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Abstract
Clustering is an important tool for data mining and knowledge discovery that helps in revealing hidden structures and “clus-
ters” found in large data sets. Fuzzy C-means (FCM) is considered to be popular data clustering method due to its capabil-
ity of clustering the datasets that are uncertain, vague and/or are otherwise difficult to cluster. Although, noted both for its 
simplicity of implementation and its output validity, performance of FCM usually gets affected in case of poor initialization 
resulting in the algorithm getting trapped into a local optimum. To overcome this shortcoming, the present study proposes 
a novel clustering algorithm called fuzzy magnetic optimization clustering (Fuzzy-MOC) which embeds the concept of 
fuzzy clustering into magnetic optimization algorithm. In Fuzzy-MOC, the data points apply force directly to the magnetic 
particles due to which the particles change their positions in the feature space. Magnetic particles are attracted by their 
neighbours assumed to be in a lattice like structure. The proposed algorithm is evaluated on a set of 16 benchmark datasets 
taken from the UCI Machine Learning Repository including high dimensional gene expression dataset. Experimental results 
demonstrate that Fuzzy-MOC outperforms the other state-of-the-art algorithms in terms of different performance metrics 
like F1, accuracy, purity and RI measure.

Keywords Fuzzy C-means · Data clustering · Magnetic field · Optimization · Meta-heuristic

1 Introduction

Cluster analysis is an effective technique in data mining 
(Kushwaha et  al. 2017; Kushwaha and Pant 2018) and 
machine learning that can be applied to many application 
areas such as image processing, pattern recognition, signal 
processing, and other fields of engineering (Everitt et al. 
2011). It is an unsupervised learning method of arranging 
data objects into multiple clusters or groups.

1.1  Clustering algorithms

From optimization point of view, clustering can be for-
mulated as a particular kind of NP hard grouping problem 
(Nanda and Panda 2014). The goal of data clustering relies 

on the concept of grouping the data objects into a number 
of clusters such that the following conditions are satisfied:

• Homogeneity: Data objects within the same cluster are 
as similar to each other as possible.

• Heterogeneity: Data objects belonging to different clus-
ters are as dissimilar to each other as possible (Hruschka 
et al. 2009; Nanda and Panda 2014).

Clustering methods can be divided into two categories:—
partitional and hierarchical (Xu et al. 2005; Everitt et al. 
2011). Partitional based clustering algorithms divides the 
data into multiple groups or clusters based on similarity or 
dissimilarity among the data objects (Xu et al. 2005). Dis-
tance based-similarity measure is used to find the similar-
ity among data points. Among various partitional cluster-
ing algorithms, k-means is most popular. Unlike partitional 
clustering algorithms, hierarchical algorithms generate the 
nested tree like structure or dendogram of clusters. Hierar-
chical clustering can further be divided into two approaches: 
top down and bottom up approach. Rock (Guha et al. 2000) 
is one of the widely used hierarchical clustering algorithm 
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for categorical data. In terms of execution time, partitional 
clustering is faster in comparison to hierarchical clustering 
because of its low algorithmic complexity (Han et al. 2012).

Partitional and hierarchical clustering can also be classi-
fied in terms of hard and soft clustering techniques. In the 
former method, each object belongs only to a single clus-
ter at a time while in the latter, each data object partially 
belongs to one or more clusters with different membership 
values, ranging between [0, 1]. The sum of the membership 
values for each data point must be one (Xu and Wunsch 
2005).

A well established soft clustering approach is fuzzy 
C-means (FCM) proposed by Bezdek et al. (1984). It is a 
widely used clustering algorithm well known for its sim-
plicity and applicability. FCM assigns every data point to 
multiple clusters by computing a membership matrix. FCM 
is more useful for the datasets having overlapping clusters. 
FCM has obtained satisfactory results in many application 
areas including pattern recognition (Jain and Law 2005). 
However, a major drawback of FCM is that its performance 
depends a lot on the choice of initial clusters increasing its 
risk of getting trapped into a local minimum.

This algorithm is effective for spherical clusters but does 
not perform well for general clusters for which kernel based 
clustering algorithms proposed by Shen et al. (2006) are 
more useful. In KFCM algorithm the Euclidean distance 
metric used in previous algorithms is replaced with a kernel 
metric. The kernel function is applied in order to achieve 
better mapping for nonlinear separable datasets.

However, for such kernel-based methods, a crucial step 
is the combination or selection of the best kernels among an 
extensive range of possibilities. This step is often heavily 
influenced by the prior knowledge about the data and by 
the patterns that we expect to discover (Shawe-Taylor and 
Cristianini 2004).

