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Abstract
Although auto-identification devices such as radio frequency identification and smart sensors have been widely used in 
shopfloor management and control, major challenges still hinder the vision of real-time and multi-source data-driven mate-
rial delivery in a manufacturing big data environment. For instance, how to collect manufacturing big data in a timely and 
accurate manner, and how to discover the hidden pattern from the manufacturing big data rapidly to improve the efficiency 
of material delivery. To address these challenges, in this paper, a framework for shopfloor material delivery based on real-
time manufacturing big data is proposed. Key technologies of the proposed framework are investigated. Firstly, a solution 
of data sensing and acquisition is designed. Secondly, the methods of manufacturing big data preprocessing and storage are 
developed to integrate and share the manufacturing data in a unified data format, and to ensure the reusability of the data. 
Thirdly, a graphic model for the manufacturing big data mining is presented. An improved Apriori-based association analysis 
model is exploited to identify the frequency trajectories of material delivery. In order to demonstrate the implementation 
of the proposed framework, a proof-of-concept scenario is designed. The key findings and insights from the experimental 
results are summarized as managerial implications, which can guide manufacturers to make more informed decisions for 
the shopfloor management.
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1  Introduction

Shopfloor logistics planning and scheduling heavily rely 
on the arrival of material (Ning et al. 2016), thus, deci-
sions on logistics trajectory of material delivery are criti-
cal to improving the productivity. Generally, the trajectory 
of material delivery is determined by the quantity of items 
to be produced and the production capacity of the exist-
ing manufacturing system (Huang et al. 2007). Due to the 
field data of production status cannot be captured and shared 
within manufacturer enterprise in a timely fashion, there are 
some disadvantages in traditional manufacturing system 
such as lagged material delivery and low equipment utili-
zation. Managers involved in the production process may 
make material delivery decisions based on the incomplete 
and inaccurate manufacturing data, which could lead to inac-
curate decisions and operational inefficiencies (Zhang et al. 
2017c). In addition, with the development of the customized 
production paradigm, manufacturers need to: (1) carry out 
near real-time information interaction and sharing; (2) make 
accurate material delivery decisions; (3) shorten the delivery 
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lead time and provide diverse products for its customers. 
Therefore, the traditional material delivery methods are no 
longer applicable to the new production paradigm.

Recently, with the rapid development of Internet of 
Things (IoT) (Tao et al. 2014; Jararweh et al. 2015), indus-
trial internet (Posada et al. 2015), and Industrial Internet of 
Things (IIoT) (Tao et al. 2018a) technologies, many manu-
facturers have adopted these advanced information technolo-
gies to implement real-time traceability in improving the 
performance of shopfloor planning and control (Zhang et al. 
2018a, c), and a huge amount of real-time and multi-source 
data has been produced during the manufacturing process. 
As reported by Nedelcu (2013), manufacturing sector kept 
more data than other sectors, estimated close to two Exa-
bytes of new data stored in 2010. These data can be used by 
manufacturers to support intelligent and timely production 
decisions (Xue et al. 2016), to assist manufacturers to predict 
what they will do tomorrow (Zhang et al. 2017a).

As a core part for improving the production efficiency, 
material delivery in shopfloor has attracted widely attention 
in academia and industry. Khayat et al. (2006) proposed an 
integrated formulation to solve the combined production 
and material delivery scheduling problems. Based on the 
analysis of the vehicle routing problem with manual materi-
als handling (VRPMMH), two models of VRPMMH were 
developed by Boonprasurt and Nanthavanij (2012) to deter-
mine the optimal fleet size and delivery routes to minimize 
the total cost. The self-organizing assembly system was pre-
sented by Frei et al. (2014) to spontaneously organize pro-
duction machines in the shopfloor in response to the arrival 
of products order and materials. A future manufacturing 
system in the big data environment was described by Zhang 
et al. (2017b). The authors pointed out that the production 
process and material delivery will be more efficient based on 
the huge amount of real-time manufacturing data. To remain 
sustainable competitive advantage (SCA) (Liu and Liang 
2015) of an automobile parts manufacturer, an automated 
tracking system for management of material delivery was 
designed by Jamaludin et al. (2018).

Despite some progress have achieved in the field of 
shopfloor material delivery, major challenges still exist in 
achieving the vision of real-time and multi-source data-
driven decision-making of shopfloor material delivery in a 
manufacturing big data environment. They are summarized 
as follows:

•	 How to design a solution of data acquisition based on 
typical big data infrastructure, and then apply intelligent 
sensing devices and information technologies to make 
heterogeneous manufacturing resources have the ability 
of active sensing and interacting, so that the real-time 
material delivery planning can be achieved. By deploying 
the intelligent sensing devices to heterogeneous manufac-

turing resources (e.g. operator, machine, material pallet, 
trolley), the real-time status data of the manufacturing 
resources in different production stages could be tracked 
and captured in a timely fashion. Based on these multi-
source data, the real-time data-driven frequent trajectory 
of material delivery can be mined to promote the delivery 
efficiency.

•	 How to develop a solution to: (1) preprocess the cap-
tured manufacturing big data; (2) store them in different 
data management systems, so as to ensure the availability 
and reutilization of the manufacturing data in future data 
analysis. Through the implementation of data preproc-
essing technologies, the multi-source and heterogeneous 
manufacturing data could be integrated and then shared 
among different production stages. Moreover, in order to 
promote the quick retrieval and deep analysis of data, a 
large amount of heterogeneous manufacturing data needs 
to be stored according to different data types. Based on 
these operations, reliable and available data could be 
acquired, from which reasonable and effective decisions 
of material delivery can be made.

