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Abstract
To overcome the limitations of the conventional medical service in terms of ageing and chronic diseases, AmI-based precision 
medicine has drawn particular attention. Precision medicine is a customized personal medical service using various informa-
tion technologies such as personal health device, AI algorithm, image recognition, voice recognition, and natural language 
processing. In particular, the information technologies for follow-up care services for patients, such as context awareness, 
context information, and inference rules, are required. In PHD, contexts such as variable data include blood pressure, BMI, 
blood sugar, weather, and food. It has time-series characteristics, meaning that it changes often with time. Other kinds of 
health-related information, such as age, family history, smoking, and residential area, are intermittently changed. For inference 
that is highly related to a user, the context collected through AmI is presented with ontology. Ontology consists of a user’s 
ambient data, weather data, and lifelog. Context is changed along with a user’s ambient conditions and time. An inference 
engine is used to create the knowledge base and predict a change. This study proposes a neural-network based adaptive con-
text prediction model for ambient intelligence. This is a learning model using neural network to calculate the similarity for 
recommendation in a mining lifecare platform. In a conventional prediction procedure, an error is used to update a weight. 
The proposed model learns the similarity weight of the users to become adapted to the user’s ambient. Based on the knowl-
edge base, user clustering and deviation from mean are applied to calculate the similarity weight. Collaborative filtering 
technology is used to predict a user’s context and learn the similarity weight repeatedly using a neural network. According 
to the performance evaluation, the proposed neural-network based similarity weight method had the highest accuracy of 
prediction when the learning rate was 0.001. Consequently, we found that AmI is a new added-value technology to maintain 
a healthy lifestyle and contributes to developing the healthcare industry and improving the quality of life.
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1 Introduction

With the development of context awareness computing 
technology and the convergence industry, ambient intel-
ligence (AmI)-based lifecare advancement is investigated 

to overcome the limitations of the conventional medical 
service. In particular, increased chronic diseases and the 
super-ageing society have triggered more demands for 
constant healthcare. Owing to the IT-based paradigm of 
human–computer interaction and the development of phar-
maceutical and medical technologies, new treatment meth-
ods have been developed to treat and prevent hard-to-treat 
chronic diseases. To examine a new treatment method, it 
is necessary to continue to observe and care for a patient 
who is to be cured. Accordingly, precision medicine applied 
to customized treatment and diagnosis using living habits, 
lifelog, and ambient intelligence has drawn particular atten-
tion. Precision medicine is customized healthcare using 
information technology and AmI. To recognize users and 
ambient context, and manage data, increased manpower 
and resources are required. Hence, AmI software able to 
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recognize context and support advanced services for liv-
ing conditions, actions, ageing preventions, habits, and 
emotions have drawn attention as the next-generation core 
technology. This enables multiple devices to be connected 
including IoT-based personal health devices (Atzori et al. 
2010), voice recognition devices, and image recognition 
devices in the daily space via wired and wireless networks. 
In addition, context computing supports the recognition of 
presence and increases spatial efficiency.

Currently, a lifecare platform for healthcare and its pro-
motion is developed through monitoring physical or mental 
conditions in real time and analyzing the potential health risk 
(Kim and Chung 2018; Yoo and Chung 2018). The platform 
includes precision medicine technology lifecare, wired and 
wireless network technology for reliable context transmis-
sion, cloud-based intelligence platform technology, medi-
cal information security technology (Jung et al. 2016a; Yao 
and Warren 2005), and ambient sensor technology for bio 
signal measurement. The components of AmI are ubiquity, 
awareness, intelligence, and natural interaction, which are 
complementary to the parts that a user fails to recognize. 
Ubiquity means that various devices are operated beyond a 
user’s recognition range. Awareness means that a user’s posi-
tion, action, and intention are recognized, and its context is 
collected with the tracking function. Intelligence means that 
the collected context is used to predict the ambient condition 
or a user’s change (Adomavicius and Tuzhilin 2011). Natural 
interaction means the human–computer interaction between 
a user and a device through voice or gesture recognition. To 
materialize these components and apply them to daily life, a 
variety of information technologies, such as neural network, 
ontology, cloud, deep learning, IoT, sensor, and big-data min-
ing are required.

