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Abstract
Gait analysis provides valuable motor deficit quantitative information about Parkinson’s disease patients. Detection of gait 
abnormalities is key to preserving healthy mobility. The goal of this paper is to propose a novel gait analysis and continuous 
wavelet transform-based approach to diagnose idiopathic Parkinson’s disease. First, we eliminate the noise resulting from 
orientation changes of test subjects by filtering the continuous wavelet transform output below 0.8 Hz. Next, we analyze the 
complex plot output above 0.8 Hz, which takes an ellipse, and calculate the area using 95% confidence level. We found out 
that this ellipse area, along with the mean continuous wavelet transform output value, and the peak of the temporal signal 
are excellent features for classification. Experiments using Artificial Neural Networks on the Physionet database produced 
an accuracy of 97.6% . Furthermore, we have shown an association between the Parkinson’s disease severity stage and the 
ellipse complex plot area with a 97.8% overall accuracy. Based on the results, we could effectively recognize the gait patterns 
and distinguish apart Parkinson’s disease patients with varying severity from healthy individuals.
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1  Introduction and background

There are an estimated 7–10 million people living with Par-
kinson’s disease (PD) worldwide, with the elderly being the 
most affected group (The Parkinson Association 2018). It is 
a chronic neurological disorder with no cure. Symptoms of 
PD progression include difficulty in controlling movement 
and abnormal gait patterns. Wearable devices can play an 
important role in all aspects of the disease, including diag-
nosis, monitoring, motion (i.e., Gait) data collection, and 
analysis (Rovini et al. 2017; Muro-de-la Herran et al. 2014; 
Wang 2015).

In the past few years, wearable devices have overcome 
many technological obstacles to reach commercial produc-
tion and the mass market. Moreover, there is a continuous 
drive toward improving the performance of these devices 
in terms of power consumption, cost, speed, Internet con-
nectivity, and functional features. This development is going 
hand in hand with the rise of the Internet of Things (IoT). 
In this context, the healthcare domain is a promising area of 
innovation (Li et al. 2015).

Gait signals stemming from the analysis of human loco-
motion provide valuable information about the PD disease 
diagnosis when combined with signal processing techniques 
(Whittle 1996). Several studies in the literature use the Fast 
Fourier Transform (FFT) for processing (Abdulhay et al. 
2018), but this will erroneously miss many of the impor-
tant features in the gait signal such as the Freezing of Gait 
(FOG). Moreover, the use of general gait analysis parameters 
(e.g., stance, swing time, and stride time) (Djuric-Jovicic 
et al. 2010; Perumal and Sankar 2016) may not capture the 
full information embedded in the gait signal, which in turn 
leads to the reduction in the identification accuracy.

The work addressed in this study produces a novel 
method to extract features using the CWT output complex 
plot of PD Vertical Ground Reaction Force (VGRF) gait 
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signal. We show that such method has the potential not only 
to recognize PD but also to identify the stage progression 
of the disease. We investigate the relationship between PD 
severity and the extracted features. The contributions of this 
paper are as follows:

1. We analyze the VGRF using the continuous wavelet 
transform (CWT) and identify the energy complex plot 
of the CWT as an indicative and efficient classification 
feature for the identification of PD patients.

2. We identify the severity level of PD using the same fea-
tures, which is a first in the literature to the best of our 
knowledge.

3. We build a classification model using the proposed fea-
tures and Artificial Neural Networks (ANN).

4. We evaluate the performance of the system and report a 
PD identification accuracy of 97.6%, and a severity level 
recognition overall accuracy of 97.8%.

The rest of the paper is organized as follows. In section 2 we 
survey the related work in the literature and its methods. In 
Sect. 3 we present our methodology, data acquisition, theo-
retical framework, and data analysis. Section 4 discusses the 
data classification results. We conclude in Sect. 5.

