
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2019) 10:2745–2756
https://doi.org/10.1007/s12652-018-0971-4

ORIGINAL RESEARCH

Multi-level fuzzy transforms image compression

Ferdinando Di Martino1,2 · Salvatore Sessa1,2

Received: 25 September 2017 / Accepted: 7 August 2018 / Published online: 17 August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
We present a new multi-level image compression method based on fuzzy transforms in which the image is decomposed in
levels and afterwards each level-image is compressed as well. Unlike the traditional fuzzy transform image compression
method, the proposed algorithm allows to check the quality of the reconstructed image at every level. Unlike the classical
image compression F-transform algorithm, our method allows to control the quality of the reconstructed image, to be used
for applications in which a high quality of the decoded image is necessary. We compare our method with the single level
fuzzy transform, DCT, DWT, JPEG, JPEG2K algorithms in terms of quality of the reconstructed image and CPU coding/
decoding time. The results show that the CPU time obtained in our method are comparable (resp., better) with the ones
obtained via DCT, JPEG, JPEG2K (resp., DWT) algorithm.

Keywords Multi-level image compression · Fuzzy partition · Fuzzy transform · PSNR

1 Introduction

Usually a lossy image compression method is used for cod-
ing/decoding images, like, for example, JPEG. These meth-
ods are generally used for inserting images in WEB pages
and for capturing images by digital cameras. The advantage
in terms of sizes of the image obtained with a strong com-
pression rate is balanced by a lower quality of the decom-
pressed image and a great loss of information with respect
to the original image.

At present time, In many applications, like cloud storage
private data protection management in Wang et al. (2016)
or video surveillance systems using drones in Uchida et al.
(2017), it is necessary to control the quality of the decoded
image: generally speaking, using a strong compression rate,
high-frequency components are cut in the decoded image.
In addition, by setting a priori only the compression rate,

we cannot control the quality of the resulting image: for
instance, the quality of two decoded images can be very
different if two diverse original images are coded under the
same compression rate.

We show a new lossy multi-level image compression
based on the fuzzy transforms (F-tr), called as MF-trans-
forms (MF-tr). Our aim is to control the quality of the
decoded images and to optimize the trade off between the
image sizes and quality. In few words, the image is decom-
posed into more levels disposed as hierarchical structure:
each level retains a particular information’s content of the
original image which decreases at the successive level. This
happens also in other methods like the pyramid compression
method (e.g., Toet 1989; Paris et al. 2015; Boiangiu et al.
2016; Ispas and Boiangiu 2017) and the wavelet transform
(e.g., Walker and Nguyen 2001; Song 2006; Mallat 2009;
Chowdhury and Khathum 2012; Qureshi and Deriche 2016;
Khan et al. 2017; Ahanonu et al. 2018; Karthikeyan and
Palanisamy 2018).

Furthermore, we intend to improve the performances
obtained with the F-tr lossy image compression method
proposed in Perfilieva (2006), Di Martino and Sessa (2007),
Di Martino et al. (2008) in terms of quality of the decoded
image, mainly in Di Martino et al. (2008) the authors
show that the quality of the images is better than the one
obtained by using the fuzzy relation equation (FEQ) and
Discrete Cosine Transform (DCT) algorithms, used in JPEG

 * Ferdinando Di Martino
 fdimarti@unina.it

 Salvatore Sessa
 sessa@unina.it

1 Dipartimento di Architettura, Università degli Studi di
Napoli Federico II, Via Toledo 402, 80134 Napoli, Italy

2 Centro Interdipartimentale di ricerca A. Calza Bini,
Università degli Studi di Napoli Federico II, Via Toledo 402,
80134 Napoli, Italy

http://orcid.org/0000-0001-5690-5384
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-018-0971-4&domain=pdf

2746 F. Di Martino, S. Sessa

1 3

technique. Here we show that the MF-tr algorithm produces
better quality of the decoded images with respect to the
F-tr algorithm and Discrete Wavelet Transform (DWT),
used in JPEG2K and Embedded Zerotree Wavelet (EZW)
techniques.

Lossy image compression methods based on the con-
cept of direct and inverse bi-dimensional F-tr (Di Mar-
tino and Sessa 2007; Perfilieva 2007; Di Martino et al.
2008; Perfilieva and Dankova 2008; Perfilieva and de
Baets 2010) has been used in many others domains such
as image fusion in Di Martino and Sessa (2017), Hoda-
kova et al. (2011), Perfilieva (2007), Perfilieva and Dank-
ova (2008), in image segmentation in Di Martino et al.
(2010a), in image reduction in Di Martino et al. (2014), in
image watermarking in Di Martino et al. (2012), in video
compression in Di Martino et al. (2010b). In Di Martino
and Sessa (2007) and Di Martino et al. (2008) the authors
show that compression/decompression of images based
on F-tr method gives the best results with respect to the
ones based on fuzzy relation equations in terms of quality
of the image and CPU time. Furthermore, the quality of
the images with the F-tr method is comparable with that
one obtained using the JPEG method for low values of the
compression rate.

