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Abstract
We report our research progress on interactive evolutionary computation (IEC). Following description of IEC features, we 
present our research on IEC user modeling, acceleration of IEC search, several IEC frameworks, evolutionary multi-objective 
optimization with IEC, and IEC for human science. IEC research is categorized into three fields in general; major part of IEC 
papers is IEC application-oriented research; almost all the others are research that aims to reduce IEC user fatigue; and very 
little work researches the use of IEC for human science. In particular, IEC is a data analysis and processing method and tool 
for the discovery of human psychological and physiological knowledge. We include several of our IEC application-oriented 
research projects in this paper, and focus on two other research directions, i.e., IEC algorithm research to reduce user fatigue, 
and IEC for human science research.

Keywords Interactive evolutionary computation · Human model · Acceleration of evolutionary computation · Human 
science · Optimization

1 Introduction

Interactive evolutionary computation (IEC) is a method 
framework of systemic optimization that uses a real human’s 
subjective evaluation in its optimization process. There are 
many tasks whose performances are difficult to measure or 
almost impossible to be quantified by machine, but can be 
evaluated by human beings. In some practice problems of 
real-world systemic optimization, it is difficult to design 
a fitness function that simulates a real human’s subjective 
evaluation, therefore, we use a real human to replace the 
fitness function in order to make the problem converge to 
subjective evaluation of a real human.

The IEC shown in Fig. 1 can optimize such tasks by 
involving a human user in an IEC optimization loop. The 

optimization framework of IEC has three parts, an IEC 
algorithm (including IEC interface), a real human, and an 
optimized target system. Research on the three parts of IEC 
correspondingly gives rise to three directions of IEC studies.

1. IEC algorithm study for reducing user fatigue;
2. human psychological and physiological study using IEC, 

i.e., IEC for human science research; and
3. real-world optimization application using IEC, i.e., 

application-oriented research of IEC.

The first study direction of IEC is the research on its algo-
rithm. The main issue of IEC is the user fatigue problem 
when a real human gives fitness to an IEC algorithm. The 
objective of IEC algorithm research makes sure that IEC 
can be applied in real-world applications without serious 
user fatigue. The user fatigue problem occurs in the process 
of IEC optimization, when a real human needs to repeat-
edly give feedback to an IEC algorithm from his/her subjec-
tive evaluation. This does not occur in computer evaluation 
processes. This problem restricts the application of IEC 
optimization.

The second study direction is the human psychological 
and physiological research using IEC, i.e., IEC for human 
science research. The philosophy of this research lies in the 
subjective evaluation of IEC coming from a real human’s 
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psychological and/or physiological characteristics. When an 
IEC algorithm converges to the real human’s characteristics 
in its optimization process, we can use IEC optimization 
data to analyse these psychological and/or physiological 
characteristics to obtain new and unknown knowledge or 
indexes. From this view, IEC can be considered as a data 
analysis and processing tool for human related research, 
especially for discovering psychological and/or physiologi-
cal knowledge about humans.

The third study direction of IEC is regarding its real-
world application research in practice. This research includes 
three aspects. One is the art innovation applications, these 
include computer graphics, music design, clothing design, 
and architectural design. Another is engineering applica-
tions, these include image and audio processing, robot con-
trol, data mining, and software design. The rest are vari-
ous other IEC-based applications, these include education, 
games, etc. Reference (Takagi 2001) makes a summary of 
these IEC research projects.

From the later part of the 1980s until now, the research 
fields and application practices of IEC have been enriched 
and perfected. On conducting an investigation in SCOPUS 
database to find papers on IEC, we found that the number 
of IEC papers increase from 2000 to 2017 (see Fig. 2). We 
use the keywords1 to investigate the number of IEC papers, 
the total number of which was 1267 during 1980 to 2017. 
The rate of increase of IEC papers from 2000 to 2017 is 
about 1.10 per year, which is as the same as that of papers 
on evolutionary computation (EC), whose rate of increase is 
about 1.12 (retrieved in Apr. 2018). This indicates that IEC 
is a perspective study topic in the evolutionary computation 
research community.

This paper firstly investigates the characteristics of IEC 
in Sect. 2, and the humans model used in IEC algorithm 
research and its research issues in Sect. 3. In addition, we 
briefly introduce the latest research philosophies and meth-
odologies of three research directions and aspects of IEC. 
Based on these introductions and summaries, we present 
future research issues and concrete research methods. In IEC 
algorithm research, improving the convergence of the IEC 
algorithm is one of the solutions to the user fatigue problem. 
Besides improving the IEC user interface, allowing the user 
participation in IEC search, and using machine learning to 
design a better human model, we emphasize and introduce 
the three research directions and methods in Sect. 4, Sect. 5, 
and Sect. 6, respectively. The first of these is the accelerat-
ing algorithm convergence of IEC, second is developing a 
new IEC algorithm and its optimization framework, and the 
third is multi-objective IEC. This is a perspective research 
issue and method that uses IEC to investigate psychological 
and/or physiological characteristics of humans in human sci-
ence. We present several research works on this topic, and 
introduce the research philosophy, methodology, and results 
on IEC for human science in Sect. 7. Finally, we make a 
conclusion of the whole work in Sect. 8.