2  Related work

The IoT, empowered by the tremendous development in 
wearable devices, provides a framework for the development 
of connected pervasive applications. A layering of service, 
devices, and communication modules allows us to focus 
on the specific research problems on hand. In this context, 
Wang (2015) discussed the rising importance of health mon-
itoring devices to the older disease-prone section of society, 
and introduced an architecture design for the deployment 
of health monitoring sensors. Moreover, the issues of data 
communication and security are of prime importance (Zhu 
and Yang 2015). Such studies facilitate the deployment of 
the work in this paper.

Artificial Intelligence (AI) and machine learning plays a 
paramount role in automating many of the human-dependent 
processes. The performance of these methods is continu-
ously undergoing evaluation and refinement in the face of 
challenges emerging from Big Data and the IoT (Ngia and 
Sjoberg 2000; Lera and Pinzolas 2002; Kermani et al. 2005; 
Arridha et al. 2017).

The importance of PD early diagnosis and disease pro-
gression identification should not be underestimated (Hoehn 
et al. 1998). To this end, the Movement Disorder Society 
(MDS) has been conducting regular reviews of the Unified 
PD Rating Scale (UPDRS) to better reflect the disease pro-
gression across different genders and races, which is also 

emphasized by the work of Hoehn et al. (1998). The disease 
is affecting Millions of people worldwide and technology 
can play a major role in the disease management.

Gait analysis plays an important role in studying and 
quantifying the motion process in a non-invasive manner. 
It is useful for the assessment of many ailments including 
chronic heart conditions (e.g., Congestive heart failure), 
lung diseases [e.g., Chronic obstructive pulmonary disease 
(COPD)] (Juen et al. 2014), Autism (Weiss et al. 2013), and 
neurodegenerative diseases (e.g., Huntington and Amyo-
trophic Lateral Sclerosis) (Prabhu et al. 2018).

Abnormal motion maybe a symptom of serious disorders, 
as exemplified by PD patients. Wearable sensors, coupled 
with cameras and observation, measure the muscular activ-
ity, force exerted by the feet, and body mechanics (Chester 
et al. 2005; Muro-de-la Herran et al. 2014). By analyzing 
abnormal values of gait parameters, it is possible to identify 
disorders as well as the PD disease stage progression. More-
over, it can be used to assess the efficacy of the therapeutic 
process and medication, and guide the disease management 
plan. For example, Deep brain stimulation is an emerging 
technique for PD treatment. The efficiency of this method is 
assessed by monitoring changes in the patient gait, because 
the treatment is reflected on the patients motor system 
(Hadoush et al. 2018; Lattari et al. 2017; Fregni et al. 2006).

Several artificial intelligence and signal processing tech-
niques have been used to build automated PD diagnostic sys-
tems based on gait analysis. These methods rely on extract-
ing certain features and markers of PD. Fraiwan et al. (2016) 
developed a smartphone application to measure the hand 
tremors of PD patients using the embedded accelerometer. 
The data was analyzed using two level wavelet packets and 
the extracted features were classified using a neural networks 
classifier.

In another avenue of the literature, Vertical Ground Reac-
tion Force (VGRF) data has been used as a marker of PD. 
Such data is obtained from sensors (e.g., accelerometers and 
gyroscopes attached to the feet (Tadano et al. 2013; Tao 
et al. 2012) or embedded in the insoles of the shoes (Alam 
et al. 2017). The goal was to study the movement charac-
teristics of PD patients as compared to healthy individuals, 
extract features, and classify the data into normal or PD. 
Abdulhay et al. (2018) analyzed features like stance, stride 
time and swing time to highlight the duration of the pulse 
and peak. Then, the features were used to distinguish PD 
from normal gait patterns using Medium Gaussian Support 
Vector Machine (SVM). Similarly, Manap et al. (2011) fed 
kinematic and kinetic features, among others, to Artificial 
Neural Networks (ANN) to classify healthy and PD gait val-
ues. The work of Alam et al. (2017) extracted features from 
PD gaits signals using the coefficient of variation (CV) of 
stride time and swing time, along with the standard deviation 
and mean of the force center of pressure. They compared the 
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performance of four classification algorithms; SVM, deci-
sion trees, K-nearest neighbor, and random forest. The SVM 
with cubic kernel was found to be of the best performance 
in terms of accuracy.