Researchers have shown that application of meta-heu-
ristics like genetic algorithm (Bandyopadhyay and Maulik 
2002), ant colony optimization (Shelokar et al. 2004) and 
evolutionary strategy (Babu and Murty 1994) can help in 
reducing the initialization problem in clustering problems. 
Literature also indicate that a combination of fuzzy logic 
into the meta-heuristics is an effective method for dealing 
with clustering problems. For example: Pang et al. (2004) 
proposed a fuzzy discrete particle swarm optimization 
(Fuzzy-PSO) for solving travelling salesman problem. In this 
method, the position and velocity of the particles is redefined 
to represent the fuzzy relation between the data objects and 
the clusters. Izakian and Abraham (2011) proposed a hybrid 
fuzzy clustering algorithm which combined FCM and Fuzzy 
-PSO (FCM–PSO). FCM–PSO provided better results than 
other fuzzy clustering algorithms (FPSO and FCM).

1.2  Motivation

Some of the major challenges in clustering algorithms are the 
ability to deal with overlapped clusters and sensitivity to the 
initial position of cluster centroids. The aim of this paper is 
to propose a novel fuzzy magnetic optimization clustering 
(Fuzzy-MOC) algorithm which can solve these problems. The 
data objects in the proposed algorithm are considered as mova-
ble objects and are allowed to move around the feature space in 
the influence of magnetic field and combine together if they are 
close enough to each other. The aim is to find the best position 
of each cluster centroids (cluster representative) where each 
centroid is modelled by a magnetic particle. To evaluate the 
performance of Fuzzy-MOC, experiments are conducted on 
synthetic as well as benchmark health data sets and the results 
obtained are compared with the results obtained through three 
other state-of-the-art fuzzy clustering algorithms.

The remainder of this paper is organized as follows: 
Sect.  2 presents the background  related too proposed 
method. Section 3 provides the details of the proposed algo-
rithm. Experimental results on different datasets are pre-
sented in Sect. 4. Finally, the paper concludes with Sect. 5.

2  Background

This section describes the basic fuzzy C-means algorithm, 
scale free network and also provides an introduction to mag-
netic optimization algorithm.

2.1  Fuzzy C‑means algorithm

In a most general FCM algorithm, the data set hav-
ing ndata objects o = {o1, o2 … .ondata} is divided into k 
( 1 < k < n_data ) fuzzy centres having z fuzzy centroids/
cluster prototype or cluster centres. Each object is repre-
sented by quantitative variable oi = {oi1, oi2 … .oiDim} . Fuzzy 
matrix � is constructed having n_data number of rows and 
k number of columns. Here �ij indicates the degree of mem-
bership of object i with the jth cluster. The higher the value 
of �ij , the more it indicates that i belongs to cluster j . The 
characteristics of � are as follows:

The goal of FCM algorithm is to minimize the error 
objective function.

(1)0 <

ndata∑
i=1

𝜇ij < ndata ∇j = 1, 2,… , k

(2)�ij�[0, 1] ∇i = 1, 2,… , ndata; ∇j = 1, 2,… , k

(3)
k∑

j=1

�ij = 1∇i = 1, 2,… , ndata
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where cluster centres (cluster prototype) is obtained by using 
through Eq. 5

where m is the level of cluster fuzziness having value 
between 0 and infinity.

The membership degrees are updated using Eq. (6) under 
the constraint

Algorithm 1 provides the pseudo code of FCM.

(4)JFCM =

k∑
j=1

n_data∑
i=1

�ij
moi − zj

(5)zj =

∑n_data

i=1
�ij

moi∑n_data

i=1
�ij

m

k∑
j=1

�ij = 1

(6)�ij =

[
k∑

a=1

(
oi − zj

oi − za

) 1

m−1

]−1

their magnetic field to effectively search the optimization space. 
The magnetic force value depends upon the distance between 
the particles and their magnetic field. This type of force has a 
long range effect, if the distance between the particles increases, 
its effect decreases and reaches zero if the distance is infinity.

Consider N  magnetic particles in a Dim dimensional 
search space in which the position of the particle X is rep-
resented as follows:

where i represents the ith magnetic particle located in the 
lattice structure S . Based on Tayarani and Akbarzadeh 
(2008), the objective function value is calculated by each 
particle and is stored in the magnetic field Bi . After this the 
magnetic field of each particle is normalized as follows:

where

The mass value of the ith magnetic particle Mi is calcu-
lated as follows:

where � and � are two constant values. The parameters α and 
ρ control the movement of the particles.

