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Abstract
We propose a new technique for handling multiple attribute group decision making (MAGDM) problems in interval-valued 
hesitant fuzzy (IVHF) environments with imperfect weight information. Firstly, the quadratic programming model is given 
to acquire the weights of decision makers by utilizing maximum group consensus between individual and group IVHF deci-
sion matrices. Then, the maximum deviation method is employed to build an optimum model, where the best weights for 
attributes are obtained. Subsequently, an IVHF–TOPSIS approach is developed to obtain a solution that simultaneously has 
the smallest distance from the IVHF-positive ideal solution (IVHFPIS) and the largest distance from the IVHF-negative 
ideal solution (IVHFNIS). Ultimately, the novel method is verified with an investment example.

Keywords Interval-valued hesitant fuzzy set (IVHFS) · Group decision making · Maximum group consensus method · 
Maximum deviation method · TOPSIS

1 Introduction

For any element, when confirming its membership degree 
of a set, it is difficult to have some possible numerical val-
ues (Torra and Narukawa 2009) rather than error amplitude 
(Atanassov 1986; Atanassov and Gargov 1989; Zadeh 1975) 
or a certain possibility distribution on the possible values 
(Dubois and Prade 1980). To address this issue, Torra and 
Narukawa (2009) extended fuzzy sets (Zadeh 1965) and 
introduced hesitant fuzzy sets (HFS) where, for any ele-
ment, its membership degree is simultaneously represented 
by several numerical values in [0, 1]. Consequently, hesitant 
fuzzy sets as an efficient tool for dealing with uncertainty 
have attracted increasing attention (Farhadinia 2013; Peng 
et al. 2013; Qian et al. 2013; Rodríguez et al. 2012, 2013; 
Wei 2012; Xia and Xu 2011; Xia et al. 2013; Xu and Xia 

2011a, b; Zhang 2013; Zhang and Wei 2013; Zhu et al. 2012; 
Zhu and Xu 2013).

Recently, Chen et al. (2013a, b) defined the interval-
valued hesitant fuzzy set (IVHFS) and investigated several 
IVHF operators for aggregating IVHF information. Based 
on these operators, some new IVHF-aggregation operators 
and MAGDM methods (Chen et al. 2013b; Wei and Zhao 
2013; Wei et al. 2013; Zhang and Wu 2014) have also been 
developed for dealing with the MAGDM problems within 
the context of IVHFSs. However, these existing interval-
valued hesitant fuzzy MAGDM methods have some inher-
ent limitations: (1) when using these methods, the weight 
information for decision makers and attributes is given ahead 
of time, which, unavoidably, is more or less subjective and 
inadequate. (2) These existing methods usually carry out 
some aggregation operations on interval-valued hesitant 
fuzzy arguments. Accordingly, the dimensionality of the 
aggregated IVHF elements may increase. In particular, if 
the dimensions of the input IVHF elements are a little large, 
the dimensionality of the fused IVHF elements will be very 
large, which not only increases computation burden but 
also results in more original information loss. (3) In many 
MAGDM problems with IVHF information, the weight 
information for decision makers and attributes is imperfectly 
known or entirely unknown.
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To make up the above drawbacks, this study develops 
a new technique for MAGDM under IVHF environments 
with incomplete weight information. The motivations mainly 
come from three aspects: (1) how to avoid the information 
loss of the original information and reduce the computa-
tion complexity deserves to be addressed in the developed 
method. (2) To avoid subjective randomness, DMs’ weights 
should not be given in advance or assumed to be the same 
for GDM problems. (3) How to address the situation that 
the weight information for decision makers and attributes 
is imperfectly known or entirely unknown is a challenging 
task.

This novel method can be divided into three parts: first, 
by using the maximizing group consensus method, we 
establish a quadratic programming model to objectively 
obtain the most desirable weight vector of decision mak-
ers. Second, according to the maximum deviation method, 
a new model is built to objectively obtain the optimum 
weight vector of attributes. Finally, motivated by the classi-
cal TOPSIS, we develop an extended TOPSIS to determine 
the best alternative(s), which includes two stages. The first 
stage is named IVHF–TOPSIS, which can be used to com-
pute the individual relative closeness coefficient for every 
alternative to the individual IVHFPIS. The second stage is 
the standard TOPSIS, which is used to determine the group 
relative-closeness coefficient for every alternative to group 
positive ideal solution (GPIS) and choose the most desirable 
alternative that has the maximum group relative-closeness 
coefficient.

The paper is arranged as follows: some preliminaries 
regarding HFS and IVHFS are introduced in Sect. 2; A new 
approach for handling the IVHF-MAGDM problem with 
imperfect weight information is developed in Sect. 3; An 
investment example to show the validity and practicality of 
our method is given in Sect. 4; Some conclusions are pre-
sented in Sect. 5.

2  Preliminaries

Torra (2010) presented the concept of HFS as follows:

Definition 2.1 (Torra 2010) Let us assume X is a reference 
set. An HFS A on X is a function hA(x) that returns a subin-
terval in [0, 1] when applied to X.

The HFS is characterized by

where hA(x) consists of some values in [0, 1] and is simply 
called a hesitant fuzzy element (HFE) in Xia and Xu (2011), 
expressed as h = hA(x).

(1)A =
�⟨x, hA(x)⟩��x ∈ X

�

Let lh represent the number of values in h . For simplic-
ity, we arrange the values in h in descending order, that is, 
h =

{
h�(i)||i = 1, 2,… , lh

}
 ; here, we denote h�(i) as the ith 

largest value in h.
Torra (2010) gave the following laws for any three HFEs, 

h , h1 and h2:

1. hc =
⋃

�∈h {1 − �};
2. h1 ∪ h2 =

⋃
�1∈h1,�2∈h2

�
�1 ∨ �2

�
;

3. h1 ∩ h2 =
⋃

�1∈h1,�2∈h2

�
�1 ∧ �2

�
.

Actually, in many MAGDM problems, experts may have 
difficulties in assigning crisp numbers as their preference 
values, but the values can be indicated by a subinterval of 
[0,1]. Thus, Chen et al. (2013a, b) proposed the concept of 
IVHFS, which will be briefly reviewed here.

Assume that D([0, 1]) includes all closed subintervals of 
[0, 1] , that is,

D e f i n i t i o n  2 . 2  ( X u  a n d  D a  2 0 0 2 )  L e t 
a =

[
aL, aU

]
, b =

[
bL, bU

]
∈ D([0, 1]) . Then,

1. a = b ⇔

[
aL, aU

]
=
[
bL, bU

]
⇔ aL = bL and aU = bU;

2. a + b =
[
aL, aU

]
+
[
bL, bU

]
=
[
aL + bL, aU + bU

]
;

3. �a = �
[
aL, aU

]
=
[
�aL, �aU

]
;

4. T h e  c o m p l e m e n t  o f  a  i s  d e n o t e d  by 
ac =

[
aL, aU

]c
=
[
1 − aU , 1 − aL

]
.

For intervals a =
[
aL, aU

]
 and b =

[
bL, bU

]
 , Xu and Da 

(2002) developed a comparison law as follows:

D e f i n i t i o n  2 . 3  ( X u  a n d  D a  2 0 0 2 )  L e t 
ã =

[
aL, aU

]
, b̃ =

[
bL, bU

]
∈ D([0, 1]) , and lã = aU − aL , 

lb̃ = bU − bL . Then, the possibility degree of ã ≥ b̃ is 
described as:

To rank ãi =
[
aL
i
, aU

i

]
∈ D([0, 1]) ( i = 1, 2,… , n ), a com-

plementary matrix was introduced as:

where pij = p
(
ãi ≥ ãj

)
 , pij ≥ 0 , pij + pji = 1 , pii =

1

2
 , 

i, j = 1, 2,⋯ , n.

D([0, 1]) =
{
a =

[
aL, aU

]|||a
L ≤ aU , aL, aU ∈ [0, 1]

}
.

(2)p
(
ã ≥ b̃

)
= max

{
1 −max

(
bU − aL

lã + lb̃
, 0

)
, 0

}
.