Lee and Lim (2012) used wavelet transform for feature 
extraction. Three signal combinations were calculated and 
then the wavelet transform was applied to produce approxi-
mation and detail coefficients. Forty features were extracted 
from these coefficients via statistical methods (e.g., fre-
quency distributions and variability). For classification, a 
neural network with weighted fuzzy membership functions 
was used. Djuric-Jovicic et al. (2010) recorded gait kinemat-
ics with a wireless inertial measurement system along with 
video recording. The Freezing of Gait (FOG) was identified 
by Medical experts. They used Simple signal processing 
algorithm combined with perception neural network and 
rule-based classification to validate the results.

3  Material and methods

Figure  1 shows the method used to build the classification 
model. It consists of the following steps:

1. Compute the CWT of the gait signal as obtained from 
the vertical ground reaction force (VGRF). This results 
in a function of both time and frequency. The output is 

complex values (i.e., the mother wavelet is a complex 
function).

2. Discard the output pertaining to the frequency values 
less than 0.8 Hz. This eliminates the noise resulting from 
the subjects body orientation changes.

3. Construct the wavelet energy complex plot of the CWT 
output real part against the imaginary one.

4. For all the signals from the 16 sensors, and the sum 
signals of all sensors for each foot:
(a) Compute the ellipse area of the complex plot with 

95% confidence. This is the first feature for clas-
sification.

5. Compute the average wavelet energy associated with 
frequency higher than 0.8 Hz, and the maximum force 
exerted in every sensor. These will serve as two more 
features for classification.

6. Build the classification model using the features, in steps 
4 and 5 above, and the artificial neural network (ANN) 
model.

Next, we go through the details about the dataset, continuous 
wavelet transform, ellipse area computing, features calcula-
tion, classification, and performance evaluation.

3.1  Data acquisition

The data was downloaded from PhysioBank (PhysioNet 2018) 
as recorded by Yogev et al. (2005). It contained VGRF record-
ings from 73 healthy controls and 93 idiopathic PD subjects 
(35 women and 58 men, mean age 66.3 years) and (33 women 
and 40 men, mean age 63.7 years). Each PD record is assigned 
a Hoehn and Yahr and/or the UPDRS score. The PD patients 
involved in this study were diagnosed with moderate disease 
severity or at the early stage of the disease development. Out 
of the 93 idiopathic PD subjects, 38 are of intermediate dis-
ease severity (10 subjects have Hoehn and Yahr score 3, and 
28 with Hoehn and Yahr score 2.5). The other 55 PD patients 
are belonging to early stage category with Hoehn and Yahr 
score 2. The gait signal was recorded using eight different 
force sensors located in the insole of both feet of the subjects. 
The sensors measured the VGRF in Newtons as a function of 
time while the subjects were walking for about 2 min on a level 
ground and a self-selected path. Moreover, two more signals 
produced by the sum of the eight sensor outputs from each foot 
were used. Thus, we have 18 overall signals for every subject. 
The individual output of these 16 force sensors was digitized 
at a sampling frequency of 100 Hz. In addition to minimizing 
the startup and end up effects, the first 20 s and last 10 s of 
the gait signal were already excluded in this dataset. Also, a 
median filter was applied to the recorded data for outliers data 
points removal. Thus, the effect of movement energy variation 
on gait motion is minimized for the sake of precise feature 

Fig. 1  The method of building the classification model
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computation. This leads to an accurate representation of gait 
dynamics and characteristics.

