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Abstract
We present a new multi-level image compression method based on fuzzy transforms in which the image is decomposed in 
levels and afterwards each level-image is compressed as well. Unlike the traditional fuzzy transform image compression 
method, the proposed algorithm allows to check the quality of the reconstructed image at every level. Unlike the classical 
image compression F-transform algorithm, our method allows to control the quality of the reconstructed image, to be used 
for applications in which a high quality of the decoded image is necessary. We compare our method with the single level 
fuzzy transform, DCT, DWT, JPEG, JPEG2K algorithms in terms of quality of the reconstructed image and CPU coding/
decoding time. The results show that the CPU time obtained in our method are comparable (resp., better) with the ones 
obtained via DCT, JPEG, JPEG2K (resp., DWT) algorithm.

Keywords Multi-level image compression · Fuzzy partition · Fuzzy transform · PSNR

1 Introduction

Usually a lossy image compression method is used for cod-
ing/decoding images, like, for example, JPEG. These meth-
ods are generally used for inserting images in WEB pages 
and for capturing images by digital cameras. The advantage 
in terms of sizes of the image obtained with a strong com-
pression rate is balanced by a lower quality of the decom-
pressed image and a great loss of information with respect 
to the original image.

At present time, In many applications, like cloud storage 
private data protection management in Wang et al. (2016) 
or video surveillance systems using drones in Uchida et al. 
(2017), it is necessary to control the quality of the decoded 
image: generally speaking, using a strong compression rate, 
high-frequency components are cut in the decoded image. 
In addition, by setting a priori only the compression rate, 

we cannot control the quality of the resulting image: for 
instance, the quality of two decoded images can be very 
different if two diverse original images are coded under the 
same compression rate.

We show a new lossy multi-level image compression 
based on the fuzzy transforms (F-tr), called as MF-trans-
forms (MF-tr). Our aim is to control the quality of the 
decoded images and to optimize the trade off between the 
image sizes and quality. In few words, the image is decom-
posed into more levels disposed as hierarchical structure: 
each level retains a particular information’s content of the 
original image which decreases at the successive level. This 
happens also in other methods like the pyramid compression 
method (e.g., Toet 1989; Paris et al. 2015; Boiangiu et al. 
2016; Ispas and Boiangiu 2017) and the wavelet transform 
(e.g., Walker and Nguyen 2001; Song 2006; Mallat 2009; 
Chowdhury and Khathum 2012; Qureshi and Deriche 2016; 
Khan et al. 2017; Ahanonu et al. 2018; Karthikeyan and 
Palanisamy 2018).

Furthermore, we intend to improve the performances 
obtained with the F-tr lossy image compression method 
proposed in Perfilieva (2006), Di Martino and Sessa (2007), 
Di Martino et al. (2008) in terms of quality of the decoded 
image, mainly in Di Martino et  al. (2008) the authors 
show that the quality of the images is better than the one 
obtained by using the fuzzy relation equation (FEQ) and 
Discrete Cosine Transform (DCT) algorithms, used in JPEG 
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technique. Here we show that the MF-tr algorithm produces 
better quality of the decoded images with respect to the 
F-tr algorithm and Discrete Wavelet Transform (DWT), 
used in JPEG2K and Embedded Zerotree Wavelet (EZW) 
techniques.

Lossy image compression methods based on the con-
cept of direct and inverse bi-dimensional F-tr (Di Mar-
tino and Sessa 2007; Perfilieva 2007; Di Martino et al. 
2008; Perfilieva and Dankova 2008; Perfilieva and de 
Baets 2010) has been used in many others domains such 
as image fusion in Di Martino and Sessa (2017), Hoda-
kova et al. (2011), Perfilieva (2007), Perfilieva and Dank-
ova (2008), in image segmentation in Di Martino et al. 
(2010a), in image reduction in Di Martino et al. (2014), in 
image watermarking in Di Martino et al. (2012), in video 
compression in Di Martino et al. (2010b). In Di Martino 
and Sessa (2007) and Di Martino et al. (2008) the authors 
show that compression/decompression of images based 
on F-tr method gives the best results with respect to the 
ones based on fuzzy relation equations in terms of quality 
of the image and CPU time. Furthermore, the quality of 
the images with the F-tr method is comparable with that 
one obtained using the JPEG method for low values of the 
compression rate.