With the emergence of the fourth industrial revolution, 
the advancement in AmI is investigated globally in various 
areas. Relevant studies have found the AmI solution for lif-
ecare and a method of integrating, mining, and processing 
heterogeneous big data have been reported (Agrawal and 
Srikant 1995). While obtaining the data associations, hidden 
rules were discovered and were used to create the knowledge 
base for actual decision making (Jung et al. 2016). Chaib 
et al. (2018) developed the adaptive service model using 
multi-agents for the AmI context. Chen and Tsai (2018) 
applied AmI to the concept of industrial engineering to ana-
lyze its cost and convenience, and suggested its efficiency by 
applying it to a system. Orciuoli and Parente (2017) devel-
oped the NFS-based context awareness recommendation 
system using ontology and AmI in a semantic environment. 
Therefore, this study proposes a neural-network based adap-
tive prediction model for AmI. The proposed model uses a 
neural network model in a recommendation system to cal-
culate a user’s similarity and adaptive weight, and thereby 
predicts the context based on of the AmI. The evolutionary 

prediction model considers the time series of the context 
existing in real life and applies a similarity weight using an 
error arising in the prediction.

The composition of this study is as follows. In Sect. 2, 
we describe a mining lifecare platform in the ambient intel-
ligence. In Sect. 3, we propose the neural-network based 
adaptive context prediction model for the ambient intelli-
gence. In Sect. 4, we present the experimental result. Finally, 
Sect. 5 concludes.

2  Mining lifecare platform in ambient 
intelligence

A mining lifecare platform for AmI integrates and processes 
heterogeneous data, including medical big data, bio big data, 
and lifelog big data. To support a patient’s decision-making 
and provide a proper health service, various types of large 
structured big data are integrated technically. Unstructured 
data that are not operable are preprocessing structurally 
using big-data computing technology (Agrawal and Srikant 
1995). Big-data computing technology uses text mining, web 
mining, reality mining, and association rule mining (Chung 
and Park 2018; Agrawal and Srikant 1994).

Text mining uses natural language processing technol-
ogy to extract meaningful disease patterns from unstruc-
tured data and structures them. To analyze the structure of 
unstructured web documents and web logs collected on the 
Internet, and to obtain patterns through search and integra-
tion, web mining is applied to structure them (Song et al. 
2017). In a web document composed of unstructured data 
such as images, videos, and audios, meaningful knowledge 
of attributes and information association are found using 
semantic tags, and are then applied in decision-making. 
To analyze a user’s behavioral pattern and predict his/her 
health condition, reality mining collects the relevant infor-
mation using healthcare IoT technology (Atzori et al. 2010), 
ambient sensors (Jung et al. 2016b), and wearable devices. 
It subsequently analyzes the information and structures 
it. Associated context mining (Jung et al. 2016; Kim and 
Chung 2017; Agrawal and Srikant 1994) infers the potential 
knowledge information through association rule mining in 
ontology-based context modeling, and generates rules with 
a semantic inference engine. From a context set frequently 
found in the ontology knowledge base, associations are 
extracted with using the Apriori algorithm (Agrawal and 
Srikant 1995). A context set with a high frequency means 
a potential disease risk, and the associations of diseases 
featuring the sharing of risks (Chung et al. 2016). The 
medical information of domestic patients with 10 major 
diseases leading to death, including diabetes, dyslipidemia, 
cardiovascular disease, and cerebrovascular disease, and 
the patient emergency complications data of the National 
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Health Insurance Corporation (Medical Statistics Infor-
mation 2017) are used to predict an individual’s disease 
occurrence risk rate. In terms of environmental and weather 
variables in a residential region, the processing of outlier 
data, missing values, and principal component analysis are 
conducted. Subsequently, the model for calculating the risk 
rates of cardiovascular disease and cerebrovascular disease 
is applied.