•	 How to establish a data mining model according to 
the multi-sources and integrated manufacturing big 
data to mine the hidden pattern or association relation-
ships among different production stages in a timely and 
dynamical mode, so as to facilitate shopfloor managers 
to make accurate and more-informed material delivery 
decisions. In the traditional material delivery approach, 
the modeling method based on multi-source manufactur-
ing data is rarely taken into account. In fact, in order to 
improve material delivery decision-making, it is neces-
sary to establish a data analysis model based on the mate-
rial delivery relevant data that from different production 
stages and various manufacturing resources.

To address the above challenges, in this paper, a frame-
work for shopfloor material delivery based on real-time 
manufacturing big data (SMD-RMBD) is proposed. The rest 
of the paper is organized as follows. Section 2 reviews the 
literature related to this research topic. Section 3 presents the 
framework of SMD-RMBD. Then, by using the proposed 
framework, several key enabling technologies are developed 
and discussed. An application scenario and a series of exper-
iment are designed and conducted in Sect. 4. Conclusions 
and future works are given in Sect. 5.

2 � Literature review

Two aspects of literature are reviewed in the following, one 
is real-time manufacturing data acquisition, and the other is 
shopfloor material delivery.
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2.1 � Real‑time manufacturing data acquisition

In recent years, some scholars have explored the practice 
of IoT or IIoT technologies in shopfloor management, espe-
cially for the radio frequency identification (RFID)-based 
applications. An RFID-enabled system was designed to 
monitor the consumption of resources in a warehouse 
(Poon et al. 2009), where data collection and sharing were 
facilitated by RFID. To assist the managers’ intentions 
to improve operational conditions under the adoption of 
RFID, a framework was developed to support collabora-
tion at different levels within companies (Sari 2010). Based 
on market-based decision-making framework, an approach 
for RFID-enabled finished vehicle deployment planning 
was proposed by Kim et al. (2010) to coordinate real-time 
changes of vehicle locations. Based on RFID technology, a 
digital warehouse system in the tobacco industry was pro-
posed by Wang et al. (2010). A case in the tobacco industry 
was studied to illustrate the feasibility of the proposed sys-
tem. The authors pointed out that the system can help ware-
house managers to achieve better material management and 
inventory control. A multi-agent based real-time production 
scheduling method for RFID-enabled ubiquitous shopfloor 
environment was proposed by Zhang et al. (2014) to acquire 
shopfloor data and to facilitate the realization of real-time 
scheduling. An RFID-based decision support system (DSS) 
was proposed to improve the production visibility and the 
decision-making performance in a distributed manufacturing 
environment (Guo et al. 2015). To achieve energy-saving 
and to prolong the lifetime of the whole manufacturing sys-
tem, Wang et al. (2016) proposed a green IIoT architecture. 
Based on IIoT data, the authors designed a sleep scheduling 
and wake-up protocol to predict the sleep intervals of a sys-
tem. For automobile engines remanufacturers, it is difficult 
to implement real-time production scheduling due to the lack 
of timely and accurate data of remanufacturing resources. 
To address this problem, an RFID-enabled remanufactur-
ing environment was designed and tested by Zhang et al. 
(2018b) to monitor the real-time status of the disassembled 
engine parts and the remanufacturing resources. Wang et al. 
(2018a) explored an IoT-enabled energy efficiency optimiza-
tion method for energy-intensive manufacturing enterprises. 
The IoT technologies were applied to sense the real-time 
primitive production data (e.g. energy consumption data and 
resources status data).

2.2 � Shopfloor material delivery

Many strategies and models have been proposed by research-
ers in the shopfloor material delivery domain to improve the 
material distribution. A novel vehicle route planning model 
for transporting hazardous materials with multiple time-var-
ying attributes was proposed by Meng et al. (2005). Im et al. 

(2009) developed a vehicle-dispatching method to minimize 
the vehicle blocking and delivery times in automatic mate-
rial handling systems of 300 mm semiconductor manufactur-
ing. The discrete event simulation models were developed 
to evaluate the performance of the proposed method. Qu 
et al. (2012) illustrated a case of implementing RFID-based 
shopfloor material management for household electrical 
appliance manufacturers. Some research questions such as 
how technical, social and organizational issues of applying 
RFID for material distribution were addressed. Zhang et al. 
(2015) presented a dynamical model in optimizing trans-
port tasks for shopfloor material handling. An approach to 
excavate logistics trajectory from RFID-enabled shopfloor 
data was proposed by Zhong et al. (2015). A series of experi-
ments were designed and tested to evaluate the practicality 
of the proposed approach. Authors found that the proposed 
approach could be implemented in the supply chain manage-
ment field, which is using RFID for facilitating the opera-
tions. Mohammed et al. (2017) investigated the optimiza-
tion method of automated warehouse system in terms of the 
optimal number of storage racks and collection points. The 
applicability of the developed method was examined using a 
case study. The result showed that the proposed solution can 
be used to minimize the travel time of products from storage 
racks to collection points. An real-time information-driven 
optimization model of the assembly process in a synchro-
nous line and a cyber-physical system (CPS) based smart 
control model for shopfloor material handling were inves-
tigated by Zhang et al. (2018d). On this basis, Zhang et al. 
(2018a) developed a model for production-logistics systems 
based on CPS and IIoT. The authors recommended that the 
proposed model can be used to investigate self-organizing 
configuration mechanisms and to improve the efficiency of 
shopfloor logistics. A digital twin-driven product design 
and manufacturing method based on cyber and physical 
convergence were proposed by Tao et al. (2018b). These 
approaches provide new capabilities to address the problems 
in material handling.

As stated in the foregoing sections, many studies related 
to material delivery mainly focused on traditional manu-
facturing environment. The combination of advanced 
information technologies and big data will bring the new 
opportunities to improve many manufacturing dimensions 
(Saucedo-Martínez et  al. 2017). For instance, the large 
amount of data generated in the shopfloor will be used to 
improve the accuracy of real-time material delivery deci-
sions. Therefore, some research gaps should be further 
addressed in the manufacturing big data environment.

