Description Info. gain Feature Description Info. gain

MeanDW Mean dwell time 2.43 dctx_1 1st dct coefficient of x raw data 1.50
speed Typing speed 2.43 fftxyz_6 6th fft coefficient of axyz raw data 1.33
minx Minimum acceleration on x-axis 2.03 fftz_5 5th fft coefficient of z raw data 1.31
maxx Maximum acceleration on x-axis 2.00 std_size Standard deviation of touch size 1.22
stdfftxyz Standard deviation of fft axyz data 1.85 maxxyz Maximum acceleration on axyz raw data 1.13
medianxyz Median of axyz data 1.72 dctz_5 5th dct coefficient of z raw data 1.04
mean_pre Mean of pressure 1.70 ffty_4 4th fft coefficient of y raw data 0.97
dcty_1 1st dct coefficient of y raw data 1.64 dctx_5 5th dct coefficient of x raw data 0.94
minz Minimum acceleration on z-axis 1.61 dctxyz_4 4th dct coefficient of axyz raw data 0.70
meanFT Mean flight time 1.57 corrxy Cross-correlation of x and y-axis 0.67
fftx_8 8th fft coefficient of x raw data 1.57 corrxz Cross-correlation of x and z-axis 0.57
stdfftz Standard deviation of fft z raw data 1.53 corryz Cross-correlation of y and z-axis 0.56
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5.2 � Evaluation of performance

With the aim of selecting the most applicable model for the 
proposed authentication system, experiments were conducted 
considering various classifiers. We use 10-fold cross-valida-
tion technique to evaluate the performance of the learning 
models which is based on partitioning the dataset into equally 
sized folds (groups of instances) where each fold gets the 
opportunity of appearing in both training and test datasets. 
Five popular algorithms implemented in Weka (Holmes et al. 
1994) are considered in this work: support vector machines 
(SVM), random forest (RF), random tree (RT), Naïve Bayes 
(NB) and multilayer perceptron (MLP). To find out how 
effective are the learning models considered in this study, 
we used different statistical metrics taking into account that 
the authentication task is a binary classification problem, in 
which the system accepts or rejects the user identity. There-
fore, we make use of FAR and FRR rates to show the propor-
tion of imposters and authorized users that are incorrectly 
accepted and rejected, respectively, by the proposed biom-
etric system. In addition to EER rate and accuracy metrics.

Table 2 summarises the experimental results obtained 
over accuracy and EER metrics across four different sce-
narios (as detailed in Sect. 4) and Fig. 4 shows the average 
FAR and FRR values of each classifier per scenario. The 
obtained results demonstrate the efficiency of the proposed 
multimodal authentication system using the MLP classi-
fier, which achieved the highest accuracy of 99.11% with 
the average FAR%, FRR% and EER% values of 0.684, 7 

and 1, respectively. The MPL classifier outperforms the NB 
and RF classifiers which only reached an acceptable accu-
racy because the FRR is still high. Whereas, SVM and RT 
achieved the lowest accuracy in comparison with other clas-
sifiers with a high FRR as well. This issue is the result of 
the imbalance between genuine and imposter class data. In 
order to compare the EER between different scenarios, we 
performed different test procedures such as Chi square test 
for testing independence and Marascuilo’s test for testing 
equality of several proportions. As shown in Table 3, the 
critical value of χ2 with 12 degrees of freedom is 12.026 
(P value < 0.001) which indicates a significant difference 
of EER values among the results achieved under different 
scenarios. By applying Marascuillo test, the comparisons 
including (p1–p3), (p2–p3), (p3–p4) are significantly dif-
ferent from each other where p1, p2, p3, p4 refers to sce-
nario 1, scenario 2, scenario 3, and scenario 4, respectively. 
Whereas, the differences between the remaining scenarios 
are not statistically significant.

Moreover, the performance of gait authentication which 
used all of the extracted features is evaluated from the first 
three scenarios where participants had been asked to walk 
while holding the phone during various activities. Accepta-
ble results for the three scenarios, with average EER% values 
of 9.73, 6.82 and 3.34 respectively, had been obtained when 
using the RF classifier. To study the effect of the adopted 
fusion method, we also evaluated the performance of key-
stroke dynamics separately. Table 4 shows the obtained 
results.

