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Abstract
In this paper, we develop a strategy that allows to optimize the typical deployment of sensors on a field and distribute the 
energy consumption of the wireless sensor network (WSN). This strategy is concerned with collecting information from the 
sensors more than the exact localization of a sensor. Therefore, we refer to the optimal placement of sensors, which meas-
ures in terms of distribution or density of sensors over regions, rather than its geographical location. Using this strategy we 
can maximize the network lifetime under the constraint that connectivity is preserved. Many applications such as border 
zone control (BZC), battle field surveillance, fire prevention/detection, etc., can employe the proposed strategy to achieve 
its missions. Here, two optimization problems are presented; one corresponds to short-term monitoring applications and the 
other corresponds to long-term monitoring ones. A mathematical analysis has been performed to find out a formula for the 
optimal placement of the sensor. To testify our work, a computer-based model is built using OpNet discrete event simulator. 
The results show that our optimization strategy outperforms the other proposed strategies. This is because the energy con-
sumption based on our strategy tends to be evenly distributed (i.e. resembles a uniform distribution) over the entire network.

Keywords  Wireless sensor network (WSN) · ZigBee · Sensor placement · Opnet simulator

1  Introduction

In recent years, wireless sensor networks (WSNs) are 
increasingly being used to ensure reliable monitoring and 
analysis of unknown and untested environments. WSNs con-
sist of collections of tiny disposable low-power unattended 
devices equipped with programmable computing, multiple-
parameter-sensing, and wireless communication capacity 
that can communicate either among each other or directly to 
a central base station (Al-Karaki and Kamal 2004; Kuorile-
hto et al. 2008; Swami et al. 2007). These collections can be 
used to measure ambient conditions and to monitor areas for 
object or event detection in many applications. Some of the 
most important applications are: border zone control (BZC), 
battlefield surveillance, fire prevention/detection, health care 
applications, environment monitoring, traffic control, etc.

Even though WSNs are being used in many situations and 
will become ubiquitous and indispensable as the Internet, 
they have significant operating constraints which open the 
opportunity to devise novel technical solutions (Al-Karaki 
and Kamal 2004; Rmer and Friedemann 2004). WSNs are 
limited in bandwidth, processing and storage capacities, but 
the most critical is the limitation in energy, which directly 
affects the network lifetime. In a traditional setting, each 
sensor is connected to the central base station by a wired 
connection. This connection is used to send signals con-
trolling the sensor, to supply energy to the sensors, and to 
receive the information from the sensor. However, in many 
cases, wired connections are difficult, expensive or even 
impossible to set up. In such situations, wireless sensors are 
the most viable solutions. These sensors must be designed 
in such a way that they are able to communicate with each 
other and with the base station. For example, in the case of 
BZC, we can envision a network consisting of hundreds to 
thousands of sensors which are deployed in a plane. How-
ever, BZC security is not feasible if the nodes placement 
needs to employ a deterministic deployment of sensors to 
achieve optimal placement (Toumpis and Tassiulas 2006). 
The sensor constraints combined with a typical deployment 

 *	 Ahmed Musa 
	 as.shorman@yu.edu.jo

1	 Department of Telecommunications Engineering, Yarmouk 
University, Irbid, Jordan

2	 Department of Electrical and Computer Engineering, UTEP, 
El Paso, TX 79968, USA

http://orcid.org/0000-0001-6364-1719
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-018-0868-2&domain=pdf


1390	 A. Musa et al.

1 3

of large number of sensors create many challenges to the 
management of WSNs. Consequently, innovative techniques 
that reduce energy inefficiency are essential (Sengupta et al. 
2013; Rawat et al. 2013).

In the design phase of the WSN, it is critically important 
to place the sensors and set up routing protocols to maintain 
connectivity and maximize the network lifetime (Barragan 
and Gonzalez 2008; Yoon et al. 2007). Since there is little 
control on the sensor placement, localization in WSNs has 
been extensively studied (Wang et al. 2008). However, since 
localization of the network services can consume precious 
energy resources, we could take a different stance. Here, we 
are more concerned about harvesting information from the 
sensors more than the exact localization of a sensor. Hence, 
we refer to optimal placement in the sense of the distribution 
or density of sensors over areas or regions, and not on plac-
ing sensors at specific geographical coordinates.

In this paper, we propose a strategy for the optimal place-
ment of sensors to maximize the network lifetime under the 
constraint that connectivity is preserved. In most WSNs, we 
cannot supply a sensor with energy. As a result, each sen-
sor has to rely on its original (limited) supply of energy for 
sensing, computing and communication operations. In some 
cases, it is possible to attach an additional energy source, 
like solar cells, to the sensor, but this may not be suitable in 
applications where dependence on environmental conditions 
(i.e., weather) is not desired. To testify our proposed strat-
egy, a computer-based model is built using OpNet discrete 
event simulator (riverbed.com 2017). A comparison shows 
that our optimization strategy outperforms the other strate-
gies or techniques. This is because the energy consump-
tion in the network using our strategy tends to be uniformly 
distrusted.