The MF-tr is based on a multi-level decomposition of the 
error, like in image fusion (see.), Perfilieva (2007), Perfilieva 
and Dankova (2008), Hodakova et al. (2011), Di Martino 
and Sessa (2017). In this method the error obtained with 
respect to the source image is measured at every level. The 
process is iterated until the error is less than or equal to a 

pre-fixed threshold. In Fig. 1 we show the schema of our 
MF-tr method.

The source image, considered as level 0, is com-
pressed with the direct F-tr and decompressed with the 
inverse F-tr. The difference between the source and the 
decompressed image is given by the error at level (1) 
This process is iterated: at the next iteration the error 
obtained at level 1 represents the input image, then it is 
compressed and decompressed and the difference with 
the decompressed image is given by the error at level 
(2) The iteration stops if the quality of the reconstructed 
image, obtained as the sum of the inverse F-tr in every 
level, is greater or equal than a pre-defined value. We 
can set a threshold for the quality image by measuring 
at each decomposition level the Peak Signal to Noise 
Ratio (PSNR) obtained with the comparison of the recon-
structed and the source images.

We adopt the F-tr compression process used in Di Mar-
tino and Sessa (2007), Di Martino et al. (2008), in which the 
original image is divided in blocks. As shown in Di Mar-
tino et al. (2010a), b, 2012, 2014), by dividing the image 
in blocks, we obtain final images with the best quality with 
respect to those ones obtained using the classical F-tr where 
the original image is not divided in blocks.

In Sect. 2 we recall the concept of F-tr, in Sect. 3 we 
present the F-tr image compression method, in Sect. 4 we 
present our method, in Sect. 5 we show the results of our 
tests and Sect. 6 is conclusive.

Fig. 1  MF-tr image compres-
sion schema
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2  The fuzzy transform method

2.1  Fuzzy transforms in one variable

Following the definitions and notations of Perfilieva (2006), let 
[a, b] be a closed interval, n ≥ 2 and  x1,  x2, …,  xn be points of 
[a, b], called nodes, such that  x1 = a < x2 <⋯<  xn = b. We say 
that an assigned family of fuzzy sets  A1, …,  An: [a, b] → [0, 
1] is a fuzzy partition of [a, b] if the following conditions hold:

• Ai(xi) = 1 for every i = 1, 2, …, n;
• Ai(x) = 0 if x is not in  (xi−1,  xi+1), where we assume 

 x0 = x1 = a and  xn+1 =  xn = b by comodity of presentation;
• Ai(x) is a continuous function on [a, b];
• Ai(x) strictly increases on  [xi−1,  xi] for i = 2, …, n and 

strictly decreases on  [xi,  xi+1] for i = 1, …, n − 1;

• 
n∑
i=1

Ai(x) = 1 for every x ∈ [a,b].

The fuzzy sets {A1, …,  An} are called basic functions. 
Moreover, we say that they form an uniform fuzzy parti-
tion if

• n ≥ 3 and  xi = a + h ∙ (i−1), where h = (b−a)/(n−1) and 
i = 1, 2, …, n (that is, the nodes are equidistant);

• Ai(xi – x) = Ai(xi + x) for every x ∈ [0, h] and i = 2, …, 
n−1;

• Ai+1(x) = Ai(x − h) for every x ∈  [xi,  xi+1] and i = 1, 2, …, 
n−1.

Now we only deal with the discrete case, that is we know 
that the function f assumes determined values in some points 
 p1, ...,  pm of [a, b]. We assume that the set P of these points 
is sufficiently dense with respect to the fixed partition, that 
is for each i = 1, …, n there exists an index j ∈ {1, …, m} 
such that  Ai(pj) > 0. Then we can define the n-tuple {F1, …, 
 Fn} as the discrete F-tr of the function f with respect to {A1, 
 A2,…,  An}, where each  Fi is given by:

for i = 1,…,n. We define the discrete inverse F-tr of the 
function f with respect to {A1,  A2, …,  An} to be the follow-
ing function defined in the same points  p1,...,  pm of [a,b]:

We have the following approximation theorem Perfilieva 
(2006):

(1)Fi =

m∑
j=1

f (pj)Ai(pj)

m∑
j=1

Ai(pj)

(2)fF,n(pj) =

n∑
i=1

FiAi(pj)

Theorem 1 Let f(x) be assigned on a set P of points  p1,..., 
 pm of [a,b]. Then for every ε > 0, there exist an integer n(ε) 
and a related fuzzy partition {A1,  A2, …,  An(ε)} of [a, b] such 
that P is sufficiently dense with respect to {A1,  A2, …,  An(ε)} 
and the inequality |f(pj) −  fF,n(ε)  (pj) | < ε holds true for every 
 pj ∈ [a, b], j = 1, …, m.