Table 2   Performance of each 
classifier per scenario

Bold values indicate achieved highest EERs and accuracies for each scenario

99% Confidence

Acc EER Acc EER

1 SVM 0.9105
0.8918–0.9291

0.4261
0.3937–0.4584

3 SVM 0.94
0.9240–0.9559

0.0191
0.0098–0.0283

RF 0.9654
0.9534–0.9773

0.0973
0.0779–0.1166

RF 0.981
0.9718–0.9901

0.0334
0.0213–0.0454

RT 0.9463
0.9315–0.9610

0.0673
0.0517–0.0846

RT 0.969
0.9573–0.9806

0.0218
0.0119–0.0316

NB 0.9324
0.9159–0.9488

0.3147
0.2843–0.3450

NB 0.918
0.8995–0.9364

0.4828
0.4491–0.5164

MLP 0.9304
0.9137–0.9470

0.3663
0.3347–0.3978

MLP 0.9111
0.8919–0.9302

0.2953
0.2646–0.3259

2 SVM 0.9116
0.8904–0.9327

0.4263
0.3894–0.4631

4 SVM 0.9482
0.9355–0.9608

0.2688
0–0.6305

RF 0.9734
0.9614–0.9853

0.0682
0.0494–0.0869

RF 0.9713
0.9641–0.9784

0.0547
0–0.2402

RT 0.9576
0.9425–0.9726

0.0561
0.0389–0.0732

RT 0.9668
0.9585–0.9750

0.0482
0–0.2229

NB 0.9263
0.9068–0.9457

0.2834
0.2498–0.3169

NB 0.9818
0.9771–0.9864

0.06
0–0.2537

MLP 0.9304
0.9114–0.9493

0.331
0.2959–0.3660

MLP 0.9911
0.9888–0.9933

0.01
0–0.0911
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5.3 � Identification result

Based on the encouraging results obtained in authentication 
mode, we conducted an experiment to evaluate the effective-
ness of the proposed method under identification mode as 
well. Table 5 illustrates the experimental results for each 
classifier. It can easily be observed that the SVM classi-
fier achieved the best results in identification. More specifi-
cally, the average accuracy and EER% values are 97.5 and 0 
respectively. Our experimental results under both authentica-
tion and identification mode, are competitive with the results 
stated by (Do et al. 2014). Different from their work, we 
propose an energy efficiency model that requires less sensors 

reading to authenticate the smartphone user. Moreover, the 
effectiveness of our proposed model is evaluated using a 
real multimodal dataset collected under realistic acquisi-
tion scenarios. Finally, the effectiveness of each feature of 
the final selected subset is also examined independently for 
both authentication and identification mode, Figs. 5 and 6 
illustrate the impact of each feature on EER value of the five 
classification models used in this study.

5.4 � Realistic usage scenarios

The smartphone user may utilize his/her device under dif-
ferent conditions, such as stress and fatigue, or on different 

Fig. 4   The average FAR and FRR values of each classifier per scenario

Fig. 5   Multimodal authentica-
tion with a single feature
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types of ground. Therefore, the study also verifies the effec-
tiveness of the proposed method under several walking and 
typing conditions. To evaluate the efficacy of our approach 

across a variety of real-life conditions, in the second experi-
ment within our study consisted of only two subjects (1 
male, 1 female). The two volunteers were in good health. In 
this experiment, we address a series of real-life walking and 
typing conditions: fatigue, walking in high-heel shoes, and 
walking on different types of ground (flat and level, grassy 
and uneven forest terrain). Data were collected from par-
ticipants on two separate days. On the first day, data was 
gathered from the subjects throughout the day under differ-
ent levels of fatigue (morning, noonday, evening). On the 
second day, the two participants were asked to walk and 
type in three distinct experimental settings, Fig. 7 shows the 
different types of grounds used in this experiment. Finally, 
the woman was asked to wear high-heel shoes (100 mm 
heel height) and type while walking in a straight corridor. 
In total, 45 iterations were completed by the woman and 40 
iterations by the man. Table 6 reports the accuracy and EER 
values of participants under the aforementioned conditions. 
Results suggest that the change of user conditions or envi-
ronmental grounds does not affect the performance of the 
proposed system. Many research works such as (Ulinskas 
et al. 2018, 2017) have reported that a person’s typing char-
acteristics could be effected by the level of fatigue during 
the day. We observe that our approach overcomes this issue; 
by using multimodal traits it is highly unexpected that the 
system would be affected by the above-mentioned condi-
tions. However, some diseases such as Parkinson’s can affect 
the walking and typing rhythm of the user which leads to a 
significant change in the characteristics of these two biom-
etrics. In future works, we aim to address this by expand-
ing the number of participants and taking into consideration 
different health conditions in order to provide even more 
accurate results.