The MF-tr is based on a multi-level decomposition of the
error, like in image fusion (see.), Perfilieva (2007), Perfilieva
and Dankova (2008), Hodakova et al. (2011), Di Martino
and Sessa (2017). In this method the error obtained with
respect to the source image is measured at every level. The
process is iterated until the error is less than or equal to a

pre-fixed threshold. In Fig. 1 we show the schema of our
MF-tr method.

The source image, considered as level 0, is com-
pressed with the direct F-tr and decompressed with the
inverse F-tr. The difference between the source and the
decompressed image is given by the error at level (1)
This process is iterated: at the next iteration the error
obtained at level 1 represents the input image, then it is
compressed and decompressed and the difference with
the decompressed image is given by the error at level
(2) The iteration stops if the quality of the reconstructed
image, obtained as the sum of the inverse F-tr in every
level, is greater or equal than a pre-defined value. We
can set a threshold for the quality image by measuring
at each decomposition level the Peak Signal to Noise
Ratio (PSNR) obtained with the comparison of the recon-
structed and the source images.

We adopt the F-tr compression process used in Di Mar-
tino and Sessa (2007), Di Martino et al. (2008), in which the
original image is divided in blocks. As shown in Di Mar-
tino et al. (2010a), b, 2012, 2014), by dividing the image
in blocks, we obtain final images with the best quality with
respect to those ones obtained using the classical F-tr where
the original image is not divided in blocks.

In Sect. 2 we recall the concept of F-tr, in Sect. 3 we
present the F-tr image compression method, in Sect. 4 we
present our method, in Sect. 5 we show the results of our
tests and Sect. 6 is conclusive.

Fig. 1 MF-tr image compres-
sion schema

2747Multi-level fuzzy transforms image compression

1 3

2 The fuzzy transform method

2.1 Fuzzy transforms in one variable

Following the definitions and notations of Perfilieva (2006), let
[a, b] be a closed interval, n ≥ 2 and x1, x2, …, xn be points of
[a, b], called nodes, such that x1 = a < x2 <⋯< xn = b. We say
that an assigned family of fuzzy sets A1, …, An: [a, b] → [0,
1] is a fuzzy partition of [a, b] if the following conditions hold:

• Ai(xi) = 1 for every i = 1, 2, …, n;
• Ai(x) = 0 if x is not in (xi−1, xi+1), where we assume

 x0 = x1 = a and xn+1 = xn = b by comodity of presentation;
• Ai(x) is a continuous function on [a, b];
• Ai(x) strictly increases on [xi−1, xi] for i = 2, …, n and

strictly decreases on [xi, xi+1] for i = 1, …, n − 1;

•
n∑
i=1

Ai(x) = 1 for every x ∈ [a,b].

The fuzzy sets {A1, …, An} are called basic functions.
Moreover, we say that they form an uniform fuzzy parti-
tion if

• n ≥ 3 and xi = a + h ∙ (i−1), where h = (b−a)/(n−1) and
i = 1, 2, …, n (that is, the nodes are equidistant);

• Ai(xi – x) = Ai(xi + x) for every x ∈ [0, h] and i = 2, …,
n−1;

• Ai+1(x) = Ai(x − h) for every x ∈ [xi, xi+1] and i = 1, 2, …,
n−1.

Now we only deal with the discrete case, that is we know
that the function f assumes determined values in some points
 p1, ..., pm of [a, b]. We assume that the set P of these points
is sufficiently dense with respect to the fixed partition, that
is for each i = 1, …, n there exists an index j ∈ {1, …, m}
such that Ai(pj) > 0. Then we can define the n-tuple {F1, …,
 Fn} as the discrete F-tr of the function f with respect to {A1,
 A2,…, An}, where each Fi is given by:

for i = 1,…,n. We define the discrete inverse F-tr of the
function f with respect to {A1, A2, …, An} to be the follow-
ing function defined in the same points p1,..., pm of [a,b]:

We have the following approximation theorem Perfilieva
(2006):

(1)Fi =

m∑
j=1

f (pj)Ai(pj)

m∑
j=1

Ai(pj)

(2)fF,n(pj) =

n∑
i=1

FiAi(pj)

Theorem 1 Let f(x) be assigned on a set P of points p1,...,
 pm of [a,b]. Then for every ε > 0, there exist an integer n(ε)
and a related fuzzy partition {A1, A2, …, An(ε)} of [a, b] such
that P is sufficiently dense with respect to {A1, A2, …, An(ε)}
and the inequality |f(pj) − fF,n(ε) (pj) | < ε holds true for every
 pj ∈ [a, b], j = 1, …, m.