Firstly, from the perspective of real-time manufactur-
ing data acquisition (Sect. 2.1), many researchers only 
focused on the traditional manufacturing environment. In 
order to fulfill the real-time big data-driven material deliv-
ery, a new IoT solution based on big data infrastructure 
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is imperative. Within this solution, IoT devices will be 
deployed to heterogeneous manufacturing resources, and 
make them are able to sense and interact in a timely fash-
ion. As a result, the real-time and multi-sources manufac-
turing big data can be captured. Meanwhile, what kind 
of IoT devices are needed and where these devices are 
installed should also be considered.

Secondly, manufacturing big data is characterized by real-
time and multi-sources as well as heterogeneous (Wang et al. 
2018b). Some incomplete and incorrect records are included 
in the raw manufacturing big data, which may affect the 
accuracy of decision-making. However, the issues of data 
processing and data integration in different production 
stages were seldom considered by existing material deliv-
ery relevant research (Sect. 2.2). Therefore, the data quality 
for modeling and analyzing is not guaranteed. In addition, 
various data storage solutions should be designed to store 
the non-real-time and heterogeneous manufacturing data to 
ensure the integrality and reusability of data for further deep 
analysis.

Thirdly, from the perspective of the data modeling, the 
research on integrated applications of the multi-sources 
manufacturing data for material delivery trajectory modeling 
is seldom involved (Sect. 2.2). Moreover, many research was 
focused on the strategy of centrally assigned according to a 
given task (Zhang et al. 2015). However, during the produc-
tion processes, the deviation between execution and the pre-
planned material delivery trajectory is often produced due 
to the unpredictable production exceptions. Therefore, based 
on the multi-sources and real-time manufacturing big data, a 
new data modeling method should be considered to discover 
the optimal logistic trajectory in a timely and dynamical 
mode, and reduce the deviation.

To address these research gaps, a framework for SMD-
RMBD is presented and tested to achieve real-time and 
multi-source data-driven material delivery in the manufac-
turing big data environment. Generally, a framework can 
be used to describe the layout of the whole system, to sim-
plify the complex relationships among all components, and 
to ensure the validity of the entire system (Vikhorev et al. 
2013). Furthermore, according to a thesaurus dictionary by 
Oxford University Press, a framework is defined as “a set 
of beliefs, ideas or rules that forms the basis of a system” 
(Oxford University Press 2014). As implied by these, the 
framework is at the highest level when developing a complex 
system. In addition, the topic of the paper is in its infancy as 
described in paragraph 4 of Sect. 1. Therefore, it is regarded 
to target a framework first, which then may be built upon to 
develop a model or a method, to be the most effective way 
for advancing the knowledge for the topic. The proposed 
framework in Sect. 3 is a set of ideas including data acquisi-
tion, data processing and data modeling that form a basis of 
an analysis system for manufacturing big data and aims to 

show how the processes of big data-driven material delivery 
could be implemented.

3 � Framework for shopfloor material delivery 
based on real‑time manufacturing big 
data

By applying IoT technologies in the processes of shopfloor 
production and management, a smart manufacturing envi-
ronment is established, and the real-time and multi-source 
big data of heterogeneous manufacturing resources can be 
captured. Big data processing and analysis technologies are 
used to preprocess and analyze the manufacturing big data, 
to discover the hidden rules and association relationships 
from them. With the assist of the discovered association 
relationships, better decision-making for material delivery 
are provided to managers. Based on the above-mentioned 
procedure, a framework for SMD-RMBD is designed as 
shown in Fig. 1.

3.1 � Manufacturing big data sensing and acquisition

The configuration of the smart manufacturing objects is sig-
nificant to enhance the sensing capability of the heterogene-
ous manufacturing resources. The manufacturing resources 
are made ‘smart’ by equipping the physical manufacturing 
resources with intelligent sensing or auto-identification 
(Auto-ID) devices to achieve a certain degree of intelligence 
(Zhang et al. 2017c). In this framework, sensing devices 
such as RFID (e.g. RFID tags and readers), smart sensor, 
Personal Digital Assistant (PDA) and smart card are used 
to capture the real-time big data of manufacturing resources 
in the shopfloor. Networking technology such as Backbone 
Concentrator Node (BcN), WLAN and IPv6 are used to 
transmit the captured data from sensing devices to the enter-
prise database. The device middleware is used to collect and 
filter raw data from sensing devices.

The RFID is configured in different ways. In any case, 
trays of materials are deployed with ultra-high frequency 
(UHF) RFID tags and become smart objects. Therefore, the 
location information of the trays can be traced timely. The 
tags also contain information about what material is being 
involved and how many. Critical tools and key parts of the 
products are also deployed with tags due to their important 
roles in the following assembly process. The information of 
these tags will be updated during different stages of assem-
bly operations, and are eventually carried over by finished 
products throughout the manufacturing processes. In addi-
tion, inventory areas, workstations and buffers for differ-
ent materials, work in process (WIP) and finished products 
are also tagged. Each machine tool is equipped with RFID 
readers. Generally, UHF RFID readers are recommended 
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for real-life implementation due to its affordable cost and 
practically acceptable reading capability. The RFID readers 
are also deployed to vehicles that are directly used for mov-
ing material trays, toolboxes, WIP and finished products to 
read the real-time status information of them. Due to the 
limited space, the specific methods for manufacturing big 
data acquisition are not repeated here. Interested readers 
are encouraged to read the recent publications Zhang et al. 
(2017b, c) of the authors.

3.2 � Manufacturing big data preprocessing 
and storage

Based on the configuration of intelligent sensing or Auto-
ID devices to the manufacturing resources, real-time status 
data of the manufacturing resources can be captured during 
the production process. However, there is some ‘noise’ (e.g. 
redundant, incomplete and incorrect data records) included 
in the raw manufacturing big data, which may not be ana-
lyzed directly and may affect the accuracy of shopfloor deci-
sions. Therefore, the data preprocessing operations such as 
cleaning, integration, reduction, and transformation should 
be implemented so as to provide reliable and available data 
for further modeling and pattern discovery (Chen and Honda 
2018). In addition, a huge number of manufacturing data 

need to be stored to provide complete and reusable data for 
further deep data analysis.

