
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2019) 10:2645–2656 
https://doi.org/10.1007/s12652-018-0954-5

ORIGINAL RESEARCH

Towards a more reliable and scalable architecture for smart home 
environments

Valère Plantevin1   · Abdenour Bouzouane1 · Bruno Bouchard1 · Sebastien Gaboury1

Received: 15 March 2018 / Accepted: 20 July 2018 / Published online: 9 August 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The Internet of things (IoT) has profoundly changed the way we imagine information science and architectures and smart 
homes are an important part of this domain. Created a decade ago, the few existing prototypes use technologies of the day, 
forcing designers to create centralized and costly architectures raising issues concerning reliability, scalability as well as 
ease of access, which cannot be tolerated in the context of assistance. To answer this specific problematic, we propose, in 
this paper, a new kind of smart home architecture based on a highly distributed environment. We showed that our novelty 
brings a lot fewer Single Point of Failure (SPoF) to ensure the best reliability achievable in this kind of smart environment. 
Moreover, we tested our solution with a custom-messaging protocol specifically developed for this kind of architecture to 
demonstrate that it can achieve at least the same performance in terms of messages per second and quantity of exchanged 
information than our old centralized smart home architecture.

Keywords  IoT · Reliability · Smart home

1  Introduction

The Internet of Things (IoT) profoundly remodeled our 
relationship with the science of information and especially 
the different sources of information we now allowed in our 
day to day life. One of the applications of such concept is 
the smart home, which became the subject of numerous 
researches (Cook et al. 2012; Ghayvat et al. 2015; King and 
Jansen 2005) in the field of Ambient Intelligence (Amb. I). 
This concept referring to a tendency to miniaturize a set of 
electronic devices (sensors and effectors) in order to inte-
grate them into any object of everyday life (lamp, refrigera-
tor, etc.) in a transparent way for the person. The aim behind 
this idea is to supply punctual assistance to the occupants 

according to the gathered information and to the history of 
the accumulated data.

The vast majority of work in the smart home domain 
focuses on the activity recognition problem in order to assist 
the inhabitant with a potential dementia often caused by an 
advanced age (Patterson et al. 2003; Augusto and Nugent 
2006; Roy et al. 2013). Nevertheless, none of them seems to 
propose a standard architecture that provides both high-reli-
ability and scalability capabilities at a relative low-cost. And 
still, high-reliability has to be a mandatory feature of such 
architecture since the assistance is vital for the inhabitant 
with a potential dementia. Moreover, as the disease can stay 
for decades, any work on architecture must take the scal-
ability parameter into account since many new sensors can 
be installed or improvements performed during the illness 
evolution. Finally, the low-cost aspect has to be taken into 
account as the vast majority of the aging population whose 
suffering from diseases or mental illness already struggle 
with many medical expenses (Bureau 2016; Alzheimer’s 
Association 2017) consequently we have to keep our solu-
tion as cheap as possible.

Here, we introduce a new kind of smart home architecture 
providing both reliability and scalability based on low-cost 
smart sensors. To achieve this objective, the first issue we 
ran into is the difference (protocol, standard, etc.) between 

 *	 Valère Plantevin 
	 valere.plantevin1@uqac.ca

	 Abdenour Bouzouane 
	 abdenour_bouzouane@uqac.ca

	 Bruno Bouchard 
	 bruno_bouchard@uqac.ca

	 Sebastien Gaboury 
	 sebastien_gaboury@uqac.ca

1	 UQAC, 555 boulevard de l’Université, Chicoutimi, QC, 
Canada

http://orcid.org/0000-0002-0100-6768
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-018-0954-5&domain=pdf


2646	 V. Plantevin et al.

1 3

all the possible entities in the environment. In fact, we can 
have an infinite number of different transducers (i.e. sensors 
and actuators) without any common way to interact with 
them. The second issue in this kind of work is the commu-
nication. A highly reliable and scalable architecture means 
infrastructure without using Single Point of Failure (SPoFs) 
like centralized servers, which ease the communication a 
lot. We already answered this specific problem in a previous 
work (Plantevin et al. 2017) where we defined a new way to 
communicate without SPoFs in a Smart Home but we have 
to conduct more tests in the final architecture we present 
in this paper. It should be noted that the main focus of this 
paper is to describe the architecture (hardware and commu-
nications) and not how to realize activity recognition and 
provide services on top of it. It provides you with a scalable 
and reliable architecture and a way to get the data but not a 
way to process it.

The rest of this paper is divided in four successive parts. 
First, we will explore the existing architectures in the field of 
Smart Homes. Next, we will describe in depth the infrastruc-
ture we propose here. Tests on and discussion of them will 
come after in another part. Finally, a conclusion will end this 
paper and present some future works we will accomplish.

2 � Existing architectures

During the last two decades, many Smart Homes have been 
built inside laboratories or in research context inside real 
habitations (Cook et al. 2003; Giroux et al. 2009; Bouchard 
et al. 2014; Hu et al. 2016). They all implemented a differ-
ent kind of infrastructure, causing the apparition of different 
families of architectures, each of them having advantages 
and drawbacks, that we have to study. This section is divided 
in three parts, each one describing a kind of architecture. 
We begin with the Mesh-based family implemented in 
CASAS (Hu et al. 2016), Smart* (Barker et al. 2012) and 

other experiments (Zhihua 2016; Zou et al. 2011). Then we 
will study the OSGI (a.k.a Open Services Gateway initia-
tive) architectures with the works of Lin et al. (2008); Novák 
and Binas (2011); King and Jansen (2005), and finally, we 
will describe the industrial family of infrastructure as imple-
mented in LIARA and DOMUS laboratories as well as in 
LiSA and House_n projects (Colombiano Kedowide 2014; 
Intille et al. 2006).

2.1 � Mesh‑based architectures

Many works in the literature have been focusing on the mesh 
networks and more precisely the IEEE-802.15.4 norm (Call-
away et al. 2002; Gutierrez et al. 2001; Montenegro et al. 
2007). The smart home is not an exception with the work 
from CASAS (Hu et al. 2016), Smart* (Barker et al. 2012) 
and other authors (Zhihua 2016; Zou et al. 2011). Even if 
all these works have a few differences, they are all similar to 
the CASAS architecture that we describe in this subsection.