2.2 Fuzzy transforms in two variables

We can extend the above concepts to functions in two vari-
ables. Assume that our universe of discourse is the rectangle
[a, b] × [c, d] and let n, m ≥ 2, x1, x2, …, xn ∈ [a,b] and y1,y2,
…, ym ∈ [c, d] be n + m assigned points, called nodes, such
that x1 = a < x2 <⋯< xn = b and y1 = c <⋯< ym = d. Fur-
thermore, let A1, …, An : [a, b] → [0, 1] be a fuzzy partition
of [a, b] and B1, …, Bm: [c, d] → [0, 1] be a fuzzy partition
of [c, d]. In the discrete case, we assume that the function
f assumes determined values in some points (pj,qj) ∈ [a, b]
× [c, d], where i = 1, …, N and j = 1, …, M. Moreover, the
sets P = {p1, …, pN} and Q = {q1, … ,qM} of these points
are sufficiently dense with respect to the chosen partitions,
that is, for each i = 1, …, N there exists an index k ∈ {1, …,
n} such that Ai(pk) > 0 and for each j = 1, …, M there exists
an index l ∈ {1, …, m} such that Bj(ql) > 0. Then we define
the matrix [Fkl] to be the discrete F-tr of f with respect to
{A1, …, An} and {B1, …, Bm} if we have for each k = 1, …,
n and l = 1, …, m:

By extending (2) to the case of two variables, we define
the discrete inverse F-tr of f with respect to {A1, A2, …, An}
and {B1, …, Bm} to be the following function defined in the
same points (pj, qj) in [a, b] × [c, d], with i ∈ {1, …, N} and
j ∈ {1, …, M}, as:

It is possible to show that the following generalization
of Theorem 1:

Theorem 2 Let f(x, y) be known on (pj,qj) ∈ [a, b] × [c, d], i
∈ {1, …, N}, j ∈ {1, …, M}. Then for every ε > 0, there exist
two integers n(ε), m(ε) and related fuzzy partitions {A1, A2,

(3)Fkl =

M∑
j=1

N∑
i=1

f (pi, qj)Ak(pi)Bl(qj)

M∑
j=1

N∑
i=1

Ak(pi)Bl(qj)

(4)f F
nm
(pi, qj) =

n∑
k=1

m∑
l=1

FklAk(pi)Bl(qj)

2748 F. Di Martino, S. Sessa

1 3

…, An(ε)} of [a, b] and {B1, B2, …, Bm(ε)} of [c, d] such that
the sets of points P = {p1, …, pN} and Q = {q1, … ,qM} are
sufficiently dense with respect to {A1, A2, …, An(ε)} and {B1,
 B2, …, Bm(ε)} and the following holds true for every (pj,qj) ∈
[a, b] × [c, d], i ∈ {1, …, N} and j ∈ {1, …, M}:

3 F‑transforms in two variables for image
compression

Let I be a grey image of M × N sizes and Lt be the scale
of grey levels, with I(i,j) = P(i,j)/Lt, seen as I: (i, j) ∈ {1,
…, M}×{1, …, N} → [0, 1], I(i, j) being the normalized
value of the pixel P(i, j). For brevity, we put pi = i, qj = j,
a = c = 1, b = N, d = M. We suppose that A1, …, Am : [1, M]
→ [0,1] (resp., B1, …, Bn : [1, N] → [0, 1]) with m < M
(resp., n < N), form a fuzzy partition of [1, M] (resp., [1, N]).
Then I is divided in sub-matrices IC of M(C) × N(C) sizes
 (IC : (i, j) ∈ {1, …, M(C)×{1, …, N(C)} → [0,1]), defined
as blocks compressed to blocks C of sizes m(C) × n(C) (with
m(C) < M(C), n(C) < N(C)) via the discrete F-tr [FC

kl
] given

by:

for each k = 1, …, m(C) and l = 1, …, n(C). As above,
naturally we do in such a way that the set{1, …, M(C) (resp.,
{1, …, N(C)}) is sufficiently dense to the fuzzy partition
{A1, …, Am(C)} (resp., {B1, …, Bn(C)}) defined in [1, M(C)]
(resp., [1, N(C)]). Then we decode the blocks with the
inverse F-tr IF

m(C)n(c)
:{1, …, M(C)}×{1, …, N(C)} → [0,1]

defined as:

which approximates IC with arbitrary precision in the
sense of Theorem 2, that is there exist certainly two inte-
gers n(C) = n(C,ε), m(C) = m(C,ε) and ε > 0 for every block
C such that the inequality

(5)
|||f (pi, qj) − f F

n(𝜀)m(𝜀)
(pi, qj)

||| < 𝜀

(6)FC
kl
=

N(C)∑
j=1

M(C)∑
i=1

IC(i, j)Ak(i)Bl(j)

N(C)∑
j=1

M(C)∑
i=1

Ak(i)Bl(j)

(7)IF
m(C)n(C)

(i, j) =

n(C)∑
l=1

m(C)∑
k=1

FC
kl
Ak(i)Bl(j)