P =

⎡⎢⎢⎢⎣

p11 p12 ⋯ p1n
p21 p22 ⋯ p2n
⋮ ⋮ ⋮ ⋮

pn1 pn2 ⋯ pnn

⎤⎥⎥⎥⎦
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Let pi =
n∑
j=1

pij , i = 1, 2,… , n . Then, we can sort the 

ai =
[
aL
i
, aU

i

]
 ( i = 1, 2,… , n ) in descending order according 

to the size ofpi.

Definition 2.4 (Chen et al. 2013a, b) Supposing X is a fixed 
set. An IVHFS Ã on X is a function Ã ∶ X → D([0, 1]) and 
is expressed as:

For simplicity, �h = h̃Ã(x) is named the interval-valued 
hesitant fuzzy element (IVHFE). If �̃� ∈ �h , then �̃� =

[
�̃�L, �̃�U

]
 , 

where �̃�L = inf �̃� and �̃�U = sup �̃� denote the lower and upper 
limits of �̃� , respectively. If �̃�L = �̃�U for all �̃� ∈ �h , then the 
IVHFE is just the HFE.

Denote lh̃ as the number of intervals in h̃ . For simplic-
ity, we rank the values in h̃ in descending order, that is, 
h̃ =

{
h̃𝜎(j)||j = 1, 2,… , lh̃

}
 . Here, we denote h̃𝜎(j) as the jth 

largest interval in h̃.

Definition 2.5 (Chen et al. 2013a, b) Suppose that h̃ , h̃1 and 
h̃2 are IVHFEs; we define several operations on them:

1. �hc =
{[

1 − �̃�U , 1 − �̃�L
]|||�̃� ∈ �h

}
;

2. h̃1 ∪ h̃2 =
{[

�̃�L
1
∨ �̃�L

2
, �̃�U

1
∨ �̃�U

2

]|||�̃�1 ∈ h̃1, �̃�2 ∈ h̃2

}
;

3. h̃1 ∩ h̃2 =
{[

�̃�L
1
∧ �̃�L

2
, �̃�U

1
∧ �̃�U

2

]|||�̃�1 ∈ h̃1, �̃�2 ∈ h̃2

}
;

4. �h𝜆 =

{[(
�̃�L
)𝜆
,
(
�̃�U

)𝜆]||||�̃� ∈ �h

}
, 𝜆 > 0;

5. 𝜆�h=

{[
1 −

(
1 − �̃�L

)𝜆
, 1 −

(
1 − �̃�U

)𝜆]||||�̃� ∈ �h

}
, 𝜆 > 0;

6. h̃1 ⊕ h̃2=

{[
�̃�L
1
+ �̃�L

2
− �̃�L

1
�̃�L
2
, �̃�U

1
+ �̃�U

2
− �̃�U

1
�̃�U
2

]|||
�̃�1 ∈ h̃1, �̃�2 ∈ h̃2

}
;

7. h̃1 ⊗ h̃2=
{[

�̃�L
1
�̃�L
2
, �̃�U

1
�̃�U
2

]|||�̃�1 ∈ h̃1, �̃�2 ∈ h̃2

}
.

Generally, the number of intervals in different IVHFEs 
is not the same. Then, we assume that l = max

{
lh̃1 , lh̃2

}
 , 

where lh̃1 and lh̃2 indicate the number of intervals in IVHFEs 
h̃1 and h̃2 , respectively. For the sake of a more exact opera-
tion between h̃1 and h̃2 , the following approach proposed in 

(3)Ã =

{⟨
x, h̃Ã(x)

⟩|||x ∈ X
}
.

Xu and Zhang (2013) can be used to generalize the shorter 
IVHFE until their lengths are equal to each other.

Definition 2.6 (Xu and Zhang 2013) Let h̃ be an IVHFE and 
h̃+ , h̃− be the largest and smallest intervals in h̃ , respectively. 
The interval ̄̃h = 𝜂h̃+ + (1 − 𝜂)h̃− is said to be an extension 
value, in which � ∈ [0, 1] indicates the controlling parameter 
given by the DM based on her/his risk appetite.

Chen et al. (2013a) developed an IVHF Hamming dis-
tance between two IVHFEs h̃1 and h̃2 as:

 where l = max
{
lh̃1 , lh̃2

}
 , and h̃𝜎(i)

1
 and h̃𝜎(i)

2
 are the ith largest 

intervals in h̃1 and h̃2 , respectively.

3  A novel method for MAGDM with IVHF 
information

3.1  Problem description

A MAGDM problem with IVHF information is presented as 
follows: Suppose X =

{
x1, x2,… , xm

}
 is a collection of m 

alternatives; C =
{
c1, c2,… , cn

}
 is a collection of n attrib-

utes that has the weight information w =
(
w1,w2,… ,wn

)T , 
satisfying wj ∈ [0, 1] , j = 1, 2,… , n , and 

∑n

j=1
wj = 1. Let 

D =
{
d1, d2,… , dp

}
 represent p DMs with weight informa-

t ion  � =
(
�1,�2,… ,�p

)T  ,  sa t i s fy ing �k ∈ [0, 1] , 
k = 1, 2,… , p ,  and 

∑p

k=1
�k = 1. In  addi t ion,  let 

Ã(k) =

(
ã
(k)

ij

)
m×n

 be an IVHF decision matrix, where 

ã
(k)

ij
=

{(
ã
(k)

ij

)𝜎(t)||||t = 1, 2,… , l
ã
(k)

ij

}
 is composed of the 

interval values of xi ∈ X on cj ∈ C , provided by the DM 
dk ∈ D.

Generally, there exist benefit and cost attributes in an 
MAGDM problem. For each k = 1, 2,… , p , we will obtain 
the normalized decision matrix B̃(k) =

(
b̃
(k)

ij

)
m×n

 from the 

original decision matrices Ã(k) =

(
ã
(k)

ij

)
m×n

 by using the fol-

lowing transformation formula:

(4)
d
(
h̃1, h̃2

)
=

1

2l

l∑
i=1

(||||
(
h̃
𝜎(i)

1

)L

−

(
h̃
𝜎(i)

2

)L|||| +
||||
(
h̃
𝜎(i)

1

)U

−

(
h̃
𝜎(i)

2

)U||||
)

(5)b̃
(k)

ij
=

⎧⎪⎨⎪⎩

ã
(k)

ij
, for benefit attribute cj�

ã
(k)

ij

�c

, for cost attribute cj

, i = 1, 2,… ,m i = 1, 2,… ,m k = 1, 2,… , p.
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In most cases, the total elements for different IVHFEs b̃(k)
ij

 

of B̃(k) ( k = 1, 2,… , p ) are not the same. Assume that

By the use of the regulations mentioned in Xu and Zhang 
(2013), the normalized decision matrices B̃(k) =

(
b̃
(k)

ij

)
m×n

 

can be replaced by the corresponding decision matrices 
H̃(k) =

(
h̃
(k)

ij

)
m×n

 ( k = 1, 2,… , p ), such that l
h̃
(k)

ij

= l , ∀

i = 1, 2,… ,m , j = 1, 2,… , n , and k = 1, 2,… , p.

Remark 3.1 Netrusophic theory is also an effective tool to 
handle uncertainty associated with ambiguity in a manner 
analogous to human thought, and has been applied into 
GDM problems successfully (Abdel-Basset et al. 2017; 
Mohamed et al. 2017). While, Netrusophic set is differen-
tiated by truth-membership function, indeterminacy-mem-
bership function and falsity-membership function, which 
is different from hesitant fuzzy set. Hence, the literature 
(Abdel-Basset et al. 2017; Mohamed et al. 2017) cannot 
handle the GDM problems in the interval-valued hesitant 
fuzzy environments.

3.2  A quadratic programming model 
for the weights of decision makers

First, for each k = 1, 2,… , p, the individual decision 
matrices

l = max

{
l
b̃
(k)

ij

||||i = 1, 2,… ,m, j = 1, 2,… , n, k = 1, 2,… , p

}
.

can be aggregated into the group decision matrix

where

Then, the issue of how to confirm the weights of the deci-
sion makers can be discussed in two cases as follows:

(1) If for all k = 1, 2,… , p, H̃(k) are equal to each other, that 
is, H̃(k) = H̃ , then it is rational to assign the decision 
makers dk the same weight 1

p
.