2.2  Fuzzy transforms in two variables

We can extend the above concepts to functions in two vari-
ables. Assume that our universe of discourse is the rectangle 
[a, b] × [c, d] and let n, m ≥ 2,  x1,  x2, …,  xn ∈ [a,b] and  y1,y2, 
…,  ym ∈ [c, d] be n + m assigned points, called nodes, such 
that  x1 = a < x2 <⋯<  xn = b and  y1 = c <⋯<  ym = d. Fur-
thermore, let  A1, …,  An : [a, b] → [0, 1] be a fuzzy partition 
of [a, b] and  B1, …,  Bm: [c, d] → [0, 1] be a fuzzy partition 
of [c, d]. In the discrete case, we assume that the function 
f assumes determined values in some points  (pj,qj) ∈ [a, b] 
× [c, d], where i = 1, …, N and j = 1, …, M. Moreover, the 
sets P = {p1, …,  pN} and Q = {q1, … ,qM} of these points 
are sufficiently dense with respect to the chosen partitions, 
that is, for each i = 1, …, N there exists an index k ∈ {1, …, 
n} such that  Ai(pk) > 0 and for each j = 1, …, M there exists 
an index l ∈ {1, …, m} such that  Bj(ql) > 0. Then we define 
the matrix  [Fkl] to be the discrete F-tr of f with respect to 
{A1, …,  An} and {B1, …,  Bm} if we have for each k = 1, …, 
n and l = 1, …, m:

By extending (2) to the case of two variables, we define 
the discrete inverse F-tr of f with respect to {A1,  A2, …,  An} 
and {B1, …,  Bm} to be the following function defined in the 
same points  (pj,  qj) in [a, b] × [c, d], with i ∈ {1, …, N} and 
j ∈ {1, …, M}, as:

It is possible to show that the following generalization 
of Theorem 1:

Theorem 2 Let f(x, y) be known on  (pj,qj) ∈ [a, b] × [c, d], i 
∈ {1, …, N}, j ∈ {1, …, M}. Then for every ε > 0, there exist 
two integers n(ε), m(ε) and related fuzzy partitions {A1,  A2, 

(3)Fkl =

M∑
j=1

N∑
i=1

f (pi, qj)Ak(pi)Bl(qj)

M∑
j=1

N∑
i=1

Ak(pi)Bl(qj)

(4)f F
nm
(pi, qj) =

n∑
k=1

m∑
l=1

FklAk(pi)Bl(qj)
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…,  An(ε)} of [a, b] and {B1,  B2, …,  Bm(ε)} of [c, d] such that 
the sets of points P = {p1, …,  pN} and Q = {q1, … ,qM} are 
sufficiently dense with respect to {A1,  A2, …,  An(ε)} and {B1, 
 B2, …,  Bm(ε)} and the following holds true for every  (pj,qj) ∈ 
[a, b] × [c, d], i ∈ {1, …, N} and j ∈ {1, …, M}:

3  F‑transforms in two variables for image 
compression

Let I be a grey image of M × N sizes and Lt be the scale 
of grey levels, with I(i,j) = P(i,j)/Lt, seen as I: (i, j) ∈ {1, 
…, M}×{1, …, N} → [0, 1], I(i, j) being the normalized 
value of the pixel P(i, j). For brevity, we put  pi = i,  qj = j, 
a = c = 1, b = N, d = M. We suppose that  A1, …,  Am : [1, M] 
→ [0,1] (resp.,  B1, …,  Bn : [1, N] → [0, 1]) with m < M 
(resp., n < N), form a fuzzy partition of [1, M] (resp., [1, N]). 
Then I is divided in sub-matrices  IC of M(C) × N(C) sizes 
 (IC : (i, j) ∈ {1, …, M(C)×{1, …, N(C)} → [0,1]), defined 
as blocks compressed to blocks C of sizes m(C) × n(C) (with 
m(C) < M(C), n(C) < N(C)) via the discrete F-tr [ FC