(8)
|||IC(i, j) − IF

m(C)n(C)

||| < 𝜀

holds true for every (i, j) ∈ {1, …, M(C)}×{1, …,
N(C)}. Practically speaking, we assign several values to
n(C) and m(C) with m(C) < M(C), n(C) < N(C) and hence
to the compression rate ρ(C) = (m(C) ∙ n(C))/(M(C) ∙
N(C)). Here we use (cfr., [6, 7, 8]) the fuzzy sets A1, …,
 Am(C) :[1,M(C)]◊[0,1] and B1,…,Bn(C) :[1,N(C)]◊[0,1]
defined as

where k = 2,…, m(C), h = (M(C)–1)/(m(C)–1), xk = 1+
h·(k-1) and

where t = 2, …, n(C), s = (N(C)–1)/(n(C)–1), yt = 1+ s·(t–1).

A1(i) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

h
(i − 1) + 1

�
if i ∈ [1,x2]

0 otherwise

(9)Ak(i) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

h
(i − xk) + 1

�
if i ∈ [xk-1,xk+1]

0 otherwise

Am(C)(i) =

⎧⎪⎨⎪⎩

0.5
�
cos

�

h
(i − xm(C)−1) + 1

�
if i ∈ [xm(C)−1,M(C)]

0 otherwise

B1(j) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

s
(j − 1) + 1

�
if j ∈ [1,y2]

0 otherwise

(10)Bt(j) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

s
(j − yt) + 1

�
if j ∈ [yt-1,yt+1]

0 otherwise

Bn(C)(j) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

s
(j − yn(C)−1) + 1

�
if j ∈ [yn(C)−1,N(C)]

0 otherwise

2749Multi-level fuzzy transforms image compression

1 3

4 The MF‑transform image process

We consider a grey-level image I of sizes N × M at level 0. In
order to control the quality of the reconstructed image with
respect to the original one, we put a threshold value for the
PSNR index defined as

where MSE stands for the Mean Square Error defined as

Lt can assume at most the value 255 in an 8-bit grey pixel
depth image. If I = I(0) is the original image, I(h) is the decoded
image, obtained at the hth level, given as:

where I(h)
F

 is the inverse F-tr calculated at the hth level. We
obtain I(h−1)

F
= I(h−1) − I(h−2) if h ⩾ 2 and I(1)

F
= I(1) − I(0) .

Figure 2 schematizes the reconstruction process.
If the PSNR calculated at each level is greater or

equal than the threshold, the process stops otherwise we

(11)PSNR = 20log10
Lt

MSE

(12)
MSE =

N∑
i=1

M∑
j=1

(I(h)(i, j) − I0(i, j))
2

N ×M
.

(13)I(h) =

⎧
⎪⎨⎪⎩

I(1) if h = 1

h−1�
r=1

I
(r)

F
= I(h−1)+ I

(h)

F
if h > 1

consider the next level. We use the F-tr compression pro-
cess described in Sect. 2.2, dividing the image in blocks
of dimensions n × m. Each block is compressed via (6) and
decompressed via (7). The inverse F-tr I(h)

F
 at the hth level

is obtained by merging all the decompressed blocks. In our
algorithm the process stops when at least one of the next
three conditions is true:

• the PSNR value is greater than a threshold PSNRth;
• the difference between the PSNR at the hth level and

the PSNR at the (h-1)th level is less than a difference
threshold DIFFPSNRth;

• the current level reaches a maximal level hmax.

We add the second condition because the DIFFPSN-
Rth value decreases by increasing the hth level. Hence
it is reasonable to stop the process when the image
quality obtained at a certain level differs in minimum
quantity if compared to that one obtained at the (h−1)
th level. The third condition is added in order to stop
the process after hmax iterations if the first two condi-
tions are false. As schematized in the coding/decoding
pseudocode below, the conditional statement in the step
15) is necessary because in the first iteration (h = 1)
the value of the variable DIFFPSNR must be set to a
value greater than the difference threshold DIFFPSN-
Rth. We denote with I(1)

D
…I

(h)

D
 the direct F-tr obtained

at each level.

Fig. 2 Schema of the images
reconstructed at each level

2750 F. Di Martino, S. Sessa

1 3

5 Test results

For our tests we have considered a sample of grey images
taken from the USC-SIPI Image Database (http://sipi.usc.
edu/datab ase/). We perform our tests by using a Intel Core
i7-59360X processor with a clock frequency of 3 GHz.

For measuring the performances of the MF-tr algorithm,
we compare it with the classical F-tr, FEQ, DCT, DWT,
JPEG, JPEG2K algorithms. In these comparison we meas-
ure the PSNR and the CPU time obtained applying each
algorithm. For brevity, we only give the results for three
images of this sample. In the first experiment the grey image
Lena of sizes 256 × 256 (Fig. 3a) is divided in blocks of
sizes 4 × 4 compressed in blocks of sizes 2 × 2 (ρ = 0.25). At
the 1st level the PSNR is 28.410 and we set PSNRth = 30,
DIFFPSNRth = 0.1. Thus both thresholds are reached at the
5th level (Fig. 3b). In Fig. 3c, e, g, i (resp., d, f, h, l) we show

the decoded images (rep., corresponding errors) obtained at
the 1st, 2nd, 3rd, 4th level.