2 � Sensor placement and routing

In the following discussion, we assume the following char-
acteristics of the network:

1.	 Homogeneous sensors (same hardware and software 
features).

2.	 Fixed messages length and constant channel speed.
3.	 There are multiple paths from the sensors to the base 

station.
4.	 The flow of information is always towards the base sta-

tion.

In many practical cases, data collection is the principal 
purpose of a WSN. However, there are many applications 
where extracting the raw information from the network may 
be more valuable and/or human interpretation is legally 
required. Thus, a significant amount of work describing 

in-network collaborative signal and information process-
ing should be mentioned. Hence, we focus here on the case 
where sensors must communicate their results to the base 
station. For a wireless sensor, this implies sending a radio 
frequency (RF) signal which requires a certain amount of 
energy as well as processing information. In general, when 
an RF signal propagates through the air, its power (P) 
decreases with distance r as (P∕r2).

If we consider a fixed message length, L, and a constant 
channel speed , C, it results in a constant time, t0 , for the 
transmission of a signal. This implies that the energy den-
sity is directly proportional to the power. Thus, the energy 
change with the distance, r, is E∕r2 . So, to ensure that the 
signal is detected by the receiver, we must make sure that the 
signal energy density, ( E∕r2 ), must exceed some detection 
threshold d0 . In principle, it is possible to send the signals 
directly to the central base station. In this arrangement, a 
sensor located at a distance, r, from the base station must 
send signals of energy, E, for which the resulting density, 
(E∕r2) , must exceed the sensitivity level, db , of the base 
station (i.e., for which E∕r2 = db ). In this arrangement, the 
energy of each signal must therefore satisfy the inequality 
es ≥ E0 ≜ r2 ⋅ db.

Although the transmission range of the sensors is large 
and hundreds to thousands sensors in the network are con-
sidered, a reasonable size area is monitored, for instance, 
BZC applications. Thus, for the sensors whose distance r 
from the central station is reasonably large, the direct-to-
base-station arrangement requires a large energy E0 . Since 
each sensor has a limited supply of energy, this arrangement 
will drain the sensor energy really fast. To avoid this prob-
lem, it is better to set up communications in such a way that 
each sensor only sends low-energy signals. A sensor which 
is close to the base station can send the signal directly to it, 
but sensors which are further away from the base station can 
only send signals to other sensors as described in Fig. 1. In 
this scenario, the transmission range of two nodes is repre-
sented by a circle; one of them can transmit directly to the 
base station while the other sends the signal through other 
sensors. Furthermore, in many monitoring situations, it is 
necessary to transmit signals to the base station at a high 
speed. To achieve such a speed, the routed signals follow the 
shortest path from the sensor to the base station.

It is worth mentioning that each retransmission drains 
energy from the sensor and delays the signal. Hence, to 
speed up the communication and to maximize the life-
time of the sensor network, it is desirable to minimize 
the number of retransmissions. On the other hand, the 
shorter the distance covered by each retransmission, the 
more retransmissions are needed. Thus, to minimize the 
number of retransmissions, we must make sure that the 
distance is as large as possible, as depicted in Fig. 2. The 
retransmission distance is limited by the bounded energy 
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of the transmitted signal and by the limited ability of a 
sensor to receive signals from a distant sensor. The energy 
of the signal sent by a sensor is denoted by es . Accord-
ingly, the energy density of this signal that changed with 
distance r is es∕r2.

We define rb as the largest distance at which the signal 
sent by a sensor can be received by the base station. It is 
easy to see that es∕r2b = db . Hence, we can compute the 
communication range as rb =

√
es∕db . Similarly, the sen-

sors located at the distances larger than rb cannot directly 
reach the base station. Henceforth, their signals have to 
go first to intermediate sensors for retransmission. If ds 
denotes the minimal energy density at which the signal 
can be received by a sensor, then the largest distance rs at 
which the signal sent by a sensor can be received by other 
sensors is determined by rs =

√
es∕ds .

Based on this propagation model, we assume that all 
sensors within rb from the base station establish a direct 
link with the base station, while all sensors located 
beyond a radius rb transmit their signals to other sensors 
which are closer to the base station where the inter-sensor 
distance is approximately rs . This is illustrated in Fig. 3. 
The intermediate sensors should then re-transmit signals 
until they reach the base station, so that the end user can 
access the information.

3 � Formulation of the optimization problem 
and related work

Depending on the intended application, two possible formu-
lations of the problem are considered: short-term monitoring 
and long-term monitoring. In some practical situations, we 
are interested in reasonably short-term monitoring. In such 
situations, we know the intended duration of the monitoring 
period, T, and we aim at minimizing the cost of monitoring. 
The monitoring cost is defined as the overall number of sen-
sors N under the constraint that within the corresponding 
placement the sensors are guaranteed to function during the 
whole period T. In other situations (e.g., in border security), 
we are interested in long-term monitoring. In such situa-
tions, the existing resources do not allow deploy a sensor 
network that would guarantee to work for the entire intended 
duration period. Thus, the objective is then to maximize the 
network lifetime within the resource limitations because 
of the number of sensors. The resources limitations and 
energy consumptions in the WSN and their impact on the 
network lifetime have driven many studies, researches, etc., 
to enhance the network lifetime and performance (Toumpis 
and Tassiulas 2006; Zhao and Gurusamy 2008; Xu et al. 
2005; Yong et al. 2006; Cheng et al. 2004; Al-Karaki and 
Gawanmeh 2017). In summary, given N sensors, our goal 
will be to maximize the lifetime T of the network.