kl
 ] given 

by:

for each k = 1, …, m(C) and l = 1, …, n(C). As above, 
naturally we do in such a way that the set{1, …, M(C) (resp., 
{1, …, N(C)}) is sufficiently dense to the fuzzy partition 
{A1, …,  Am(C)} (resp., {B1, …,  Bn(C)}) defined in [1, M(C)] 
(resp., [1, N(C)]). Then we decode the blocks with the 
inverse F-tr IF

m(C)n(c)
:{1, …, M(C)}×{1, …, N(C)} → [0,1] 

defined as:

which approximates  IC with arbitrary precision in the 
sense of Theorem 2, that is there exist certainly two inte-
gers n(C) = n(C,ε), m(C) = m(C,ε) and ε > 0 for every block 
C such that the inequality

(5)
|||f (pi, qj) − f F

n(𝜀)m(𝜀)
(pi, qj)

||| < 𝜀

(6)FC
kl
=

N(C)∑
j=1

M(C)∑
i=1

IC(i, j)Ak(i)Bl(j)

N(C)∑
j=1

M(C)∑
i=1

Ak(i)Bl(j)

(7)IF
m(C)n(C)

(i, j) =

n(C)∑
l=1

m(C)∑
k=1

FC
kl
Ak(i)Bl(j)

(8)
|||IC(i, j) − IF

m(C)n(C)

||| < 𝜀

holds true for every (i, j) ∈ {1, …, M(C)}×{1, …, 
N(C)}. Practically speaking, we assign several values to 
n(C) and m(C) with m(C) < M(C), n(C) < N(C) and hence 
to the compression rate ρ(C) = (m(C) ∙ n(C))/(M(C) ∙ 
N(C)). Here we use (cfr., [6, 7, 8]) the fuzzy sets  A1, …, 
 Am(C) :[1,M(C)]◊[0,1] and  B1,…,Bn(C) :[1,N(C)]◊[0,1] 
defined as

where k = 2,…, m(C), h = (M(C)–1)/(m(C)–1),  xk = 1+ 
h·(k-1) and

where t = 2, …, n(C), s = (N(C)–1)/(n(C)–1),  yt = 1+ s·(t–1).

A1(i) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

h
(i − 1) + 1

�
if i ∈ [1,x2]

0 otherwise

(9)Ak(i) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

h
(i − xk) + 1

�
if i ∈ [xk-1,xk+1]

0 otherwise

Am(C)(i) =

⎧⎪⎨⎪⎩

0.5
�
cos

�

h
(i − xm(C)−1) + 1

�
if i ∈ [xm(C)−1,M(C)]

0 otherwise

B1(j) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

s
(j − 1) + 1

�
if j ∈ [1,y2]

0 otherwise

(10)Bt(j) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

s
(j − yt) + 1

�
if j ∈ [yt-1,yt+1]

0 otherwise

Bn(C)(j) =

⎧
⎪⎨⎪⎩

0.5
�
cos

�

s
(j − yn(C)−1) + 1

�
if j ∈ [yn(C)−1,N(C)]

0 otherwise
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4  The MF‑transform image process

We consider a grey-level image I of sizes N × M at level 0. In 
order to control the quality of the reconstructed image with 
respect to the original one, we put a threshold value for the 
PSNR index defined as

where MSE stands for the Mean Square Error defined as

Lt can assume at most the value 255 in an 8-bit grey pixel 
depth image. If I = I(0) is the original image,  I(h) is the decoded 
image, obtained at the hth level, given as:

where I(h)
F

 is the inverse F-tr calculated at the hth level. We 
obtain I(h−1)

F
= I(h−1) − I(h−2) if h ⩾ 2 and I(1)

F
= I(1) − I(0) . 

Figure 2 schematizes the reconstruction process.
If the PSNR calculated at each level is greater or 

equal than the threshold, the process stops otherwise we 

(11)PSNR = 20log10
Lt

MSE

(12)
MSE =

N∑
i=1

M∑
j=1

(I(h)(i, j) − I0(i, j))
2

N ×M
.