In Table 1 we show the PSNR obtained for each level.
The column DIFFPSNR shows the difference between the
PSNRs obtained at the hth and (h−1)th levels.

In the next experiment the grey image Leopard of sizes
256 × 256 (Fig. 4a) is divided in blocks of sizes 4 × 4 com-
pressed in blocks of sizes 2 × 2 (ρ = 0.25). At the 1st level
the PSNR is 24.675 and we set PSNRth = 26, DIFFPSN-
Rth = 0.1. Thus both thresholds are reached at the 3rd level
(Fig. 4b). In Fig. 4a we show the original image. In Fig. 4b
we show the resulting image obtained at the 2nd level.
Fig. 4c, e (resp., d, f) show the decoded images (resp., cor-
responding errors) obtained at the 1st, 2nd level.

In Table 2 we show the PSNR obtained for each level.
The column DIFFPSNR shows the difference between the
PSNRs obtained at the hth and (h−1)th levels.

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/

2751Multi-level fuzzy transforms image compression

1 3

Fig. 3 a The original image Lena, b. Final decoded image at 5th level. c.
Decoded image at 1st level. d. Error at 1st level. e. Decoded image at 2nd
level. f. Error at 2nd level. g. Decoded image at 3rd level. h. Error at 3rd
level. i. Decoded image at 4th level. l. Error at 4th level

Table 1 PSNR obtained at
each level for the image Lena
(ρ = 0.25)

Level PSNR DIFFPSNR

1 28.410 –
2 29.238 0.828
3 29.681 0.443
4 29.935 0.254
5 30.024 0.089

Fig. 4 a The original image Leopard. b Final decoded image at 3rd
level. c Decoded image at 1st level. d Error at 1st level. e Decoded
image at 2nd level. f Error at 2nd level

Table 2 PSNR obtained at each
level for the image Leopard
(ρ = 0.25)

Level PSNR DIFFPSNR

1 24.675 –
2 25.709 1.034
3 26.181 0.472

2752 F. Di Martino, S. Sessa

1 3

In the next experiment the grey image “11” of sizes
512 × 512 (Fig. 5a) is divided in blocks of sizes 4 × 4
compressed in blocks of sizes 2 × 2 (ρ = 0.25). At the
1st level the PSNR is 30.412. We set PSNRth = 32 and
DIFFPSNRth = 0.1. These thresholds are reached at
the 3rd level. In Fig. 5a we show the original image.
In Fig. 5b we show the decoded image obtained at the

4th level. Fig. 5c, e, g (resp., d, f, h) show the decoded
images (resp., corresponding errors) obtained at the 1st,
2nd, 3rd level.

In Table 3 we show the PSNR obtained for each level.
The column DIFFPSNR shows the difference between
the PSNRs obtained at the hth and (h-1)th levels. Table 4

Fig. 5 a The original image 11. b Final decoded image at 4th level. c
Decoded image at 1st level. d Error at 1st level. e Decoded image at
2nd level. f Error at 2nd level. g Decoded image 3rd level. h Error at
3rd level

Table 3 PSNR obtained at
each level for the image “11”
(ρ = 0.25)

Level PSNR Diff PSNR

1 28.615 –
2 29.779 1.164
3 30.244 0.465
4 30.341 0.097

Table 4 CPU time in ms obtained for the images Lena, Leopard and
“11”

Image Dimensions
of the image

CPU time in F-tr Final level
in MF-tr

CPU
time in
MF-tr

Lena 256 × 256 17.43 5 48.00
Leopard 256 × 256 17.83 3 34.18
11 512 × 512 14.61 4 54.75

Table 5 Mean CPU time varying the final level for images of sizes
256 × 256

Final level (MF-tr) Mean CPU time
(MF-tr)

Average CPU time
MF-tr/number of
levels

2 25.87 12.94
3 32.89 10.96
4 40.79 10.20
5 48.00 9.60
6 55.64 9.27
7 64.77 9.25
8 73.71 9.21

Table 6 Mean CPU time varying the final level for images of sizes
512 × 512

Final level (MF-tr) Mean CPU time
(MF-tr)

Average CPU time
MF-tr/number of
levels

2 35.06 17.53
3 46.91 15.64
4 60.18 15.05
5 73.95 14.79
6 87.31 14.55
7 101.47 14.50
8 115.33 14.42

2753Multi-level fuzzy transforms image compression

1 3

shows the CPU time required with the F-tr and MF-tr
methods for decoding the original images.