To solve the aforementioned optimization problems, we 
must therefore first provide models that illustrate the spa-
tial distribution of the sensors deployment. Constantly, we 
derive a representation of the total number of sensors N and 
the WSN lifetime T based on these models.

The primary aim of this paper is to derive optimal 
placement of sensor nodes over large geographical regions. 
The sensor placement can be characterized by describ-
ing the sensors density. In other words, for each spatial 
location x⃗ , we can describe the number of sensors in its 
neighboring area, by a density function 𝜌(x⃗) . Suppose we 

Fig. 1   Transmission range of sensors

Fig. 2   Increasing the distance covered by each retransmission

Fig. 3   Transmission and retransmission of signals
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spatially divide the region of deployment to cells, then the 
overall number of sensors N can be obtained by adding the 
number of sensors placed on these cells. As we decrease 
the size of the cells, we can express N as

The sensor network is active if at each location there are 
active sensors that can still detect the signals emerging at 
this location. Once at some location x⃗ all sensors exhaust 
their energy, signals generated at this location are no longer 
detected and thus the network is no longer 100% efficient. We 
define the lifetime T of a sensor network as the smallest life-
time of all the sensors which form this network (Schurgers 
and Srivastava 2001). If we denote the lifetime of a sensor 
at the location x⃗ by T(x⃗) , then T = minx⃗T(x⃗).

The main objective of the sensor network is to detect 
signals. Thus, to determine the sensor location, one must 
expect the number of signals generated at different loca-
tions. The optimization scheme utilized in this work is 
similar to those presented in Yang et al. (2016a) and Yang 
et al. (2015) . For instance in Yang et al. (2016b), multi-
stratum resource optimization (MSRO) was proposed 
to maximize radio coverage and meet the QoS require-
ment for cloud-based radio over optical fiber networks 
(C-RoFN). Yang et al. (2015) presents a novel cross stra-
tum optimization (CSO) architecture in elastic data center 
optical interconnection. The CSO architecture can allow 
global optimization and control across elastic optical net-
work and data center application stratum heterogeneous 
resources to implement the optical as a service (OaaS). In 
Yang et al. (2016a), the authors proposed a novel MSRO 
architecture with network functions virtualization for 
C-RoFN using software defined control.

Now, lets start by considering an idealized situation 
where a complete information about the signals is readily 
available. However, in realistic situation partial knowledge 
about sensor locations is available. Similarly, for the distri-
bution of sensors, the location of signals is also described 
by the corresponding density. Namely, it is assumed that 
for each spatial location x⃗ , we know the number 𝜌(x⃗) of 
RF signals (i.e., network packets) per unit area and per 
moment of time generated in the vicinity of this location.

The main drain on sensor energy is the signal trans-
mission. As was previously mentioned, all sensors in the 
network are assumed to have the same hardware char-
acteristics. They start with the same initial amount of 
energy and consume the same amount of energy in every 
transmission and retransmission. If Es denotes the initial 
amount of energy in a sensor, and es denotes the amount 
of energy required for a single transmission/retransmis-
sion, then each sensor can make Ns ≜ ES∕es transmissions/

(1)N = ∫ 𝜌(x⃗) ⋅ dx⃗

retransmissions during its lifetime. Note that Ns is an upper 
bound on transmissions/retransmissions that does not con-
sider acquisition and in-sensor processing. We made this 
simplification based on the predominance of the radio 
transmissions on energy consumption.

Now, if the sensor exhausts its battery power, it can no 
longer be able to transmit/retransmit signals. As a result of 
this inability, the signals generated in the vicinity of this 
sensor are no longer detected. Hence, to find out the lifetime 
T(x⃗) of a sensor, we must find out the number of signals per 
second S(x⃗) that this sensor can detect and/or retransmit. 
The lifetime can then be determined as the time after which 
the sensor performs Ns transmissions (i.e., T(x⃗) ⋅ S(x⃗) = Ns ). 
Thus,

To find the number S(x⃗) at a point (x⃗) , let’s first recall why we 
need retransmissions in the first place, and how retransmis-
sions are organized. For simplicity, let’s use the coordinate 
system, whose origin is the base station (i.e., the base sta-
tion coordinate is 0⃗ = (0, 0) ). The transmissions are coming 
from the signals generated in the direct vicinity of x⃗ (i.e., 
the area radius is rs ). The retransmissions are coming from 
all the sensors for which the path to the base station comes 
through location x⃗ . It is worth mentioning that some signals 
in transmission/retransmission process might be handled by 
other sensors in its vicinity.