When structured and unstructured data are integrated 
with distributed-file-processing-based common data model 
through data mining, it can be used as an extended big-data 
gateway-system-based data warehouse and Common Data 
Model (CDM) known as the OMOP Common Data Model 
(ATHENA Standard Vocabulary 2018). Accordingly, for 
the integration of medical data and lifelog data and for the 
health service based on weather, diet, and environment data, 
a deep-learning-based evolutionary model is applied (Jung 
et  al. 2013, 2016). The deep-learning-based evolution-
ary model uses integrated big data as input and performs 
unsupervised learning with using the deep belief network 
(DBN). In a distributed file framework that processes large 
data, a model can be created through training the learning 
data, and the created learning model is used for processing. 
A weight is adjusted depending on the heterogeneous input 
data and then repeated learning is performed. By setting the 
connection strength of the input layers for the integrated 
data input and multiple hidden layers connected with each 
other as the weight, nonlinear relationships can be learned 
and modeled. Further, for object classification and detection 
in unstructured data such as images, videos, and audios, 
a convolution neural network (CNN) is applied. Figure 1 
illustrates the architecture of the mining lifecare platform 
in AmI.

It is possible to connect with a gateway system that is 
able to collect, express, and save hospital information and 

bio information as standard data. Using a lifelog data trans-
mission interface module, the information is converted to 
the metadata for warehouse data distributed in a platform 
before transmission. In accordance with HL7 CCD/CCR 
and IEEE 101073, data are expressed and saved (Yao and 
Warren 2005, HL7 2018). The standard protocols are used 
to encrypt data. Therefore, it is possible to overcome the 
medical security issue of personal information data, which 
is difficult to understand even if leaked. For AmI, hidden 
knowledge is created with a semantic inference engine, and 
inference rules are additionally applied. The hidden knowl-
edge added in the knowledge base is applied to the exist-
ing inference rules for updating. Entropy-based feedback 
is applied to adaptive decision in AmI to provide proper 
lifecare service to a user.

3  Neural network based adaptive context 
prediction

3.1  Context configuration using ontology 
in ambient intelligence

Precision medicine focusing on individuals requires a vari-
ety of patient information. To collect, analyze, and man-
age the information, context-based AmI is required. In 
AmI, lifecare considers the data rules and relationships 
defined by CDM and consist of the PHD, PHR, weather 
data, and lifelog. The PHD is composed of personal health 
record that includes region, age, sex, drinking, smoking, 
high blood pressure, cholesterol, and medical record, and 
the EMR collected by a medical institution. The weather 
data include the observation information provided by the 
Korean Meteorological Administration, such as the ambi-
ent temperature, humidity, and fine dust based on the user’s 

Fig. 1  Architecture of mining lifecare platform in ambient intelligence
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position. Lifelog includes the information collected by per-
sonal health devices or IoT devices, such as the BMI, blood 
pressure, heart rate, sleeping hours, moving distance, and 
blood sugar. Based on the health context, ontology is pre-
sented using a rule-based inference engine. To apply ontol-
ogy to various healthcare domains, the upper-level ontology 
is established. The upper-level ontology includes people, 
place, device, weather, and time, which are generally used 
in the healthcare domain. A lower class includes age, sex, 
BMI, drinking, blood sugar, blood pressure, heart rate, and 
sleeping hours. Figure 2 shows part of the health context 
presented with ontology.

In the health context created with ontology, the infor-
mation on a different user who has a similar context with 
a target user is collected. In the model, the internal and 
external context relationships influencing health are used 
for decision making. The rules inferred from ontology are 
saved in the knowledge base. Using the inference rules in 

the knowledge base, the knowledge fitting a user’s context 
is searched, and then the information for decision making 
is provided depending on the health condition. To increase 
the accuracy in the knowledge-based decision making, it is 
necessary to predict the missing values and a user’s condi-
tion change. For such predictions, the collaborative filtering 
technique is primarily applied (Chung et al. 2016). It uses 
the context of a group that has a similar context with a user. 
Collaborative filtering predicts the users’ values based on 
the information collected from multiple users (Linden et al. 
2003). Figure 3 illustrates the collaborative filtering based 
prediction in the knowledge base.