Acceleration of the ith magnetic particle is calculated as:

(7)
X
k

i
= (xk

1
, x2,… xS) for k = 1, 2, 3…

Dim i = 1, 2, 3,…S and itr = 0

(8)Bi =
Bi − Best

Bi −Worst

(9)Best = min(Bi)

(10)Worst = max(Bi)

(11)Mi = � + � × Bitr
i

(11)Ak
i
(itr + 1) =

Forcek
i

Mi

× Rand

2.2  Magnetic optimization algorithm

Magnetic optimization algorithm (MOA) proposed by Tayarani 
and Akbarzadeh (2008) is based on the principle of magnetic 
theory where the particles are attracted towards each-other on 
the basis of the charge they are having. In MOA, the potential 
solutions (referred to as magnetic particles) are scattered around 
the search space and particles having higher fitness value are 
assumed to contain higher mass value and higher magnetic 
field. In this algorithm, magnetic particles interact in a lat-
tice like structure. Each magnetic particle including the worst 
apply attractive force to the neighbouring particles based on 
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Rand is the uniform random number between 0 and 1. 
Each particle applies the force only to its neighbors, the 
neighbors of Bi is found. Force which is applied to particle 
Xi from its neighbor’s Xu(∀Xu ∈ Ni) is calculated as follows:

where D(Xi,Xu) is the distance between the particle Xiand 
its neighbors Xu

where k is the dimension of the particle .lk and uk are the 
lower and upper bound of the kth dimension of the particle.

Then, the next velocity and next position of the ith mag-
netic particle is calculated using Eqs. 15 and 16:

2.3  Scale free network

Scale free networks are based on the concept that despite 
having diverse applications, most networks appearing in 
nature follow a universal organizing principles (Barabási 
et al. 2000). It is characterized by a highly heterogeneous 
degree distribution, which follows a “power-law”. In scale-
free (SF) network, there are few nodes which have lot of con-
nections (links) and some nodes have just a few connections. 

(12)Forcei = Forcei +
dist × Bu

D(Xi,Xu)

dist = Xi − Xu

(13)D(Xi,Xu) =
1

Dim

Dim∑
k=1

||||
Xi − Xu

uk − lk

||||

(15)Vk
i
(itr + 1) = Vk

i
(itr) + Ak

i
(itr + 1)

(16)Xk
i
(itr + 1) = Xk

i
(itr) + Vk

i
(itr + 1)

Scale-free (SF) networks is characterized by a highly hetero-
geneous degree distribution, which follows a “power-law” 
as shown in Fig. 1.

3  Proposed algorithm: Fuzzy‑MOC

The most challenging problem of clustering is its sensitiv-
ity to the initial centroid selection and overlapping clusters 
problem. To solve this problem, Fuzzy-MOC clustering 
algorithm is proposed in which the magnetic particles move 
around the search space to find the best representative of the 
cluster centroids. MOA is customized for dealing with data 
clustering by making suitable modifications in the algorithm.

In the proposed algorithm, the problem space is modelled 
as the data points in a multi-dimensional space. Data points 
may not belong exactly to a single cluster only but may belong 
to multiple clusters. Fuzzy-MOC algorithm tries to determine 
the set of candidate cluster centroids and thus determining a 
near optimal classification of the dataset at hand. The main 
idea of the proposed algorithm is that data points are consid-
ered as fixed entities while magnetic particles are considered 
as movable entities. Each of the magnetic particles (candidate 
solutions) denotes all the centroids of datasets. In this, the fixed 
data objects apply force directly to the magnetic particles which 
causes magnetic particles to move towards the global optimum. 
Instead of using cellular or lattice structure, in Fuzzy-MOC 
employs scale free networks within the population.

3.1  Solution encoding

Encoding scheme is needed to encode centroids or cluster 
centres. Initially, all the candidate solutions represented as 
magnetic particles are randomly generated for the clustering 
problem. One candidate solution (magnetic particle) rep-
resents all the centroids of the dataset. The random candi-
date solutions generated interact with their mass value and 
magnetic field through a magnetic force. For clustering, 
each magnetic particle is represented as k cluster centroids 
encoded as Dim dimensional vector. Therefore the dimen-
sion of the particle is Dim × k . For instance, if there are three 
centroid clusters with four features in the dataset, then the 
length of the individual particle is of size (1 × 12).The solu-
tion representation of magnetic particle is shown in Fig. 2.

