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Abstract
Wireless sensor network (WSN) information network in Smart Grid is envisioned to handle diversified traffic such as real-
time sensitive data and non-real-time traffic. Therefore, QoS routing protocol in smart grid network is essential. Ticket-based 
routing (TBR) protocol is a promising protocol because it can select routes based on several desired metrics, for example 
route cost and delay. However, the original TBR suffers the need for transmitting a huge number of tickets to probe the sen-
sor network and discover the path cost and delay. Genetic algorithm can be used to minimize the number of tickets as well 
as discovery messages overhead. In this work, we implement genetic algorithm (GA-TBR) at the source sensor node to col-
lect the state information inside the WSN environment of Smart Grid and hence optimize the selection of routes to ensure 
the required QoS. Extensive simulation experiments have been conducted to investigate the performance of GA-TBR. The 
simulation results have shown that with few tickets, the proposed algorithm is able to select routes with minimum possible 
delay and shows 28% improvement compared to ad hoc on demand distance vector routing (AODV) protocol.
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1 Introduction

SMART Grid has arisen as a new conception of next-gen-
eration electricity grid for better efficiency and reliability 
through automated control and modern communications 
technologies. Smart Grid aims at enhancing the existing 
electric power grid infrastructure by building an overlay 
communication and computing network that will increase 
the capacity and flexibility of the power grid (Yoldas et al. 
2017). One of the main features of Smart Grid is that supply 
and demand will be automatically controlled via two-way 
communication among different nodes.

Smart Grid is expected to replace the conventional power 
grids in the coming years. In some parts of the world, they 
already form a prominent part of the power supply. Thus, 
different domains and elements are defined and specified in 
the new power system. The main domains are generation, 
transmission, distribution, and customer domains (Gungor 
et al. 2011). Figure 1 depicts an overall architecture of smart 
grid; multiple sensors and actuators are distributed overall 
the smart grid. Moreover, these domains and elements can 
talk with each other in a large communication system to 
achieve the requirements of Smart Grid such as efficiency, 
reliability, flexibility, and demand response. Furthermore, 
Smart Grid attempts to benefit from the development of 
Advanced Metering Infrastructure (AMI) as a smart meter 
system, Wireless Sensor Network (WSN) as a monitoring 
system and renewable energy systems (Tuballa and Abundo 
2016). AMI’s are smart meters that are more capable than 
the conventional energy consumption counters. These smart 
meters are installed at the electricity supplier as well as the 
location of the various consumers. Therefore, smart grid 
poses several challenges to manage energy consumption 
and related costs in the side of smart homes such as profil-
ing (Gentile et al. 2016a, b), secure billing and financial 
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process (Yang et al. 2013), and online social networks effects 
(Kamilaris et al. 2012).

The effect of a failure of one node or zone in any of Smart 
Grid domains can comprise the single failure segment, other 
segments, or the entire system (Rekik et al. 2017). In the 
current power systems, monitoring systems engage in lim-
ited assessments do not provide any automated handling of 
monitoring data where monitoring devices do not intercon-
nect with each other and provide a finite collection of data. 
The sensing system can monitor electrical and non-electri-
cal parameters. For example, the monitored parameters for 
transmission line are weather conditions and wire state to 
determine the safety level of transmission operation. Fur-
thermore, adding more electrical and mechanical parameters 
can support overloading control by determining the dynamic 
line rating (DLR). Also, providing electrical parameters such 
as current and voltage can help for decisions in real time that 
improves the power system efficiency (Mazur et al. 2017).

Several communications technologies do exist for data 
exchange among monitoring and control components 
through wired and/or wireless media. Wired communica-
tion is the most media used in the existing power systems 
such as Ethernet and fiber optic (Fateh et al. 2013). Wireless 
networks provide a promising solution with the develop-
ment of WSN due to inexpensive infrastructure and ease 
of deployment for unreachable and isolated areas. ZigBee 
(Fadel et al. 2015) is one of these wireless technologies that 
provide low cost and ease of setup and implementation with 
addition of low power usage.

Summing up, WSN can provide vital monitoring data 
that is used in Smart Gird assessment besides automated 
decisions. In addition, deploying WSN guarantees reliable 

and flexible solutions for providing sensing and control over 
Smart Grid system. WSN features support low setup, main-
tenance, and upgrading costs. Additionally, WSN function-
ing has the advantage over the traditional systems in case 
of self-organization, coverage, and online responses. The 
WSN monitoring system can be established across all Smart 
Grid domains. For instance, WSN can monitor power qual-
ity, renewable energy farms, and distributed generation at 
the generation domain. In addition, detecting any failure in 
transmission and distribution domains can improve Smart 
Grid stability. This failure can occur as a power outage or 
in overhead or underground transmission lines for several 
reasons such as overheating, natural disasters, animals, theft, 
etc (Fadel et al. 2015).

On the other hand, several challenges raised from utiliz-
ing WSN in Smart Grid such as security, quality of service 
(QoS) provisioning and transmission overhead. WSN system 
encounters many security threats due to its open environ-
ment (Chhaya et al. 2017). While solutions to overcome its 
vulnerabilities are not feasible due to its limited resources. 
Different solutions are proposed to solve security issues 
of WSN in Smart Grid with specific design requirements. 
Moreover, reliable communication with minimum latency 
and adequate bandwidth (Ancillotti et al. 2013) is required 
to deliver real-time information inside Smart Grid and it 
should provide QoS depending on the type of data trans-
mitted through the WSN network. QoS routing protocol in 
WSN-Smart Grid networks must select paths depending on 
several QoS metrics to achieve certain requirements. How-
ever, obtaining best paths to meet QoS constraints requires 
many control messages, which will increase the background 
traffic. Hence, delay and congestion in data network will 

Fig. 1  Smart grid architecture 
(Gungor et al. 2011)
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grow as routing overhead increases. For this reason, route 
discovery background traffic must be reduced.