3.2  Neural‑network based adaptive context 
prediction model

Context changes often with time. Precision medicine pre-
dicts a user’s condition and change through the analysis. 
As an individual intensive healthcare method, precision 
medicine uses all of the information on personal health. 
Health change and prediction are related to a variety of 
context information. A user’s health condition continues 
to change with time and the change must be considered. 
The adaptive context prediction model proposed in this 
study is an evolutionary prediction model that adjusts the 
similarity depending on a user’s context change. It applies 
a neural network structure in which a weight is adjusted 
based on the difference between an actual value and a pre-
dictive value in a conventional prediction method used in 
a recommendation system. A conventional collaborative 
filtering structure can be presented in the similar structure 
as that of a neural network. The proposed neural-network 
based collaborative filtering has the predictive value of 
the user a’s context as an output and the context value of 
the user k in a cluster as an input. The similarity between 
the different users in the cluster is set as the weight “w” in 
a neural network, and the difference between a predictive 

Fig. 2  Part of health context 
with ontology

Fig. 3  Collaborative filtering based prediction in knowledge base
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value and a measured real value is set as an error. Fig-
ure 4 shows the neural-network based collaborative filter-
ing structure.

In the neural network structure, back propagation is used 
to adjust the weight “w”. In a conventional neural network, 
numerous operations are executed to adjust a weight, and 
if an error value is lower than a setup value, the learning is 
complete. The proposed neural-network based collaborative 
filtering has many input values and changes often. Further, 
depending on the context of comparative users created as 
input nodes, a new node can be created or an existing node 
can be deleted. Therefore, in AmI, neural network learning 
does not occur once, but continues to occur based on the 
time series. Formula (1) shows a method of calculating the 
similarity of users in collaborative filtering (Sarwar et al. 
2001). In formula (1), Ua means the user “a” as an active 
user. Uk is a different user in the cluster. w(Ua, Uk) repre-
sents the similarity weight of the user “a” and the user “k”. 
Ua,i is an actual value for the user a’s context i. i means the 
user’s context, including blood pressure, BMI, blood sugar, 
weather, weight, and temperature. Ua means the mean of the 
user a’s context:

Formula (2) is a prediction method of context in AmI 
through collaborative filtering (Sarwar et al. 2001). In for-
mula (2), Ua,i−p(prediction) represents a predictive value for the 
user a’s context i. Ua is the mean of the user a’s context. 
Uk is the mean of the context i of the user k in the cluster. 

(1)

Similarly(Ua,Uk) = w(Ua,Uk)

=

∑

i=context(Ua,i − Ua)(Uk,i − Uk)
�

∑

i=context (Ua,i − Ua)
2
�

∑

i=context (Uk,i − Uk)
2

.

k ∈ u ’s group means all users in the user group, and the 
group number is given sequentially from the number 1 
according to a transaction number:

Formula (3) presents an adaptive similarity weight of the 
difference between a predictive value and an actual value 
through neural-network based learning. In formula (3), 
(Ua,i − Ua,i−p) means the difference between an actual value 
and a predictive value for the user a’s context i. Uk,i is an 
actual value for the context i of the different user k in the 
same cluster. α is the learning rate that is determined in 
repeated evaluations:

4  Experimental result

A neural-network based adaptive context prediction model 
provides feedback on the similarity weight of users based 
on the time-series context in AmI. Hence, a user’s health 
condition and change are predicted by the AmI-based preci-
sion medicine. In a mining lifecare platform, all of a user’s 
health data are collected. Based on the collected data, con-
text is presented with ontology. Further, an inference engine 
is used to create the knowledge base. In an ambient net-
work, users with similar contexts are sought based on the 
inference rules.

The life cycle of an adaptive context prediction model 
consists of four steps. In the first step, users with similar 
situations are clustered according to their health context 
based on the knowledge base. In the second step, with the 
context of the clustered users, the deviation from mean is 
used to calculate the similarity weight. In the third step as 
a predictive one, the similarity weight is used to predict a 
user’s weight, BMI, blood pressure, exercise amount, fasting 
blood sugar, and other numeric data. In the fourth step, when 
context is updated after the prediction, an adaptive similar-
ity weight of the difference between a predictive value and 
an actual value through neural-network based learning is 
calculated. To apply the time-series characteristic meaning 
the frequent changes with time, the third step and the fourth 
step are repeatedly performed to learn the similarity weight. 
Figure 5 shows the life cycle of the adaptive context predic-
tion model.