With a main interest in price and ease of installation, 
CASAS (Cook et al. 2012) the Smart Home in a box, was 
firstly developed in 2012. As depicted in Fig. 1, it is based 
on a four elements architecture. The first element in this 
architecture is the transducers themselves, communicating 
through a Zigbee mesh where every node relay the informa-
tion to its neighbors by using the ZigBee protocol. Next, a 
ZigBee bridge converts these low-level ZigBee events to 
high-level XMPP messages and relay them to the messaging 
service. This last one allows other services to easily inte-
grate the infrastructure and use the transducers. By default, 
there are two services which are the Storage and the Intel-
ligence. The first one stores all the messages occurring in 
the environment by using the so-called Scribe Bridge. The 
second one brings artificial intelligence inside the home by 
monitoring the energy and recognizing the activities carried 
out inside the house in order to enable a possible assistance.

Fig. 1   The CASAS architecture



2647Towards a more reliable and scalable architecture for smart home environments﻿	

1 3

CASAS, and in a general manner all the mesh-based 
architectures, have two main benefits, which are the price 
and the ease of installation. With 2765 US dollars presented 
in a detailed summary by the authors, their solution seems 
to be the cheapest available, which is really a great achieve-
ment. To prove that their solution is easy to install, they ask 
peoples aged from 21 to 62 to install it in their houses and 
it requires only an hour to set up the whole environment, 
which clearly demonstrates the ease of the installation. Nev-
ertheless, this architecture has one great defect regarding 
the reliability. Indeed, the whole infrastructure is polluted 
by Single Points of Failure (SPoFs) like the ZigBee bridge 
or the Application Bridge that can stop the assistance or the 
Pub/Sub-messaging service, which is a sensitive component.

2.2 � OSGI architectures

Some authors (Lin et al. 2008; Novák and Binas 2011; King 
and Jansen 2005) tried to answer the smart home scalabil-
ity problem by using an OSGI based architecture. These 
works share the same features even if the GatorTech initia-
tive (King and Jansen 2005) was realized twenty years ago. 
Consequently we only describe here the GatorTech project, 
however, all the conclusions made on this particular work 
can be done on the other.

Funded in Florida, Gator Tech (King and Jansen 2005) 
is a project conducted to prove the feasibility of a low-cost 
smart home where the integration of new transducers will 
be easy. To achieve their goal, the authors created an OSGI 
(OSGi Alliance 2016) based architecture, sums up in Fig. 2, 
where each sensor or actuator has a simple memory contain-
ing the driver to communicate with it. This driver is sent 
when the transducer is powered up during a registration 
process to an OSGI service definition. Behind this service 
definition concept stands an abstraction layer that allows to 
create basic services providing highly abstracted data for 
immediate consumption [e.g. “Humid” instead of 95% of 
humidity for a humidity sensor] or the combination of basic 
services in a composite service (e.g. create a voice recogni-
tion service on all the different microphone services). The 
work achieved by King and Jansen (2005) allows develop-
ers and researchers to create artificial intelligence without 
any knowledge of the underlying infrastructure and with 
only highly abstracted data which greatly simplify the 
development.

Despite the usage of OSGI on a single server that creates 
a SPoF, which is a problem in a high reliability architecture, 
this family of architecture has some really good advantages 
that have been made possible mainly by the embedding of 
a small piece of logic inside transducers. First of all, the 
automatic transducer registration really helps the scalability 
of such an environment (e.g. add new sensors or replace 
some of them). Secondly, this infrastructure, with its high 

abstraction of the data generated, helps the developers and 
researchers to conceive and build applications. For example, 
it is straightforward to enable the air conditioning when the 
temperature is “Hot”. However, it is more complicated when 
the decision is only based on the microcontroller value since 
it depends on the hardware (i.e. the microcontroller or the 
temperature sensor). Finally, the price of such infrastructure 
is as low as possible as every transducer is designed to be the 
most affordable possible by using Atmega128 as the main 
processor unit which is a low-cost platform (Drumea et al. 
2005).

2.3 � Industrial architectures

In the beginning of the smart environments, some of them 
were built around material inherited from the industrial 
automation domain. These infrastructures are present in a 
various number of works, from the smart car with the LiSA 
project (Colombiano Kedowide 2014) to the smart homes 
with, among others, the LIARA, DOMUS and House_n pro-
jects (Giroux et al. 2009; Bouchard et al. 2014; Intille et al. 
2006). They are all pretty similar in terms of realization, 
advantages and drawbacks. Consequently, we describe here 
the architecture present in the LIARA and DOMUS labora-
tory but every conclusion made of these can be easily made 
on the others.

In order to study how a smart environment can help 
people with cognitive deficiencies, LIARA and DOMUS 
laboratories created a very similar architecture, represented 
in Fig. 3, to test their algorithms and solutions (Bouchard 
et al. 2012). Built from industrial grade material, they use 
a limited number (four) of Advantech islands (Advantech 

Fig. 2   The Gator Tech architecture



2648	 V. Plantevin et al.

1 3

2016) to agglomerate transducers present in the environ-
ment. These islands communicate only over Modbus TCP an 
old protocol not understandable by every application. Con-
sequently, an Advantech automaton is in charge of getting 
back, the values of the sensors or changing the values of the 
effectors. A bidirectional communication, through a rela-
tional database hosted on a SQL Server, between the main 
server and the automaton allows applications (in this case 
artificial intelligence) to update the state of the effectors or 
read the values of sensors. Finally, complex transducers like 
IP speakers, electrical analysis, video control or RFID read-
ers are directly connected to the main server which update 
the database with the values read from these specific sensors 
and update these effectors when their values are changed in 
the database.

The industrial hardware and the hyper-centralization are 
two main characteristics in these architectures that bring 
some interesting features. The first one means that all the 
elements have been highly tested for a continuous use in far 
much harder environments than just a house (e.g. produc-
tion line in a factory). Therefore it demonstrates an excel-
lent component reliability and offers strong guarantees to 
the user even if the smart home has to operate at all times. 
Moreover, the highly centralized architecture greatly eases 
the interaction between applications, such as artificial intel-
ligence, and the environment. Indeed, all the values coming 
from sensors and all the actuator controls end up in the same 
relational database, which is a widespread means of sharing 
data across applications.