Ticket-based routing (TBR) (Xiao et al. 2002) is a well-
known method for finding optimal routes in ad-hoc net-
works. It is applied by broadcasting multiple probes from 
the source to a destination via multiple routes to find the 
best path. However, the number of sensor nodes is expected 
to increase considerably and link states keep changing due 
to mobility and sporadic nature of the connection. There-
fore, TBR becomes a highly complicated, cost-ineffective 
process (Levis et al. 2009). As the amount of information 
transferred is expected to increase significantly in the near 
future with services like video surveillance that require high 
QoS, a more efficient approach is required. Therefore, it is 
very important to design a robust efficient routing algorithm 
that is capable of providing high QoS to Smart Grid net-
works traffic.

Recently, route discovery optimization in ad hoc net-
works environment is given a significant attention using 
metaheuristic algorithms such as genetic algorithm. There 
are numerous research works that use genetic algorithm in 
order to shrink routing overhead in data networks as (Yen 
et al. 2011; Zafar and Soni 2014; Cheng and Yang 2010b). 
The main motivation for such direction is the great potential 
of metaheuristic approaches to find near-optimal solution in 
reasonable running time time. This feature is very desirable 
in industrial applications. In this work, we follow the same 
path and develop a genetic algorithm to optimize route dis-
covery overhead using TBR protocol. At the source node, 
the genetic algorithm is applied to find optimal paths that 
satisfy the QoS requirement. In order to discover the optimal 
paths, paths from route replies are used as initial population 
and the fitness function depends on the required QoS met-
rics. In this paper, we use delay as QoS metric just to show 
an example. However, using TBR protocol, any quantita-
tive QoS metric which can be accumulated could be used 
as a fitness function such as throughput and delay jitter. The 
main contributions of this work can be summarized in the 
following points:

– Proposing an enhanced GA-TBR algorithm that can 
select routes according to a predefined set of QoS of 
requirements with minimal probing tickets and compu-
tational complexity.

– Exploiting the routing cache in every sensor node to 
construct a connectivity matrix that will be employed 
to validate the generated offsprings. This feature is very 
essential part of our algorithm that reduces the overhead 
messages as well as the required number of tickets.

– Performing an in-depth analysis of certain features of 
genetic algorithm such as validity checking and the fit-
ness function.

– We have compared our proposed approach GA-TBR with 
AODV which is adopted by IEEE 802.11s and GA-TBR 
shows 28% improvement on average.

In addition, the proposed algorithm can lend itself to other 
applications such as social networking based smart grid 
where each social group can constitute one node in the whole 
network graph (Huang et al. 2015). For example, users can 
exploit their social network to facilitate sending grid outage 
alerts notification and visualization, repair work schedules as 
well as brand building (Moreno-Munoz et al. 2016).

This paper structure is organized as follows. Section 2 
summarizes the existing work about QoS protocols in Smart 
Grid and researches that use genetic algorithm for routing 
optimization. Section 3 starts by describing the TBR proto-
col in 3.1 along with a detailed example in 3.2. The proposed 
genetic based algorithm is described in details in section 3.3. 
Section 4 presents the simulation models and discusses 
the results. Then, analysis of our proposed genetic based 
approach and the performance evaluation of TBR along with 
the genetic algorithm are provided in Sect. 5. Finally, Sect. 6 
concludes the paper and provides suggestions for the future 
work.

2  Related works

Saputro et al. 2012 have provided a survey of the exist-
ing routing protocols in the Smart Grid communications 
infrastructure. They extensively studied and analyzed the 
advantages and disadvantages of the proposed protocols with 
respect to different purposed areas. They argued that there 
is not enough research on QoS routing in the Smart Grid 
networks. In addition, different QoS requirements of WSN 
applications in smart grids must be addressed such as reli-
ability and latency (Gungor et al. 2013). Nevertheless, there 
are several surveys studied the impact of WSN deployment 
in Smart Grids (Rekik et al. 2017; Fadel et al. 2015; Wang 
et al. 2015; Usman and Shami 2013). Current researches 
show that the development of WSN pushes towards address-
ing monitoring and control challenges in the new power sys-
tems and provide an immense potential to satisfy its commu-
nication requirements. In the rest of this section, we provide 
a brief literature review about existing WSN applications 
in Smart Grid networks and its challenges. Also, the QoS 
communication issues and possible generic algorithms based 
solution are discussed for such environments.

Fateh et al. (2013) proposed a hybrid wireless structure for 
the transmission line monitoring. The hierarchical architec-
ture aims to reduce the setup and functioning costs without 
dimming the communication requirements such as delay and 
bandwidth. However, using cellular nodes to relay data to the 
control centers raise the cost of this network design. However, 
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there is a tradeoff between network cost and transmission delay 
(Li et al. 2016). Therefore, Li et al. (2016) studied the number 
of cellular modules and their positions in order to achieve low 
network cost associated with low transmission delay.