3.2  Continuous wavelet transform

Several fields in communication, biomedical, and signal pro-
cessing use CWT to analyze signals in the time-frequency 
domain (Qiao et al. 1998). The time-frequency feature of 
wavelet transform gives descriptive information about the sig-
nal distribution with respect to the frequency for every point in 
time. To analyze a signal, two types of wavelet transformation 
can be used; CWT and discrete wavelet transform (DWT). In 
the present study, using CWT allows us to consider the signal 
in the combined time and frequency domains. The CWT of a 
signal x(t) is defined as:

where:

�(t) is known as the mother wavelet and �a,b(t) is the dilation 
and transformation of �(t) , b is a time shifting parameter 
that captures the time domain characteristics of the signal 
x(t). a is a scaling parameter, which provides the mother 
wavelet function �(t) dilation and compression characteris-
tics. The entire frequency range is covered by choosing the 
scaling parameter based on the following formula:

where Ts is the sampling period and fc is the mother wavelet 
center frequency.

We used analytic Morse wavelet as the mother wavelet. The 
shape and transformation behavior of this wavelet is affected 
by the symmetry ( � ) and time-bandwidth ( � ) parameters. 
The � parameter controls the wavelet function symmetry in 
time based on the demodulate skewness; whereas the time-
bandwidth parameter ( � ) determines the wavelet time duration 
(Lilly and Olhede 2009; Olhede and Walden 2002). Moreover, 
the peak frequency is related to � and � , as follows:

The duration determines the number of oscillations at peak 
frequency that can fit into the time-domain wavelet’s center 
window. Thus, to increase the number of wavelet oscillations 
under the filter, we chose � to be 60. Moreover, � was chosen 
to be 3 because this value leads to 0 skewness of the Morse 

(1)CWT(a, b) = ∫ x(t)�a,b(t)dt

(2)�a,b(t) =
1

√
�a�

�(
t − b

a
)

(3)f =
fc

aTs

(4)Peak frequency =

(
�2

�

) 1

�

wavelet, while having a minimum Heisenberg area (Lilly and 
Olhede 2012; MathWorks 2018).

3.3  CWT energy complex plot and the ellipse area

As confirmed by the results, the complex plot (CP) of the 
wavelet energy represents an effective and indicative clas-
sification feature for the diagnosis of idiopathic PD from 
healthy gait signals. The CP of signal x(n) is obtained by 
plotting the real part of the signal R(n) against the imaginary 
part, IM(n). As indicated earlier, the wavelet energy from the 
CWT of the gait signal, with the frequency content higher 
than 0.8 Hz, was used for the calculation. Thus, the complex 
plot is a graphical representation of magnitude and phase of 
wavelet energy distribution for the frequency higher than 0.8 
Hz associated with every time point.

The wavelet energy complex plot takes an ellipse shape 
(see Fig. 4). This motivated us to compute its area. A 95% 
confidence method has been used for ellipse area computa-
tion (Thuraisingham et al. 2007; Pachori et al. 2009; Caval-
heiro et al. 2009). The method covers 95% of the CP points. 
The ellipse area measured from the wavelet complex plot 
was computed for every sensor as a feature set for classifi-
cation. The procedure for the ellipse area calculation with 
95% confidence is as follows (Cavalheiro et al. 2009; Prieto 
et al. 1996):

1. Compute the average values of R(n) and IM(n) as: 

2. Compute parameter D as: 

3. Calculate the ellipse area as: 

(5)mR =

√√√√ 1

N

N−1∑

n=0

R2(n)

(6)mIM =

√√√√ 1

N

N−1∑
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(7)mR,IM =
1

N

∑
R(n)IM(n)
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√
m2

R
+ m2

IM
− 4(m2

R
m2
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)

(9)a =1.7321

√
m2

R
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(10)b =1.7321

√
m2

R
+ m2

IM
− D

(11)Area = �ab
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3.4  Gait VGRF features

Three features from the CWT analysis have been utilized for 
the classification; the ellipse, averaged energy and peak ampli-
tude of the gait signal. The data was divided randomly into 
70% for training and 30% for validation and testing. Super-
vised learning was conducted using the Levenberg–Marquardt 
learning function. Table 1 shows the average and standard 
deviation of the three features. In general, they are higher for 
normal subjects as opposed to patients diagnosed with PD. 
These differences in the feature space vectors can be used as an 
indicator of the degeneration of the motor system responsible 
for regulating the human movement.