For the performance evaluation, the transaction related to 
lifecare is used to predict a user’s weight in an adaptive con-
text prediction model. For a user’s weight, its actual value 

(2)

Ua,i−p(prediction) = Ua +

∑

k=u’s group(Uk,i − Uk) × w(Uk,Ua)
∑

k=u’s group �w(Uk,Ua)�
.

(3)w(Ua,Uk) = w(Ua,Uk) − (Ua,i − Ua,i−p) ⋅ Uk,i ⋅ �.

Fig. 4  Neural-network based collaborative filtering structure



1456 J.-C. Kim, K. Chung 

1 3

is changed less and is measured easily. In each method, the 
difference between a predictive value and an actual value is 
compared. Table 1 shows the transaction related to lifecare. 
For a more convenient calculation, the data are collected 
from a total of 10 persons including the users for 10 days. 
A transaction is composed of easy-to-collect data, such as 
weight, BMI, blood pressure, exercise amount, blood sugar 
before meal, and heart rate. In addition, for consistency, 
such data are measured at 8:00 every morning. In Table 1, 
TID means the transaction ID, and UID the user ID. FBS 
means the fasting blood sugar with units of mg/dL. HR 
represents the heart rate with units of HR/min (Rho et al. 
2016).

With the collected transaction, the error of the predicted 
result is evaluated by the neural-network based similarity 
(NNS), neural-network based median similarity (NNMS), 
median simple similarity (MSS), and daily simple similarity 
(DSS). NNS and NNMS are predictive methods using the 
proposed neural-network based collaborative filtering. NNS 

uses a user’s 1-day average value for prediction. NNMS uses 
the user average value of all transactions for prediction. This 
is because the frequent changes in context with time are 
considered. Depending on the learning rate, NNS is clas-
sified into NNS1 (learning rate = 0.001), NNS2 (learning 
rate = 0.01), and NNS3 (learning rate = 0.1). The MSS uses 
the similarity weight calculated using the average value 
of all transactions by the user. The DSS uses the similar-
ity weight calculated using the daily collected context in 
AmI. Table 2 presents the sequence change in the similarity 
weight. In Table 2, s1 means sequence 1. When sequence 
1 goes to sequence 2, the DSS has a small change in the 
similarity weight and a changing similarity weight depend-
ing on the input situation. The MSS calculates the similar-
ity weight once based on all the transactions. Regardless of 
the sequence, the similarity weight remains constant. In the 
NNS and NNMS methods, the similarity weight is changed 
differently depending on the learning rate. The lower the 
learning rate is, the less the similarity weight changes; the 
higher the learning rate is, the more the similarity weight 
changes. Depending on the error, a difference exists in the 
weight change, and the input value of a different user is not 
influential.

Table 3 presents the error of a user’s weight predicted 
in each method. According to the evaluation of the meth-
ods, the MSS and DSS methods contain an irregular error 
depending on the data. The proposed NNS and NNMS meth-
ods overall improved the error. Regarding the mean of errors 
for 10 days, NNS1 showed 0.59 (the most excellent) and an 
accurate prediction. When the proposed NNS method has a 
learning rate of 0.001, the prediction of the context collected 
in AmI is the most accurate. Figure 6 shows the error graphs 
depending on the prediction method.

Fig. 5  Life cycle of the adaptive context prediction model

Table 1  Transaction related to 
lifecare

TID UID Date Weight (kg) BMI Blood pulse (mmHg) FBS HR

Systole Diastolic

T00001 u1 180305 77.9 24.865 123 80 102 75
T00002 u2 180305 73.2 23.364 134 87 98 69
T00003 u3 180305 68.5 22.367 109 69 89 72
T00004 u4 180305 77.6 23.950 126 83 95 74
T00005 u5 180305 86.3 26.342 108 71 113 77
T00006 u6 180305 79.2 28.061 111 75 107 79
T00007 u7 180305 85.1 31.640 120 77 126 71
T00008 u8 180305 71.5 29.760 106 72 101 68
T00009 u9 180305 77.2 26.095 114 74 103 70
T00010 u10 180305 86.8 33.074 100 66 110 73
T00011 u1 180306 78.1 24.928 120 79 105 78
T00012 u2 180306 73.0 23.301 117 74 101 70
… … … … … … … … …
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Table 2  Sequence change in a 
similarity weight