Kovendan and Sridharan (2016) proposed a WSN imple-
mentation in a Smart Grid model that provides a monitor-
ing of transmission and generation side. Kurt et al. (2017) 
proposed a novel method to calculate the optimal packet size 
of WSN for Smart Grid applications. This technique tries to 
specify real-time channel characterization in order to obtain 
packet size optimization measurements for WSN in Smart 
Grid. He et al. (2017) studied security mechanisms for WSN 
applications of Smart Grid. Authors analyze cyber security 
risks that such environments are vulnerable to by provid-
ing security assessment and vulnerabilities classification. 
While in (Yan et al. 2017), a watermarking-based security 
model is proposed to attain security requirements with low 
operational cost.

Vallejo et al. (2012) described how a QoS broker can be 
used to enhance the QoS of smart grid communication by 
providing QoS management in a centralized and standard-
ized manner to meet their strict requirements. QoS broker 
devices can update certain parameters of layer 3 and layer 
2 networks to improve the effectiveness of end to end QoS 
through Smart Grid communication. Li and Zhang (2010) 
proposed optimized multi-constrained routing (OMCR) pro-
tocol which is a greedy algorithm implemented for secure 
QoS routing protocol and satisfy real-time system require-
ment that can handle the impact of communication metrics. 
Two QoS parameters namely delay and outage probability 
are used in this multi-constrained QoS routing protocol. The 
authors assumed that a home appliance can communicate 
with the control center by sending a QoS requirement and 
then the control center assigns one or more routes for the 
home appliance to guarantee the QoS requirement.

On the other hand, the genetic algorithm can be used in 
ad-hoc network protocols for optimizing the route discov-
ery process (Sara and Sridharan 2014). A multi-cast tree 
construction for QoS routing mechanism for mobile ad hoc 
network is presented in (Lu and Zhu 2013) to moderate end-
to-end delay and total energy cost using genetic algorithm. 
A genetic algorithm is applied on delay constrained source 
based mechanism to reduce route selection power consump-
tion as well as delay. Zaballos et al. (2013) proposed a new 
QoS protocol based on TBR that uses genetic algorithm for 
minimizing route discovery traffic. Multi-paths are probed 
at the same time and randomly forwarded across the network 
to return paths that meet QoS constraints. The maximum 
initial population is the number of tickets issues to estab-
lish a connection. After the mutation operation, the node 
sends a probe with a single ticket to validate the mutated 
routes causing an increase in message overhead and longer 
delay. In contrast, genetic algorithms have been applied 

to improve routing performance but not in the context of 
QoS (Ahn and Ramakrishna 2002). However, an efficient 
method to check the validity has still not been specified. 
Furthermore, the methods described to discover crossovers 
and mutations are ineffective because they require longer 
convergence time. Furthermore, genetic algorithm is used 
to solve dynamic shortest path routing problem in mobile 
ad hoc network (Yang et al. 2010), wireless mesh network 
(Jiang et al. 2010). Immigrants and memory schemes are 
proposed to enhance genetic algorithm for dynamic QoS 
routing problem (Cheng and Yang 2010a). Jiang et al. (2010) 
proposed QoS routing optimization problem solution for 
wireless mesh networks using hybrid genetic algorithm and 
ant colony optimization algorithm.

3  Genetic ticket‑based routing protocol

In order to have a better understanding of our proposed 
approach, we start first with introducing the main concepts 
of TBR along with a detailed example. Then, we describe 
the genetic ticket-based routing protocol (GA-TBR).

3.1  Ticket‑Based Routing Protocol

Ticket-based routing (TBR) (Chen and Nahrstedt 1998) 
is an on-demand routing protocol such as dynamic source 
Routing (DSR) and ad hoc on demand distance vector rout-
ing (AODV). On-demand routing protocol does not keep 
updated route tables with the most recent route topology. 
Enhanced ticket based routing (ETBR) protocol (Xiao et al. 
2002) improved the searching ability of discovery method 
in original TBR. However, the number of tickets used to find 
a route is still the same. In other words, ETBR causes the 
same control message overhead as original TBR protocol.

In TBR, when a sensor wants to send data, it should dis-
cover a route based on certain metrics like cost and delay. 
This sensor starts sending probes with a certain number of 
tickets to all neighbor sensor nodes. In contrast to DSR, 
intermediate sensor nodes do not flood these probes to its 
neighbors; each sensor distributes tickets depending on a 
distribution method defined by many parameters such as the 
number of tickets received and historical probes information 
records. In addition, each sensor node adds its address to 
(source to destination) path and accumulates the path cost. 
When a probe reaches the destination or a sensor node that 
have a route to the destination on its route cache, this node 
sends a route reply (similar to PREP in DSR) containing 
the source to destination path with its cumulative cost and 
delay. Moreover, each sensor node has a route cache that 
stores routes, which have been discovered before by sending 
probes or learned from route discovery messages of others as 
intermediate nodes. The sensor node instead of originating a 
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new request to discover route or forwarding others requests, 
it can use a route from its cache. Using historical informa-
tion probes records can eliminate redundant paths to reach 
the destination in addition to eliminating path cycles. In this 
case, intermediate nodes pass only one probe message from 
the same sender node with the same sequence number of 
the route request.