The following analogy can visually clear the aforemen-
tioned description. If one places a source of light at the loca-
tion � (i.e., the base station), and assumes that the sensor 
located at a point x⃗ is solid and not transparent to this light, 
then the shadow of this sensor consists exactly of the points 
for which the shortest path to the base station passed through 
this sensor. In these terms, the number of transmissions and 
retransmissions performed by the sensor is equal to the total 
number of signals generated in the vicinity of this sensor 
and in the area of its shadow, see Fig. 4. In order to describe 

(2)T(x⃗) = Ns∕S(x⃗)

Fig. 4   Sensor at location x⃗ with its shadow
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this shadow in geometric terms, the shortest path on a plane 
is a straight line. Thus, the shortest path from an arbitrary 
location y⃗ to the base station � is a segment of the straight 
line connecting � and y⃗ . The points on this segment can be 
described by the expression 𝛽 ⋅ y⃗ where ��[0, 1] . The condi-
tion that this shortest path passed through the given sensor 
location x⃗ means that 𝛽 ⋅ y⃗ = x⃗ (i.e., y⃗ = 𝜆 ⋅ x⃗ for the value 
� = �−1 ). Since � ≤ 1 , we have � ≥ 1 . Vice versa, for each 
� ≥ 1 , the shortest path from a point y⃗ = 𝜆 ⋅ x⃗ to the base 
station � consists of all points 𝛽 ⋅ (𝜆 ⋅ x⃗) . In particular, for 
� = �−1 , this shortest path contains the location x⃗ of the sen-
sor under consideration.

Thus, in geometric terms, locations from which the short-
est path to � go through the point x⃗ have the form 𝜆 ⋅ x⃗ for 
� ≥ 1 . Based on this geometric analysis, one can evaluate the 
number of transmissions and retransmissions handled by a 
sensor at a location x⃗ . Let r⃗

def
= |x⃗| denote the distance from 

this sensor to the base station and � be a small angle covered 
by this vicinity. Now, if we start with the rs-vicinity of this 
sensor, we assume that all the sensors within this angle are 
at a distance �[r − rs

2
, r +

rs

2
] from the base station, see Fig. 5. 

The width of this region is approximately equal to � ⋅ r , its 
length is rs , and thus its area is � ⋅ r ⋅ rs . Since the sensors 
density in the vicinity of the location x⃗ is 𝜌(x⃗) sensors per 
unit area, there are n = 𝜌(x⃗) ⋅ 𝛼 ⋅ r ⋅ rs sensors in this region. 
These sensors must handle all the signals from the entire 
shadow area. The total number of these signals per second 
can be found by adding up all the signals generated in the 
area at different distances from the base station.

In a zone shown in Fig.  5, where the distances are 
between R and R + dR from the base station, the zone width 
and length are � ⋅ R and dR, respectively. Thus, its area is 
given by � ⋅ R ⋅ dR . This area includes a point on the same 
axis as our original sensor (i.e., a point with coordinates 
x⃗ ⋅ (R∕r) ). In the vicinity of this point, the number of sig-
nals generated per area and per unit of time is equal to 
𝜌s(x⃗ ⋅ (R∕r)) . Thus, within the entire zone between distances 
R and R + dR , 𝜌s(x⃗ ⋅ (R∕r)) ⋅ 𝛼 ⋅ R ⋅ dR signals are generated 
per unit time. The total number St of signals generated per 

unit time can be obtained by adding up the amounts from 
all these zones. Thus, based on this model, this number can 
be computed as

Here, n = 𝜌(x⃗) ⋅ 𝛼 ⋅ r ⋅ rs sensors process S signals per unit 
time. Thus, every moment of time, a sensor processes on 
average S(x⃗) = St∕n signals. Substituting the expressions for 
n and S into this formula, we can conclude that

Dividing both numerator and denominator by � , we con-
clude that

With respect to the sensor lifetime T(x⃗) , once we know the 
average number of signals S(x⃗) , we can then determine this 
sensor′ s lifetime as T(x⃗) = Ns∕S(x⃗) . So, the above formula 
for S(x⃗) leads to

Finally, the lifetime T of a network can be determined as the 
smallest of the sensors lifetime T = minx⃗T(x⃗) . Substituting 
(3) into this formula, we conclude that

In summary, we arrive at the following formulations of the 
sensors placement problem:

•	 The first problem: given the lifetime T (described by 
Eq. 4), we must minimize the overall number of sensors 
N (as described by Eq. 1).

•	 The second problem: given the overall number of sensors 
N, we need to maximize the lifetime T.

3.1 � Solution to the first problem

The first optimization problem is corresponding to short-
term monitoring applications, where the monitoring time T 
is given. The lifetime of every sensor should be equal to the 
monitoring time. Let’s show that all sensors must have lifetime 
T ∶ T(x⃗) = T . The main requirement here is that all sensors 

St = ∫
∞

r

𝜌s
(
x⃗ ⋅ (R∕r)

)
⋅ 𝛼 ⋅ R ⋅ dR

S(x⃗) =
∫ ∞

r
𝜌s
(
x⃗ ⋅ (R∕r)

)
⋅ 𝛼 ⋅ R ⋅ dR

𝜌(x⃗) ⋅ 𝛼 ⋅ r ⋅ rs

S(x⃗) =
∫ ∞

r
𝜌s
(
x⃗ ⋅ (R∕r)