5.5 � Resistance against attacks

From the results of the aforementioned experiments, we 
validate that multimodal biometric-based gait and keystroke 
dynamics represent a reliable identifier of the smartphone 

Table 3   Significance test of EER

Test Values

Chi square statistic value 81.56186
Chi square critical value 21.026
P value < 0.00001
Level of significance 0.05
Statistic value in the Marascuilo procedure |p1-p2|

|p1-p3|
|p1-p4|
|p2-p3|
|p2-p4|
|p3-p4|

0.0308
0.3126
0.2734
0.3435
0.2426
0.5861

Critical value in the Marascuilo procedure |p1-p2|
|p1-p3|
|p1-p4|
|p2-p3|
|p2-p4|
|p3-p4|

0.2805
0.2055
0.3876
0.2174
0.3940
0.3446

Table 4   Performance of keystroke dynamics

SVM RF RT NB MLP

Acc 90.68 94.34 94.18 96.91 96.66
EER 47.56 11.47 15.44 13.94 13.75
Rec 95.10 96.20 94.00 96.15 96.45

Table 5   Performance of the proposed multimodal system under iden-
tification mode

SVM RF RT NB MLP

Acc 97.50 96.50 68.00 90.40 93.30
EER 0 0 8.06 0 0
Rec 97.00 96.00 65.00 89.00 93.00

Fig. 6   Multimodal identification 
with a single feature
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user. However, walking and typing behaviors can be easily 
observed and impersonated by an attacker. To evaluate the 
security strength of the proposed method against various 
attacks, we designed a real-world experiment which included 
10 participants (6 males, 4 females). The participants were 
randomly selected. Five of them had already participated in 
the previous experiment, whereas the remaining five were 
new volunteers without any prior knowledge of the system. 
In same-gendered pairs, each subject played either the role 
of an attacker or victim and then exchanged roles with their 
partners. There were two types of attacks considered in the 
experiment:

•	 Zero-effort attack: the attacker has no prior knowledge 
about the victim’s behavior, he randomly tries to type and 
walk using the victim’s smartphone.

•	 Minimal-effort mimicking attack: the attacker has to 
observe the victim’s behavior before trying to mimic 
him/her. The attacker was asked to watch the target walk-
ing and typing as many times as they wanted, to focus on 
his/her behaviors, and then to try to mimic him /her by 
walking side by side.

Before starting the experiment, we first collected data 
from the victims; they were asked to walk at their usual 
pace and type using the same sentence provided in the previ-
ous experiment (see Sect. 2). Then each attacker was asked 
to make 20 attempts per attack. Every participant in this 
experiment executed 20 rounds as a victim and 40 rounds as 
an attacker, in total, 80 × 10 trials were done.

To estimate the FAR values, we matched the mimicked 
gait samples of the attacker to the victim’s gait samples, 
Fig. 8 shows the FAR values of each attacker for the zero-
effort attack and minimal-effort attack. An average FAR 

value of 0.112% for the ten attackers under the zero-effort 
attack and 0% under the minimal-effort attack. The results 
demonstrate the resistance of the proposed method against 
these types of attacks. Moreover, we noted no significant 
difference between FAR values of the two examined attacks 
which proved that imitating the target’s typing and walking 
behavior did not give the attacker a higher chance of match-
ing the victim’s template.

It should be mentioned that all participants declared it dif-
ficult to emulate a target’s walking and typing manner at the 
same time. Focus on behavior impersonation lead to failing 
to simultaneously remain focused on the second behavior of 
the target, which validates the hypothesis that multimodal 
systems generally provide higher levels of security against 
attacks.