3.2.1 � Multi‑source and heterogeneous big data 
preprocessing

The quality of data is foremost before running an analysis. 
Therefore, data preprocessing must be done to remove the 
‘noise’ before the data is stored and analyzed. The data pro-
cessing and storage solution is designed as shown in Fig. 2.

Firstly, the raw manufacturing big data have a large 
amount of redundancy, thus, a data cleansing operation 
should be performed to reduce the redundancy. Due to the 
limited space, the specific procedures for data cleaning oper-
ation are not repeated here. Interested readers are encour-
aged to read Zhang et al. (2017b). Secondly, the cleansed 
manufacturing big data is still scattered and unusable during 
shopfloor decisions. It is essential to carry out a data inte-
gration operation. Due to it is difficult to express the multi-
source and heterogeneous data in a model, a unified data 
modeling method is proposed to integrate the manufacturing 
big data, and then to construct a logically unified framework 
to express the manufacturing big data. Therefore, the con-
cept of meta-model (Molano et al. 2017) is introduced to 
build the unified data model. Four types of meta-model are 
illustrated in Table 1.
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Fig. 1   Framework for shopfloor material delivery based on real-time manufacturing big data
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Take the material delivery data meta-model as an exam-
ple, the modeling procedures are illustrated as follows: 
(1) define the data abstraction language, such as associa-
tion relationship, delivery rule and standard; (2) describe 
the material delivery data (e.g. delivery scheme, attribute 
data) and their association relationship by the predefined 
data abstraction language; (3) establish domain ontology 
repository to describe the relationships between concept 
and attributes, and describe the constraints between attrib-
utes and relationships; (4) establish top-level meta-model 
to define multiple meta-model of various manufacturing 
data, and the overall association relationships and unified 
data format; (5) achieve the model sharing and data integrat-
ing through instantiation of meta-models. The other three 

meta-models are not included as the modeling processes are 
basically similar.

Thirdly, the integrated data sets are usually still huge. 
Therefore, a data reduction operation should be performed 
to obtain a reduced representation of the data sets that are 
much smaller in volume, yet closely maintains the integrity 
of the original data.

Finally, the reduction manufacturing data must be 
transformed so that the patterns found may be easier to 
understand.

The preprocessed manufacturing big data are transmitted 
to the enterprise database, meanwhile, shared and applied 
by various manufacturing stages to optimize the production 
processes.

Raw  manufacturing big data 

•Design
•Material delivery
•Shop floor logis�c

Big data preprocessing

Data 
integra�on

Data 
cleaning

Data reduc�on
(dimensionality 
reduc�on/data 
compression …)

Data transforma�on
(a�ribute construc�on/ 

normaliza�on/discre�za�on …)

Assembly data 
modeling

Material 
delivery  data 

modeling
Processing 

data modeling

Inspec�on 
data modeling

Unified modeling

DDBS XML

NoSQL/ NewSQL/ HDFS

Structured Semi-Structured

Unstructured

XML
Hadoop

HT-DAMIS

Storm

RT-DGMIS

Big data processing and storage 

•Inventory
•BOM
•Processing

•Assembly
•Warehouse
•Inspec�on
•…

Fig. 2   Big data preprocessing and storage solution

Table 1   Four types of data meta-model and functions

Meta-model Functions

Top-level meta-model Describing the integrated data model
Material delivery data meta-model Describing the multidisciplinary data and the file information during the material delivery process
Processing data meta-model Describing the data model of technology and process, and the association relationship between them
Assemble data meta-model Describing the data and the file information during the assembly process
Inspection data meta-model Describing the quality data model and the association relationship among them
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3.2.2 � Multi‑source and heterogeneous big data storage

According to the data classification standard in the literature 
(Zhang et al. 2017b), three kinds of big data management 
and storage solutions are elaborated as follows.

With more and more structured data is produced and col-
lected in the shopfloor, two typical issues are appearing: (1) 
historical and real-time data are stored in the same database, 
which is impacting the performance of data processing; (2) 
the information value-added of historical data cannot be 
realized. Aiming to address these two issues, data genera-
tion management information system based on real-time 
data (RT-DGMIS) and data application management infor-
mation system based on historical time data (HT-DAMIS) 
are designed. RT-DGMIS is used for managing the real-time 
data, while HT-DAMIS is responsible for collecting the data 
that are produced by RT-DGMIS. Storm and Hadoop com-
puting framework are used to process the real-time and non-
real-time data, respectively. Distributed Data Base System 
(DDBS) is used to store the structured data.

Semi-structured data is a type of data which is between 
structured and unstructured. For example, technical docu-
ments described using markup languages like XML, and 
real-time status data of WIP returned back to the backend 
system by closed-circuit television. There are not only struc-
tured data such as location and time but also unstructured 
data such as the picture. XML is a primary standard for 
expressing the structured or semi-structured data. Therefore, 
it can be used to describe semi-structured manufacturing big 
data. As a result, the semi-structured data are transformed 
into a standardized data format and stored in DDBS.

Unstructured data is those without format, spatial and 
temporal constraints. A great amount of unstructured data 
is producing by heterogeneous manufacturing resources. 
Because DDBS cannot meet the application requirements 
of big data in flexibility and scalability (especially the scale 
out), the distributed approach such as Hadoop Distributed 
File System (HDFS) (Haydaya and Marchildon 2012) and 
not only Structured Query Language (NoSQL) (Lucchese 
2018) data management system are used to manage and store 
the unstructured manufacturing big data.