(13)I(h) =

⎧
⎪⎨⎪⎩

I(1) if h = 1

h−1�
r=1

I
(r)

F
= I(h−1)+ I

(h)

F
if h > 1

consider the next level. We use the F-tr compression pro-
cess described in Sect. 2.2, dividing the image in blocks 
of dimensions n × m. Each block is compressed via (6) and 
decompressed via (7). The inverse F-tr I(h)

F
 at the hth level 

is obtained by merging all the decompressed blocks. In our 
algorithm the process stops when at least one of the next 
three conditions is true:

• the PSNR value is greater than a threshold PSNRth;
• the difference between the PSNR at the hth level and 

the PSNR at the (h-1)th level is less than a difference 
threshold DIFFPSNRth;

• the current level reaches a maximal level hmax.

We add the second condition because the DIFFPSN-
Rth value decreases by increasing the hth level. Hence 
it is reasonable to stop the process when the image 
quality obtained at a certain level differs in minimum 
quantity if compared to that one obtained at the (h−1)
th level. The third condition is added in order to stop 
the process after hmax iterations if the first two condi-
tions are false. As schematized in the coding/decoding 
pseudocode below, the conditional statement in the step 
15) is necessary because in the first iteration (h = 1) 
the value of the variable DIFFPSNR must be set to a 
value greater than the difference threshold DIFFPSN-
Rth. We denote with I(1)

D
…I

(h)

D
 the direct F-tr obtained 

at each level.

Fig. 2  Schema of the images 
reconstructed at each level



2750 F. Di Martino, S. Sessa 

1 3

5  Test results

For our tests we have considered a sample of grey images 
taken from the USC-SIPI Image Database (http://sipi.usc.
edu/datab ase/). We perform our tests by using a Intel Core 
i7-59360X processor with a clock frequency of 3 GHz.

For measuring the performances of the MF-tr algorithm, 
we compare it with the classical F-tr, FEQ, DCT, DWT, 
JPEG, JPEG2K algorithms. In these comparison we meas-
ure the PSNR and the CPU time obtained applying each 
algorithm. For brevity, we only give the results for three 
images of this sample. In the first experiment the grey image 
Lena of sizes 256 × 256 (Fig. 3a) is divided in blocks of 
sizes 4 × 4 compressed in blocks of sizes 2 × 2 (ρ = 0.25). At 
the 1st level the PSNR is 28.410 and we set PSNRth = 30, 
DIFFPSNRth = 0.1. Thus both thresholds are reached at the 
5th level (Fig. 3b). In Fig. 3c, e, g, i (resp., d, f, h, l) we show 

the decoded images (rep., corresponding errors) obtained at 
the 1st, 2nd, 3rd, 4th level.

In Table 1 we show the PSNR obtained for each level. 
The column DIFFPSNR shows the difference between the 
PSNRs obtained at the hth and (h−1)th levels.

In the next experiment the grey image Leopard of sizes 
256 × 256 (Fig. 4a) is divided in blocks of sizes 4 × 4 com-
pressed in blocks of sizes 2 × 2 (ρ = 0.25). At the 1st level 
the PSNR is 24.675 and we set PSNRth = 26, DIFFPSN-
Rth = 0.1. Thus both thresholds are reached at the 3rd level 
(Fig. 4b). In Fig. 4a we show the original image. In Fig. 4b 
we show the resulting image obtained at the 2nd level. 
Fig. 4c, e (resp., d, f) show the decoded images (resp., cor-
responding errors) obtained at the 1st, 2nd level.

In Table 2 we show the PSNR obtained for each level. 
The column DIFFPSNR shows the difference between the 
PSNRs obtained at the hth and (h−1)th levels.