After updating the particle’s position, it is possible that it 
may violate the constraints given in Eqs. 2 and 3. To solve this 
problem, standardization is performed on position matrix of 

Fig. 1  Power law distribution of node linkages (Holme and Kim 
2002)

Fig. 2  Particle encoding of single particle
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each magnetic particle. Negative values in the position matrix 
are set to zero. If all the values in a row of the position matrix 
are zero, then a new random number if generated between 0 
and 1. After standardization, new matrix is given as follows:

Xi =

⎡⎢⎢⎢⎢⎢⎣

�11∕
k∑

i=1

�ij ⋯ �k1∕
k∑

i=1

�ij

⋮ ⋱ ⋮

�1n∕
k∑

i=1

�ij ⋯ �kn∕
k∑

i=1

�ij

⎤⎥⎥⎥⎥⎥⎦

,

To evaluate the performance of the proposed algorithm, 
the fitness value or the objective function is kept same as 
that of FCM algorithm (see Eq. 4). According to Izakian 
and Abraham (2011), the running time of FCM algorithm 
is lower as compared to the heuristic algorithms because it 
executes less function evaluations, but it has a disadvantage 
of being vulnerable to local optimum.

Algorithm  2 shows the pseudo code  of proposed 
algorithm.
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3.2  Salient features of the proposed algorithm, 
Fuzzy‑MOC

• G(itr) will take initial value G0 and will reduce with time 
towards a final value, G(max_itr) , to adjust the accuracy 
of the search.

• A random number is multiplied with force which lies 
between 0 and 1 to give a randomize characteristic to 
the algorithm. It helps the algorithm to escape from the 
local optimum, so the dependency on initial clustering 
centroids is reduced.

• eps = 0.01 is used in the acceleration equation to avoid 
divide by zero situation.

4  Experimental results

This section provides an evaluation on the performance of 
the proposed algorithm on some commonly used UCI (http://
archi ve.ics.uci.edu/ml/) data sets. The proposed algorithm 
is evaluated in terms of the following performance metrics: 
F1, RI, purity and accuracy and the results obtained are com-
pared with three other fuzzy clustering algorithms: FCM, 
Fuzzy-PSO, and KFCM. For the purpose of comparison, all 
the four algorithms were executed 30 times each and their 
average values were recorded. The output of the proposed 
and the other clustering algorithms are summarized in the 
Tables 3, 4 , 5 and 6. All algorithms were implemented on 
MATLAB software7.0.0 on a computer having 8 Gb RAM 
and i7 core processor. Parameter settings of Fuzzy-PSO 
(Pang et al. 2004), FCM (Bezdek et al. 1984), KFCM (Shen 
et al. 2006) are kept same as that in the original paper.

The parameter settings of all the algorithms are provided 
in Table 1.

4.1  Evaluation metric

Following performance measures are considered for evaluat-
ing the performance of the proposed algorithm against other 
algorithms:

Accuracy: It is determined by comparing the clusters 
obtained by the algorithm with clusters already available in 
dataset (ground truth value) (Sun and Guo 2014)

The map function is used for matching Truelabel of object 
i to cluster label ( C ) (obtained by clustering algorithm). 
Higher the value of accuracy is, better the clustering result.

Rand Index (RI): The Rand Index initially given by 
(Arzeno and Vikalo 2015) provides the measure of overall 
clustering accuracy. It gives the percentage of instance pairs 
that are correctly classified as belonging to either the same 
cluster or to the different clusters. More specifically, if ci 
is the label of instance i and ĉi is the example or a cluster 
assigned to instance i by the clustering algorithm. Then,

F1: It is the harmonic mean of recall and precision. Pre-
cision can be defined as the fraction of number of correct 
pairs predicted in the same cluster among the total number 
of pairs predicted in the same cluster, while recall is the frac-
tion of number of correct pairs predicted in the same cluster 
over the total number of pairs actually in the same cluster.In 
general, larger values of F-measure indicate better cluster-
ing. The value of F1 lies between 0 and 1. Mathematically, 
it is given as:

Purity: To compute purity, each cluster is assigned to 
the class which is most frequent in the cluster, and then the 
accuracy of assignment is measured by counting the number 

(17)Accuracy =

∑n

i=1
�(ground truth value, map (C))

n

(18)RI =

∑
i>j 1(1(ci = cj) = 1(ĉi = ĉj)