3.3 � Manufacturing big data mining and application

By means of the big data analytics and mining technolo-
gies, the data mining model is established to mine the hid-
den pattern and knowledge from the real-time and histori-
cal lifecycle manufacturing big data. The managers of an 
enterprise can adjust and optimize the whole production 
processes according to knowledge feedback. In addition, by 
integrating the mined knowledge, application services such 
as cost and quality control, shopfloor dynamic scheduling, 
route optimization of material delivery, etc. can be achieved.

3.3.1 � A graphic model for mining of manufacturing big 
data

To achieve the above-mentioned application services, 
a graphic model for mining of manufacturing big data is 
designed as shown in Fig. 3. General models and specific 
models are presented in this paper according to the various 
application requirements of shopfloor.

Firstly, the authors of this paper developed four types of 
general models. The functions of these general models are 
introduced as seen in Table 2.

Secondly, in this research, four types of specific models 
are also developed (as seen in Fig. 3). The special model is 
built for a specific application. For example, if an applica-
tion service of route optimization for material delivery is 
proposed, the specific model of material delivery and related 
dataset are selected, by adjusting the control parameters of 
the model and optimizing the data sets, the optimal path of 
material delivery can be achieved. The other three specific 
models are not discussed here as the establishing principles 
are similar.

From left to right of the Fig. 3, the graphic model is 
divided into data source module, data mining model module, 
data mining result set module and application requirement 
module. Data source module provides completed manufac-
turing data for data mining. Data mining module involves 
data modeling operations, where general models and spe-
cific models are included. These models are responsible for 
extracting original data and discovering hidden knowledge 
from the data source module. The data mining result set 
module is a set of data mining results. According to dif-
ferent application requirements of shopfloor, suitable data 
and models are selected and established to perform mining 
operations. Application requirement module is a series of 
demands of shopfloor management, which applies mined 
knowledge of the result set module to achieve the require-
ments of shopfloor.

3.3.2 � An improved Apriori‑based association analysis 
model for mining material delivery trajectory

This subsection develops a model for mining material deliv-
ery trajectory based on the above-mentioned graphic model. 
Discovering association relationships from the dataset are 
vital in big data relevant applications (Hofmann 2017). 
Association analysis is an effective method to discover the 
association rules among items that occur synchronously in 
a given dataset. Therefore, a large amount of manufacturing 
data in shopfloor can be used to mine association rules and 
frequent patterns related to processing quality of the prod-
ucts, requirements of the customer, frequent trajectories of 
material delivery, and so on. As a typical frequent pattern 
mining method, the Apriori algorithm can be used to fast 
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extract implicit association rules from large datasets and to 
support decision-making (Agrawal and Srikant 1994). How-
ever, the traditional Apriori algorithms have some inherent 
defects when dealing with datasets that are continuously 
generated and dynamically updated: scanning the database 
frequently; generating a large number of candidate sets and 
hence presenting a low computational efficiency (Oswald 
and Sivaselvan 2018). Therefore, the traditional Apriori 

algorithms may not suitable for real-time manufacturing 
big data environment.

With that in mind, an improved Apriori-based model for 
mining material delivery trajectory is proposed to enhance 
the efficiency of data mining and to achieve the unity of real-
time and accurate planning of material delivery trajectory. 
It means that the improved Apriori-based model not only 
can accurately discover the frequent trajectories of materials 
delivery but also can enhance the efficiency of handling con-
tinuously updated data. The following paragraphs introduce 
some basic definitions in the improved Apriori-based model.

Definition 1  Given a node of the material delivery process 
in the form (ji

bt
, pi

bt
,mi

bt
) , ji

bt
 represents the label of material 

type, pi
bt

 represents the label of current production stage for 
processing the material, and mi

bt
 represents the label of the 

machine that processes the material. Subscript b represents 
the material’s batch and t represents the timestamp to start 
processing the material.
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Table 2   Types and functions of the general model

Types of model Example functions

Clustering Formulating the production plan based on customer 
value analysis

Association Analyzing the quality factor of the product and 
mining the logistics trajectory

Classification Customers churn analysis and fault diagnosis
Prediction Forecasting the order quantity and machine lifetime
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Definition 2  Considering two nodes (ji
bt1
, pi

bt1
,mi

bt1
) and 

(ji
bt2
, pi

bt2
,mi

bt2
) in the same trajectory, if t1 < t2 , it indicates 

that the process represented by t1 is performed before the 
process represented by t2.

Definition 3  By integrating all nodes of material delivery 
processes, a complete trajectory of material delivery from 
the first production stage to the last production stage is 
fo r m e d ,  w h i c h  i s  d e n o t e d  a s  a  ve c t o r 
Ti = [ji

bt
,mi

bt1
,mi

bt2
,… ,mi

btn
] . The location mi

btk
 in the trajec-

tory vector represents the sequence number of the produc-
tion stage in which it is located.

Definition 4  The support of the trajectory pattern P is 
defined by

where T  represents the material trajectory database and Ti 
represents the trajectories in T  containing trajectory pat-
tern P . If the support of a trajectory pattern is not less than 
min_sup (also be called minimum support threshold, which 
is a user-defined factor), the trajectory pattern is regarded 
as a frequent trajectory pattern. If the support of a trajec-
tory pattern is described as min_sup > support ≥ min_cruc , 
the trajectory pattern is a crucial trajectory pattern. Crucial 
trajectory pattern may become frequent trajectory pattern in 
the future as the amount of data in the database is continuous 
increasing (the reasons are illustrated in the following para-
graph), and min_cruc is the minimum threshold of crucial 
trajectory pattern.

Definition 5  The confidence of the trajectory pattern P → N 
is defined by

where Ti represents the trajectories containing P , and Tk 
represents the trajectories containing P and N . If the confi-
dence of trajectory pattern is not less than min_conf (also be 
called minimum confidence threshold), the trajectory pattern 
is considered as a frequent trajectory pattern.