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/
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Fig. 3  a The original image Lena, b. Final decoded image at 5th level. c. 
Decoded image at 1st level. d. Error at 1st level. e. Decoded image at 2nd 
level. f. Error at 2nd level. g. Decoded image at 3rd level. h. Error at 3rd 
level. i. Decoded image at 4th level. l. Error at 4th level

Table 1  PSNR obtained at 
each level for the image Lena 
(ρ = 0.25)

Level PSNR DIFFPSNR

1 28.410 –
2 29.238 0.828
3 29.681 0.443
4 29.935 0.254
5 30.024 0.089

Fig. 4  a The original image Leopard. b Final decoded image at 3rd 
level. c Decoded image at 1st level. d Error at 1st level. e Decoded 
image at 2nd level. f Error at 2nd level

Table 2  PSNR obtained at each 
level for the image Leopard 
(ρ = 0.25)

Level PSNR DIFFPSNR

1 24.675 –
2 25.709 1.034
3 26.181 0.472
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In the next experiment the grey image “11” of sizes 
512 × 512 (Fig. 5a) is divided in blocks of sizes 4 × 4 
compressed in blocks of sizes 2 × 2 (ρ = 0.25). At the 
1st level the PSNR is 30.412. We set PSNRth = 32 and 
DIFFPSNRth = 0.1. These thresholds are reached at 
the 3rd level. In Fig. 5a we show the original image. 
In Fig. 5b we show the decoded image obtained at the 

4th level. Fig. 5c, e, g (resp., d, f, h) show the decoded 
images (resp., corresponding errors) obtained at the 1st, 
2nd, 3rd level.

In Table 3 we show the PSNR obtained for each level. 
The column DIFFPSNR shows the difference between 
the PSNRs obtained at the hth and (h-1)th levels. Table 4 

Fig. 5  a The original image 11. b Final decoded image at 4th level. c 
Decoded image at 1st level. d Error at 1st level. e Decoded image at 
2nd level. f Error at 2nd level. g Decoded image 3rd level. h Error at 
3rd level

Table 3  PSNR obtained at 
each level for the image “11” 
(ρ = 0.25)

Level PSNR Diff PSNR

1 28.615 –
2 29.779 1.164
3 30.244 0.465
4 30.341 0.097

Table 4  CPU time in ms obtained for the images Lena, Leopard and 
“11”

Image Dimensions 
of the image

CPU time in F-tr Final level 
in MF-tr

CPU 
time in 
MF-tr

Lena 256 × 256 17.43 5 48.00
Leopard 256 × 256 17.83 3 34.18
11 512 × 512 14.61 4 54.75

Table 5  Mean CPU time varying the final level for images of sizes 
256 × 256

Final level (MF-tr) Mean CPU time 
(MF-tr)

Average CPU time 
MF-tr/number of 
levels

2 25.87 12.94
3 32.89 10.96
4 40.79 10.20
5 48.00 9.60
6 55.64 9.27
7 64.77 9.25
8 73.71 9.21

Table 6  Mean CPU time varying the final level for images of sizes 
512 × 512

Final level (MF-tr) Mean CPU time 
(MF-tr)

Average CPU time 
MF-tr/number of 
levels

2 35.06 17.53
3 46.91 15.64
4 60.18 15.05
5 73.95 14.79
6 87.31 14.55
7 101.47 14.50
8 115.33 14.42
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shows the CPU time required with the F-tr and MF-tr 
methods for decoding the original images.

In Table 5 (resp., 6, 7) we show the mean CPU time 
obtained for all 256 × 256 (resp., 512 × 512, 1024 × 1024) 
grey images of the above database by varying the final level. 
In the 3rd column we show the ratio between the total CPU 
time and the final level.

Tables  5, 6 and 7 show that this ratio decreases by 
increasing the final level. Indeed the results show the CPU 
mean time is 0.5 s (resp., 1 s) for images of sizes 256 × 256 

(resp., 512 × 512 and 1024 × 1024) by performing a decom-
position up to the eighth level. In other words, the MF-tr 
method can be considered a good compromise between the 
quality of the reconstructed image and the time necessary 
for its reconstruction.