(2) If not all H̃(k) ( k = 1, 2,… , p ) are equal, that is, 
there exist at least two matrices H̃(k1) and H̃(k2) 
( k1, k2 ∈ {1, 2,… , p} ) such that H̃(k1) ≠ H̃(k2) , then 
we introduce the deviation variables

H̃(k) =

(
h̃
(k)

ij

)
m×n

=

({(
h̃
(k)

ij

)𝜎(t)||||t = 1, 2,… , l

})

m×n

H̃ =
(
h̃ij
)
m×n

=

({
h̃
𝜎(t)

ij

|||t = 1, 2,… , l
})

m×n
,

(6)

h̃ij =
p

⊕
k=1

(
𝜔kh̃

(k)

ij

)
=

{
p∑

k=1

𝜔k

(
h̃
(k)

ij

)𝜎(t)|||||
t = 1, 2,… , l

}

=

{[
p∑

k=1

𝜔k

((
h̃
(k)

ij

)𝜎(t)
)L

,

p∑
k=1

𝜔k

((
h̃
(k)

ij

)𝜎(t)
)U

]||||||
t = 1, 2,… , l

}

(7)
e
(k)

ij
= d

�
h̃
(k)

ij
, h̃ij

�
=

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

�
h̃
𝜎(t)

ij

�L�����
+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

�
h̃
𝜎(t)

ij

�U�����

�

2l

=

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−
∑p

q=1
𝜔q

��
h̃
(q)

ij

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−
∑p

q=1
𝜔q

��
h̃
(q)

ij

�𝜎(t)
�U�����

�

2l
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for all i = 1, 2,… ,m , j = 1, 2,… , n , k = 1, 2,… , p . Then, 
the square deviations among all H̃(k) ( k ∈ {1, 2,… , p} ) and 
H̃ are given by

It is obvious that e(�) is the function with decision mak-
ers’ weight vector � =

(
�1,�2,… ,�p

)T . Let G =
(
gq1q2

)
p×p

 

be a matrix, where

Thus, Eq. (8) can be rewritten as

Therefore, from the standpoint of maximum group con-
sensus, one can utilize the following model to obtain the 
weights of decision makers in the GDM environments:

(8)

e(𝜔) =
1

2mnpl

p�
k=1

m�
i=1

n�
j=1

l�
t=1

⎛
⎜⎜⎝

���
h̃
(k)

ij

�𝜎(t)
�L

−

p�
q=1

𝜔q

��
h̃
(q)

ij

�𝜎(t)
�L

�2

+

���
h̃
(k)

ij

�𝜎(t)
�U

−

p�
q=1

𝜔q

��
h̃
(q)

ij

�𝜎(t)
�U

�2⎞
⎟⎟⎠

=
1

2mnpl

p�
k=1

m�
i=1

n�
j=1

l�
t=1

⎛⎜⎜⎝

�
p�

q=1

𝜔q

���
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(q)

ij

�𝜎(t)
�L

��2

+

�
p�

q=1

𝜔q

���
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(q)

ij

�𝜎(t)
�U

��2⎞⎟⎟⎠

=
1

2mnpl

p�
k=1

m�
i=1

n�
j=1

l�
t=1

⎛⎜⎜⎜⎜⎜⎝

�
p�

q1=1

𝜔q1

���
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(q1)
ij

�𝜎(t)
�L

��
⋅

�
p�

q2=1

𝜔q2

���
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(q2)
ij

�𝜎(t)
�L

��
+

�
p�

q1=1

𝜔q1

���
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(q1)
ij

�𝜎(t)
�U

��
⋅

�
p�

q2=1

𝜔q2

���
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(q2)
ij

�𝜎(t)
�U

��

⎞⎟⎟⎟⎟⎟⎠

=
1

2mnpl

p�
k=1

m�
i=1

n�
j=1

l�
t=1

⎛⎜⎜⎜⎜⎜⎝

p�
q1=1

p�
q2=1

𝜔q1
𝜔q2

���
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(q1)
ij

�𝜎(t)
�L

����
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(q2)
ij

�𝜎(t)
�L

�
+

p�
q1=1

p�
q2=1

𝜔q1
𝜔q2

���
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(q1)
ij

�𝜎(t)
�U

����
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(q2)
ij

�𝜎(t)
�U

�

⎞⎟⎟⎟⎟⎟⎠

=

p�
q1=1

p�
q2=1

𝜔q1
𝜔q2

⎛⎜⎜⎜⎜⎜⎝

1

2mnpl

p�
k=1

m�
i=1

n�
j=1

l�
t=1

⎛⎜⎜⎜⎜⎜⎝

���
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(q1)
ij

�𝜎(t)
�L

����
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(q2)
ij

�𝜎(t)
�L

�
+

���
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(q1)
ij

�𝜎(t)
�U

����
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(q2)
ij

�𝜎(t)
�U

�

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

(9)

gq1q2 =
1

2mnpl

p�
k=1

m�
i=1

n�
j=1

l�
t=1

⎛⎜⎜⎜⎜⎜⎝

���
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(q1)
ij

�𝜎(t)
�L

����
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(q2)
ij

�𝜎(t)
�L

�
+

���
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(q1)
ij

�𝜎(t)
�U

����
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(q2)
ij

�𝜎(t)
�U

�

⎞⎟⎟⎟⎟⎟⎠

, q1, q2 = 1, 2,… , p.

(10)e(�) = �TG�

(M-1)

mine(�) = �TG�

s.t.

⎧⎪⎨⎪⎩

p�
k=1

�k = 1,

�k ≥ 0, k = 1, 2,… , p,

Suppose that E = (1, 1,… , 1)T , one can have

In case we do not consider the condition of � ≥ 0 tempo-
rally, model (M-2) can become

Theorem 3.1 Suppose H̃(k) =

(
h̃
(k)

ij

)
m×n

 ( k = 1, 2,… , p ) are 

p IVHF decision matrices and H̃ =
(
h̃ij
)
m×n

 is the group 
IVHF decision matrix derived from Eq. (6). If not all of H̃(k) 
( k = 1, 2,… , p ) are the same, then (M-3) has the optimum 
solution:

(M-2)

mine (�) = �TG�

s.t.

{
ET� = 1,

� ≥ 0

(M-3)
mine (�) = �TD�

s.t. ET� = 1
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Proof Because not all of H̃(k) ( k = 1, 2,… , p ) are equal, 
there exists at least one matrix H̃(k0) ( k0 ∈ {1, 2,… , p} ) such 
that H̃(k0) ≠ H̃  . Thus, there exists i0 ∈ {1, 2,… ,m} , 
j0 ∈ {1, 2,… , n} ,  and  t0 ∈ {1, 2,… , l} ,  sa t i s fy ing (
h̃
(k0)
i0j0

)𝜎(t0)
≠ h̃

𝜎(t0)
i0j0

 , i.e., 
((

h̃
(k0)
i0j0

)𝜎(t0)
)L

≠

(
h̃
𝜎(t0)
i0j0

)L

 or 
((

h̃
(k0)
i0j0

)𝜎(t0)
)U

≠

(
h̃
𝜎(t0)
i0j0

)U

 . Therefore, we have

Thus,

Obviously, according to Eq. (9), we have

Therefore, G =
(
gq1q2

)
p×p

 is a symmetry matrix. Accord-

ing to Eqs. (10) and (12), we have

Because� ≠ 0 stands for the weight vector of experts, so 
G =

(
gq1q2

)
p×p

 is a definite and nonsingular matrix. Then, 

we can derive the most desirable solution of (M-3) by the 
following procedures:

The Lagrange function is given by

in which � represents the Lagrange multiplier.
Second, we acquire the equations as below:

(11)�∗ =
G−1E

ETG−1E

(((
h̃
(k0)
i0j0

)𝜎(t0)
)L

−

(
h̃
𝜎(t0)
i0j0

)L
)2

+

(((
h̃
(k0)
i0j0

)𝜎(t0)
)U

−

(
h̃
𝜎(t0)
i0j0

)U
)2

> 0

(12)

e(𝜔) =
1

2mnpl

p�
k=1

m�
i=1

n�
j=1

l�
t=1

⎛
⎜⎜⎝

���
h̃
(k)

ij

�𝜎(t)
�L

−

p�
q=1

𝜔q

��
h̃
(q)

ij

�𝜎(t)
�L

�2

+

���
h̃
(k)

ij

�𝜎(t)
�U

−

p�
q=1

𝜔q

��
h̃
(q)

ij

�𝜎(t)
�U

�2⎞
⎟⎟⎠
> 0

gq1q2 = gq2q1 , ∀q1, q2 = 1, 2,… , p.

e(𝜔) = 𝜔TG𝜔 > 0;

(13)L(�, �) = �TG� + �
(
ET� − 1

)
,

(14)

⎧⎪⎨⎪⎩

�L(�, �)

��
= 2G� + �E = 0

�L(�, �)

��
= ET� − 1 = 0

Solving Eq. (14) yields the optimal solution as

Because �
2L(�,�)

��2
= 2G is a definite matrix, e(�) = �TG� 

is a strictly convex function. Consequently, �∗ =
G−1E

ETG−1E
 is 

the unique optimum solution of (M-3). The theorem is veri-
fied.  □

If �∗ =
G−1E

ETG−1E
≥ 0 , then it is the only optimum solution 

of (M-3) too; or else we utilize the LINGO software package 
to handle model (M-3).