)
⋅ R ⋅ dR

𝜌(x⃗) ⋅ r ⋅ rs

(3)T(x⃗) =
Ns ⋅ 𝜌(x⃗) ⋅ r ⋅ rs

∫ ∞

r
𝜌s(x⃗ ⋅ (R∕r)) ⋅ R ⋅ dR

(4)T = min
x⃗

Ns ⋅ 𝜌(x⃗) ⋅ r ⋅ rs

∫ ∞

r
𝜌s(x⃗ ⋅ (R∕r)) ⋅ R ⋅ dR

Fig. 5   Vicinity r
s
 of the sensor x⃗
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must be active during the period of time T. This means that at 
every possible sensor location x⃗ , we must have T(x⃗) ≥ T . If at 
some location x⃗ , we have T(x⃗) > T . This means that at the end 
of the monitoring period T, the sensors located at the vicin-
ity of x⃗ are still have the remaining energy. So, fewer sensors 
could have been placed in the vicinity of the location x⃗ and still 
provided monitoring for the required period of time. Hence, 
the situations with T(x⃗) > T  are not optimal. In the optimal 
sensor placement, all the sensors must indeed have exact same 
lifetime T ∶ T(x⃗) = T . Therefor; using (3) we have

Using (6), we get an explicit expression for the desired den-
sity of sensors 𝜌(x⃗)

3.2 � Solution to the second problem

Here, we present the solution to the second optimization prob-
lem which corresponds to the long-term monitoring applica-
tions (e.g., BZC). Let’s assume that in the optimal sensor 
placement, for two different sensor locations x⃗ ≠ y⃗ , the corre-
sponding sensors have different lifetimes T(x⃗) ≠ T(y⃗) . Without 
loss of generality, we can assume that T(x⃗) < T(y⃗).

The network is efficient if all the sensors are active. Thus, 
after the time T(x⃗) , the sensor network is no longer efficient. 
Since T(y⃗) > T(x⃗) , the sensors located at the vicinity of y⃗ still 
have remaining energy. This would mean that the sensors 
located in the area around y⃗ are under-used. This is because 
there are fewer transmissions and retransmission in this area 
than in other places. Thus, if possible, we could re-distribute 
some of these sensors to other areas. This will increase the 
lifetime of all other sensors and the overall lifetime of the 
WSNs too.

It is worthy notice that the situations with T(x⃗) ≠ T(y⃗) are 
not optimal. Henceforth, in the optimal sensor placement, all 
sensors must have T(x⃗) = T(y⃗) for some T. To derive the solu-
tion to the second optimization problem, similar arguments 
as in the first optimization one will lead to the same solution 
(Eq. 5). The only difference is that in the first optimization 
problem, we knew the lifetime T of all sensors. However, in 
the second optimization problem T is unknown. To find T, we 
must use the fact that we are given the overall number of sen-
sors N. As a result, we can conclude that

(5)T(x⃗) =
Ns ⋅ 𝜌(x⃗) ⋅ r ⋅ rs

∫ ∞

r
𝜌s(x⃗ ⋅ (R∕r)) ⋅ R ⋅ dR

= T .

(6)𝜌(x⃗) =
T

Ns ⋅ r ⋅ rs
⋅ ∫

∞

|x⃗|
𝜌s(x⃗ ⋅ (R∕r)) ⋅ R ⋅ dR.

N = ∫ 𝜌(x⃗) ⋅ dx⃗

= ∫
T

Ns ⋅ |x⃗| ⋅ rs

(

∫
∞

|x⃗|
𝜌s(x⃗ ⋅ (R∕r)) ⋅ R ⋅ dR)

)

Constant factors T, Ns , and rs can be moved outside the inte-
gral. We can define r0N0 = N , where r0 =

T

Ns

rs and

Now, by substituting r0 =
N

N0

 into (6), we find that the opti-

mal distribution for the sensor placement is

where N0 is determined by (7).

3.3 � Discussion on the solution to the optimization 
problems

It is worth mentioning that for the second optimization 
problem, the optimal sensor placement depends only on the 
non-homogeneity of the signal distribution. For example, if 
we double the number of signals (i.e., the function 𝜌s(x⃗) is 
replaced by 2 ⋅ 𝜌s(x⃗) ), then the integral for 𝜌s(x⃗) in (7) will 
double. In addition, the value N0 in the denominator will also 
double. As a result, the optimal sensor density will remain 
the same. The same observation is true if we multiply the 
original density function 𝜌s(x⃗) by an arbitrary factor. Fur-
thermore, we can observe the same if we replace the origi-
nal density function 𝜌s(x⃗) with another density function for 
which the overall number of signals per unit time is 1 (i.e., 
∫ 𝜌s(x⃗) ⋅ dx⃗ = 1).

For the first optimization problem, if we increase the val-
ues of the signal density by a factor of � , then the resulting 
values of the optimal sensors density will also multiply by 
the same factor. Once we have found the general formulas 
for the optimal sensor placement, we can start with the anal-
ysis taking into account information regarding the location 
and distribution of the signals.