Total number of instance pairs

(19)F1 =
2 × Precision × Recall

Precision + Recall

Table 1  Parameter setting

Clustering algorithms Parameters/values

Fuzzy-PSO c1, c2 = 2,w = 0.7298,P = 20,Max
itr

= 500

KFCM m = 2,Max
itr

= 500

FCM m = 2,Max
itr

= 500

Proposed algorithm P = 20,Max
itr

= 500,G0 = 0.02

Table 2  Description of data sets

S. no. Datasets Classes (k) Instances Dimension

Health dataset
 1. CMC 3 1473 9
 2. BCW 2 683 9
 3. Bupa 2 345 6
 4. Thyroid 3 215 5
 5. Heart 2 270 13
 6. Dermatology 6 358 34
 7. WDBC 2 569 30

Other dataset
 8. Aggregation 7 788 2
 9. Balance 3 625 4
 10. Iris 3 150 4
 11. Crude oil 3 56 5
 12. IONO 2 351 34
 13. Jain 2 373 2
 14. Vowel 6 871 3
 15. Wine 3 13 178

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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of correctly assigned documents and dividing by n . Higher 
values of purity indicates good clustering:

where Pi is the centroid of theithcluster.

4.2  Datasets

The proposed algorithm is validated on 16 datasets, out of 
which 14 datasets are taken from the UCI database while 

Purity(Pi) =
1

ni
× maxj × nij

(20)Purity =

k∑
i=1

ni

n
× Purity(Pi)

Fig. 3  Aggregation dataset

(a) (b)

(c) (d)

Fig. 4  Aggregation dataset a KFCM, b FCM, c Fuzzy_PSO, d Fuzzy-MOC (proposed algorithm)
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one is taken from Jain dataset (Jain and Law 2005).The char-
acteristics of datasets according to the number of classes, 
number of instances and number of features are described 
in Table 2. The datasets used in this paper are Vowel, Breast 
Cancer Wisconsin Diagnostic (WDBC), Breast Cancer 
Wisconsin Original (BCW), Bupa (BUPA liver disorders), 
Heart, Dermatology, Contraceptive Method Choice (CMC), 
Balance, Crude oil, Ionosphere database (IONO), Iris, Jain, 
Thyroid and Wine. Aggregation (Gionis and Mannila 2007) 
is a synthetic dataset considered for comparison.

Besides these datasets, a high dimensional health data-
set, called Gene expression is also used for evaluating the 
proposed algorithm. This collection of data is part of the 
RNA-Seq (HiSeq) PANCAN data set, it is a random extrac-
tion of gene expressions of patients having different types 
of tumors. The dataset consists of 801 instances with 20,530 
features. It contains five classes: BRCA, KIRC, COAD, 
LUAD and PRAD.

4.3  Result and discussion

Figure 3 shows the original aggregation dataset. For all of 
the clustering algorithms, the number of clusters is 7. The 
three dimensional clustering results for the four clustering 
algorithms are shown in the first four panels of Fig. 4. From 
this figure it can be seen that though none of the algorithms 
gave perfect results, the clustering obtained through Fuzzy-
MOC is better than the clustering obtained through the other 
three algorithms.

Table 3 shows the average accuracy from the 30 simula-
tion runs. Fuzzy-MOC achieves highest accuracy among all 
the datasets except for thyroid, heart, aggregation, iris and 
IONO data sets, in comparison to FCM, Fuzzy-PSO and 
KFCM. For the IONO data set, average accuracy of Fuzzy-
MOC is greater than those of KFCM and it is equal to that of 
FCM and Fuzzy-PSO. For the thyroid, iris and aggregation 
datasets, FCM yields greater accuracy than the other cluster-
ing algorithms. KFCM achieves highest accuracy in Heart 
dataset in comparison to other algorithms. From the result, 
it can be observed that the performance of Fuzzy-MOC is 
more consistent in comparison to other clustering algorithms 
with respect to the average accuracy.

Table 4 shows the average F1 Measure for the 30 simula-
tion runs. For all data sets except heart, dermatology, vowel, 
IONO and wine data sets, Fuzzy-MOC exhibits a signifi-
cantly higher F1 value in comparison to FCM, Fuzzy-PSO 
and KFCM. In case of thyroid data set Fuzzy-PSO give the 
best results. For the IONO dataset, FCM, Fuzzy-PSO and 
Fuzzy-MOC give similar results. FCM achieves highest F1 
in dermatology and wine dataset in comparison to other 
clustering algorithms. For heart dataset, KFCM achieves 
the highest F1 value.