Generally, once a sensor generates a probe, it can split it 
into a number of probes and then distribute them to its neigh-
bor nodes. Furthermore, every probe can be divided into 
more probes as long as there is enough quantity of tickets on 
this probe. Each probe split and forwarded until it reaches 
the destination unless it gets dropped by an intermediate 
node due to QoS constraints or optimizing reasons. Each 
probe reaches the destination can obtain possible routes. 
Then, the destination node can handle only routes which 
satisfy certain QoS requirements. For example, only paths 
with an accumulated delay less than certain delay threshold 
are considered as feasible paths. Since probing process will 
increase messages load inside the network and consume a 
lot of bandwidth, further optimization is needed. We pro-
pose to use genetic algorithm (described in Section 3.3) at 
the source node and minimize the number of tickets. In this 
work, we assume that every sensor has its own neighbor list 
obtained by link level protocol. Furthermore, any changes 
in topology such as the occurrence of a new sensor/actuator 
or losing connection with a sensor node should be updated 
within a finite time.

3.2  Detailed TBR example

Now, we will provide a detailed example of TBR route dis-
covery. Let assume a network of 8 sensors shown in Fig. 2 
where sensor 0 wants to discover a route to sensor 7. First, 
sensor 0 initiates a probe with a certain finite number of 
tickets ( N = 4 ). Pn,{path} is a general notation for a probe in 
this paper, where P denotes Probe, n denotes the number of 

tickets handled by this probe, and {path} denotes the accu-
mulated path. Sensor 1 is the only neighbor of the source 
sensor. Hence, sensor 0 forwards the probe P4,{0} to sensor 1 
with all number of tickets. After receiving P4,{0} , this probe 
is split into three new probes and forwarded to its neighbors. 
When a probe reaches sensor 4, this sensor stops forwarding 
probes as a result of having a path to sensor 7 in its route 
cache thus a reply R1{0,1,4,3,6,7} is generated and sent back to 
sensor 0. At sensor 5, P1,{0,1,3} is received before P1,{0,1,2} , 
therefore, the probe which arrives later will be discarded 
by this sensor to minimize probing overhead and eliminate 
infinite cycles probing. Later, P1,{0,1,3,5} probe arrives the 
destination sensor within delay constraint; sensor 7 sends 
a route reply R2{0,1,3,5,7} that contains the accumulated cost 
and delay to the source sensor. Finally, two feasible routes 
are discovered from source and destination {0, 1, 3, 5, 7} 
and {0, 1, 4, 3, 6, 7} . Now, {0, 1, 3, 5, 7} and {0, 1, 4, 3, 6, 7} 
are used by GA as initial population. Let’s assume that gene 
3 is randomly selected as a crossing point. A new path of 
{0, 1, 3, 6, 7} results from the crossover operator and no 
validity check is required because the crossover is applied 
to a common gene. This new resulted path can be an optimal 
route from source to destination.

However, the number of probes and their tickets can still 
be minimized and hence the overall discovery messages 
overhead. In other words, an optimal route can be discov-
ered using genetic algorithm even with reduced number of 
tickets (N).

3.3  The proposed algorithm

Genetic algorithm (Goldberg 1989) is a search algorithm for 
optimization, which is used to find a near-optimal solution 
through a search space using operations inspired by natural 
genetics. Genetic algorithm improves the quality of its initial 
population and produces a new population of high-quality 
outcomes where each outcome can solve the problem and the 
outcome with the highest factor value is the optimal solution. 
This algorithm has been proven theoretically and empiri-
cally to be effective in complex spaces by providing efficient 
searching mechanism (Dengiz et al. 1997; Krasnogor and 
Smith 2005; Liu et al. 2018). Nevertheless, it is not guaran-
teed that the produced offsprings are always optimal routes; 
but it is acceptable given the reduced computational cost.

In our proposed method, the genetic algorithm is used to 
optimize the route discovery using TBR. At the source sen-
sor, the genetic algorithm is applied to find optimal paths 
that satisfy the QoS requirement. We achieve this goal by 
using paths constructed from probe tickets’ replies as initial 
population. Each possible path from a probe ticket reply rep-
resents a chromosome, which consists of a number of genes. 
Then, the fitness function is set to evaluate each chromo-
some from the population.Fig. 2  Example of TBR route discovery in 8-sensor nodes network
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3.3.1  Initial population generation algorithm

In this initial stage, original TBR is employed in order to 
probe and collect information about network connectivity 
and other credentials such as delay, bandwidth, congestion, 
etc. Algorithm 1 depicts the pseudo code for this stage. More 
details are provided in the simulation setup section.

Algorithm 1 Initial Population Generation Algorithm
Result: Connectivity Matrix and set of paths
Initialization: Given the i node with j out branches, N tickets need to be sent
while Total tickets < N do

For n = 1 : j branches
send a random k probes [0, N ]
For each probe ticket
initialize a counter for each QoS requirement
if intermediate sensor then

For each probe ticket
update the traversed path
update counter for each QoS requirement
if QoS requirement Not satisfied then

drop probe
else

Send to the next node towards the destination
end

else

end
if Destination node then

Send a unicast message to source node
else

It is a source node
Compile all data

end
end

3.3.2  Genetic algorithm

At each generation, the following three operations of the 
algorithm are performed iteratively:

– Selection: chromosomes from the current population are 
selected according to their level of fitness value while 
others are discarded.

– Crossover: in this operation, a new set of chromosomes 
are generated from two chromosomes in the population 

using crossover operator by partially swapping their 
genes around a common gene unless swapping happens 
around randomly, it then picks crossing points. When the 
crossover happens around a common gene, no validity 
checking is required.