For an actual production environment, the manufactur-
ing data is continuously produced and updated. As the new 
data is added to the database, support and confidence of the 
trajectory pattern extracted from the initial database will be 
changed. Here, the crucial pattern is introduced to update 
the trajectory pattern in a database. For some logistics 

(1)support(P) =

{
Ti|P ⊆ Ti, Ti ⊆ T

}

{T}

(2)confidence(P → N) =

{
Tk|(P,N) ⊆ Tk, Tk ⊆ T

}
{
Ti|P ⊆ Ti, Ti ⊆ T

}

trajectories, they may be not frequent trajectories in the 
initial database. However, these trajectories are likely to 
become frequent trajectories in the future as the manufac-
turing data is continuously increasing. The potential frequent 
trajectory pattern is regarded as crucial pattern, which may 
be significantly important for the future material delivery 
decision-making. Therefore, in the improved Apriori-based 
model, the concept of incremental learning is applied to give 
different weights to the support and confidence of the tra-
jectory pattern in the historical and the real-time databases, 
and then to update the frequent trajectories in a timely and 
dynamical mode.

Based on the above-mentioned basic definitions, the key 
steps of the algorithm for the improved Apriori-based model 
are described in Table 3.

The improved Apriori-based method is enabled by some 
key steps equipped with suitable algorithms. They are fre-
quent and crucial trajectories mining based on historical data 
(procedure 1), and frequent and crucial trajectories extract-
ing and updating based on real-time data (procedure 2).

The purpose of procedure 1 is to mine all frequent trajec-
tories L and crucial trajectories CS from the historical data. 
The input is a set of historical datasets D . The output is a 
set of mined frequent trajectories R and crucial trajectories 
CR which carry accurate information of material delivery 
trajectories. The purpose of procedure 2 is to: firstly mine 
frequent trajectories R+ and crucial trajectories CR+ from 
the real-time data; secondly extract the frequent trajecto-
ries R and crucial trajectories CR that obtained in procedure 
1; thirdly combine the newly generated trajectories R+ and 
CR+ with the previous trajectories R and CR , give different 
weights to the support and confidence of these trajectories, 
and then to update the frequent and crucial trajectories of 
material delivery. The input is a set of real-time datasets D+ 
and the historical trajectories R and CR . The output is a set 
of updated frequent trajectories R′ and crucial trajectories 
CR′ which with different support and confidence weights.

4 � A study of an application scenario

This section describes a proof-of-concept application sce-
nario to demonstrate how to implement the real-time manu-
facturing big data tracking and to discover the optimal mate-
rial delivery trajectory under the presented SMD-RMBD 
framework. A simulation experiment based on the hypotheti-
cal motivating scenario (see Fig. 4) is carried out to validate 
the proposed framework.

4.1 � Deployment of intelligent sensing devices

For simplicity of understanding but without losing general-
ity of the principle, some basic manufacturing resources are 
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Table 3   The key steps of the algorithm for the improved Apriori-based model



1103A framework for shopfloor material delivery based on real-time manufacturing big data﻿	

1 3

selected to configure the intelligent sensing devices and to 
establish a smart manufacturing environment. In this paper, 
RFID devices are used to capture the real-time status data 
of manufacturing resources. The production process consists 
of one warehouse area and one workstation area (as seen in 
Fig. 4).

In the warehouse area, the RFID readers are deployed on 
raw-material loading area, finished product receiving area, 
and vehicles that carry material trays and finished products. 
The RFID readers are also deployed on warehouse gate 
to locate the trays to be delivered and check out the trays. 
On the workstation area, three types of RFID readers are 
deployed. For machines, they are equipped with stationary 
readers. For vehicles that directly used for moving mate-
rial trays and WIP, they are equipped with different intel-
ligent sensing devices. In addition, buffers for materials and 
WIP, critical tool, finished products, trays, etc. are deployed 
with various RFID tags. Operators carry handheld RFID 

devices due to their frequent movement within the shopfloor. 
The deployment information is shown in Table 4. After the 
deployment of RFID devices, all the resources are converted 
into smart manufacturing objects, which are able to sense 
and interact with one another.

4.2 � Multi‑source RFID‑enabled manufacturing data 
preprocessing

Based on the deployment of smart manufacturing environ-
ment, the multi-source and real-time data of manufacturing 
resources are captured. The original datasets of RFID-ena-
bled material delivery within shopfloor have multi-dimen-
sional attributes, such as Electronic Product Code (EPC), 
Time, Machine, etc. (see Table 5). However, the original 
datasets have a great number of redundancies, which will 
affect the trajectory mining of material delivery. Thus text 
mining algorithms, using the programming language R, 
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were built to firstly clean the original RFID datasets, and 
secondly extract metadata for the target data: job, logis-
tic and time information (see Table 6), which are meant 
to exactly describe the affected information of a material 
delivery action. This operation can remove the ‘noise’ and 
reduce the volume of the manufacturing big data, so as to 
improve the efficiency of data analysis. As a result, different 
attributes of material delivery datasets are integrated by job 
type to improve the efficiency of material delivery trajectory 
mining.

4.3 � Mining the frequent trajectory of material 
delivery based on RFID‑enabled manufacturing 
big data

As seen in Fig. 4, in this section, the hypothetical applica-
tion scenario is simulated to mine the frequent trajectory 
of material delivery. The simulation experiments and data 
analysis are performed on a workstation (Intel(R) Core(TM) 
i7-7700K CPU at 4.20 GHz) with 32G of RAM. The operat-
ing system is Windows 10 Enterprise Edition with 64-bit. 

The Matlab 2017a and Python 3 are used to simulate the pro-
duction processes and to perform the association analysis.

The application scenario consists of four production 
stages, and each stage contains several different machines. 
In each production stage, a limited buffer with a volume of 
1000 jobs is given. At any time, a job can only be assigned 
to one machine, and a machine can only process one job. The 
arriving time of orders in the job shop subjects to a Poisson 
distribution. In each order, five kinds of jobs are included. 
The processing time of each job in these four production 
stages is shown in Table 7.