Even if the industrial material brings some advantages, it 
suffers from two main drawbacks, which are the proprietary 
material and the price of this one. The first introduces black 

boxes in a research environment since the communications 
between all these pieces of hardware often rely on propri-
etary libraries that can impact future evolution. Concerning 
the price of this kind of architecture, based on the hardware 
presented by Bouchard et al. (2014) and the price of it, we 
were able to compute the total price of the chain Island-
Automaton-Main Server. With 2000 dollars each island 
(Advantech 2016), 1500 dollars the automaton (Advantech 
2016) and 4000 the server (Dell 2016), the architecture 
reaches 13,500 dollars without any transducers or backbone 
structure (e.g. networking, cooling for the server, mainte-
nance). Such a high price cannot be tolerated especially in 
the case of the sick population who already have high medi-
cal costs. Finally, the highly centralized architecture pre-
sented here creates many Single Points of Failure (SPoFs) 
like the automaton, the Islands and the main server which 
hosts both the AI and the SQL server. Thus, if one of these 
SPoFs fails, at least a quarter of the environment and its 
assistance will fail too. Moreover, these points represent 
some serious bottlenecks in the architecture preventing a 
real scalability.

2.4 � Conclusion on existing architectures

To conclude, we can extract the common features of these 
architectures presented in this section. The first and most 
obvious one is that the majority of the components compos-
ing these infrastructures are transducers. Moreover, it seems 
that embed some intelligence and communication abilities 
like in CASA or Gator Tech in them help to ease the instal-
lation and the scalability. On the other hand, all these smart 
home share the same drawback, which is the centralization. 

Fig. 3   The LIARA and DOMUS architecture



2649Towards a more reliable and scalable architecture for smart home environments﻿	

1 3

This characteristic creates many single points of failure that 
can lead to a complete stop of the artificial intelligence or 
worse, the whole environment. In other computer science 
domains, this particular issue has been solved ten years ago 
by using redundancy, clusters and distributed computing 
(Chu-Sing and Mon-Yen 2000; Lu et al. 2006; Mon-Yen and 
Chu-Sing 2001; Schroeder et al. 2000).

If we have to describe an ideal architecture we can say, 
after the cases CASAS and Gator Tech, that it must be com-
posed of many smart transducers easing the scalability of 
such architecture. Another domain of the computer sciences 
that seems to be close to this description is the Internet of 
Things (IoT). In the last one, already used in Smart Homes 
(Atzori et al. 2010; Liu et al. 2011), a multitude of smart 
objects communicate in a uniform manner and generates a 
huge amount of data often associate to “Big Data” (Chen 
et al. 2014). In this last case, it is not conceivable to handle 
the information in a centralized way anymore, even if we use 
server clusters. It is more appropriate to use decentralized 
methods relocating the intelligence as close as possible to 
the units composing this huge data pool (Chen et al. 2014; 
Hey et al. 2009).

3 � Proposed architecture

The whole contribution of this paper is a more reliable and 
more scalable architecture for smart homes. It is summed up 
in Fig. 4 and will guide our explanation during all this part.

One way to enhance the reliability is to remove the Single 
Points of Failure (SPoFs) in the architecture. In our old infra-
structure, the SPoFs were the islands, the automaton and the 
main server. In order to remove them we have to provide 
another way to gather, stream and process the information 
from all the sensors and to enable the actuators update. In 
order to achieve such an objective, we decided to upgrade 
our transducers from simple passive ones to smart ones as 
represented in part A and D in Fig.  4.

The notion of smart transducers is already clearly defined 
in the IEEE norm 1451.4 (IEEE 1998). To sum up this last 
one, we can say that a smart transducer is an entity provid-
ing more features than the ones mandatory to generate a 
good representation of the controlled quantity. Some of these 
attributes can be sensor identification, a process to simplify 
the installation or the maintenance, network interfaces or the 
coordination and synchronization with other entities (Lewis 
et al. 2004). In order to simplify further tests, developments 
and adaptations of our solution, we divide the transducer 
in two different parts. The first one is the sensing or actuat-
ing unit, which we will call the transducer unit. It makes 
the interface between real world (e.g. temperature, lights 
control, Twitter API, etc.) and high-level data for the fur-
ther process (e.g. temperature is 25.3 ◦ C, light switched on 

or there was 26 re-tweet of a post). The second one is the 
smart unit and is responsible for communications inside the 
environment, making decisions based on transducer values 
and messages from other smart transducers and program 
the transducer unit, depending on the different sensors or 
actuators connected to it. The communication between these 
two entities is allowed via a simple serial link in case of 
hardware transducers or a ZMQ inter-process communica-
tion (ZeroMQ 2016) in case of software transducers (e.g. 
APIs consumption). All these elements are summed up in 
Fig.  4. We will now discuss in more details each part of 
this architecture beginning with the smart unit followed by 
the transducer one. Finally, we will depict how these smart 
units can communicate together in a high-reliability manner.

3.1 � Smart unit

Represented in part C of the Fig. 4, the smart unit is the 
main computing piece of hardware making our transducer 
a smart one. It is in charge of both the communication with 
the whole environment and the computation of some sort of 
intelligence based on transducer values. Moreover, it eases 
the installation of the different kind of hardware we can find 
in a Smart Home by flashing and updating embedded drivers 
if the transducer unit have to communicate with hardware 
sensors or actuators. This driver is defined by two distinct 
files encapsulate inside a Zip archive. The first one is the 
embedded firmware to flash into the microcontroller via the 
serial link if there is such a piece of hardware (i.e. hardware 
transducers). The second one is a description file formatted 
in JSON and containing two main elements : the configura-
tion of the communication with the transducer unit and the 
JSON send by this last one with each key associated to a 
small description of the value.

The schema of the configuration file is presented in Fig. 5. 
In this last one, the first element is the communication con-
figuration defined by the first JSON object. It contains three 
fields : port, the baud rate and upload. The first two, allow 
the communication through serial, the baud rate is an integer 
number and the port is a string corresponding to a serial 
port on the smart unit operating system. The third item, the 
upload value, is a string representing the command line to 
execute in order to upload the firmware to the transducer 
unit. We decided to use this simple representation to let the 
user define the kind of upload process he has depending on 
the hardware on which is implemented the transducer unit. 
In case of software transducers, the baud rate and upload 
parameters disappear and the port contains the ZeroMQ 
Inter-Process Communication address. The second object in 
the driver description is an array of different objects describ-
ing every value send by the transducer unit. This descrip-
tion must contain at least an identifier (id here), which is a 
unique number, its name to enable ease the understanding 



2650	 V. Plantevin et al.

1 3

Fi
g.