In Table 5 (resp., 6, 7) we show the mean CPU time
obtained for all 256 × 256 (resp., 512 × 512, 1024 × 1024)
grey images of the above database by varying the final level.
In the 3rd column we show the ratio between the total CPU
time and the final level.

Tables 5, 6 and 7 show that this ratio decreases by
increasing the final level. Indeed the results show the CPU
mean time is 0.5 s (resp., 1 s) for images of sizes 256 × 256

(resp., 512 × 512 and 1024 × 1024) by performing a decom-
position up to the eighth level. In other words, the MF-tr
method can be considered a good compromise between the
quality of the reconstructed image and the time necessary
for its reconstruction.

By sake of completeness, comparison experiments are
made with other image compression methods for measur-
ing the performances of the MF-tr algorithm in terms of
quality of the reconstructed image by means of the PSNR.
Indeed we consider the grey levels of the error images at
each level and apply the Huffman encoding to maximize
the compression. For brevity, we show the PSNR obtained
for the 256 × 256 grey image Lena in Table 8. The second
column shows the dimension in bytes of the direct F-tr
at any level, the third column shows the dimension in
bytes of the sum of all the direct F-tr until to the lth level.
The compression rate ρ is given by the ratio between the
number of bytes of the sum of the directed F-tr and the
number of bytes necessary to store the original images.
The 4th, 5th, 6th columns show the PSNR in the MF-tr,
JPEG and JPEG2K methods, respectively and in the 8th
(resp., 9th) the percentage gain PSNR of the JPEG (resp.,
JPEG2K) with respect to the MF-tr, respectively defined
as:

Table 7 Mean CPU time varying the final level for images of sizes
1024 × 1024

Final level (MF-tr) Mean CPU time
(MF-tr)

Average CPU time
MF-tr/number of
levels

2 45.17 22.59
3 61.02 20.34
4 79.58 19.90
5 98.32 19.66
6 114.38 19.06
7 131.65 18.81
8 150.01 18.75

Table 8 PSNR comparisons for the image Lena (MF-tr, JPEG and JPEG2K)

Level Bytes directed F-tr Bytes sum of
directed F-tr

ρ PSNR MF-tr PSNR JPEG PSNR JPEG2K %GAIN JPEG
over MF-tr

%GAIN
JPEG2K over
MF-tr

1 16,384 16,384 0.250 28.410 36.371 37.388 28.022 31.602
2 2826 19,210 0.293 29.238 36.380 37.421 24.427 27.988
3 1843 21,053 0.321 29.681 36.412 37.462 22.678 26.215
4 1290 22,344 0.341 29.935 36.477 37.488 21.854 25.231
5 492 22,835 0.348 30.024 36.503 37.517 21.579 24.957
6 328 23,163 0.353 30.453 36.565 37.530 20.070 23.239
7 123 23,286 0.355 30.703 36.569 37.536 19.128 22.278

Table 9 PSNR comparison and MF-tr gain with respect FEQ, DCT and DWT for image Lena

Level ρ PSNR(MF-
transforms)

PSNR (FEQ) PSNR (DCT) PSNR (DWT) %GAIN (MF-
Ftr over FEQ)

%GAIN (M_
FTR over DCT)

%GAIN
(M_FTR over
DWT)

1 0.250 28.410 23.298 27.487 27.868 21.940 3.358 2.312
2 0.293 29.238 23.429 27.643 28.001 24.794 5.770 4.418
3 0.321 29.681 23.511 27.726 28.212 26.243 7.051 5.207
4 0.341 29.935 23.578 27.798 28.455 26.962 7.688 5.684
5 0.348 30.024 23.603 27.815 28.516 27.204 7.942 5.703
6 0.353 30.453 23.617 27.827 29.001 28.945 9.437 6.789
7 0.355 30.703 23.628 27.836 29.302 29.943 10.300 7.436

2754 F. Di Martino, S. Sessa

1 3

%Gain (JPEG over MF-tr) = (PSNR JPEG – PSNR
MF-tr)/PSNR MF-tr.

%Gain (JPEG2K over MF-tr) = (PSNR JPEG2K – PSNR
MF-tr)/PSNR MF-tr.

These results show that the PSNR gain percentage
obtained by using the JPEG and JPEG2K algorithms with
respect to the MF-tr algorithm decreases by increasing
the levels. This trend is shown also for the other grey
images in the dataset. The results in Table 9 show that the
gain percentage of PSNR, obtained by using the MF-tr
algorithm with respect to FEQ, DCT, DWT algorithms,
increases by increasing the compression rate, that is
increasing the levels considered in the MF-Ftr algorithm.
This trend is shown also for the other grey images in the
dataset. In the FEQ compression method we used the
Lukasiewicz t-norm and the related residuum operators.
In the DCT algorithm the image is partitioned in 8 × 8
size blocks. In the DWT algorithm at each level the HH,
LH and HL coefficients are discarded, whereas the LL
coefficients are transformed into the successive level. The
best results are obtained by using the MF-tr algorithm The
DWT algorithm gives better results with respect to the
FEQ and DCT algorithms. The gain percentage of PSNR
for the image Lena are defined as.