3.5  Machine learning model

Artificial neural networks (ANN) are commonly used for pat-
tern recognition problems (Krogh 2008; Partridge et al. 1999). 
In this work, a neural network with one hidden layer was used 
for building the machine learning model. The ANN is a net-
work consisting of processing units called neurons, which are 
comprised of three layers; Input layer, hidden layer, and output 
layer. Each neuron connection has a weight that represents the 
learnt knowledge through training (Okut et al. 2011; Felipe 
et al. 2014; Svozil et al. 1997; Lweesy et al. 2011). The input 
propagates through the various layers for processing, and 
the classification results are obtained from the output layer. 
Moreover, all of the neurons in the hidden layer connected 
with those in the output layers via bias values which represent 
the threshold value for neuron activation (Svozil et al. 1997).

The activation (output) value, Xi , of the ith neuron is 
defined in terms of the the potential �i and transfer function 
f (�i) as:

(12)Xi =f (�i)

(13)�i = − �i +
∑

j=1

XiWij

(14)f (�i) =
1

1 + e−�

The network modifies itself through supervised training to 
adjust the connection weights wij and the threshold coef-
ficients fij in an iterative manner with the goal of reaching 
the minimum square difference (E) between the computed 
and the targeted output, as follows:

where yo is the computed training output and ŷo is the tar-
geted output.

3.6  Performance evaluation

To evaluate the performance of the proposed method, we 
used the commonly used parameters in the literature; accu-
racy, sensitivity, and specificity defined as:

where TP the number of instances correctly classified as PD. 
TN the number of instances correctly classified as normal. 
FP the number of misclassified PD cases. FN the number of 
misclassified normal subjects.

4  Results and discussion

Utilizing spectral features for PD classification combined 
with temporal features provides a new insight into using 
PD VGRF signals to analyze the disease state and severity. 
The time-frequency analysis gives new information, which 
cannot be inferred from the original time-series. The fre-
quency distribution of gait cycle plot as function of time give 
us the means to differentiate between PD and normal sub-
jects, see Figs. 2 and 3. We found that the maximum power 
amplitude is concentrated in the frequency range of 0.8–1 
Hz for almost all time points. However, this peak amplitude 
is higher in normal subjects compared with PD subjects as 
normal healthy subjects exert higher force at 0.8–1 Hz. It 
can be observed that there are short high energy segments in 
the normal subject scalogram around 0.8–1 Hz. whereas, the 
PD scalogram shows longer high energy segments compared 
to healthy subjects. This can be related to the fact that the 

(15)E =
∑

o

y − ŷ

2

(16)accuracy =
TP + TN

TP + TN + FN + FP
× 100%

(17)sensitivity =
TP

FN + TP
× 100%

(18)specifity =
TN

TN + FP
× 100%

Table 1  Average and standard deviation of the extracted values of the 
proposed features

Normal PD

Mean Std dev Mean Std dev

Ellipse area 190916.3 194591.5 122954.6 156357.3
Mean of wavelet energy 59.07 33.06 53.92 34.43
Peak of wavelet energy 381.74 105.38 359.12 98.28
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Fig. 2  Normal gait signal, its related scalogram, cross section at 1 Hz as function of time, and the spectrum of the normal gait signal at 1.2 min

Fig. 3  PD gait signal, its related scalogram, cross section at 1 Hz as function of time, and the spectrum of the PD gait signal at 1.2 min
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healthy gait cycle has 3:2 stance to swing time ratio. How-
ever, this is not the case in PD subjects as they experience 
more friction for longer time while walking.