 4
  

Th
e 

w
ho

le
 a

rc
hi

te
ct

ur
e 

pr
op

os
ed

 in
 th

is
 p

ap
er



2651Towards a more reliable and scalable architecture for smart home environments﻿	

1 3

and communication and a type, which is rather continuous 
or nominal depending on the kind of value this transducer 
deals with. Moreover, there are two optional fields, which 
are values, an array of string defining the different values 
possible in case of a nominal sensor, and actuator, a boolean 
saying if this transducer is an actuator or not (by default this 
value is false).

When a smart unit first boot (i.e. during its installation, 
not after a reboot), it generates a unique identifier and regis-
ter itself to a centralized entity represented in E on the Fig. 4. 
This entity is a small computer (e.g. a Raspberry or even a 
phone) that only keep a track of which smart transducer is 
present in the Smart Home. This entity is not needed for the 
network to properly work it just allows to easily emit alert if 
a smart transducer stopped working (i.e. stop communicat-
ing since a long time) and the last but not least, it allows to 
link a smart transducer to its driver, stored inside this entity. 
Consequently, we need this platform during the installation 
of new smart transducers or if we want to deeply change 
the configuration of one of them (e.g. change a temperature 
sensor for a pressure one, or upgrade a driver). Theoretically, 
this central entity can be hosted in the cloud to guarantee 
high-availability and reliability. However, since many smart 
home networks are in intern loop (i.e. the transducer network 
has no Internet) for safety reasons, this entity can be hosted 
locally inside a computer or a phone or a tablet.

3.2 � Transducer unit

Represented in part B in the Fig. 4, the transducer unit is 
nothing other than a piece of hardware or software that gen-
erates high-level data from low-level ones for the smart unit.

In case of hardware transducer units, it is a simple micro-
controller connected to hardware sensors and actuators and 
embedding a piece of software defined by the smart unit 

known as a driver. This one, reads and interprets the values 
of the different sensors or actuators connected to the unit. 
Finally, it sends high-level values (e.g. 23.5 ◦ C instead of 
256 the value from the sensor) formatted by using a SSV 
(i.e. Semi-column Separated Value) representation to the 
smart unit through a Serial Communication. To ease the 
development of such embedded software, we decided to use 
the Arduino platform as it is well-known, supported on many 
microcontrollers in the market, really easy to develop and 
allows the use of many libraries already developed by the 
community. Moreover, each transducer unit must implement 
a way to program its microcontroller through the serial com-
munication like by the usage of a programmer [e.g. FTDI 
(Future Technology Devices International) chip]. Finally, 
even if we allow the possibility for a transducer unit to pos-
sess more than one hardware transducers, it is a best practice 
to only bind one hardware sensor to one transducer unit to 
avoid the apparition of a Single Point of Failure inside the 
smart transducer.

Concerning the software transducer units, they are ser-
vices running inside the smart unit and generating high-level 
data from lower-level APIs. Useful for testing purposes, they 
also allow to consume APIs from Internet or other services 
inside the house. This feature permit the generation of high-
level data from outside the house of from appliances that 
do not implement our smart transducer architecture and 
integrate them inside artificial intelligence decisions. These 
software-defined transducers communicate with the smart 
unit through an Inter Processus Communication pipe man-
aged by ZeroMQ (2016) that only use a simple address in a 
string representation to define the communication.

3.3 � Communication

All our smart transducers are connected together via a net-
work infrastructure implementing a form of redundancy 
represented in F on the Fig. 4. Nevertheless, a reliable com-
munication between them is not trivial. Indeed, many archi-
tecture use communication mechanisms that introduce single 
point of failure inside the infrastructure (e.g. the automaton 
in LIARA and DOMUS or the OSGI server in Gator Tech or 
every broker based messaging system). To answer this prob-
lematic, we decided to use an IP messaging protocol based 
on multicast we already defined in a previous work name 
Light Node Communication Framework (LNCF) (Plantevin 
et al. 2017).

Like File Transfer Protocol (FTP) (Postel and Reyn-
olds 1985), our protocol relies on two channels depend-
ing on the type of data that transit. The first one, called 
configuration channel, use Constrained Application Proto-
col (CoAP) (Shelby et al. 2014) a well-known protocol in 
machine to machine communication to ensure reliability 
during the data transfer. This property let make sure that 

{

}

port : STRING,
baudrate : NUMBER,
upload : STRING,

serial : {

},
data: [

{
id : NUMBER,
name : STRING,
type : “CONTINUOUS”|”NOMINAL”,
values : [STRING],
actuator: BOOLEAN

}
]

Fig. 5   The JSON schema of the driver description file



2652	 V. Plantevin et al.

1 3

configuration values, which are low-frequency but critical 
information, are properly received by the entity that need 
to be configured. Thus, we propose to use this specific 
channel to dispatch drivers and configurations coming 
from the central entity in our network.

In addition to its configuration channel, LNCF imple-
ments a messaging channel over multicast UDP based on a 
Publish/Subscribe (Pub/Sub) mechanism. The use of mul-
ticast UDP ease the removal of any Single Point of Failure 
since this protocol enables the communication from one to 
many without anything else other than an IP infrastructure. 
Furthermore, this channel makes possible three important 
features : high frequency data exchange, network discov-
ery and encryption. Even if this channel is less reliable 
than the first one, it allows to exchange information identi-
fied by a subject at a very high frequency (i.e. more than 
1000 messages per second). This characteristic is manda-
tory in any application that need to exchange information 
in order to construct datasets or deals with Big Data like a 
smart home do. Consequently, we will use this channel to 
exchange data messaging in our architecture. Besides, the 
network discovery mechanism embedded in LNCF makes 
easy for every smart transducer in the infrastructure the 
registration process since it can query the network to get 
the IP address of the central unit through a protocol it 
already uses for communication. Moreover, the encryp-
tion process already implemented in LNCF ensures the 
security of every message transiting in the network. This 
point is a must have for an architecture that deals with 
personal information like the one proposed in this paper. 
Finally, LNCF using only UDP packets, it can be used in 
any hardware network protocol implementing UDP like 
allowing the usage of our architecture on different network 
infrastructures like mesh-based with ZigBee IP, Bluetooth 
based with 6LowPan or WiFi and Ethernet.

4 � Tests and discussion

To validate our new architecture, we performed some tests 
on it. We first verified the latency of this infrastructure 
in order to ensure that it is at least as good as the old one 
which allowed us to gather every transducer values in a 
delay between 250 ms and 1 s. During this latency test, 
we add smart transducers to confirm the scalability of our 
solution. Next, we conduct some reliability tests to see 
how our infrastructure endures power problems or the ter-
mination of different parts of it. Finally, we have cost the 
price of our whole architecture to compare it with CASAS 
and our old infrastructure. But first, we will present the 
material and the infrastructure we used to conduct those 
tests.