6 � Discussion

The evaluation of the proposed method showed a high-secu-
rity level (99.1% accuracy). The results from our experiment 
measured the security strength of the smartphone-based 
gait and keystroke authentication system against zero-effort 
attacks and minimal-effort mimicking attacks and demon-
strated that the proposed system’s ability to resist such types 

Fig. 7   The experimental settings

Table 6   Performance of the system under different conditions

Female Male

Acc EER Acc EER

Different grounds 100% 0% 100% 0%
Different levels of fatigue 100% 0% 100% 0%
Wear high-heel shoes 100% 0%
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of attacks. However, the security level alone cannot measure 
the success of an authentication system, evaluating usabil-
ity is also an essential part of the system. Therefore, we 
developed a study questionnaire containing six questions 
in a 5-point Likert scale (from strongly agree to strongly 
disagree, respectively). After completing the data collection 
task, participants were asked to answer the questions. We 
first asked the smartphone users whether they preferred to 
use behavioral authentication methods over the traditional 
authentication methods, such as passwords and patterns, for 
smartphone authentication. Of the participants, 86% agreed 
or strongly agreed that they preferred to use behavioral 
authentication systems over traditional ones. Afterwards, 
92% of participants agreed or strongly agreed that the pro-
posed system was easy to use. Of the users, 68% reported 
that they often type while walking, whereas 20% of them 
disagreed which meant it was not convenient for them simul-
taneously type and walk. The balance between security level, 
time, and energy consumption was also questioned where 
40% of users had declared that it was acceptable for them to 
decrease the security level of the system to gain lower time 
and memory consumption whereas 40% of them disagreed 
or strongly disagreed with having a decrease in the security 

level. Moreover, 44% of the volunteers agreed or strongly 
agreed with the continuous sensing’s draining impact on the 
battery life as long as they received a high-security system; 
however, 28% of them disagreed. Finally, participants were 
asked about the security of the proposed system. Of par-
ticipants, 68% of them agreed or strongly agreed that it was 
difficult to attack the system, while only 8% of users agreed 
or strongly agreed that the system could be easily attacked. 
We observed that user preference differs from person to per-
son, where some participants considered security level as the 
most important criteria in authentication systems whereas 
the rest preferred not only high levels of security but also 
convenient and fast systems. Based on this analysis, we can 
say that the proposed smartphone-based gait and keystroke 
authentication system might have high acceptance rates by 
real life users (Fig. 9).

7 � Conclusion and future works

Continuous authentication methods based on user behavior 
have been widely used to enhance smartphone security. In 
this paper we have proposed a new continuous biometric 
multimodal authentication system for smartphone users. 
Our approach is based on analyzing gait signals and key-
stroke dynamics acquired from built-in smartphone sen-
sors, and then applying a fusion method on the acquired 
biometrics to build a final profile for user authentication 
purposes. A series of experiments consisting of various 
realistic acquisition scenarios was conducted with 20 
participating subjects.The achieved results in terms of 
FAR = 1.68, FRR = 7, EER = 1 and accuracy 99.1% are 
very promising for further investigation in designing 
enhanced authentication systems on smartphones. The 
security strength of the proposed system was investigated 
against two types of attacks, the zero-effort attack and 
minimal-effort mimicking attack. Our evaluation shows 

Fig. 8   Performance of the proposed multimodal system against zero-
effort attack and minimal effort mimicking attack

Fig. 9   Preferences of the smartphone users
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that the proposed method is robust and secure regardless of 
the level of knowledge about the target’s behavior. While 
smartphone use does happen in positions beyond those 
considered in this study (sitting, standing, lying in a bed, 
etc), this can be addressed by enhancing the system with 
a seamless activity recognition step to detect the user’s 
current activity and provide the right model based on spot-
ted activity. In future work, we plan (1) to evaluate the 
performance of the method through expanding the partici-
pant base (2) to include more complex scenarios for data 
collection (3) to apply advanced segmentation methods 
and extract new features to improve the accuracy of the 
proposed multimodal biometric system.
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