By sake of completeness, comparison experiments are 
made with other image compression methods for measur-
ing the performances of the MF-tr algorithm in terms of 
quality of the reconstructed image by means of the PSNR. 
Indeed we consider the grey levels of the error images at 
each level and apply the Huffman encoding to maximize 
the compression. For brevity, we show the PSNR obtained 
for the 256 × 256 grey image Lena in Table 8. The second 
column shows the dimension in bytes of the direct F-tr 
at any level, the third column shows the dimension in 
bytes of the sum of all the direct F-tr until to the lth level. 
The compression rate ρ is given by the ratio between the 
number of bytes of the sum of the directed F-tr and the 
number of bytes necessary to store the original images. 
The 4th, 5th, 6th columns show the PSNR in the MF-tr, 
JPEG and JPEG2K methods, respectively and in the 8th 
(resp., 9th) the percentage gain PSNR of the JPEG (resp., 
JPEG2K) with respect to the MF-tr, respectively defined 
as:

Table 7  Mean CPU time varying the final level for images of sizes 
1024 × 1024

Final level (MF-tr) Mean CPU time 
(MF-tr)

Average CPU time 
MF-tr/number of 
levels

2 45.17 22.59
3 61.02 20.34
4 79.58 19.90
5 98.32 19.66
6 114.38 19.06
7 131.65 18.81
8 150.01 18.75

Table 8  PSNR comparisons for the image Lena (MF-tr, JPEG and JPEG2K)

Level Bytes directed F-tr Bytes sum of 
directed F-tr

ρ PSNR MF-tr PSNR JPEG PSNR JPEG2K %GAIN JPEG 
over MF-tr

%GAIN 
JPEG2K over 
MF-tr

1 16,384 16,384 0.250 28.410 36.371 37.388 28.022 31.602
2 2826 19,210 0.293 29.238 36.380 37.421 24.427 27.988
3 1843 21,053 0.321 29.681 36.412 37.462 22.678 26.215
4 1290 22,344 0.341 29.935 36.477 37.488 21.854 25.231
5 492 22,835 0.348 30.024 36.503 37.517 21.579 24.957
6 328 23,163 0.353 30.453 36.565 37.530 20.070 23.239
7 123 23,286 0.355 30.703 36.569 37.536 19.128 22.278

Table 9  PSNR comparison and MF-tr gain with respect FEQ, DCT and DWT for image Lena

Level ρ PSNR(MF-
transforms)

PSNR (FEQ) PSNR (DCT) PSNR (DWT) %GAIN (MF-
Ftr over FEQ)

%GAIN (M_
FTR over DCT)

%GAIN 
(M_FTR over 
DWT)

1 0.250 28.410 23.298 27.487 27.868 21.940 3.358 2.312
2 0.293 29.238 23.429 27.643 28.001 24.794 5.770 4.418
3 0.321 29.681 23.511 27.726 28.212 26.243 7.051 5.207
4 0.341 29.935 23.578 27.798 28.455 26.962 7.688 5.684
5 0.348 30.024 23.603 27.815 28.516 27.204 7.942 5.703
6 0.353 30.453 23.617 27.827 29.001 28.945 9.437 6.789
7 0.355 30.703 23.628 27.836 29.302 29.943 10.300 7.436
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%Gain (JPEG over MF-tr) = (PSNR JPEG – PSNR 
MF-tr)/PSNR MF-tr.

%Gain (JPEG2K over MF-tr) = (PSNR JPEG2K – PSNR 
MF-tr)/PSNR MF-tr.

These results show that the PSNR gain percentage 
obtained by using the JPEG and JPEG2K algorithms with 
respect to the MF-tr algorithm decreases by increasing 
the levels. This trend is shown also for the other grey 
images in the dataset. The results in Table 9 show that the 
gain percentage of PSNR, obtained by using the MF-tr 
algorithm with respect to FEQ, DCT, DWT algorithms, 
increases by increasing the compression rate, that is 
increasing the levels considered in the MF-Ftr algorithm. 
This trend is shown also for the other grey images in the 
dataset. In the FEQ compression method we used the 
Lukasiewicz t-norm and the related residuum operators. 
In the DCT algorithm the image is partitioned in 8 × 8 
size blocks. In the DWT algorithm at each level the HH, 
LH and HL coefficients are discarded, whereas the LL 
coefficients are transformed into the successive level. The 
best results are obtained by using the MF-tr algorithm The 
DWT algorithm gives better results with respect to the 
FEQ and DCT algorithms. The gain percentage of PSNR 
for the image Lena are defined as.

%Gain (MF-tr over FEQ) = (PSNR MF-tr – PSNR FEQ) 
/ PSNR FEQ.

%Gain (MF-tr over DCT) = (PSNR MF-tr – PSNR DCT) 
/ PSNR DCT.