Table 5 shows the results in terms of mean purity and RI 
obtained by different clustering algorithms used in the present 
study. Fuzzy-MOC produces higher accuracy especially on 

Table 3  Mean values of accuracy over 30 independent runs on 15 
datasets

Bold values indicate the best values obtained by the algorithm

Accuracy

Dataset/algorithm FCM Fuzzy-PSO KFCM Fuzzy-MOC

Health dataset
 BUPA 96.19327 96.19327 74.9634 96.48609
 BCW 55.36232 55.36232 55.36232 53.62319
 CMC 39.71487 43.1093 38.96809 45.96062
 Thyroid 86.04651 58.13953 56.27907 64.18605
 Heart 58.88889 58.88889 76.2963 61.48148
 Dermatology 26.81564 27.65363 25.41899 35.19553
 WDBC 85.23726 85.23726 65.72935 87.34622

Other dataset
 Aggregation 77.03046 63.07107 59.51777 73.98477
 Balance 36.64 37.12 21.12 41.44
 Iris 99.33333 67.33333 83.33333 92.66667
 Crude oil 64.28571 64.28571 50 76.78571
 IONO 71.22507 71.22507 54.13105 71.22507
 Jain 78.28418 78.28418 75.60322 79.62466
 Vowel 48.67968 46.26866 30.30999 59.8163
 Wine 70.22472 70.22472 71.91011 73.03371

Table 4  Mean values of F1 over 30 independent runs on 15 datasets

Bold values indicate the best values obtained by the algorithm
N/A data not available

F1

Dataset/algorithm FCM Fuzzy-PSO KFCM Fuzzy-MOC

Health dataset
 BUPA 0.51625 0.483546 0.43767 0.582795
 BCW 0.957993 0.041666 0.253307 0.961244
 CMC 0.356661 0.328951 0.35109 0.500311
 Thyroid 0.108004 0.229514 0.199447 0.697594
 Heart 0.421545 0.421545 0.759629 0.61
 Dermatology 0.292904 0.167621 0.25804 0.221814
 WDBC 0.13126 0.13126 0.633142 0.869631

Other dataset
 Aggregation 0.095238 N/A 0.024235 0.290055
 Balance 0.19503 0.23072 0.201587 0.35685
 Iris 0.329966 0.060606 0.249158 0.418003
 Crude oil 0.146242 0.389691 0.201464 0.500512
 IONO 0.709867 0.709867 0.517478 0.709867
 Jain 0.808092 0.18158 0.196121 0.81661
 Vowel 0.22859 0.511165 0.166782 0.323301
 Wine 0.709589 0.182031 0.194444 0.704998
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BUPA, CMC, dermatology, WDBC, aggregation, Iris, IONO, 
jain, vowel datasets in terms of purity and RI in comparison 
to the other three clustering algorithms. For crude oil dataset 
Fuzzy-MOC achieves a higher RI value while FCM give a 
highest value for purity. FCM achieves higher purity and RI 
value for wine, thyroid and balance datasets. KFCM give 
better results in heart datasets. FCM, Fuzzy-PSO, KFCM 
and Fuzzy-MOC give similar purity value for BCW dataset 
while KFCM achieve better RI value as compared to other.

Results obtained for Gene expression dataset (high dimen-
sional dataset) are provided in Table 6. From the table it can 
be seen that Fuzzy-MOC achieves higher values for RI and 
accuracy in comparison to other algorithms. FCM perform 
better in terms of purity and KFCM in terms of F1. From the 
results, once again it can be seen that the proposed algorithm 
surpassed the other algorithms for two out of four perfor-
mance measures for a high dimensional gene expression data.

5  Conclusion

Clustering algorithms have emerged as an alternative power-
ful meta-learning tool to undertake a broad range of appli-
cations. This paper proposes Fuzzy-MOC algorithm, a new 
meta-heuristic approach based on the principle of magnetic 
field theory for efficient fuzzy clustering. Fuzzy-MOC is 
designed so as to minimize the initialization problem, a 
major drawback of most of the clustering algorithms. The 
objective considered is to determine the optimum centroid of 
the clusters. Empirical evaluation of Fuzzy-MOC is done on 
a set of 15 benchmark datasets and a high dimensional gene 
expression data set. Efficiency of Fuzzy-MOC is evaluated 
through four different performance metrics: F1, accuracy, 
purity and RI and comparison is done with three other fuzzy 
clustering algorithms. The experimental results indicate a 
consistent performance of Fuzzy-MOC for most of the data 
sets including high dimensional data set considered in the 
present study.
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