– Mutation: in this operation, mutation operator mutates 
the new offspring’s by randomly altering the value of 

randomly selected gene and then it is added to the current 
population. Then, the fitness function is computed again 
for these chromosomes.

Algorithm 2 depicts the pseudo code for this stage. More 
details are provided in the simulation setup section.
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Algorithm 2 Genetic Ticket-Based Routing Algorithm
Result: Set of best chromosomes
Initialization: Initial Population
while fitness value is satisfied do

Selection process: a set of ”good”chromosomes is picked
Crossover process: pick a pair of two chromosomes
if random selection then

swap genes around a common gene
generate a new offsprings
check validity

else
swap genes around a common gene
generate a new offsprings

end
Mutation process: pick randomly a highly connected node to be a mutation point
if part of a current chromosome then

choose another node
else

generate a new offsprings
end

end

Table 1  Simulation parameters

Parameter Value

Simulation period 1000 s
Topology dimension 150 m × 150 m
Number of nodes 100
MAC type 802.15.4
Protocol TBR
Coverage range 35 m

Fig. 3  Number of probing messages per connection request (mes-
sages overhead) versus number of tickets (N)

Table 2  Number of probing messages per connection (message over-
head)

Number of tickets Number of probing 
messages

Number of probing 
messages per connec-
tion

10 15131 30.262
25 23042 46.084
50 30149 60.298
100 36670 73.34
1000 65787 131.574

The best resultant chromosomes (paths) are returned by 
the genetic algorithm as a final outcome, when the optimiza-
tion condition is achieved. Crossover and mutation opera-
tors produce a new set of approximations and breed them 
together exactly like what happens on genetic process in 
nature. Furthermore, the fitness function is determined based 
on the factors that concern our problem. In this work, the 
cost and delay as QoS requirements specify the fitness func-
tion of the genetic algorithm.

In our example shown in Fig.  2, the source sensor 
received two route replies {0, 1, 3, 5, 7} and {0, 1, 4, 3, 6, 7} . 
In this case, these two routes can be used as initial popula-
tion of genetic algorithm integrated in source sensor to find 
the optimal route that satisfies QoS requirements. Each path 
represents a chromosome; each sensor in the chromosome 
represents a gene. Hence, the number of genes in the chro-
mosome determine its size. For example, path {0, 1, 3, 5, 7} 
is a chromosome consist of 5 genes.

4  Simulation setup

4.1  TBR simulation setup

We use Network Simulator-2 (NS-2) (McCanne et al. 1997) 
as our platform to simulate TBR as described in (ELMO 
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2010). In the following, we describe some features of our 
implementation of TBR in NS-2:

– When the source needs to start probing or an interme-
diate sensor has to forward a certain number of tickets 
(N) to its neighbors’ sensors, the number of tickets that 
will be sent is determined randomly between [0, N] using 
uniform distribution routine.

– When a probe is received by an intermediate sensor, the 
following actions are triggered. First, the accumulative 
delay and cost are calculated. Second, the probe informa-
tion is stored a cache and it will be used later as a histori-
cal probing record. Finally, current sensor ID is added to 
TBR header (i.e. traversed path) of the newly generated 
probes delivered to its neighbors.

– When a probe is received by the destination sensor, a uni-
cast route reply is sent back to the source using the same 
path after checking the QoS constraint as mentioned 
before.

– Intermediate sensors will drop a probe in the following 
cases:

– First, when a probe returns back to the sensor that 
originates this probe.

– Second, when a probe passed again the same sensor.
– Third, when another probe from the same source 

with the same request ID (sequence number) has 
already passed this sensor.

– Finally, if the accumulative delay exceeds the con-
straint delay or any other QoS constraints.

The simulations are accomplished using NS-2 version 2.34 
installed in Ubuntu environment. The network model used 
in our simulation is randomly created. In 150m x 150m area, 
one hundred sensor nodes are placed with zero mobility. The 
transmission range is set to 35m for each sensor node. The 
delay of each link is modeled as a uniform random variable 
in the range of [0, 1] time unit. Table 1 summarizes the 
simulation parameters. This scenario is very close to the 
expected scenario in Smart Grid ad hoc networks environ-
ment where short-range wireless smart meters are deployed 
in a home-area-network.

We run the simulation 5 times for each number of tickets 
(i.e. N = 10, 25, 50, 100, and 1000). In each simulation 
run, the source sensor node is fixed and it transmits routing 
requests to 99 randomly selected destinations. Thus, we will 
have for each case (different ticket number experiment) 495 
samples, which are statistically sufficient to achieve 95% 
confidence in our collected initial population.

The average path cost and success ratio of TBR have been 
studied in (Xiao et al. 2002). TBR has a lower ratio of all 
routes cost to the number of routes (average path cost) than 
flooding and shortest path algorithms. Moreover, the ratio of 
paths established to the total of route requests (success ratio) 
was close to the flooding algorithm (Chen and Nahrstedt 
1998).

In order to demonstrate that our proposed approach has 
better searching capability in addition to lower network load, 
we define message overhead metric for the routing discovery 
method. Message overhead metric is defined as the aver-
age number of probing messages required per connection 
request. Any probe passes a link from one sensor node to any 
neighboring sensor node is considered as one probe mes-
sage. Therefore, when a probe passes k hops, it is recorded as 
k messages. Figure 3 depicts the message overhead for TBR 
with different number of tickets. Clearly, we can observe the 
larger the number of tickets, the larger is message overhead 
which also shown in Table 2.