4.1 � Material and infrastructure used

In order to conduct these tests, we first had to implement 
our smart transducer architecture and then provide a reliable 
network infrastructure to allow our devices to communicate. 
We will first describe our implementation of the smart trans-
ducer presented in this work and then we will explain the 
infrastructure which allows us to perform these tests.

For this test, we choose some Open Source hardware to 
implement our solution to be the more reproducible possi-
ble. The smart unit is implemented on a Raspberry Pi Zero 
W, even if, in a final version of this architecture, it should 
be embedded directly inside every transducer to ease the 
installation since it would be a major issue to install many 
Raspberry inside the home. This platform ensures us enough 
general purpose inputs outputs (GPIO) to communicate with 
the hardware transducer units while providing us enough 
computing power when we will implement some intelligence 
on our prototypes. Concerning the hardware transducer unit, 
we decided to use ESP 32 Thing from Sparkfun since it 
embeds enough inputs/outputs to be interesting and it is fully 
compatible with the Arduino platform. We use both of these 
platforms (even if the ESP 32 already implements Wi-FI 
capabilities, and the Raspberry PI a GPIO) to demonstrate 
the fact that the serial link between the smart unit and the 
transducer one was powerful enough to communicate data 
between the two entities. We connected them through the 
USB plug on the Raspberry Pi and program them, in the 
driver, to generate a random number of random types of sen-
sors from 5 to 20 at 2 kHz in order to simplify the test since 
the real data did not matter for us. The problem we had here 
is that we did not have enough ESP 32 Thing for every Rasp-
berry Pi Zero we had. Consequently, we tested the driver 
behavior and inter-unit communication on 5 hardware pro-
totypes and we used 25 software transducers on other Rasp-
berry Pi Zero W. These units scaled from simple message 
displaying inside a terminal or random number generation 
to twitter consumers for the most demanding of them. These 
30 smart transducers make a pretty good first test for our 
architecture even if 25 of them have a simulated transducer 
unit. The whole implementation was made in C++ with the 
help of the Boost libraries.

The infrastructure is only composed of two wireless 
routers (LinkSys WRT1900AC). We put them in Wireless 
Distributed Services modes in order to create two wire-
less access point to the same network allowing the differ-
ent smart transducers to choose the wireless router with 
the strongest signal strength. These two access points are 
connected together through an Ethernet link. Moreover, a 
laptop (MSI GT62VR) and a Raspberry Pi 3 are connected 
to them via Wi-Fi. The Raspberry Pi 3 will play the role of 
the central unit where the different smart transducers reg-
ister themselves during the installation and the laptop will 



2653Towards a more reliable and scalable architecture for smart home environments﻿	

1 3

play the role of a scientist computer who wants to retrieve 
datasets from the infrastructure in order to measure latency 
in it. The final infrastructure is depicted in Fig. 6. Of course, 
every other application normally communicating over this 
network has been shut down to minimize the traffic of the 
older infrastructure since we used its backbone.

4.2 � Latency and scalability tests

Normally, the smart transducers do not communicate raw 
data through the network since they have the computing 
capabilities to process them and make intelligent decisions. 
But for the need of this experiment and because some sci-
entists may want to gather datasets to make further experi-
ments, the smart unit only relayed the raw data, associated 
with its timestamp, on the messaging channel of the LNCF 
protocol (Plantevin et al. 2017) we use to communicate 
between the smart transducers. The laptop, connected to 
the network, gathered all this data, reorder them in a dataset 
and compute the latency of the whole infrastructure to see 
what maximum sampling rate we can achieve and what is 
the delay between the generation of a data and its reception. 
Moreover, we slowly scaled the whole architecture begin-
ning with the 5 hardware smart transducers and by adding 
five by five other transducers to attain 30. These results com-
bined with the overall latency give us a pretty good metric 
on how our solution scales. Moreover, in order to add some 
metrics to our tests, we decided to report the percentage of 
utilization of the access points, laptop wireless card in the 
best and worst case.

The results of this test are summed up in Table 1. In this 
table, each row represents a number of smart transducers 
in the whole architecture. The columns represent the sam-
pling rate asked and configured via the configuration channel 

of the LNCF protocol. Inside each cell, stays the average 
latency in milliseconds during a 1 minute of dataset record-
ing. This latency is computed by subtracting the creation 
time to the reception one. We can see that the latency values 
do not move a lot and this even if we add devices or increase 
the asked sampling rate. This conclusion is confirmed when 
we compute the average and standard deviation on all the 
table, which are 2.95 ms for the first and 0.55 ms for the 
second. Regarding the percentage of use of the different net-
work devices, we found that it scales from 0.5 to 40.1% for 
the laptop network card, from 0.2 to 35.6% for the wireless 
router on which the laptop is connected and from 0.2 to 
18.5% for the other one. These numbers are for 1 unit at 1 Hz 
and 30 units at 1 kHz, which correspond to the minimum and 
maximum of network utilization.

These results show us some interesting facts about our 
solution. First, it allows us to retrieve all the transducers 
state at 1 kHz without any problem except a little network 
latency of 3 ms. This number is a huge improvement over 
our last architecture that sends us data every 250 ms in the 
very best case (i.e. 4 Hz). However, it must be noted that 

Fig. 6   The full test infrastruc-
ture

Table 1   Latency and scalability results of our solution. Each row rep-
resenting a different number of units inside the architecture and each 
cell representing the overall latency in milliseconds

Units 1 Hz 10 Hz 100 Hz 500 Hz 1 kHz

5 3.0 2.7 3.1 3.1 2.9
10 2.8 2.6 3.4 2.6 3.2
15 3.1 2.4 2.6 2.8 2.6
20 3.1 3.3 3.6 3.5 2.4
25 3.2 5.1 2.3 2.2 2.8
30 2.9 2.6 2.2 3.4 2.9



2654	 V. Plantevin et al.

1 3

these numbers can change depending on the technologies 
used to create the infrastructure since some platforms can 
take much more time to send a packet or much less than a 
Raspberry Pi. Secondly, the relatively fixed network latency 
and the low percentage of use of the different networking 
appliances show us that even with 30 smart transducers at 
1 kHz we are a long way from the saturation of the infra-
structure even if this one is a relatively simple one with only 
two wireless router we can find in any house nowadays. On 
the other hand, these results also demonstrate that we have 
to conduct more tests with more smart transducers in order 
to see how the whole architecture reacts to a 100% of net-
work usage.