3.3  Determining the optimal weights of attributes 
based on the maximizing deviation method

Assume that Δ is a collection of the given weight informa-
tion (Kim and Ahn 1999; Kim et al. 1999; Park 2004; Park 
and Kim 1997), where Δ is established as having the follow-
ing forms for i ≠ j:

Form 1. A weak ranking 
{
wi ≥ wj

}
;

Form 2. A strict ranking 
{
wi − wj ≥ 𝛼i

}(
𝛼i > 0

)
;

Form 3. A ranking of differences 
{
wi − wj ≥ wk − wl

}
,

for j ≠ k ≠ l;

Form 4. A ranking with multiples 
{
wi ≥ �iwj

}(
0 ≤ �i ≤ 1

)
;

Form 5. An interval form 
{
�
i
≤ w

i
≤ �

i
+ �

i

}(
0 ≤ �

i
≤ �

i
+

�
i
≤ 1

)
.

In what follows, motivated by considering the maximum 
deviation method proposed by Wang (1997), we build a 
model to obtain the most desirable weights of attributes. For 
each cj ∈ C , the deviation of xi ∈ X from any other alterna-
tives regarding the expert dk ∈ D is defined by:

�∗ =
G−1E

ETG−1E

(15)
D

(k)

ij
=

m�
q=1

d
�
h̃
(k)

ij
, h̃

(k)

qj

�
=

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�

2l
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i = 1, 2,… ,m , j = 1, 2,… , n , k = 1, 2,… , p . Let

Further, let

From the above discussion, a model is built to obtain the 
best weight vector w by maximizing D(w):

To obtain the solution of (M-4), we construct a Lagrange 
function as below:

(16)
D

(k)

j
=

m�
i=1

D
(k)

ij
=

m�
i=1

m�
q=1

d
�
h̃
(k)

ij
, h̃

(k)

qj

�
=

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�

2l
.

(17)

D(w) =

p�
k=1

𝜔k

�
n�
j=1

wjD
(k)

j

�

=

p�
k=1

𝜔k

�
n�
j=1

wj

�
m�
i=1

D
(k)

ij

��

=

p�
k=1

𝜔k

�
n�
j=1

wj

�
m�
i=1

�
m�
q=1

d
�
h̃
(k)

ij
, h̃

(k)

qj

����

=

∑p

k=1
𝜔k

�
∑n

j=1
wj

�
∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

���

2l

=

∑p

k=1
𝜔k

�
∑n

j=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
wj

�

2l
.

(M-4)

maxD(w) =

∑p

k=1
𝜔k

�
∑n

j=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
wj

�

2l

s.t. wj ≥ 0, j = 1, 2,… , n,

n�
j=1

w2
j
= 1

(18)

L(w, 𝜆) =

∑p

k=1
𝜔k

⎛⎜⎜⎜⎜⎝

∑n

j=1

∑m

i=1

∑m

q=1

∑l

t=1

⎛⎜⎜⎜⎜⎝

�����

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+

�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

⎞⎟⎟⎟⎟⎠
wj

⎞⎟⎟⎟⎟⎠
2l

+
𝜆

2

�
n�
j=1

w2
j
− 1

�
,

where � represents the Lagrange multiplier.
Moreover, we have



2436 C. Zhang et al.

1 3

(19)
𝜕L

𝜕wj

=

∑p

k=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
𝜔k

2l
+ 𝜆wj = 0,

(20)

�L

��
=

1

2

(
n∑
j=1

w2
j
− 1

)
= 0.

It follows from Eq. (19) that

Fig. 1  The flowchart of the developed method

(21)
wj =

−
∑p

k=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
𝜔k

2𝜆l
.



2437A novel technique for multiple attribute group decision making in interval-valued hesitant…

1 3

Substituting Eq. (21) into Eq. (20) yields

Then, we have

Upon normalizing wj ( j = 1, 2,… , n ), we obtain

which is the most desirable weighting vector of attributes.
Furthermore, the constrained optimization model below 

is built to address the situation in which the information for 
the weight vector is partially known:

(22)
𝜆 =

−

����∑n

j=1

�
∑p

k=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
𝜔k

�2

2l
.

(23)wj =

∑p

k=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
𝜔k

����∑n

j=1

�
∑p

k=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
𝜔k

�2
.

(24)

w∗
j
=

wj∑n

j=1
wj

=

∑p

k=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
𝜔k

∑n

j=1

∑p

k=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
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(M-5)

maxD(w) = max

∑p

k=1
𝜔k

�
∑n

j=1

∑m

i=1

∑m

q=1

∑l

t=1

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

qj

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
�U

−

��
h̃
(k)

qj

�𝜎(t)
�U�����

�
wj

�

2l

s.t. w ∈ Δ, wj ≥ 0, j = 1, 2,… , n,

n�
j=1

wj = 1.

3.4  Extended TOPIS approach for the MAGDM 
with IVHF information

This subsection will extend the classical TOPIS, originally 
introduced in Hwang and Yoon (1981), to a MAGDM prob-
lem under IVHF environments.

Table 1  Interval-valued hesitant fuzzy decision matrix Ã(1)

c1 c2 c3 c4

x1 {[0.4, 0.5], [0.2, 0.3]} {[0.3, 0.5], [0.3, 0.4], [0.2, 0.3]} {[0.7, 0.9], [0.7, 0.8], [0.6, 0.7], 
[0.5, 0.6]}

{[0.8, 0.9], [0.5, 0.6]}

x2 {[0.4, 0.6], [0.1, 0.3], [0.1, 0.2]} {[0.5, 0.7], [0.5, 0.6]} {[0.7, 0.9], [0.5, 0.6], [0.4, 0.5]} {[0.6, 0.8], [0.2, 0.3]}
x3 {[0.6, 0.7], [0.5, 0.6]} {[0.5, 0.7], [0.4, 0.6], [0.3, 0.4]} {[0.8, 0.9], [0.6, 0.7]} {[0.5, 0.7], [0.2, 0.3], [0.1, 0.2]}
x4 {[0.7, 0.8], [0.5, 0.7]} {[0.7, 0.9], [0.6,0.7], [0.5, 0.6], 

[0.2, 0.4], [0.1, 0.3]}
{[0.6, 0.8], [0.5, 0.6]} {[0.5, 0.6], [0.3, 0.4], [0.1, 0.2]}

x5 {[0.7, 0.8], [0.6,0.7], [0.5, 0.6], 
[0.4, 0.5], [0.1, 0.2]}

{[0.7, 0.8], [0.5, 0.6]} {[0.3, 0.4], [0.1, 0.3], [0.1, 0.2]} {[0.8, 0.9], [0.6, 0.7], [0.3, 0.4], 
[0.2, 0.3]}
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The flowchart of the extended TOPIS method is shown in 
Fig. 1. The extended method includes the following steps:

Step 1. The experts dk ∈ D furnish the IVHF decision 
matrices Ã(k) =

(
ã
(k)

ij

)
m×n

 , which are transformed into nor-

malized decision matrices H̃(k) =

(
h̃
(k)

ij

)
m×n

 via Eq. (5), for 

k = 1, 2,… , p.
Step 2. In cases where we are unaware of the weighting 

information of experts, we can acquire the weights of experts 
through Eq. (11).