The values of N = 10, 25 and 50 cases are promising, 
but we should not miss the success ratio of these cases. 
However, for N = 25 and 50 cases, it can save 27.3% and 
17.8% of message overhead, respectively and their success 
ratios with respect to N = 100 case are about 71% and 91%, 
respectively.

Fig. 4  The simulation methodology; generating initial population 
using NS-2 and then it is fed to Matlab to execute the genetic algo-
rithm and produce the best possible paths

Fig. 5  Connectivity matrix of 8 nodes network example shown in 
Fig. 2; ’0’ entry means no connectivity, ’1’ means entry means con-
nectivity exits
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4.2  GA‑TBR simulation setup

In this work, MATLAB is used along with NS-2 as our 
simulation platforms to test the impact of genetic algorithm 
so that the performance of the algorithm can be analyzed 
deeply at each stage. The initial population of route replies 
is exported from NS-2 as csv files. Figure 4 illustrates the 
simulation steps used in this work.

Moreover, the connectivity, cost and delay information 
of network model is exported from NS-2 in a matrix repre-
sentation. Figure 5 shows the corresponding connectivity 
matrix of the network described in Fig. 2. Where ’0’ value 
indicates that there is no connection between these two sen-
sor nodes. In other words, each sensor node that does not 
exist within the coverage range of the other sensor node has 
weight of ’0’. However, ’1’ value represents a connectivity 
between sensor nodes. In a similar manner, other matrices 
(i.e. delay, cost) are represented with appropriate weights 
between sensor nodes.

We have implemented five features in our genetic algo-
rithm: fitness function, validity checking, crossover and 

mutation discoveries in addition to a defined source and 
destination for each particular run of the algorithm.

– Fitness Function: The fitness function depends on QoS 
routing metrics and the feasible route population is 
selected accordingly. It will be sorted in a decreasing or 
non-decreasing order based on our requirement. Combi-
nation of more than one QoS metric can be achieved by 
assigning different weights for each metric.

– Validity Checking: We will exploit the information 
learned and cached in each sensor node to check the 
validity of the new routes instead of sending unicast mes-
sages which will cause a huge background traffic. This 
step will minimize the message overhead, alleviates the 
network from extra load and reduces the network conges-
tion.

– Crossover: Two chromosomes will be selected for cross-
over; if there is a common sensor node, it will be the 
crossover point otherwise, it will be chosen randomly. 
A common sensor node will ensure validity, which will 
save algorithm running time. For example, {0, 1, 3, 5, 7} 
and {0, 1, 4, 3, 6, 7} are routes discovered by TBR and 
GA uses them as an initial population. Let’s assume that 
sensor node 3 is randomly selected as a crossing point. 
A new path of {0, 1, 3, 6, 7} results from the crossover 
operator and no validity check is required because the 
crossover is applied to a common gene. This new resulted 
path can be an optimal route from source to destination.

– Mutation: The algorithm will identify sensor nodes with 
high connections and one of them will be chosen ran-
domly to be the mutation point. In order to enhance the 
validity, the new sensor node should not be part of the 
current chromosome.

– Source and Destination: Source and destination informa-
tion is added to check the validity. There is a possibility 
that we might get a chromosome that does not have the 
source sensor node, destination sensor node nor both. In 
this case, we assign its fitness function to infinity to avoid 
selecting them as candidate solutions, when in reality 
they are not.

Fig. 6  Offspring evaluation after running the enhanced algorithm for 
fitness and validity

Table 3  Statistical analysis for 
three crossover techniques

Random selection with 
cut vertex cross over

Sequential selection with 
cut vertex cross over

Sequential selection 
w/o cut vertex cross 
over

Runs 100 100 100
Mean 0.909 0.747 0.770
STDEV 0.0933 0.0815 0.0838
Level of significance 0.05 0.05 0.05
Confidence level (95%) 0.182 0.159 0.163
Lower bound 0.727 0.588 0.607
Upper bound 1.091 0.905 0.934
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It is well known that the number of rows in the population 
matrix represents the number of candidate solutions (routes). 
On the other hand, the relationship between transmission 
range and the population matrix is the number of columns in 
the population matrix. In other words, the maximum trans-
mission range determines the chromosome length. Further-
more, using the whole range is impractical for this type of 
optimization, so the route can be terminated after reaching 
the destination sensor node using a special termination char-
acter (-1 in our case) to fill the remaining cells. This is useful 
in managing the maximum transmission range by restricting 
the number of columns in the population matrix.

One of the main advantages of genetic algorithms is ran-
domness; this implies that having a random initial popula-
tion will be an advantage. However, this is not the case in 
path optimization problems as we are looking for a valid 
path and not any path. TBR can provide valid paths so the 
genetic algorithm can manipulate them and enhance the 
validity. Even if a random initial population has a large size, 
it does not have the same impact on the algorithm as a small 

initial population with valid routes. Moreover, the algorithm 
needs a space (Population size) to add off springs; in this 
case, the source sensor node is allowed to duplicate the ini-
tial population so it has valid routes with double size and the 
random search will take care of duplicates. Therefore, a valid 
route most likely will lead to another valid route. In contrary, 
an invalid route most likely will lead to another invalid route 
or it will take much time to be validated by the algorithm. 
Figure 6 presents our GA implementation by applying a cost 
of infinity to sensor nodes where a connection does not exist. 
To illustrate, when the algorithm is run, there is no feasible 
path between sensor nodes 1, 2, 4, and 8.