4.3 � Reliability test

We affirmed that our infrastructure is more reliable and we 
had to confirm this affirmation. Consequently, we try differ-
ent scenarios on our solution. The first one is the electrical 
shut down of one of the two access points (we switch off the 
breaker on this power line). The second one is the removal 
of the central unit represented by the raspberry pi 3 that 
allows to keep a track on every transducer in the network. 
Finally, we decide to switch off every beaker (one every 
minute) in the house ending it by a wireless router to switch 
them back on in the opposite direction. Each of these tests 
were performed with the worst case possible for the network 
infrastructure, which implies 30 smart transducers streaming 
data at 1 kHz.

During the first test, when we shut down the power on one 
wireless router, we immediately lost 17 smart transducers. 
After 19 s, 10 were back online and it took a total of 32 s to 
recover the full network. After this recovery, the remaining 
router was at 72.6% of use. When we restart the previously 
stopped router, it took 5 minutes and 35 s to the network to 
stabilize (i.e no more smart transducer was switching to the 
other router). The second test is pretty straightforward. We 
removed the central unit (a Raspberry Pi 3) by removing its 
power source. We saw no change in the whole infrastructure 
at all but we lost the ability to change network configuration 
(i.e. drivers update). Finally, during the final test where we 
decided to shut down the entire house one breaker at a time, 
we gradually lost smart transducers since they don’t have an 
autonomous power source until the last breaker switched. 
But the interesting result is the network came fully back to 
live when we have restarted everything, always with the one 
breaker at a time method.

These tests force our solution to show some reliability 
and self-healing capabilities. The first one, where we shut 
down one router, which can easily happen in a real house, 
demonstrates that the whole infrastructure was working 
again after a partial stop of only 32 s. This result is pretty 
impressive since we have removed half the infrastructure 

but it took only half a minute to fully come back online. The 
second test confirms us that the central unit is not mandatory 
for the whole architecture to work even if it could be the 
only Single Point of Failure. However it also shows us that, 
with the loss of this unit we could not add smart transduc-
ers anymore. To be fully reliable we have to cope with this 
problem. One solution could be to use more than one unit to 
introduce redundancy like in the network infrastructure with 
the two wireless routers. Finally, the last test proved us that 
even after a full power down, the architecture is able to fully 
restart by itself without any human intervention and since 
a power surge is a possibility in a house, it is a mandatory 
feature in such solution.

4.4 � Pricing of our solution

To end this part, we have estimated the total cost of our 
solution in American dollars. The full pricing of our work is 
summed in Table 2. In this table, each line represent an item 
needed to build the infrastructure and the column correspond 
to the quantity needed, the unit price of the item and the total 
that is quantity by unit price. The exception to this rule is 
the last line of the table, which represents the total of every 
cost needed so the total of the whole architecture. As we can 
see, our whole solution costs barely 2000 USD. This is quite 
an improvement since the old one cost 13,500 USD without 
network infrastructure. Moreover, it should be noted that 
the Raspberry Pi Zero W price reported in this paper is the 
price of a full budget pack from Adafruit and not the price 
of the Raspberry itself, which is 5 dollars. We took the price 
of the pack over the real unit price because many items from 
the pack were used to perform this test but this price can be 
easily reduced if we bought only the elements needed (i.e. 
a SD card, the Raspberry Pi Zero W and a power source).

Since the vast majority of the aging population whose 
suffering from diseases or mental illness already struggle 
with many medical expenses (Bureau 2016; Alzheimer’s 
Association 2017) consequently we have to keep our solu-
tion as cheap as possible. With a prototyping price below the 
2000 US dollars we think this objective is partially achieved. 
Indeed, this price is lower than CASAS (2765 US dollars) 
and far lower than the LIARA and DOMUS architecture 

Table 2   The total cost, without hardware sensors/transducers, of our 
infrastructure in USD

Item Quantity Unit price Total

Wireless router 2 140 280
Pi zero W 30 35.50 1035
ESP32 thing 30 19.95 598.5
Pi 3 1 35 35
Total 1948.5



2655Towards a more reliable and scalable architecture for smart home environments﻿	

1 3

(13,500 US dollars) for more reliability, computing capa-
bilities and transducers. But it does not contain the price of 
the sensing units (e.g. a thermometer, electromagnetic door 
sensor) that were present in the final pricing of the CASAS 
home (not in the LIARA and DOMUS architectures). How-
ever, these pieces of hardware a now relatively cheap and 
should not increase the whole price too much even if, we 
will have to take them into account if we want a full pricing 
of our solution. On the other hand, this price is also com-
puted with only prototyping material not bought in large 
quantities. Consequently, we know that this number can be 
greatly improved with industrial manufacturing.

5 � Conclusions and future works

In this paper, we presented a new kind of smart home archi-
tecture more reliable and scalable. Unlike the existing ones, 
our solution was designed not to have any Single Point of 
Failure, which can lead to reliability issues. We achieve such 
a result by adding intelligence and communication capabili-
ties in every transducer in the house. To help the develop-
ment of such infrastructure, we introduce a simple way to 
design and conceive these smart transducers. Thus, they are 
composed of two units, one charged to interpret raw sen-
sors values and another one in charge of the intelligence 
and communication. These units communicate through a 
serial bus or an inter-process communication, which allows 
to retrieve high-level values and flash embedded drivers to 
ease the scalability of our infrastructure. Finally, the usage 
of Light Node Communication Framework, a messaging 
protocol defined in a previous work, improved the reliabil-
ity in the whole infrastructure by removing the need of any 
central point for the communication.

We performed some tests on our new architecture to 
ensure the reliability and scalability capabilities as well as 
the performances. In terms of performances, we demonstrate 
that even in the worst case (i.e. 30 smart transducers send-
ing raw values at 1 kHz) our infrastructure does not suffer 
from any latency except a 3 ms coming from the network. 
Moreover, this latency does not change when we moved 
from 5 to 30 smart transducers, confirming the scalability 
capabilities of our infrastructure. Regarding the reliability, 
we conduct a stress test by shutting down elements of the 
whole network and we showed that the proposed solution 
was able to recover in a relative short time after the loss of 
half or all the infrastructure. Moreover, we confirmed that 
the central unit we used to install the network and which 
could be considered as a Single Point of Failure was not 
mandatory for our network to work. Finally, we repost the 
price of our prototype to compare it with other architectures. 
With a price below 2000 US dollars, we can safely say that 

our solution is at a relative low-cost compared to other solu-
tions which was an important goal.