%Gain (MF-tr over DWT) = (PSNR MF-tr – PSNR DCT) 
/ PSNR DWT.

In Fig. 6 we show the mean trends of the three gain per-
centages by varying the compression rate.

In Tables 10 and 11 we show the mean coding and decod-
ing CPU times, respectively, obtained for the 256 × 256 grey 
images in the dataset applying the MF-tr, F-tr, FEQ, DCT 
and DWT algorithms.

These results show that the CPU time obtained by using 
the MF-tr algorithm are averagely acceptable. Both the 
mean coding and decoding CPU times calculated by using 

the MF-tr algorithm are better than the corresponding ones 
in the DWT algorithm, independently from the compres-
sion rate.

Figures 7 and 8 show the trend of the coding and the 
decoding CPU time, respectively, calculated in seconds by 
using the MF-tr and DWT algorithm. These trends highlight 
the benefits in terms of CPU time in the coding and decoding 
processes of the MF-tr algorithm with respect to the DWT 
algorithm, regardless of the compression rate.

Fig. 6  Trend of the gain per-
centages of MF-tr with respect 
to FEQ, DCT, DWT

Table 10  Mean coding CPU time for 256 × 256 grey images in sev-
eral methods

ρ CODING CPU TIME (ms)

MF-tr F-tr FEQ DCT DWT

0.250000 6.09 6.09 58.11 6.21 11.45
0.293125 11.42 6.10 58.03 6.24 23.02
0.321250 16.88 6.12 57.73 6.25 37.30
0.340938 22.31 6.13 57.39 6.27 49.27
0.348438 27.69 6.16 56.98 6.30 63.31
0.353438 33.98 6.17 56.77 6.38 73.54
0.355313 42.37 6.20 56.34 6.42 85.71

Table 11  Mean decoding CPU time for 256 × 256grey images in sev-
eral methods

ρ DECODING CPU TIME (ms)

MF-tr F-tr FEQ DCT DWT

0.250000 11.34 11.34 11.15 5.19 26.15
0.293125 14.45 11.41 11.36 5.25 26.44
0.321250 16.01 11.45 11.78 5.38 26.92
0.340938 18.48 11.50 12.35 5.47 27.34
0.348438 20.31 11.56 12.61 5.53 27.76
0.353438 21.66 11.62 12.78 5.60 28.01
0.355313 22.40 11.67 12.89 5.68 28.62
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6  Conclusions

Lossy image compression algorithms are used in many dis-
ciplines in which a loss of information in the reconstructed 
image is considered acceptable. The drawback of the F-tr 
method consists in the fact that they does not allow to set 
in advance the quality of the reconstructed image, but only 
its compression rate. The MF-tr algorithm is a multi-level 
compression image technique that uses the F-tr algorithm 
for coding and decoding the input image at each level. The 
user can set a PSNR threshold for controlling the quality 
of the reconstructed image. This characteristic makes the 
MF-tr method usable also in the cases where it is neces-
sary to guarantee a high quality of the reconstructed image, 
such as, for example, in video surveillance or environmental 
control systems.

The results show that the CPU time (necessary for 
reconstructing the final image) is acceptable and the cod-
ing/decoding time decreases by increasing the number of 
the levels. Moreover, comparisons show that the PSNR 
gain percentage obtained by using the MF-tr algorithm is 
better than the corresponding ones obtained by using F-tr, 
FEQ, DCT, DWT algorithms. The quality of the decoded 
image is not comparable with the ones obtained by using 
the JPEG ad JPEG2K techniques, but the PSNR gain per-
centage of the JPEG and JPEG2K techniques diminishes 
by increasing the number of levels. In future researches 
the quality of the decoded image will be improved by inte-
grating the MF-tr algorithm with specific quantization and 
entropy encoding algorithms, moreover such method shall 
be dedicated to other topics like segmentation and image 
fusion. In the future we intend to build a fragile watermark-
ing algorithm based on the MF-tr method in order to apply 
it in a cloud storage environment to protect the privacy of 
sensitive images. This fragile watermarking system will be 
based on the schema proposed in Di Martino et al. (2010a) 
in which we apply the MF-tr method controls the quality of 
the marked stored images.
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