Method DSS MSS NNMS NNS1 NNS2 NNS3

s1 w(u1, u2) 0.985 0.978 0.985 0.985 0.985 0.985
w(u1, u3) 0.996 0.983 0.996 0.996 0.996 0.996
w(u1, u4) 0.994 0.971 0.994 0.994 0.994 0.994
w(u1, u5) 0.952 0.968 0.952 0.952 0.952 0.952
w(u1, u6) 0.983 0.981 0.983 0.983 0.983 0.983
w(u1, u7) 0.951 0.970 0.951 0.951 0.951 0.951
w(u1, u8) 0.987 0.974 0.987 0.987 0.987 0.987
w(u1, u9) 0.994 0.979 0.994 0.994 0.994 0.994
w(u1, u10) 0.916 0.965 0.916 0.916 0.916 0.916

s2 w(u1, u2) 0.998 0.978 0.825 0.825 − 0.617 − 15.033
w(u1, u3) 0.988 0.983 0.846 0.846 − 0.503 − 13.993
w(u1, u4) 0.984 0.971 0.824 0.824 − 0.704 − 15.986
w(u1, u5) 0.931 0.968 0.763 0.763 − 0.936 − 17.932
w(u1, u6) 0.948 0.981 0.809 0.809 − 0.750 − 16.348
w(u1, u7) 0.925 0.970 0.765 0.765 − 0.911 − 17.671
w(u1, u8) 0.982 0.974 0.830 0.830 − 0.578 − 14.659
w(u1, u9) 0.971 0.979 0.825 0.825 − 0.696 − 15.899
w(u1, u10) 0.993 0.965 0.726 0.726 − 0.984 − 18.078

s3 … … … … … … …
… … … … … … … …
sN … … … … … … …

Table 3  Error of a user’s weight 
predicted in each method (kg)

Method Day

1 2 3 4 5 6 7 8 9 10 Avg.

NNS1 2.18 1.6 0.16 1.33 1.24 0.88 0.91 0.84 1.3 0.12 0.59
NNS2 2.19 2.75 1.03 2.24 1.99 0.46 1.87 2.21 0.00 1.17 1.59
NNS3 2.19 2.18 0.88 2.12 1.93 0.39 1.81 2.15 0.04 1.11 1.48
MSS 1.06 1.17 0.95 1.16 0.85 1.19 1.13 1.17 1.17 0.92 1.08
NNMS 2.18 0.97 0.69 0.84 0.46 0.74 0.59 0.51 0.43 0.08 0.75
DSS 2.18 2.28 0.75 2.34 2.19 0.29 1.87 2.17 0.11 0.84 1.48

Fig. 6  Error graphs depending 
on a prediction method
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5  Conclusion

An AmI-based intelligence system has a large difference in 
the predictive value depending on the similarity weight. To 
express and infer knowledge in a changing context, an evo-
lutionary model is required. This study proposed the neural-
network based adaptive context prediction model for AmI. 
This is the prediction method of context in AmI by calcu-
lating the user’s similarity and the adaptive weight using a 
neural learning model in a recommendation system. Context 
changes in real life with time. The evolutionary prediction 
model learns the similarity weight using the prediction error. 
A performance evaluation is conducted in the knowledge 
base presented with ontology, which is created with the con-
text collected in AmI by an inference engine. The MSS and 
DSS methods calculate the similarity coefficient depend-
ing on the learning rate and their predicted weight values 
are compared. According to the performance evaluation, a 
similarity coefficient calculated in MSS and DSS method 
is different each time with no special rules. The proposed 
prediction method using NNS gradually improved the over-
all error graphs in the down-right direction. According to 
the performance comparison with an existing method, the 
proposed method had an excellent value, or 0.59, on average. 
In the proposed adaptive prediction model, lifecare in AmI 
applies a user’s condition and change.
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