The wavelet energy complex plot of both PD and normal 
subject takes an ellipse shape with the higher area occu-
pied by the normal subjects, see Figs. 4 and 5. From the 
analysis results, it can be observed that the ellipse area of 
the complex plot is large for normal subjects and decreases 
significantly as the PD severity level increases. Thus, the 
area can be used as an indicator for PD severity stage and 
provides a method for distinguishing between normal and 
PD subjects in the early stage. Further, the high amplitude 
segments occurred around 1Hz are observed to be shorter in 
early stage PD and longer in high PD severity.

Figure 6, the 3D view of the complex plot as function of 
time, shows significant differences between PD and healthy 
subjects in terms of the wavelet energy values behavior as 
it goes forward in time. The normal healthy subject has a 
regular circular pattern as function of time, as it converges 
smoothly and regularly toward the helix center for all time 

points. Thus, we have regular phase (imaginary component 
values) as function of time (Fig. 6a). Whereas, the PD sub-
jects exhibit an irregular pattern of complex plot as function 
of time with no smooth transition (Fig. 6b). This is caused by 
the instable pattern present in the PD gait signal compared 
to normal stable signal.

The inclusion of both spectral and temporal features 
extracted from VGRF signals led to the ability to diagnose 
PD subject from normal ones with 97.6% overall accuracy. 
The training accuracy was 99.1% and the validation+testing 
accuracy was 94%. The specificity and sensitivity were 
97.14% and 86.67% respectively. The number of FP cases 
was 2, which is the same number for the FN. In comparison 
to other studies of the same dataset (Abdulhay et al. 2018; 
Bakar et al. 2012; Djuric-Jovicic et al. 2010; Perumal and 
Sankar 2016; Zhang et al. 2013), utilizing the CWT and the 
complex plot improved the classification accuracy by at least 
4.9% as shown in Fig. 7.

The model was able to distinguish the severity level, 
based on the Hoehn and Yahr scale, with testing and overall 

Fig. 4  The complex plot of normal gait and PD subject. It is clear that the ellipse area of wavelet complex plot greater for healthy subjects as 
compared with PD subjects
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accuracies of 96.7% and 97.8% respectively. Moreover, the 
training accuracy was 100% and the combined testing and 
validation accuracy was 95.1%. The number of FP and FN 
cases was 1 each. The sensitivity was 98.8% and the specifity 
was 90.0%.

5  Conclusion

In this paper, the ellipse area resulting from the CWT 
energy complex plot of VGRF data was investigated as a 
potential feature for the identification and classification of 

PD patients from normal subjects. The method was evalu-
ated on a publically available and commonly used data-
set, and the results outperformed existing literature. This 
confirms the efficacy of the proposed method. Overall, we 
believe that features extracted from the gait signal spectral 
analysis supported by temporal feature has the potential 
to improve the diagnosis and monitoring processes. The 
force signal time-frequency profile provided an efficient 
way of distinguishing a healthy person from a PD subject. 
Moreover, the ellipse area was found to be sensitive to the 
PD severity stage. Hence, it can provide great aid in early 
PD diagnosis.

Fig. 5  The scalogram and the complex plot of wavelet energy associated with initial PD and increased severity PD subject. The ellipse area 
decreases as the PD severity increases
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In future work, VGRF data will be further analyzed to 
find methods of extracting more information about the PD 
stage identification, and the fusion of more features into the 
classification model to improve the classification accuracy. 

For example, using the spectral-derived features combined 
with temporal features opens a new avenue for gait signal 
analysis using stability plots.

Fig. 6  3D plot of wavelet energy real and imaginary parts as a function of time. In a the loop converges and shows a stable pattern while in b 
there is an unstable pattern, which changes its shape at different time points

Fig. 7  Accuracy comparison of 
our approach to other related 
studies
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