The setting time of machine is included in the process-
ing time. Random mechanical failures are considered in this 
application scenario. If one machine has a mechanical fail-
ure, this machine will not process job until it is repaired. 
The mean time between failures (MTBF) and mean time 
to repair (MTTR) of machines are assumed to subject to an 
exponential distribution.

Based on the above-mentioned assumption and setting, a 
virtual production process is constructed and simulated. In 
addition, in order to discover the material delivery trajectory, 
a total of N = 50 batches of jobs are taken into account for 
simplicity without loss of generality and each batch con-
tains 150 jobs. These batches of jobs traverse the whole four 
production stages. After the data preprocessing operation, 
the improved Apriori-based association analysis model is 
applied to mine the frequent trajectory patterns of mate-
rial delivery for different jobs. The min_sup and min_conf 
thresholds are set as 15% and 75%, respectively. The mined 

Table 4   Deployment information of RFID in shopfloor

RFID type HF/UHF Manufacturing resources Objective

Reader HF Machine Track the trays and the operators
Reader UHF Warehouse gate Locate and check out the trays
Reader UHF Assembly station Check in materials delivered from a warehouse, and report finished 

assembly tasks
Reader UHF Vehicle Track the trays
Tag HF Operator As an RFID staff smart card. Track the real-time data of each operator
Tag UHF Tray Track the real-time data of the tray with materials and WIP
Tag UHF Critical tool Track the real-time data of the critical tools
Tag UHF Critical component Track the real-time data from material/WIP to the product

Table 5   Original RFID datasets

Attributes Depth of information

EPC Job_ID Operator_ID Machine_ID
Time Time_in Time_out Time_duration
AGVs AGV_code AGV_number AGV_load
Machine Falure_code Failure_time Repair_operator
Logistic Process_code Process_sequence Location
Product Batch_ID Material_ID Product_nunber

Table 6   Processed data used for material delivery trajectory mining

Job information Logistic information Time information

Job_ID Process_code Time_in
Batch_ID Machine_ID Time_out

Table 7   Processing time of each job in every stage

Job type Stage 1 Stage 2 Stage 3 Stage 4

Job 1 65 11 56 31
Job 2 38 60 53 59
Job 3 37 35 58 31
Job 4 52 47 47 16
Job 5 72 21 65 34
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frequent trajectory patterns of material delivery for different 
jobs are shown in Fig. 5.

As seen in Fig. 5, the association relationships between 
the five jobs and M6/M7 of stage 2 are not displayed. 
This indicates that there is no strong logistics relationship 
between M6/M7 and other machines during the process of 
completing the five types of jobs. In addition to this, four 
strong association rules of material delivery trajectory for 
four jobs are discovered, as shown in Table 8.

F o r  m a t e r i a l  d e l i v e r y  t r a j e c t o r y  1 
(M1 → M8 → M15 → M20), the support and confidence is 
63.735% and 85.565% respectively, which indicates this 
trajectory is most important for job 3. The job 5 have two 
frequent trajectories, they are (M4 → M10 → M14 → M19) 
and (M5 → M10 → M14 → M19). In these two trajectories, 
three same machines (M10, M14, and M19) are included. 
This means that in this shopfloor, M10, M14 and M19 play 
important roles for job 5. Analogously, the material delivery 
trajectory 4 (M2 → M10 → M13 → M18) is most important 
for job 4. For job 1 and job 2, no strong association rules are 

found, since the support and confidence of these two jobs are 
less than 15% and 75%, respectively.

4.4 � Comparisons and analyses

In order to evaluate the performance and applicability of 
the improved Apriori-based method in the manufacturing 
big data environment, a series of simulated experiments are 
executed and then compared with the traditional Apriori 
method that proposed by Agrawal and Srikant (1994). Dur-
ing this process, four groups of datasets that acquired from 
the above-mentioned application scenario are applied to test 
the efficiency of the improved method. Based on the four 
datasets, the execution time of the two methods for min-
ing frequent trajectory patterns are calculated and shown 
in Table 9, where H-data refers to the number of historical 
data in a dataset and R-data refers to the number of real-time 
data in the same dataset. For example, the dataset (H-data: 
50,000, R-data: 0) represents that there are 50,000 items 
of historical data and zero items of real-time data jointly 
contained in TA.

As seen in Table 9, for dataset TA, the time consumed 
in the improved method is more than the traditional one 
(i.e. 8.5264s vs 7.6774s). In order to discover the frequent 
trajectories and crucial trajectories from an initially his-
torical dataset synchronously, a lower search threshold is 
given to the improved Apriori-based method (as analyzed in 
Sect. 3.3.2). As a result, more time is consumed to scan the 
whole dataset. However, the execution time of the improved 
method outperforms the traditional one when real-time data 

Fig. 5   Frequent trajectory patterns of material delivery material for 
different jobs

Table 8   The strong association 
rules of material delivery 
trajectory for five types of jobs

Trajectory Job type Assigned machines Support (%) Confidence (%)

Stage 1 Stage 2 Stage 3 Stage 4

Trajectory 1 Job 3 M1 M8 M15 M20 63.735 85.565
Trajectory 2 Job 5 M4 M10 M14 M19 30.065 84.035
Trajectory 3 Job 5 M5 M10 M14 M19 29.400 83.673
Trajectory 4 Job 4 M2 M10 M13 M18 19.400 75.601

Table 9   A comparison of execution time for the two methods based 
on four datasets

Datasets Traditional 
Apriori method 
(s)

Improved Apriori-
based method (s)

TA (H-data: 50,000, R-data: 0) 7.6774 8.5264
TB (H-data: 50,000, R-data: 

20,000)
10.6543 3.4482

TC (H-data: 70,000, R-data: 
20,000)

13.6112 3.4913

TD (H-data: 90,000, R-data: 
20,000)

16.4618 3.5023
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is involved (as seen in Table 9): TB (3.4482 vs 10.6543), 
TC (3.4913 vs 13.6112) and TD (3.5023 vs 16.4618). The 
results indicate that: execution time of the improved method 
for mining frequent trajectory patterns from datasets that 
contain real-time data is less than the traditional one, and 
the difference increases more and more (TB: 7.2061 vs TC: 
10.1199 vs TD: 12.9595) as the continuous increase of the 
historical data.