Ultimately, we want to conduct more tests on our solu-
tion. First we want to remove any simulation from the tests 
by using only real smart transducers. This means as many 
hardware transducers as possible with real sensors or trans-
ducers and not random data generation and only real soft-
ware transducer units (i.e. no random data generation either). 
This amelioration will help us prices the whole solution in 
real conditions. Then, once these improvements made, it 
should be interesting to put more stress on the architecture 
like increase the network overload to 100%, a number we 
never reached even at full capacity. Finally, this paper only 
describe an architecture for reliable and scalable smart 
homes but not how to provide services and activity recogni-
tion in a distributed manner on top of it. This blank must be 
addressed before any real life implementation.

References

Advantech (2016) Automation controllers and I/Os. http://www.advan​
tech.com/produ​cts/autom​ation​-contr​oller​s-i-os/sub_1-2mlf3​1

Association Alzheimer’s (2017) 2017 Alzheimer’s disease facts and fig-
ures. Alzheimers Dement 13:325–373. https​://doi.org/10.1016/j.
jalz.2017.02.001. https​://www.alz.org/docum​ents_custo​m/2017-
facts​-and-figur​es.pdf

Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. 
Comput Netw

Augusto JC, Nugent CD (2006) Designing smart homes: the role of 
artificial intelligence, vol 4008. Springer, USA

Barker S, Mishra A, Irwin D, Cecchet E, Shenoy P, Albrecht J (2012) 
Smart*: an open data set and tools for enabling research in sus-
tainable homes. ACM SustKDD

Bouchard K, Bouchard B, Bouzouane A (2012) Guidelines to efficient 
smart home design for rapid ai prototyping: a case study. PETRA​

Bouchard K, Bouchard B, Bouzouanea A (2014) Practical guidelines to 
build smart homes: lessons learned. In: Opportunistic networking, 
smart home, smart city, smart systems (Book Chapter) pp 1–37

Bureau UC (2016) Household income. https​://www.censu​s.gov/data/
table​s/time-serie​s/demo/incom​e-pover​ty/cps-hinc/hinc-02.html

Callaway E, Gorday P, LH (2002) Home networking with IEEE 802.15. 
4: a developing standard for low-rate wireless personal area net-
works. ieeexploreieeeorg

Chen M, Mao S, Liu Y (2014) Big data: a survey. Mobile Netw Appl 
19(2):171–209

Chu-Sing Y, Mon-Yen L (2000) Realizing fault resilience in web-server 
cluster. In: ACM/IEEE SC 2000 Conference (SC’00), IEEE, pp 
21–21, https​://doi.org/10.1109/SC.2000.10012​. http://ieeex​plore​
.ieee.org/docum​ent/15927​34/

Colombiano Kedowide EV Charles Gouin-Vallerand (2014) Recogniz-
ing blind spot check activity with car drivers based on decision 
tree classifier approach. AAAI Workshop—Technical Report WS, 
pp 22–26

Cook DJ, Youngblood M, Heierman E, Gopalratnam K, Rao S, Litvin 
A, Khawaja F (2003) MavHome: an agent-based smart home. In: 
Proceedings of the First IEEE International Conference on Perva-
sive Computing and Communications, 2003 (PerCom 2003), pp 
521–524, https​://doi.org/10.1109/PERCO​M.2003.11927​83. http://
ieeex​plore​.ieee.org/docum​ent/11927​83/

http://www.advantech.com/products/automation-controllers-i-os/sub_1-2mlf31
http://www.advantech.com/products/automation-controllers-i-os/sub_1-2mlf31
https://doi.org/10.1016/j.jalz.2017.02.001
https://doi.org/10.1016/j.jalz.2017.02.001
https://www.alz.org/documents_custom/2017-facts-and-figures.pdf
https://www.alz.org/documents_custom/2017-facts-and-figures.pdf
https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-hinc/hinc-02.html
https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-hinc/hinc-02.html
https://doi.org/10.1109/SC.2000.10012
http://ieeexplore.ieee.org/document/1592734/
http://ieeexplore.ieee.org/document/1592734/
https://doi.org/10.1109/PERCOM.2003.1192783
http://ieeexplore.ieee.org/document/1192783/
http://ieeexplore.ieee.org/document/1192783/


2656	 V. Plantevin et al.

1 3

Cook DJ, Crandall AS, Thomas BL, K NC (2012) CASAS: a 
smart home in a box. Computer 100(2):130–134. https​://doi.
org/10.1016/j.pestb​p.2011.02.012.Inves​tigat​ions

Dell (2016) Dell PowerEdge rack servers. http://www.dell.com/ca/
busin​ess/p/power​edge-rack-serve​rs

Drumea A, Popescu C, Svasta P (2005) GSM solutions for low cost 
embedded systems for industrial control. In: 28th international 
spring seminar on electronics technology: meeting the challenges 
of electronics technology progress, 2005., IEEE, pp 240–244. 
https​://doi.org/10.1109/ISSE.2005.14910​34. http://ieeex​plore​
.ieee.org/docum​ent/14910​34/

Ghayvat H, Mukhopadhyay S, Gui X, Suryadevara N (2015) WSN- 
and IOT-based smart homes and their extension to smart build-
ings. Sensors (Switzerland) 15(5):10350–10379. https​://doi.
org/10.3390/s1505​10350​

Giroux S, Leblanc T, Bouzouane A, Bouchard B, Pigot H, Bauchet 
J (2009) The praxis of cognitive assistance in smart homes. 
BMI Book pp 183–211. https​://doi.org/10.3233/978-1-60750​
-048-3-183

Gutierrez J, Naeve M, Callaway E et al (2001) IEEE 802.15. 4: a devel-
oping standard for low-power low-cost wireless personal area net-
works. ieeexploreieeeorg

Hey A, Tansley S, Tolle K (2009) The fourth paradigm: data-intensive 
scientific discovery. Microsoft Research. http://202.120.81.220:81/
inter​/uploa​ds/readi​ngs/four-parad​igm.pdf