%Gain (MF-tr over FEQ) = (PSNR MF-tr – PSNR FEQ)
/ PSNR FEQ.

%Gain (MF-tr over DCT) = (PSNR MF-tr – PSNR DCT)
/ PSNR DCT.

%Gain (MF-tr over DWT) = (PSNR MF-tr – PSNR DCT)
/ PSNR DWT.

In Fig. 6 we show the mean trends of the three gain per-
centages by varying the compression rate.

In Tables 10 and 11 we show the mean coding and decod-
ing CPU times, respectively, obtained for the 256 × 256 grey
images in the dataset applying the MF-tr, F-tr, FEQ, DCT
and DWT algorithms.

These results show that the CPU time obtained by using
the MF-tr algorithm are averagely acceptable. Both the
mean coding and decoding CPU times calculated by using

the MF-tr algorithm are better than the corresponding ones
in the DWT algorithm, independently from the compres-
sion rate.

Figures 7 and 8 show the trend of the coding and the
decoding CPU time, respectively, calculated in seconds by
using the MF-tr and DWT algorithm. These trends highlight
the benefits in terms of CPU time in the coding and decoding
processes of the MF-tr algorithm with respect to the DWT
algorithm, regardless of the compression rate.

Fig. 6 Trend of the gain per-
centages of MF-tr with respect
to FEQ, DCT, DWT

Table 10 Mean coding CPU time for 256 × 256 grey images in sev-
eral methods

ρ CODING CPU TIME (ms)

MF-tr F-tr FEQ DCT DWT

0.250000 6.09 6.09 58.11 6.21 11.45
0.293125 11.42 6.10 58.03 6.24 23.02
0.321250 16.88 6.12 57.73 6.25 37.30
0.340938 22.31 6.13 57.39 6.27 49.27
0.348438 27.69 6.16 56.98 6.30 63.31
0.353438 33.98 6.17 56.77 6.38 73.54
0.355313 42.37 6.20 56.34 6.42 85.71

Table 11 Mean decoding CPU time for 256 × 256grey images in sev-
eral methods

ρ DECODING CPU TIME (ms)

MF-tr F-tr FEQ DCT DWT

0.250000 11.34 11.34 11.15 5.19 26.15
0.293125 14.45 11.41 11.36 5.25 26.44
0.321250 16.01 11.45 11.78 5.38 26.92
0.340938 18.48 11.50 12.35 5.47 27.34
0.348438 20.31 11.56 12.61 5.53 27.76
0.353438 21.66 11.62 12.78 5.60 28.01
0.355313 22.40 11.67 12.89 5.68 28.62

2755Multi-level fuzzy transforms image compression

1 3

6 Conclusions

Lossy image compression algorithms are used in many dis-
ciplines in which a loss of information in the reconstructed
image is considered acceptable. The drawback of the F-tr
method consists in the fact that they does not allow to set
in advance the quality of the reconstructed image, but only
its compression rate. The MF-tr algorithm is a multi-level
compression image technique that uses the F-tr algorithm
for coding and decoding the input image at each level. The
user can set a PSNR threshold for controlling the quality
of the reconstructed image. This characteristic makes the
MF-tr method usable also in the cases where it is neces-
sary to guarantee a high quality of the reconstructed image,
such as, for example, in video surveillance or environmental
control systems.

The results show that the CPU time (necessary for
reconstructing the final image) is acceptable and the cod-
ing/decoding time decreases by increasing the number of
the levels. Moreover, comparisons show that the PSNR
gain percentage obtained by using the MF-tr algorithm is
better than the corresponding ones obtained by using F-tr,
FEQ, DCT, DWT algorithms. The quality of the decoded
image is not comparable with the ones obtained by using
the JPEG ad JPEG2K techniques, but the PSNR gain per-
centage of the JPEG and JPEG2K techniques diminishes
by increasing the number of levels. In future researches
the quality of the decoded image will be improved by inte-
grating the MF-tr algorithm with specific quantization and
entropy encoding algorithms, moreover such method shall
be dedicated to other topics like segmentation and image
fusion. In the future we intend to build a fragile watermark-
ing algorithm based on the MF-tr method in order to apply
it in a cloud storage environment to protect the privacy of
sensitive images. This fragile watermarking system will be
based on the schema proposed in Di Martino et al. (2010a)
in which we apply the MF-tr method controls the quality of
the marked stored images.

Acknowledgements This work was written under the auspices of
INDAM-GCNS (Italy).