4 � Optimal sensor placement 
under uncertainty

In the previous section, the solution to the optimal sen-
sor placement problem was described under the idealized 
assumption (i.e., the signal distribution 𝜌s(x⃗) is known). 
Practically, we rarely know the signal distribution. Usu-
ally, in many cases we only know the area where the sig-
nal is located. Henceforth, to solve the sensor placement 
problem, we utilize the maximum entropy approach (Jaynes 
and Bretthorst 2003; Chokr and Kreinovich 1994). Now, we 
know how to compute the optimal sensor placement for each 
signal density 𝜌s(x⃗) . In the case of uncertainty, we only have 

(7)N0 ≜ �
1

|x⃗|

(

�
∞

|x⃗|
𝜌s(x⃗ ⋅ (R∕r)) ⋅ R ⋅ dR)

)

(8)𝜌(x⃗) =
N

N0 ⋅ |x⃗|
⋅ ∫

∞

|x⃗|
𝜌s
(
x⃗ ⋅ (R∕r)

)
⋅ R ⋅ dR
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partial information about the signal density. In other words, 
instead of having a single density function consistent with 
our knowledge, we might have many functions which are 
all consistent with our incomplete knowledge. In this case, 
a reasonable approach is to select the most appropriate rep-
resentative density function, and to place the sensors based 
on this selection.

4.1 � Maximum entropy approach

Maximum entropy approach was started by P. Laplace. The 
simplest situation is when we have finitely many (n) alterna-
tives and we have no information about their probabilities. 
This simple situation is invariant with respect to the arbitrary 
permutations of the original alternatives. So, it is reason-
able to select the probabilities which reflect this symmetry 
(i.e., equal probabilities p1 = ⋯ = pn ). Since the total prob-
ability 

∑pn
i=1

pi must be equal to 1, it can be concluded that 
p1 = ⋯ = pn =

1

n
 . This idea is called Laplace principle of 

indifference.
The Laplace’s simple idea can be naturally applied to our 

uncertainty problem where several possible distributions are 
consistent with our knowledge. In this case, it is reasonable 
to view these distributions as equally probable alternatives. 
The variables are discretized to make sure that the overall 
number of alternatives is finite. As the discretization con-
stant tends to 0, we can get the distribution of the class of all 
non-discretized distributions.

Ultimately, only one distribution with a probability of 
1 will result. This is the distribution which has the largest 
possible value of the entropy Se

def
= − ∫ 𝜌s(x⃗) ⋅ ln(𝜌s(x⃗)) ⋅ dx⃗ , 

where 𝜌s(x⃗) denotes the probability density function, for fur-
ther details see Klir (2005).

It is known that for a given set A, among all distribu-
tions located on this set, the entropy is the largest when this 
distribution is uniform. So, the maximum entropy approach 
means that the signals are uniformly distributed on the area 
A. In other words, it is assumed that different locations may 
generate the exact same number of signals per second. This 
assumption makes sense since we know nothing about the 
difference between the sensors at different locations.

4.2 � Derivation of the problem and resulting 
formula

We would like to describe how the aforementioned assump-
tions translate into the exact expression for the optimal sen-
sor placement. We firstly need to decide how to represent 
the domain A. For simplicity, we assume that the region 
A is convex and bounded. In this case, for each point x⃗𝜖A 
the straight line segment going from the origin � towards 
this point (and further) intersects with the boundary of A at 
exactly one point. We denote the distance from this point to 

� by RA(x⃗) , see Fig. 6. Once we know the values RA(x⃗) for 
different locations x⃗ , we can uniquely reconstruct the border 
of the area A independently of its shape and area. These 
values can be used to represent the area A. Here, (7) leads to

where the normalization constant N0 can be determined from 
the condition 𝜌s(x⃗) = 1.

As an example, we can apply our work if we assume that 
the area is circle C of a radius RC . In (9), RA(�) is equal to 
RC for all � . Plug this formula into (7) will give

where r = |x⃗|.
Now, the normalization condition leads to

given that N0 =
2

3
� ⋅ R3

C
.

In spite of the uniform distribution of signals, we have a 
denser distribution of sensors closer to the base station. This 
is actually very reasonable: while sensors on the periphery 
only need to transmit their own signals, the sensors near the 
center also need to retransmit a lot of other signals. As a result, 
they lose energy faster and so we need more of them. Further-
more, to optimize the number of those sensors our proposed 
strategy can incorporate with more complex protocols to track 
the energy status of each sensor to overcome the energy hole 
problem. The protocol is iterative and in each round the energy 
status of the sensors is assessed. As a result, sensors with low 
energy are excluded and then the next iteration works on the 
sensors that are still having suitable amount of energy for 

(9)𝜌s(x⃗) =
N

2N0 ⋅ |x⃗|
⋅ (R2

A
(x⃗) − |x⃗|2)

𝜌s(x⃗) =
N

2N0 ⋅ r
⋅ (R2

C
− r2)

∫ 𝜌(x⃗) ⋅ dx⃗ = ∫
RC

0

𝜌(r⃗) ⋅ 2𝜋r ⋅ dr

= ∫
Rc

0

𝜋 ⋅ N

N0

(R2

C
− r2)dr =

𝜋 ⋅ N

N0

⋅

2

3
⋅ R3

C

Fig. 6   Reconstruction of the border of area A 
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transmission/retransmission process. Therefore, the strategy 
proposed in this paper is applied to the list of energy-suitable 
sensors to ensure the network connectivity. This will give our 
proposed strategy to work with a more general protocols.