Hu Y, Tilke D, Adams T, Crandall AS, Cook DJ, Schmitter-Edgecombe 
M (2016) Smart home in a box: usability study for a large scale 
self-installation of smart home technologies. J Reliab Intell Envi-
ron 2(2):93–106

IEEE (1998) IEEE standard for a smart transducer interface for sensors 
and actuators

Intille SS, Larson K, Tapia EM, Beaudin JS, Kaushik P, Nawyn J, 
Rockinson R (2006) Using a live-in laboratory for ubiquitous 
computing research. In: International conference on pervasive 
computing. Springer, pp 349–365

King J, Jansen E (2005) The gator tech smart house. Computer 
38(3):50–60

Lewis FL et al (2004) Smart environments: technologies, protocols, 
and applications. Wirel Sensor Netw 11:46

Lin RT, Hsu CS, Chun TY, Cheng ST (2008) OSGi-based smart home 
architecture for heterogeneous network. In: 2008 3rd international 
conference on sensing technology, IEEE, pp 527–532, https​://doi.
org/10.1109/ICSEN​ST.2008.47571​62. http://ieeex​plore​.ieee.org/
docum​ent/47571​62/

Liu B, Cao SG, He W (2011) Distributed data mining for e-business. 
Inf Technol Manag 12(2):67–79. http://link.sprin​ger.com/10.1007/
s1079​9-011-0091-8

Lu F, Parkin S, Morgan G (2006) Load balancing for massively mul-
tiplayer online games. In: Proceedings of 5th ACM SIGCOMM 

workshop on Network and system support for games—NetGames 
’06. ACM Press, New York, p 1. https​://doi.org/10.1145/12300​
40.12300​64

Mon-Yen L, Chu-Sing Y (2001) Constructing zero-loss Web services. 
In: Proceedings IEEE INFOCOM 2001. Conference on computer 
communications. Twentieth Annual Joint Conference of the IEEE 
Computer and Communications Society (Cat. No.01CH37213), 
IEEE, vol  3, pp 1781–1790. https​://doi.org/10.1109/INFCO​
M.2001.91667​6. http://ieeex​plore​.ieee.org/docum​ent/91667​6/

Montenegro G, Kushalnagar N, Hui J, Culler D (2007) Transmission of 
ipv6 packets over ieee 802.15. 4 networks. Tech. rep

Novák M, Binas M (2011) An architecture overview of the smart-home 
system based on OSGi. In: SCYR 2011: 11th Scientific Confer-
ence of Young Researchers of Faculty of Electrical Engineering 
and Informatics Technical University of Košice, pp 221–224

OSGi Alliance (2016) OSGi alliance the dynamic module system for 
java. https​://www.osgi.org/

Patterson DJ, Liao L, Fox D, Kautz H (2003) Inferring high-level 
behavior from low-level sensors. In: International conference on 
ubiquitous computing

Plantevin V, Bouzouane A, Gaboury S (2017) The light node com-
munication framework: a new way to communicate inside smart 
homes. Sensors 17(10):2397. https​://doi.org/10.3390/S1710​2397. 
http://www.mdpi.com/23147​8

Postel J, Reynolds J (1985) File transfer protocol
Roy PC, Bouchard B, Bouzouane A, Giroux S (2013) Ambient activity 

recognition in smart environments for cognitive assistance. Int 
J Robot Appl Technol 1(1):29–56. https​://doi.org/10.4018/ijrat​
.20130​10103​

Schroeder T, Goddard S, Ramamurthy B (2000) Scalable Web 
server clustering technologies. IEEE Netw 14(3):38–45. https​
://doi.org/10.1109/65.84449​9. http://ieeex​plore​.ieee.org/docum​
ent/84449​9/

Shelby Z, Hartke K, Bormann C (2014) The constrained application 
protocol (CoAP). https​://www.rfc-edito​r.org/info/rfc72​52

ZeroMQ (2016) Zeromq. http://zerom​q.org/
Zhihua S (2016) Design of smart home system based on ZigBee. In: 

2016 international conference on robots and intelligent system 
(ICRIS), pp 167–170

Zou Z, Li KJ, Li R, Wu S (2011) Smart home system based on IPV6 
and ZIGBEE technology. Proc Eng 15:1529–1533

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations
https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations
http://www.dell.com/ca/business/p/poweredge-rack-servers
http://www.dell.com/ca/business/p/poweredge-rack-servers
https://doi.org/10.1109/ISSE.2005.1491034
http://ieeexplore.ieee.org/document/1491034/
http://ieeexplore.ieee.org/document/1491034/
https://doi.org/10.3390/s150510350
https://doi.org/10.3390/s150510350
https://doi.org/10.3233/978-1-60750-048-3-183
https://doi.org/10.3233/978-1-60750-048-3-183
http://202.120.81.220:81/inter/uploads/readings/four-paradigm.pdf
http://202.120.81.220:81/inter/uploads/readings/four-paradigm.pdf
https://doi.org/10.1109/ICSENST.2008.4757162
https://doi.org/10.1109/ICSENST.2008.4757162
http://ieeexplore.ieee.org/document/4757162/
http://ieeexplore.ieee.org/document/4757162/
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10799-011-0091-8
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10799-011-0091-8
https://doi.org/10.1145/1230040.1230064
https://doi.org/10.1145/1230040.1230064
https://doi.org/10.1109/INFCOM.2001.916676
https://doi.org/10.1109/INFCOM.2001.916676
http://ieeexplore.ieee.org/document/916676/
https://www.osgi.org/
https://doi.org/10.3390/S17102397
http://www.mdpi.com/231478
https://doi.org/10.4018/ijrat.2013010103
https://doi.org/10.4018/ijrat.2013010103
https://doi.org/10.1109/65.844499
https://doi.org/10.1109/65.844499
http://ieeexplore.ieee.org/document/844499/
http://ieeexplore.ieee.org/document/844499/
https://www.rfc-editor.org/info/rfc7252
http://zeromq.org/

	Towards a more reliable and scalable architecture for smart home environments
	Abstract
	1 Introduction
	2 Existing architectures
	2.1 Mesh-based architectures
	2.2 OSGI architectures
	2.3 Industrial architectures
	2.4 Conclusion on existing architectures

	3 Proposed architecture
	3.1 Smart unit
	3.2 Transducer unit
	3.3 Communication

	4 Tests and discussion
	4.1 Material and infrastructure used
	4.2 Latency and scalability tests
	4.3 Reliability test
	4.4 Pricing of our solution

	5 Conclusions and future works
	References