Step 3. In cases where we are entirely unaware of the 
weighting information of attributes, we can acquire the 
attribute weights through Eq. (24); in cases where we are 
partially aware of the weighting information of attributes, 
we can derive the attribute weights by solving model (M-5).

Step 4. Determine the IVHFPIS h̃(k)+ =

{
h̃
(k)

+1
, h̃

(k)

+2
,… , h̃

(k)
+n

}
 

and the IVHFNIS h̃(k)
−

=

{
h̃
(k)

−1
, h̃

(k)

−2
,… , h̃(k)

−n

}
 for each deci-

sion maker dk by the following equations:

Table 2  Interval-valued hesitant fuzzy decision matrix Ã(2)

c1 c2 c3 c4

x1 {[0.7, 0.9], [0.7, 0.8], [0.5, 0.6]} {[0.4, 0.5], [0.3, 0.5], [0.3, 0.4], 
[0.2, 0.3]}

{[0.3, 0.5], [0.3, 0.4], [0.2, 0.3]} {[0.7, 0.9], [0.6, 0.7], [0.5, 0.6], 
[0.2, 0.4], [0.1, 0.3]}

x2 {[0.5, 0.6], [0.3, 0.4]} {[0.2, 0.3], [0.1, 0.3]} {[0.7, 0.8], [0.5, 0.7], [0.5, 0.6], 
[0.2, 0.3]}

{[0.8, 0.9], [0.6, 0.7], [0.5, 0.7]}

x3 {[0.4, 0.6], [0.4, 0.5], [0.2, 0.3]} {[0.7, 0.9], [0.7, 0.8], [0.6, 0.7], 
[0.3, 0.4], [0.1, 0.2]}

{[0.3, 0.5], [0.3, 0.4], [0.1, 0.2]} {[0.7, 0.9], [0.5, 0.6], [0.2, 0.3]}

x4 {[0.4, 0.5], [0.2,0.3], [0.1, 0.2]} {[0.4, 0.5], [0.3, 0.5], [0.2, 0.3]} {[0.8, 0.9], [0.6, 0.7], [0.5, 0.6], 
[0.4, 0.5], [0.3, 0.4]}

{[0.6, 0.8], [0.3, 0.5], [0.2, 0.3]}

x5 {[0.7, 0.8], [0.6, 0.7], [0.3, 0.4], 
[0.2, 0.3], [0.1, 0.2]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7]} {[0.2, 0.3], [0.1, 0.2]} {[0.6, 0.7], [0.4, 0.5]}

Table 3  Interval-valued hesitant fuzzy decision matrix Ã(3)

c1 c2 c3 c4

x1 {[0.2, 0.3], [0.1, 0.2]} {[0.7, 0.8], [0.6, 0.8], [0.5, 0.7], 
[0.5, 0.6]}

{[0.6, 0.7], [0.5, 0.7], [0.4, 0.5]} {[0.7, 0.9], [0.7, 0.8], [0.6, 0.7], 
[0.5, 0.6], [0.3, 0.4]}

x2 {[0.6, 0.7], [0.5, 0.7], [0.4, 0.5], 
[0.3, 0.4], [0.2, 0.3]}

{[0.8, 0.9], [0.6, 0.7]} {[0.2, 0.3], [0.1, 0.2]} {[0.7, 0.9], [0.6, 0.7], [0.5, 0.6]}

x3 {[0.7, 0.8], [0.5, 0.7], [0.5, 0.6]} {[0.7, 0.6], [0.5, 0.6], [0.2, 0.4], 
[0.1, 0.3]}

{[0.7, 0.8], [0.6, 0.7], [0.4, 0.6]} {[0.3, 0.5], [0.3,0.4], [0.2, 0.3]}

x4 {[0.3, 0.5], [0.2, 0.3]} {[0.8, 0.9], [0.7, 0.6], [0.4, 0.6], 
[0.4, 0.5], [0.1, 0.2]}

{[0.5, 0.7], [0.5, 0.6]} {[0.6, 0.8], [0.4, 0.6], [0.4, 0.5], 
[0.1, 0.3]}

x5 {[0.8, 0.9], [0.7, 0.8], [0.6, 0.7]} {[0.5, 0.7], [0.5, 0.6]} {[0.7, 0.9], [0.7, 0.8], [0.5, 0.6]} {[0.3, 0.5], [0.3, 0.4], [0.2, 0.3]}

Table 4  Interval-valued hesitant fuzzy decision matrix H̃(1)

c1 c2 c3 c4

x1 {[0.4, 0.5], [0.2, 0.3], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

{[0.3, 0.5], [0.3, 0.4], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7], 
[0.5, 0.6], [0.5, 0.6]}

{[0.8, 0.9], [0.5, 0.6], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

x2 {[0.4, 0.6], [0.1, 0.3], [0.1, 0.2], 
[0.1, 0.2], [0.1, 0.2]}

{[0.5, 0.7], [0.5, 0.6], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

{[0.7, 0.9], [0.5, 0.6], [0.4, 0.5], 
[0.4, 0.5], [0.4, 0.5]}

{[0.6, 0.8], [0.2, 0.3], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

x3 {[0.6, 0.7], [0.5, 0.6], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

{[0.5, 0.7], [0.4, 0.6], [0.3,0.4], 
[0.3,0.4], [0.3,0.4]}

{[0.8, 0.9], [0.6, 0.7], [0.6, 0.7], 
[0.6, 0.7], [0.6, 0.7]}

{[0.5, 0.7], [0.2, 0.3], [0.1, 0.2], 
[0.1, 0.2], [0.1, 0.2]}

x4 {[0.7, 0.8], [0.5,0.7], [0.5,0.7], 
[0.5,0.7], [0.5,0.7]}

{[0.7, 0.9], [0.6,0.7], [0.5, 0.6], 
[0.2,0.4], [0.1, 0.3]}

{[0.6, 0.8], [0.5, 0.6], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

{[0.5, 0.6], [0.3, 0.4], [0.1, 0.2], 
[0.1, 0.2], [0.1, 0.2]}

x5 {[0.7, 0.8], [0.6,0.7], [0.5, 0.6], 
[0.4, 0.5], [0.1, 0.2]}

{[0.7, 0.8], [0.5, 0.6], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

{[0.3, 0.4], [0.1, 0.3], [0.1, 0.2], 
[0.1, 0.2], [0.1, 0.2]}

{[0.8, 0.9], [0.6, 0.7], [0.3, 0.4], 
[0.2, 0.3], [0.2, 0.3]}
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Step 5. Compute d(k)
+i

 for each alternative xi from the 
IVHFPIS h(k)+  regarding the decision maker dk as:

(25)

h̃
(k)

+j
= max

i

{
h̃
(k)

ij

}
=

{
max

i

{(
h̃
(k)

ij

)𝜎(t)
}|||||

t = 1, 2,… , l

}

=

{[
max

i

((
h̃
(k)

ij

)𝜎(t)
)L

, max
i

((
h̃
(k)

ij

)𝜎(t)
)U

]||||||
t = 1, 2,… , l

}
j = 1, 2,… , n,

(26)

h̃
(k)

−j
= min

i

{
h̃
(k)

ij

}
=

{
min
i

{(
h̃
(k)

ij

)t
}|||||

t = 1, 2,… , l

}

=

{[
min
i

((
h̃
(k)

ij

)𝜎(t)
)L

, min
i

((
h̃
(k)

ij

)𝜎(t)
)U

]||||||
t = 1, 2,… , l

}
j = 1, 2,… , n.

(27)
d
(k)

+i
=

n�
j=1

wjd
�
h̃
(k)

ij
, h̃

(k)

+j

�
=

∑n

j=1

∑l

t=1
wj

������

��
h̃
(k)

ij

�𝜎(t)
�L

−

��
h̃
(k)

+j

�𝜎(t)
�L�����

+
�����

��
h̃
(k)

ij

�𝜎(t)
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−

��
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�𝜎(t)
�U�����

�

2l
.