5 � Simulation using OPNET

The simulation is illustrated using OPNET modeler release 
14.5 simulator. This simulator contains a ZigBee model that 
complies with the accorded ZigBee specifications (Zigbee.org 
2017). The routing protocol used by the network layer is an 
ad-hoc on-demand distance vector (AODV). In order to find 
the destination device, it broadcasts out a route request (RREQ) 
to its neighbors. The neighbors then broadcast the RREQ to 
their neighbors and so on until the destination is reached. Once 
the destination is reached, it sends its route reply (RREP) via 
unicast transmission following the lowest cost path back to the 
source. Once the source receives the RREP, it will update its 
routing table for the destination address with the next hop in 
the path and the path cost.

For the simulation, once the network model is specified, the 
process model needs to be configured in the process editor. In 
the ZigBee 802.15.4 MAC Layer process model a data rate of 
250 kbps is specified, the channel sensing duration and packet 
reception power Threshold are left as default values. The ACK 
mechanism is set to disabled since the acknowledgments are 
considered in the Control Traffic not in the Data Traffic. The 
Data Traffic is the parameter implied in this study to compare 
the use of different nodes.

We can modify the parameters in the base station attributes. 
Here, the coordinates of the base station can be selected. In 
the MAC parameters, the CSMA/CA parameters are set to 
default settings, (i.e., the minimum backoff exponent is 3 and 
the maximum number of backoffs is 4). In the physical layer 
parameters, the 2450 MHz band is enabled, corresponding 
to the MICAz mote specifications (Alkaline Technical Infor-
mation 2017; Crossbow Technology Inc. 2011). The transmit 
power is set to 0.4 mW. This will enable the outdoor range to 
reach 100 m. The transmission power and reception power are 
considered the same. In the network parameters, the Beacon 
Enabled Network is disabled, this characteristic is not sup-
ported by the ZigBee model suite. Mesh routing is enabled to 
perform better than tree-based routing. This has been proven 
by several studies. The route discovery timeout is equal 10 s 
and the packet size is 1024 bits.

5.1 � Simulation output parameters

Even though there are several available statistics we can col-
lect in Modeler, in this study only the following measure-
ment will be considered:

•	 Total data traffic received: represents the total traffic 
received by the MAC from the physical layer in bits/s. 
This includes the retransmissions.

•	 Total data traffic sent: traffic transmitted by all the 
802.15.4 MACs in the network in bits/s. While comput-
ing the size of the transmitted packets for this statistic, 
the physical layer and MAC headers of the packet are 
also included. This statistics include all the traffic sent 
by the MAC via CSMA/CA.

•	 Data traffic received per node: traffic received by the 
MAC from the physical layer in bits/s. This includes the 
retransmissions.

•	 Data traffic sent per node: traffic transmitted by the MAC 
in bits/s.

Considering these information, it is possible to calculate 
the energy consumption in each sensor node comprising the 
network. This means that the sensor energy resources are 
being drained. It is important to clarify that the considered 
energy consumption refers only to the energy used to send 
and receive information, in other words, the energy for com-
munications among sensors and the base station. The energy 
consumed in data processing and storage is not taken into 
account in this analysis. Having the energy consumption in 
each sensor, the distribution of the energy consumption in 
the entire network can be observed for each scenario. Then, 
we can determine which scenario will offer the longest 
lifetime.

5.2 � Scenarios

Here, we consider two different scenarios

1.	 Scenario A (120_Randomized_Placement): This sce-
nario follows a randomized deployment describe in 
Agrawal (2017). Here, the sensors are randomly placed 
over a circle with a radius of 250 m, see Fig. 7. As one 
can observe, the sensor nodes are spread and taking into 
account the presence of nodes in the whole area. This 
means that the sensors follow a semi-uniform deploy-
ment, but not necessarily in exact coordinates according 
to a grid. This scenario covers approximately a circular 
area of 196,350 m 2.

2.	 Scenario B (120 Optimal_Placement): This scenario is 
corresponding to the proposed approach. It follows the 
optimal sensor placement distribution formula obtained 
in (9). As displayed in Fig. 8, the sensors are deployed 
over a circle with a radius of 250 m. The coverage in this 
scenario is similar to that of Scenario A.