5  Performance analysis

Having introduced above the main features of our proposed 
approach, we shall first analyze the genetic algorithm alone 
and then we evaluate the performance of TBR along with 
the genetic algorithm.

Fig. 7  Comparison of average running time for different crossover 
techniques with different selection methods performed on whole pop-
ulation

Fig. 8  100 runs show the behav-
ior of three crossover techniques 
with respect to time

Table 4  Statistical analysis for mutation performed on different popu-
lation percentages using random selection crossover with cut vertices

10% 20% 80% 90% 100%

Count 100 100 100 100 100
Mean 0.0808 0.0460 0.0268 0.0216 0.0157
STDEV 0.0116 0.0082 0.0087 0.0081 0.0034
Confidence Coefficient 0.95 0.95 0.95 0.95 0.95
Level of Significance 0.05 0.05 0.05 0.05 0.05
Confidence Level 

(95%)
0.0227 0.0161 0.0170 0.0158 0.0067

Lower bound 0.0581 0.0298 0.0098 0.0058 0.0090
Upper bound 0.1035 0.0621 0.0437 0.0374 0.0225
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5.1  Genetic algorithm analysis

It is important to perform the crossover and mutation prob-
ability analysis and compare the performance among dif-
ferent possible approaches for route optimization. As men-
tioned before, the crossover is one of the main components 
of genetic algorithms where pairs of chromosomes will be 
selected and a crossing point will be set by the algorithm. 
Then, the pairs of offspring will be produced. Selecting the 
mid of the chromosomes as crossover points will most likely 
produce invalid routes and it increases the overhead on the 
algorithm due to invalid routes. Hence, it is highly neces-
sary to choose the crossover point carefully. Looking for 
cut vertices in the selected chromosomes will enhance the 
validity of the produced offspring, which can save the run-
ning time. The crossover phase will look for the common 
sensor node (cut vertex), otherwise, it will be the mid of the 
chromosome.

The selection phase has been implemented by two meth-
ods namely, sequential and random selection. In the sequen-
tial method, the pairs will be selected as they appear in the 
population. On the other hand, the random selection will 
choose a chromosome randomly and cross it over with the 
following chromosome. Furthermore, in order to investigate 
the impact of cut-vertex sensor nodes, we have tested the 
following methods: Sequential Selection Crossover without 
Cut Vertices, Sequential Selection Crossover with Cut Ver-
tices and Random Selection Crossover with Cut Vertices. 
Table 3 summarizes the comparison between the crossovers 
using cut vertices and using mid of the chromosome. Fig-
ure 7 shows the average running time of different crossover 
techniques with different selection methods performed on 
the whole population. The random selection with cross-over 

shows the shortest running time. The stability of the algo-
rithm with respect to time is a critical factor for genetic algo-
rithms to hit the optimal solution; Fig. 8 shows the behavior 
of three crossover techniques with respect to time with 100 
runs. Again, we can observe that the random selection with 
crossover has the least fluctuations, while the sequential 
selection without crossover has shown the highest incident 
of fluctuations. These fluctuations affect the stability of the 
genetic algorithm. Therefore, we pick the random selection 
with cross over technique for testing the mutation process.

The algorithm will identify the connected sensor nodes 
and one of them will be chosen randomly to be the muta-
tion point. The mutation point connections will be imported 
from the cost matrix; the connections will be shuffled and 

Table 5  Run time (in seconds) results of cost and delay as QoS metrics with various numbers of tickets (N) of TBR

Number of tickets Cost Delay Overall

(N) MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN

10 0.035025 0.09311 0.000759 0.025254 0.090229 0.000622 0.03014 0.09311 0.000622
25 0.033249 0.09434 0.000762 0.02052 0.070107 0.000548 0.026885 0.09434 0.000548
50 0.03069 0.087502 0.000597 0.019295 0.099336 0.000421 0.024993 0.099336 0.000421
100 0.029454 0.092047 0.000617 0.018653 0.0996 0.000435 0.024053 0.0996 0.000435
1000 0.027749 0.09891 0.000459 0.015425 0.099041 0.000419 0.021587 0.099041 0.000419
Overall 0.029563 0.09891 0.000459 0.017785 0.0996 0.000419 0.023674 0.0996 0.000419

Table 6  Run time (in seconds) results comparison with various number of paths in initial population of genetic algorithm

Initial Population Cost Delay Overall

MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN

2 or 3 0.028696 0.09891 0.000459 0.016201 0.099041 0.000419 0.022448 0.099041 0.000419
4 or more 0.02164 0.080992 0.000751 0.01476 0.084966 0.000564 0.0182 0.084966 0.000564

Fig. 9  Run time results (y-axis) of cost, delay and overall (both cost 
and delay) as QoS metrics with various numbers of tickets (x-axis) 
of TBR
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one of them is randomly chosen. To enhance the validity, the 
new sensor node should not be part of the current chromo-
some and the algorithm should not choose the destination 
sensor node as a mutation point. In Table 4, we illustrate 

the comparison between different percentages of mutation 
candidate chromosomes; we have tested them with Random 
Selection Crossover with Cut Vertices.