As the new and real-time manufacturing data is added 
to the database, the traditional Apriori method scans the 
historical and real-time data simultaneously in the data-
base many times to discover the frequent trajectory patterns 
(Guo et al. 2017). As a result, more time is consumed in 
this process. This indicates that the traditional method is 
not suitable for near real-time logistics trajectory mining 
in a manufacturing big data environment. However, in the 
same case, the improved method firstly analyzes the newly 
added data to obtain a series of new frequent trajectories, 
and secondly combines these newly generated trajectories 
with the previous trajectory patterns that acquired from the 
historical data to update the frequent trajectory patterns. In 
other words, the improved method firstly only analyzes and 
scans the newly added and real-time manufacturing data. On 
this base, the frequent trajectories will be actively updated 
according to the trajectory patterns obtained from the his-
torical data. Therefore, the improved method achieves better 
performance when dealing with the datasets that contain 
both real-time and historical data.

By applying the improved method, the logistics trajecto-
ries relevant information and knowledge can be provided for 
shopfloor managers in a timely and dynamical mode. As a 
result, material backlog caused by the unpredictable produc-
tion exceptions can be avoided to improve the production 
efficiency. This conclusion confirms the improved method 
that proposed in this paper can be used to carry out near 
real-time logistics trajectory planning in the manufacturing 
big data environment.

4.5 � Managerial implications

The simulation experiment based on the hypothetical moti-
vating scenario showed that the proposed framework was 
feasible to be applied to discover the frequency trajectory of 
material delivery. This subsection describes implications to 
assist managers to make more effective shopfloor decisions.

Firstly, the proposed framework can be used for moni-
toring and collecting the real-time materials inventory and 
materials consumption data during the whole production 
processes. The shopfloor managers can use advanced big 
data analytics to analyze the materials related data, to check 
the volume of material delivery in different time, to identify 
the bottleneck of shopfloor logistics, and to optimize the 
factors that have the greatest effects on material delivery 

efficiency. Thus, the proposed framework can be used to 
improve the flexibility of material delivery in shopfloor.

Secondly, according to the extracted association rules, 
the most important and frequent logistics trajectories can be 
identified. The shopfloor managers should pay more atten-
tion to the machines on these frequent trajectories. That is 
to say, in order to ensure that these machines can operate 
normally and efficiently, the processing machines on these 
critical logistics trajectories should be regularly inspected 
and maintained. Meanwhile, more logistic operators should 
be added to share the logistics load and to avoid and reduce 
the deviation of material delivery in these trajectories.

Thirdly, the processing machines with a low usage rate 
can be identified through the mined logistics trajectories. 
This can assist the managers to make more informed deci-
sions on future production planning and to analyze the 
potential reasons for the low utilization. For example, 
machines with a low usage rate maybe reflect a fact that, the 
machines with a high usage rate have already met the current 
production requirement. Therefore, to reduce the produc-
tion costs, these machines with low utilization rate can be 
removed in the future shopfloor layout.

Fourthly, manufacturing data is continuously generated in 
a real-world production environment. As new manufacturing 
data is added in the historical database, initial support and 
confidence of the association rules will be changed. Through 
the concept of incremental learning in the improved model, 
different weights are given to the support and confidence of 
the rules in the historical and the new database. As a result, 
the rules with higher weights will be retained temporarily 
and served as a crucial reference to future production deci-
sions. As implied by these, managers can expand this model 
to product design and fault diagnosis domains, due to the 
product design knowledge and failure modes are constantly 
updated with the increasing of manufacturing big data.

5 � Conclusions

Recently, Auto-ID technologies such as RFID have been 
widely used in shopfloor management and control. Such an 
automatic data generation manner brings new challenges, 
for example, how to collect manufacturing big data in a 
timely and accurate manner, and how to discover the asso-
ciation relationships among the manufacturing big data to 
improve the efficiency of material delivery. To address these 
challenges, in this paper, a framework for SMD-RMBD is 
proposed to provide a new paradigm for shopfloor material 
delivery.

Three contributions are important in this paper. The first 
is the solution of data sensing and acquisition in a manu-
facturing big data environment. By using the solution, 
multi-source big data of the heterogeneous manufacturing 
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resources can be collected in a timely fashion, so that the 
real-time material delivery decisions can be achieved. The 
second is the manufacturing big data preprocessing and 
storage solution. It can be used to share and exchange the 
manufacturing big data among heterogeneous manufactur-
ing resources and different production stages. Meanwhile, 
reliable and reusable data for further deep analysis can be 
acquired. The third is a data mining graphical model for 
manufacturing big data. And on this base, an improved 
model is developed to identify the frequency trajectories 
of material delivery in a timely and dynamical mode.

The proposed framework provides a new kind of refer-
ence infrastructure to improve the performance of shop-
floor material delivery by using multi-source and real-time 
manufacturing big data. Future research will focus upon 
the following two aspects. Firstly, the data form various 
production stages have their own characteristics. There-
fore, data preprocessing algorithms for the big data of dif-
ferent production stages should be investigated. Secondly, 
the discovered association rules can be used for improv-
ing the material delivery decisions. By using the artificial 
intelligent and deep learning technologies, more accurate 
data analysis models should be developed to identify the 
hidden pattern from multi-source and real-time manufac-
turing big data and to make more precise decisions for the 
optimal material delivery trajectory.
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