Here, the proposed approach, scenario B, will be sim-
ulated to compare with the upper and lower bounds. The 
upper bound is achieved when full information about the 



1397A new strategy to optimize the sensors placement in wireless sensor networks﻿	

1 3

WSN is available including the full capacities of links. 
Du et  al. (2017) achieve upper bound by transforming 
the network lifetime maximization into a maximum flow 
problem with cardinality constraint along with vertex 
capacity constraints. This transformation may lead to high 
optimization complexity and exchange more information 
which generates high traffic load and thus more energy 
consumption. However, the lower bound which produces 

when the nodes are randomly distributed (uniform place-
ment) requires no information about the network. Our 
proposed strategy assumes only information about the sen-
sors residual energy. Hence, it will outperform the lower 
bound and in the meanwhile it is less complicated and 
requires less information than the upper bound case. The 
best upper baseline is achieved when the nodes are lined 
up as shown in Fig. 9. In this figure if we assume that Cij , 
where i denotes the path and j denotes the hop number, 
represents the probability of successful packet delivery 
over hop j in path i. Here, if n6 needs to reach the base sta-
tion, it can go through path1:n1 ⟶ n2 ⟶ ⟶ BS or it 
can take an alternative path using our strategy as follows 
path2 ∶ n6 ⟶ n4 ⟶ n2 ⟶ BS . The average number 
of transmission/retransmission to reach the destination via 
pathi is given by

It is worth notice that to achieve successful transmission/
retransmission to reach the destination using path2 will be 
greater than that of path1. However, path1 will be faster than 
path2 as the distance between adjacent nodes is less that 
leads to increase the link capacity between adjacent nodes. 
Unfortunately, the faster path (i.e., path1) will have higher 
delay due to nodes processing time. For instance, if the node 
takes � time to process the data then the processing times of 
path1 and path2 will be 6� and 3� , respectively. Accordingly, 
in the illustrative example, our proposed strategy, Scenario 
B, tends to use path2 instead of path1 as it tends to use the 
nodes placed at a very further distance that is still hear the 
precedent node.

5.3 � Results and discussions

Comparing both scenarios A and B, one can see that Scenario 
A shows medium level energy consumption. In this scenario, 
the sensors are deployed in a semi-random fashion because 

(10)PathCost =
∑

j

1

Cij

Fig. 7   Scenario A: 120 randomized placement

Fig. 8   Scenario B: 120_optimal_placement

Fig. 9   Illustrative example to show alternative paths to reach BS
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the nodes are not assigned an exact coordinate. In addition, 
The sensors still need to ensure connectivity in the network 
by deploying them in such a way that they cover all the sensed 
area. The randomized placement does not follow a regular 
grid, therefore; the nodes can be spread from a helicopter or 
implementing using other techniques. However, it is not easy 
to ensure this distribution of sensors (Tsai et al. 2008). Fig-
ure 10 shows the energy consumption per node in Scenario 
A. The total energy in the plot is 8.43 J. However, Scenario 
B shows competitive energy consumption compared to other 
approaches. It consumes less energy per node than Scenario 
A as depicted in Fig. 11. The total energy in the plot is 9.88 J.

According to the mathematical analysis, the sensor 
placement using Scenario B offers several advantages 
over Scenario A. First, the connectivity is ensured in the 

network and the final optimal sensor placement formula 
can be easily manageable to change the number of sensors. 
Second, Scenario B distributes the energy more evenly 
than Scenario A. This means that the nodes in the network 
are draining their energy accordingly, thus, there are fewer 
nodes consuming a lot of energy and fewer nodes consum-
ing a little energy, as seen in Scenario A.

Table 1 lists the energy consumption per node for both 
Scenarios A and B. Comparing the energy consumptions 
one can easily observe that Scenario B is more uniformly 
distributed than Scenario A. Moreover the energy distri-
bution in Scenario B is the most uniformly distributed. In 
Scenario A, the energy consumption goes from 0.018 to 
0.137 J and in Scenario B the energy consumption goes 
from 0.044 to 0.124 J.

6 � Conclusion

A new strategy to optimize the placement of sensors over 
a field in order to overcome the energy constraint problem 
presents in the WSNs was proposed. The placement of 
the sensors directly affects the performance of the net-
work and the routing efficiency, and we have to ensure 
connectivity and maximize the network lifetime. Two opti-
mization problems corresponds to short-term monitoring 
and long-term monitoring applications were presented. 
A mathematical analysis is carried out and tried under 
several cases, until finally; a solution is given to each one 
of them. In addition, two scenarios differ in the distribu-
tion of the sensors and the coverage areas were illustrated. 
The results show that the proposed approach, Scenario 
B, counts with advantages over the other and is the most 
suitable for different applications. One of the advantages 
of employing the proposed optimal placement of sensors, 
Scenario B, over Scenario A is that the energy consump-
tion in our approach tends to be evenly distributed over the 
whole network. Ultimately, the propose optimal placement 
of sensors extends the network lifetime. As a future work, 
the WSNs performance can be enhanced if some schedul-
ing algorithms and routing techniques are incorporated 
with the proposed strategy. Furthermore, this incorpora-
tion will certainly incense the proposed strategy capability 
to overcome the energy hole problem.

Fig. 10   Energy consumption per node in Scenario A

Fig. 11   Energy consumption per node in Scenario B

Table 1   Standard deviation (J)  Scenario Sim 1 Sim 2 Sim 3 Average

A: 120_Randomized_Placement 0.02981946 0.03153797 0.03094974 0.0307690
B: 120_Optimal_Placement 0.02513596 0.02636391 0.02100138 0.0241670
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