As explained above, source and destination are added to 
check the validity. There is a possibility that the algorithm 
produces a chromosome that does not contain the source 
sensor node, destination sensor node or both. Moreover, 
checking whether the source and destination sensor nodes 
within the chromosome can be very helpful in case of par-
allelism. Assume an intermediate sensor node “A” tries to 
figure out the optimal route to sensor node “D”; in order 
to apply parallelism, sensor node “A” will call its neighbor 
sensor nodes “B” and “C” to search for a route from “A” to 
“D”; in this case, sensor node “A” has to pass current source 
and destination information as parameters to sensor nodes 
“B” and “C”. Finally, “A” will collect the results (i.e. from 
B, C) along with its own result and evaluate them to choose 
the best route.

5.2  Genetic algorithm with TBR analysis

Having established and studied the performance of the pro-
posed genetic algorithm (GA), we are ready to study the 
integration of TBR with GA. As mentioned before and 
shown in Fig. 4; In order to evaluate the genetic algorithm 
overhead, we have used NS-2 to simulate TBR that pro-
duces matrices of connectivity, cost and delay as well as 
discovered paths for each connection request considering 
different number of tickets. These matrices of network model 
information and discovered paths are saved as csv files. In 
MATLAB, we use these csv files as inputs for running the 
genetic algorithm code.

In Tables 5 and 6, we present minimum, maximum and 
average execution time of genetic algorithm in Matlab for 
paths and topology generated in NS-2. These results show 
that the additional processing overhead of genetic algorithm 
used in our proposed method to discover the best feasible 
route is very minimal. Cost and delay are used as QoS metric 
individually to obtain feasible routes. As shown in Fig. 9, the 
computation time increases with the decrease of number of 
tickets where the mean execution time of N = 1000 is about 
(0.0296s - Cost, 0.0178s - Delay) and that for N = 25 is 
about (0.03325s - Cost, 0.0205s - Delay). Delay metric has 
lower minimum and average execution time due to delay 
aware behavior of TBR routing to find low cost/delay paths. 
Furthermore, increasing number of tickets to 1000 surely 
will decrease the overall delay, yet, it is not effective because 
of the huge overhead traffic that will overwhelm the whole 
network and cause congestion.

Table 6 presents the execution time which is needed based 
on initial population size. The mean time required to deter-
mine the feasible path from 2 or 3 discovered paths is about 
(0.0287s—cost, 0.0162s—delay). While, lower computation 

Fig. 10  Run time results (y-axis) comparison with various number of 
paths in initial population of genetic algorithm

Fig. 11  Cost metric comparison between AODV and GA-TBR proto-
col using a random topology of 100 nodes with fixed source and 10 
random destinations

Fig. 12  Delay metric comparison between AODV and GA-TBR pro-
tocol using a random topology of 100 nodes with fixed source and 10 
random destinations
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time is needed for larger initial population where the mean 
time is about (0.0216s—cost, 0.0148s—delay) as shown in 
Fig. 10.

5.3  Comparison of genetic algorithm with AODV

Using the same topology composed of 100 nodes, we have 
tested the performance of AODV using ns-2 simulator. Ten 
cases have been examined where we have fixed the source 
node and randomly chosen ten destination nodes. Figures 11 
and 12 depict the number of hop count and total delay for 
each case, respectively. We can observe that GA-TBR 
outperforms AODV in all cases except case#8; it proves 
the notion that have been discussed above that GA does 
not always provide the best answer. However, in all other 
cases GA-TBR shows outstanding performance with 28% 
improvement on average. In addition, in some cases such as 
case#1 GA-TBR shows 68% improvement.

6  Conclusion

Smart Grid communications network is composed of a 
numerous number of sensors and actuators. This network 
will carry diversified types of traffic, each has its own QoS 
requirements/constraints. Routing selection plays a key role 
in satisfying these constraints. In this work, we proposed 
a meta-heuristic technique for routing discovery of QoS 
aware TBR protocol in a WSN-Smart Grid environment. 
Genetic algorithm operations are used to explore new fea-
sible routes without sending an extra number of tickets. We 
validated mutated route using information stored in sensor 
nodes caches. Therefore, there are no extra routing messages 
overhead required for validating new routes (off springs) due 
to unicast traffic; this is a huge advantage of our approach 
compared to existing works. On the other hand, the results 
of genetic algorithm running time demonstrated that our pro-
posed method has minimum execution overhead. In addi-
tion, GA-TBR shows 28% average improvement compared 
to AODV and in some cases it shows 68% improvement.

The proposed enhancement on TBR protocol was tested 
on a network model that has fixed sensor nodes. It is an 
interesting and challenging problem to test our approach on 
mobile and dynamic environment. In addition, in this work, 
only the source sensor nodes applied the genetic algorithm, 
what if intermediate sensor nodes or even the destination 
sensor nodes would participate in this process? On the other 
hand, one of the limitations of this work is that we did not 
evaluate resource consumption of our proposed approach 
such as power and memory. So further evaluation is needed 
to assess our approach due to the usage of heuristic algo-
rithm which requires more processing and memory in the 
participate node.

Furthermore, although social network could help in pro-
moting the vision of smart grid, incorporating this type of 
open networks would lead to misinformation attack problem 
that could cause great damage to the smart grid (Pan et al. 
2017). As a future direction, we will investigate the perfor-
mance of GA-TBR under such attack.
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