Table 5  Interval-valued hesitant fuzzy decision matrix H̃(2)

c1 c2 c3 c4

x1 {[0.7, 0.9], [0.7, 0.8], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

{[0.4, 0.5], [0.3, 0.5], [0.3, 0.4], 
[0.2, 0.3], [0.2, 0.3]}

{[0.3, 0.5], [0.3, 0.4], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

{[0.7, 0.9], [0.6, 0.7], [0.5, 0.6], 
[0.2, 0.4], [0.1, 0.3]}

x2 {[0.5, 0.6], [0.3, 0.4], [0.3, 0.4], 
[0.3, 0.4], [0.3, 0.4]}

{[0.2, 0.3], [0.1, 0.3], [0.1, 0.3], 
[0.1, 0.3], [0.1, 0.3]}

{[0.7, 0.8], [0.5, 0.7], [0.5, 0.6], 
[0.2, 0.3], [0.2, 0.3]}

{[0.8, 0.9], [0.6, 0.7], [0.5, 0.7], 
[0.5, 0.7], [0.5, 0.7]}

x3 {[0.4, 0.6], [0.4, 0.5], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7], 
[0.3, 0.4], [0.1, 0.2]}

{[0.3, 0.5], [0.3, 0.4], [0.1, 0.2], 
[0.1, 0.2], [0.1, 0.2]}

{[0.7, 0.9], [0.5, 0.6], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

x4 {[0.4, 0.5], [0.2,0.3], [0.1, 0.2], 
[0.1, 0.2], [0.1, 0.2]}

{[0.4, 0.5], [0.3, 0.5], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

{[0.8, 0.9], [0.6, 0.7], [0.5, 0.6], 
[0.4, 0.5], [0.3, 0.4]}

{[0.6, 0.8], [0.3, 0.5], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

x5 {[0.7, 0.8], [0.6,0.7], [0.3, 0.4], 
[0.2, 0.3], [0.1, 0.2]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7], 
[0.6, 0.7], [0.6, 0.7]}

{[0.2, 0.3], [0.1, 0.2], [0.1, 0.2], 
[0.1, 0.2], [0.1, 0.2]}

{[0.6, 0.7], [0.4, 0.5], [0.4, 0.5], 
[0.4, 0.5], [0.4, 0.5]}

Table 6  Interval-valued hesitant fuzzy decision matrix H̃(3)

c1 c2 c3 c4

x1 {[0.2, 0.3], [0.1, 0.2], [0.1, 0.2], 
[0.1, 0.2], [0.1, 0.2]}

{[0.7, 0.8], [0.6, 0.8], [0.5, 0.7], 
[0.5, 0.6], [0.5, 0.6]}

{[0.6, 0.7], [0.5, 0.7], [0.4, 0.5], 
[0.4, 0.5], [0.4, 0.5]}

{[0.7, 0.9], [0.7, 0.8], [0.6, 0.7], 
[0.5, 0.6], [0.3, 0.4]}

x2 {[0.6, 0.7], [0.5, 0.7], [0.4, 0.5], 
[0.3, 0.4], [0.2, 0.3]}

{[0.8, 0.9], [0.6, 0.7], [0.6, 0.7], 
[0.6, 0.7], [0.6, 0.7]}

{[0.2, 0.3], [0.1, 0.2], [0.1, 0.2], 
[0.1, 0.2], [0.1, 0.2]}

{[0.7, 0.9], [0.6, 0.7], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

x3 {[0.7, 0.8], [0.5, 0.7], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

{[0.7, 0.6], [0.5, 0.6], [0.2, 0.4], 
[0.1, 0.3], [0.1, 0.3]}

{[0.7, 0.8], [0.6, 0.7], [0.4, 0.6], 
[0.4, 0.6], [0.4, 0.6]}

{[0.3, 0.5], [0.3,0.4], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

x4 {[0.3, 0.5], [0.2, 0.3], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}

{[0.8, 0.9], [0.7, 0.6], [0.4, 0.6], 
[0.4, 0.5], [0.1, 0.2]}

{[0.5, 0.7], [0.5, 0.6], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

{[0.6, 0.8], [0.4, 0.6], [0.4, 0.5], 
[0.1, 0.3], [0.1, 0.3]}

x5 {[0.8, 0.9], [0.7, 0.8], [0.6, 0.7], 
[0.6, 0.7], [0.6, 0.7]}

{[0.5, 0.7], [0.5, 0.6], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

{[0.7, 0.9], [0.7, 0.8], [0.5, 0.6], 
[0.5, 0.6], [0.5, 0.6]}

{[0.3, 0.5], [0.3, 0.4], [0.2, 0.3], 
[0.2, 0.3], [0.2, 0.3]}
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In a similar way, compute d(k)
−i

 for each alternative xi from 
the IVHFNIS h(k)

−
 with respect to the decision maker dk as:

Step 6. Compute the RCC of each alternative xi to the 
IVHFPIS h(k)+  regarding the decision maker dk as:

After calculating the C(k)

i
 for every decision maker dk 

( k = 1, 2,… , p ), we then construct the relative-closeness 
coefficient matrix as below:

Steps 4–6 extend the standard TOPSIS to IVHF environ-
ments. Therefore, it can be called the IVHF–TOPSIS.

Step 7. Utilize the following formulas to confirm the 
group positive and negative ideal solutions, respectively, 
and obtain the GPIS h̃G

+
 and GNIS h̃G

−
:

Step 8. For any alternative xi from the GPIS h̃G
+

 and the 
GNIS h̃G

−
 , compute the separation measures dG

+i
 and dG

−i
 , 

respectively, as follows:

Step 9. For any alternative xi to GPIS dG
+i

 , compute the 
group relative-closeness coefficient (GRCC) CG

i
 as below:

(28)
d
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=

n�
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ij
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(29)C
(k)

i
=

d
(k)

−i

d
(k)

+i
+ d

(k)
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.

(30)C =
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Step 10. Based on the GRCCs CG
i
, we array all alterna-

tivesxi , i = 1, 2,… ,m , and obtain the most desirable alterna-

tive. When the value of CG
i

 is larger, the alternative xi and 
the group negative ideal object dG

−i
 are more different, while 

the alternative xi and the group positive ideal object dG
+i

 are 
more similar. Thus, the alternative(s) with the largest GRCC 
can be selected as the optimum one(s).

4  Illustrative examples

The section will first give an investment example to demon-
strate the proposed method. Then, a comparative discussion 
with other methods will be made to show the superiority of 
the developed method.

4.1  An investment problem in an IVHF environment

Example 4.1 Consider an investment problem adapted from 
(Herrera and Herrera-Viedma 2000; Xu 2006), which is 
composed of five alternatives, four attributes and three deci-
sion makers (DMs). The five alternatives are specified as 
follows: a truck industry ( x1 ), a drug company ( x2 ), a refrig-
erator company ( x3 ), an arms company ( x4 ) and a television 
company ( x5 ). The four attributes include the investment risk 
( c1 ), the investment return ( c2 ), the social–political impact 
( c3 ) and the investment environment ( c4 ). Assume that three 
experts dk ( k = 1, 2, 3 ) furnish the IVHF decision matrices 
Ã(k) =

(
ã
(k)

ij

)
m×n

 ( k = 1, 2, 3 ), shown in Tables 1, 2 and 3.

To apply our method to seek the optimal alternative, two 
situations are considered as follows:

Situation 1 We are entirely unaware of the weights informa-
tion for attributes.

Step 1. Since all attributes cj ( j = 1, 2, 3, 4 ) are benefit 
types, it is unnecessary to normalize Ã(k) =

(
ã
(k)

ij

)
5×4

 

( k = 1, 2, 3 ). Under the assumption that all three DMs dk 
( k = 1, 2, 3 ) are pessimists, Ã(k) =

(
ã
(k)

ij

)
m×n

 is normalized 

and becomesH̃(k) =

(
h̃
(k)

ij

)
m×n

 , k = 1, 2, 3 (refer to Tables 4, 

5, 6).
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Step 2 Calculating the weights of decision makers through 
Eq. (11) yields

Step 3. By Eq. (24), attribute weights are generated as 
follows:

Step 4. Using Eqs. (25) and (26), we identify the IVHF-
PIS h̃(k)+  and the IVHFNIS h̃(k)

−
 for each decision maker dk , 

respectively, k = 1, 2, 3.