References

Ahanonu E, Marcellin M, Bilgin A (2018) Lossless image compres-
sion using reversible integer wavelet transforms and convolutional
neural networks 2018 Data Compression Conference, Snowbird,
pp. 395–395. https ://doi.org/10.1109/DCC.2018.00048

Boiangiu CA, Cotofana MV, Naiman A, Lambru C (2016) A general-
ized Laplacian pyramid aimed at image compression. J Inf Syst
Oper Manag 10(2):327–335

Chowdhury MMH, Khatun A (2012) Image compression using discrete
wavelet transform. Int J Comput Sci Issues 9(4):327–330

Di Martino F, Sessa S (2007) Compression and decompression of
images with discrete fuzzy transforms. Inf Sci 177:2349–2362

Di Martino F, Sessa S (2017) Complete image fusion method based
on fuzzy transforms. Soft Comput. https ://doi.org/10.1007/s0050
0-017-2929-4.

Di Martino F, Loia V, Perfilieva I, Sessa S (2008) An image coding/
decoding method based on direct and inverse fuzzy transforms.
Int J Approx Reasoning 48(1):110–131

Di Martino F, Loia V, Sessa S (2010a) A segmentation method
for images compressed by fuzzy transforms. Fuzzy Sets Syst
161:56–74

Di Martino F, Loia V, Sessa S (2010b) Fuzzy transforms for compres-
sion and decompression of colour videos. Inf Sci 180:3914–3931

Di Martino F, Loia V, Sessa S (2012) Fragile watermarking tamper
detection with images compressed by fuzzy transform. Inf Sci
195:62–90

Di Martino F, Hurtik P, Perfilieva I, Sessa S (2014) A color image
reduction based on fuzzy transforms. Inf Sci 266:101–111

Hodakova P, Perfilieva I, Dankova M, Vajgl M (2011) F-transform
based image fusion. In: Ukimura O (ed) Image fusion. InTech,
Rijeka, pp. 3–22

Fig. 7 Trend of the coding CPU time of MF-tr (in red) with respect
to DWT (in green)

Fig. 8 Trend of the decoding CPU time of MF-tr (in red) with respect
to DWT (in green)

https://doi.org/10.1109/DCC.2018.00048
https://doi.org/10.1007/s00500-017-2929-4
https://doi.org/10.1007/s00500-017-2929-4

2756 F. Di Martino, S. Sessa

1 3

Ispas C, Boiangiu CA (2017) An image compression scheme based on
Laplacian Pyramid. J Inf Syst Oper Manag 11(2):350–358

Karthikeyan C, Palanisamy C (2018) An efficient image compression
method by using optimized discrete wavelet transform and huff-
man encoder. J Comput Theor Nanosci 15(1):289–298

Khan UR, Ahmed S, Nazeer T (2017) Wavelet based image compres-
sion techniques: comparative analysis and performance evalua-
tion. Int J Emerg Technol Eng Res 5(9):9–13

Mallat S (2009) A wavelet tour of signal processing: the sparse way,
3 Edn. Academic Press, Burlington

Paris S, Hasinoff SV, Kautz J (2015) Local Laplacian filters: edge-
aware image processing with a Laplacian pyramid. Commun
ACM CACM 58(3):81–91

Perfilieva I (2006) Fuzzy transforms. Fuzzy Sets Syst 157:993–1023
Perfilieva I (2007) Fuzzy transform in image compression and fusion.

Acta Math Univ Ostrav 15:27–37
Perfilieva I, Dankova M (2008) Image fusion on the basis of fuzzy

transforms. Proceedings of the 8th International FLINS Confer-
ence on Computational Intelligence in Decision and Control,
Madrid, pp. 471–476

Perfilieva I, De Baets B (2010) Fuzzy transforms of monotone functions
with application to image compression. Inf Sci 180:3304–3315

Qureshi MA, Deriche M (2016) A new wavelet based efficient image
compression algorithm using compressive sensing. Multimed
Tools Appl 75:6737–6754

Song M-S (2006) Wavelet image compression. Contemp Math
414:41–73

Toet A (1989) A morphological pyramidal image decomposition. Pat-
tern Recogn Lett 9(4):255–261

Uchida N, Okutake T, Yamamoto N (2017) Image recognitions of col-
laborative drones’ security controls for FPV systems. Int J Space
Based Situated Comput 7(3):129–135

Walker JS, Nguyen TQ (2001) Wavelet-based image compression
(Chap. 6). In: Rao KR et al (ed) The transform and data compres-
sion handbook. CRC Press LLC, Boca Raton

Wang Y. Du y., Cheng X, Liu Z, Lin K (2016) Degradation and encryp-
tion for outsourced PNG images in cloud storage. Int J Grid Utility
Comput 7(1):22–28

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Multi-level fuzzy transforms image compression
	Abstract
	1 Introduction
	2 The fuzzy transform method
	2.1 Fuzzy transforms in one variable
	2.2 Fuzzy transforms in two variables

	3 F-transforms in two variables for image compression
	4 The MF-transform image process
	5 Test results
	6 Conclusions
	Acknowledgements
	References