Step 5 Use Eqs. (27) and (28) to compute d(k)
+i

 and d(k)
−i

 for 
each alternative xi for the decision maker dk:

d
(1)

+1
= 0.1923, d

(1)

−1
= 0.2206, d

(1)

+2
= 0.2388, d

(1)

−2
=

0.1741, d
(1)

+3
= 0.1525, d

(1)

−3
= 0.2603, d

(1)

+4
= 0.1449,

d
(1)

−4
= 0.2679, d

(1)

+5
= 0.2105, d

(1)

−5
= 0.2023, d

(2)

+1
=

0.1902, d
(2)

−1
= 0.2162, d

(2)

+2
= 0.2100, d

(2)

−2
= 0.1965,

d
(2)

+3
= 0.2612, d

(2)

−3
= 0.1453, d

(2)

+4
= 0.2709, d

(2)

−4
=

0.1355, d
(2)

+5
= 0.2001, d

(2)

−5
= 0.2063, d

(3)

+1
= 0.2118,

d
(3)

−1
= 0.2162, d

(3)

+2
= 0.2051, d

(3)

−2
= 0.1965, d

(3)

+3
=

0.2050, d
(3)

−3
= 0.1453, d

(3)

+4
= 0.2432, d

(3)

−4
= 0.1355,

d
(3)

+5
= 0.1159, d

(3)

−5
= 0.2063.Step 6: Use Eq. (29) to com-

pute the RCC C(k)

i
 of each alternative xiregarding the IVHF-

PIS h̃(k)+  of the decision maker dk as

� =

(
1

3
,
1

3
,
1

3

)
.

w = (0.2836,0.2367,0.2566,0.2232)T .

h̃
(1)
+ =

{
{[0.7, 0.8], [0.6, 0.7], [0.5, 0.7], [0.5, 0.7], [0.5, 0.7]}, {[0.7, 0.9], [0.6, 0.7], [0.5, 0.6], [0.5, 0.6], [0.5, 0.6]},

{[0.8, 0.9], [0.7, 0.8], [0.6, 0.7], [0.6, 0.7], [0.6, 0.7]}, {[0.8, 0.9], [0.6, 0.7], [0.5, 0.6], [0.5, 0.6], [0.5, 0.6]}

}

h̃(1)
−

=

{
{[0.4, 0.5], [0.1, 0.3], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2]}, {[0.3, 0.5], [0.3, 0.4], [0.2, 0.3], [0.2, 0.3], [0.1, 0.3]},

{[0.3, 0.4], [0.1, 0.3], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2]}, {[0.5, 0.6], [0.2, 0.3], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2]}

}

h̃
(2)
+ =

{
{[0.7, 0.9], [0.7, 0.8], [0.5, 0.6], [0.5, 0.6], [0.5, 0.6]}, {[0.7, 0.9], [0.7, 0.8], [0.6, 0.7], [0.6, 0.7], [0.6, 0.7]},

{[0.8, 0.9], [0.6, 0.7], [0.5, 0.6], [0.4, 0.5], [0.3, 0.4]}, {[0.8, 0.9], [0.6, 0.7], [0.5, 0.7], [0.5, 0.7], [0.5, 0.7]}

}

h̃(2)
−

=

{
{[0.4, 0.5], [0.2, 0.3], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2]}, {[0.2, 0.3], [0.1, 0.3], [0.1, 0.3], [0.1, 0.3], [0.1, 0.2]},

{[0.2, 0.3], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2]}, {[0.6, 0.7], [0.3, 0.5], [0.2, 0.3], [0.2, 0.3], [0.1, 0.3]}

}

h̃
(3)
+ =

{
{[0.8, 0.9], [0.7, 0.8], [0.6, 0.7], [0.6, 0.7], [0.6, 0.7]}, {[0.8, 0.9], [0.7, 0.8], [0.6, 0.7], [0.6, 0.7], [0.6, 0.7]},

{[0.7, 0.9], [0.7, 0.8], [0.5, 0.6], [0.5, 0.6], [0.5, 0.6]}, {[0.7, 0.9], [0.7, 0.8], [0.6, 0.7], [0.5, 0.6], [0.5, 0.6]}

}

h̃(3)
−

=

{
{[0.2, 0.3], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2]}, {[0.5, 0.6], [0.5, 0.6], [0.2, 0.4], [0.1, 0.3], [0.1, 0.2]},

{[0.2, 0.3], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2], [0.1, 0.2]}, {[0.3, 0.5], [0.3, 0.4], [0.2, 0.3], [0.1, 0.3], [0.1, 0.3]}

}
.

C
(1)

1
= 0.5343, C

(1)

2
= 0.4216, C

(1)

3
= 0.6305,

C
(1)

4
= 0.6489, C

(1)

5
= 0.4901,

C
(2)

1
= 0.5320, C

(2)

2
= 0.4834, C

(2)

3
= 0.3574,

C
(2)

4
= 0.3334, C

(2)

5
= 0.5076,

Then, we construct the relative-closeness coefficient 
matrix as:

C
(3)

1
= 0.5227, C

(3)

2
= 0.5377, C

(3)

3
= 0.5379,

C
(3)

4
= 0.4519, C

(3)

5
= 0.7389.

C =

⎛
⎜⎜⎜⎜⎜⎝

0.5343 0.5320 0.5227

0.4216 0.4834 0.5377

0.6305 0.3574 0.5379

0.6489 0.3334 0.4519

0.4901 0.5076 0.7389

⎞
⎟⎟⎟⎟⎟⎠5×3

Step 7. Use Eqs. (31) and (32) to get the GPIS and GNIS, 
respectively, as:

Step 8. Use Eqs. (33) and (34) to compute dG
+i

 and dG
−i

 of 
the alternative xi regarding the GPIS h̃G

+
 and the GNIS h̃G

−
 , 

respectively, as follows:

Step 9. Use Eq. (35) to compute the GRCC CG
i

 of each 
alternative xi to GPIS dG

+i
 as:

h̃G
+
= {0.6489, 0.5320, 0.7389}

h̃G
−
= {0.4216, 0.3334, 0.4519}.

d
G

+1
= 0.1103, d

G

−1
= 0.1274, d

G

+2
= 0.1591,

d
G

−2
= 0.0786, d

G

+3
= 0.1313, d

G

−3
= 0.1063,

d
G

+4
= 0.1619, d

G

−4
= 0.0758, d

G

+5
= 0.0611,

d
G

−5
= 0.1766.

C
G

1
= 0.5360, C

G

2
= 0.3308, C

G

3
= 0.4474,

C
G

4
= 0.3188, C

G

5
= 0.7430.
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Step 10 As per the GRCC CG
i

 , all alternatives xi 
( i = 1, 2, 3, 4, 5 ) are ranked as x5 ≻ x1 ≻ x3 ≻ x2 ≻ x4 , there-
fore, x5 is chosen as the best alternative.

Situation 2 The information for the weighting vector of 
attributes is partially known and given as below:

Step 1′ Same as Step 1.

Step 2′ Same as Step 2.

Step 3′ A model is built through (M-5):

Solving this equation yields the weights of attributes as 
w = (0.2000,0.2500,0.3000,0.4000)T.

Step 4′ See Step 4.

Step 5′ Use Eqs. (27) and (28) to calculate d(k)
+i

 and d(k)
−i

 of the 
alternative xi regarding the decision maker dk:

Step 6′ Use Eq. (29) to compute the RCC C(k)

i
 of each alter-

native xi relating to the IVHFPIS h̃(k)+  of the decision maker 
dk as

Δ =

{
0.2 ≤ w1 ≤ 0.3, 0.25 ≤ w2 ≤ 0.35, 0.3 ≤ w3 ≤ 0.35, 0.4 ≤ w4 ≤ 0.5, wj ≥ 0, j = 1, 2, 3, 4,

4∑
j=1

wj = 1

}

{
maxD(w) = 4.7600w1 + 3.9733w2 + 4.3067w3 + 3.7467w4

s.t. w ∈ Δ

d
(3)

+1
= 0.1800, d

(3)

−1
= 0.3110, d

(3)

+2
= 0.2120,

d
(3)

−2
= 0.2790, d

(3)

+3
= 0.2665, d

(3)

−3
= 0.2245,

d
(3)

+4
= 0.2575, d

(3)

−4
= 0.2335, d

(3)

+5
= 0.1815,

d
(3)

−5
= 0.3095.

C
(1)

1
= 0.6331, C

(1)

2
= 0.4401, C

(1)

3
= 0.5429,

C
(1)

4
= 0.5440, C

(1)

5
= 0.4687,

C
(2)

1
= 0.4789, C

(2)

2
= 0.5576, C

(2)

3
= 0.3459,

C
(2)

4
= 0.3503, C

(2)

5
= 0.4900,

Then, we construct the relative-closeness coefficient 
matrix as:

C
(3)

1
= 0.6334, C

(3)

2
= 0.5682, C

(3)

3
= 0.4572,

C
(3)

4
= 0.4756, C

(3)

5
= 0.6303.

Step 7′. Utilize Eqs. (31) and (32) to identify the GPIS 
and GNIS, respectively, as:

Step 8′. Utilize Eqs. (33) and (34) to compute dG
+i

 and dG
−i

 
of the alternative xi relating to the GPIS h̃G

+
 and the GNIS 

h̃G
−

 , respectively, as follows:

Step 9′. Use Eq. (35) to compute the GRCC CG
i

 of each 
alternative xi with respect to GPIS dG

+i
 as:

Step 10′ Rank all alternatives xi via the GRCC CG
i

 , 
i = 1, 2, 3, 4, 5 . Clearly, x1 ≻ x5 ≻ x2 ≻ x4 ≻ x3 , and x1 is 
determined to be the best alternative.

4.2  Comparison analysis with other IVHF‑MADM 
methods

This subsection will compare the new method with other 
IVHF-MADM methods and demonstrate the merits of our 
method.

C =

⎛
⎜⎜⎜⎜⎜⎝

0.6331 0.4789 0.6334

0.4401 0.5576 0.5682

0.5429 0.3459 0.4572

0.5440 0.3503 0.4756

0.4687 0.4900 0.6303

⎞
⎟⎟⎟⎟⎟⎠5×3

h̃G
+
= {0.6331, 0.5576, 0.6334}

h̃G
−
= {0.4401, 0.3459, 0.4572}

d
G

+1
= 0.0262, d

G

−1
= 0.1674, d

G

+2
= 0.0861,

d
G

−2
= 0.1076, d

G

+3
= 0.1594, d

G

−3
= 0.0343,

d
G

+4
= 0.1514, d

G

−4
= 0.0422, d

G

+5
= 0.0784,

d
G

−5
= 0.1153.

C
G

1
= 0.8645, C

G

2
= 0.5556, C

G

3
= 0.1771,

C
G

4
= 0.2181, C

G

5
= 0.5954.
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4.2.1  Comparison with the IVHF-MADM methods based 
on TOPSIS

Recently, a new approach was developed to solve an MADM 
problem with IVHF information in Xu and Zhang (2013). 
Compared with the method, our method has the following 
advantages: the method proposed in Xu and Zhang (2013) 
focuses on only the MADM problems, while our method 
gives a novel procedure to handle a MAGDM problem in 
the IVHF surroundings. First, in our method, a quadratic 
programming model is constructed to obtain the weight vec-
tor of experts, which is not considered in the method in Xu 
and Zhang (2013). Second, although Xu and Zhang (2013) 
established a model to obtain the weight vector of attributes, 
this model determined the attribute weights from only an 
individual IVHF decision matrix, and it cannot confirm the 
importance weights of attributes in group decision making 
environments. Our method can obtain the optimal weights 
of attributes from all of the individual IVHF decision matri-
ces. Finally, TOPSIS methods in Xu and Zhang (2013) only 
included one stage, while the extended TOPSIS proposed 
by our method includes two stages: The first stage is called 
the IVHF-TOPSIS, which can be used to calculate the indi-
vidual RCC of each alternative to the individual IVHFPIS. 
The second stage is the standard TOPSIS, which is used to 
calculate the GRCC of each alternative to GPIS and choose 
the most desirable one with the maximum group relative-
closeness coefficient.

4.2.2  Comparison with the IVHF-MADM methods based 
on aggregation operators

Recently, many aggregation operators were studied to 
accommodate IVHF arguments (Wei and Zhao 2013; Wei 
et  al. 2013; Zhang and Wu 2014), including the IVH-
FWA, IVHFWG, GIVHFWA, GIVHFWG, IVHFOWA, 
IVHFOWG, GIVHFOWA, GIVHFOWG, IVHFHA, IVH-
FHG, GIVHFHA, GIVHFHG, HIVFEWA, HIVFEOWA, 
I-HIVFEOWA, HIVFEWG, HIVFEOWG, I-HIVFEOWG, 
A-IVHFWA, and A-IVHFWG operators, based on which 
some IVHF-MADM methods (Wei and Zhao 2013; Wei 
et al. 2013; Zhang and Wu 2014) have also been proposed 
to handle a MADM problem in the context of IVHFSs. It is 
noted that the aforesaid operators and approaches have some 
inherent weaknesses, which are displayed as follows:

(1) The existing operators and approaches perform an 
aggregation on the IVHF arguments. Accordingly, the 
dimension of the fused IVHFE may increase as such an 
aggregation is performed, which might increase the com-
plexity of calculation and therefore cause information loss. 
In contrast, our method does not carry out such an aggrega-
tion but directly deals with interval-valued hesitant fuzzy 
arguments. Consequently, it does not increase the dimension 

of the fused IVHFE and retains as much original preference 
information as possible.

(2) Our method utilizes the maximizing group consensus 
and the maximizing deviation methods to obtain the weight 
vectors of experts and attributes, respectively. In contrast, 
existing methods in (Wei and Zhao 2013; Wei et al. 2013; 
Zhang and Wu 2014) assign these weight vectors in advance. 
Therefore, our method is more objective and reasonable, 
whereas existing methods in (Wei and Zhao 2013; Wei et al. 
2013; Zhang and Wu 2014) are subjective and unreasonable.

5  Conclusions

The paper has proposed a novel method for MAGDM prob-
lems with imperfect weight information under IVHF envi-
ronments, which involves three main findings.

(1) Inspired by the idea that a set of group members 
should have the largest degree of agreement solution, we 
have established a quadratic programming model to obtain 
the most desirable weights of decision makers.

(2) A maximum deviation method was employed to 
acquire the optimum weights of attributes.

(3) An extended TOPSIS method was proposed to solve 
a MAGDM problem with IVHF-information. The extended 
TOPSIS includes two stages: the IVHF–TOPSIS and the 
standard TOPSIS. The former is used to calculate the RCC 
of each alternative to the IVHFPIS, while the latter is used 
to calculate the GRCC of each alternative to GPIS, from 
which all the alternatives will be ranked and the optimal 
alternative(s) with the maximum GRCC will be selected.

The validity and practicality of our method have been 
demonstrated with an investment example, and the merits of 
the new method have been shown by comparing it with other 
IVHF-MADM approaches. Comparison analysis shows that 
the proposed method needs less computational complexity 
and results in less information losing, which means that the 
proposed method is much more simplified and effective. In 
addition, the proposed builds a programming model to deter-
mine the weights of the DMs that is based on the maximum 
consensus analysis. Furthermore, the proposed method can 
efficiently address the MAGDM problem where the evalu-
ative ratings of alternatives take the form of IVHFE, the 
weight information of DMs is completely unknown and the 
weight of attributions are completely unknown or partially 
unknown. However, it is noted that the proposed method 
requires all IVHFEs in a MAGDM problem offered by the 
DM to have the same length; otherwise, it needs to add extra 
interval numbers to those IVHFEs with the shorter length. 
However, it is unsuitable to add extra interval numbers into 
IVHFEs because such a procedure changes the original judg-
ments offered by the DMs and produces different IVHFEs 
with respect to the original ones based on added different 
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interval numbers, and these different IVHFEs do not equal 
to the original ones. Thus, how to circumvent this drawback 
is a meaning and challenging task and also is our future 
research direction. In addition, in the future, we will con-
tinue to study the application of the new method and solve 
other decision making problems in the setting of interval-
valued hesitant fuzzy environments. Furthermore, we will 
extend the new theoretical results to other types of uncertain 
environments.
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