2  Characteristics of interactive evolutionary 
computation

Optimization with human’s subjective evaluation is a pri-
mary characteristic of IEC. From the optimization frame-
work viewpoint, any EC algorithm has its IEC version 
when the fitness function is replaced with a real human’s 

Target System

Interactive
Evolutionary 
Computation

subjective evaluation

IE
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Fig. 1  An optimization framework of interactive evolutionary compu-
tation (IEC), it includes an IEC algorithm (including interface), a real 
human, and an optimized target system in general
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Fig. 2  IEC papers published in each year from 2000 to 2017, the rate 
of increase of IEC papers is about 1.10 per year. The data is retrieved 
from SCOPUS database in Apr. 2018

1 The key words are (“interactive evolution” OR “interactive genetic” 
OR “interactive evolutionary” OR “interactive differential evolution” 
OR “interactive swarm” OR “interactive PSO” OR “interactive ACO” 
OR “interactive ABC”)
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evaluation. Several EC techniques are used in IEC, such 
as interactive genetic algorithms (IGA) (Dawkins 1986), 
interactive genetic programming (Sims 1991), interactive 
evolution strategy (Herdy 1997), human based genetic 
algorithm (Kosorukoff 2001), interactive particle swarm 
optimization (Madar et al. 2005), interactive differen-
tial evolution (IDE) (Takagi and Pallez 2009), etc. It is 
necessary to understand the characteristics of IEC when 
studying IEC algorithms and/or applying IEC to a certain 
application, so that the proper IEC algorithm can be cor-
rectly applied. Concretely speaking, IEC has the follow-
ing characteristics.

1. optimization using IEC algorithm needs less individuals 
and less generations to obtain the optimum;

2. it is hard to obtain the global optimum, and the global 
optimal solution in IEC is not unique;

3. the fitness of IEC is a relative and discrete value; and
4. the fitness of IEC has noise.

Because IEC optimization uses a real human’s subjective 
evaluation, user fatigue will increase along with increas-
ing individual number and evaluation generation times. 
It is necessary to design an IEC algorithm with less indi-
viduals and less generations. It is a promising research 
direction and solution to establish a human model using 
machine learning techniques, and use the relations of 
search variables and their fitness to replace a real human’s 
evaluation.

If a real human cannot distinguish the difference 
between two individuals, the individuals are considered 
the same or almost same when we conduct an IEC evalu-
ation. This is the reason that it is hard to obtain the global 
optimal solution in IEC optimization, and the global opti-
mum is not unique.

The fitness of IEC optimization is a relative value 
because the fitness comes from the comparisons of indi-
viduals. If the fitness in IEC optimization is an absolute 
and continuous value, the fitness of an individual will have 
a worse value in the earlier generations, and will have a 
better value in the later generations. Absolute and continu-
ous fitness value of IEC reduces the selective pressure of 
the IEC algorithm so as to influence convergence of the 
IEC algorithm.

The fitness value of IEC optimization is discrete, i.e., 
there are five or seven discrete values as input of IEC fit-
ness value. This evaluation method ignores the real differ-
ence of solutions, so the fitness of IEC optimization has 
noise. Because IEC evaluation cannot avoid noise, the IEC 
algorithm, which is sensitive to noise, will lead to poor 
evaluation performance and result. Therefore, the IEC 
algorithm that is sensitive to the noise should have a noise 
filter processing to improve its optimization capability.

3  Human model used in algorithm research 
of interactive evolutionary computation

3.1  Design philosophy of human model

It is very important to simulate IEC optimization in 
IEC algorithm research. Although the final stage of IEC 
research is its application to a specific, concrete prob-
lem, it is not suitable to use a real human to evaluate IEC 
algorithm in its research and investigation stage. When 
we need to multiply running results of IEC evaluation to 
obtain a statistical conclusion of the IEC algorithm, the 
real human’s evaluation is not reliable and repeatable. The 
human model of IEC algorithm can replace the real human 
to obtain reliable and repeatable evaluations. With regard 
to statistical tests in IEC algorithm evaluations, the Wil-
coxon signed-rank test (Wilcoxon 1945) is usually used 
in two IEC algorithms’ comparison, and the Friedman 
test (Friedman 1937) and the Bonferroni-Dunn procedure 
(Dunn 1958) are involved in multiple IEC algorithms’ 
ranking and comparison.

The IEC algorithm research needs the simulation of 
human evaluation. These simulations are implemented 
by designing a human model. When we design a human 
model for IEC algorithm research, we need to consider 
the characteristics of IEC optimization, e.g., fitness being 
a relative and discrete value, etc. In a common EC algo-
rithm, if we change the fitness function to that with the 
discrete value, it is a method for designing a human model 
to simulate IEC optimization. Concretely speaking, in 
the process of IEC optimization, we divide a continuous 
search range of fitness into n levels averagely to implement 
the relative and discrete fitness value. If IEC optimization 
requires an elite strategy, we can choose one of individu-
als, whose fitness is in the first level of fitness range.

Designing a human model for IEC algorithm research, it 
demands some special considerations, such as in recurrent 
IEC research, where the Gaussian mixture model (GMM) 
has been used as a human model (Pei and Takagi 2013a). 
The design philosophy of GMM depends on the following.

1. model’s fitness landscape should be simple;
2. model should be multi-modal;
3. model has a big valley structure in the whole scale; and
4. complexity and shape of the model should be controlled 

by tuning some parameters.

In a certain range of evaluation for a human user, he/she 
cannot distinguish the better or worse of the solutions, so 
the human model should be relatively simple. The user of 
IEC optimization will give the same evaluation to the solu-
tions, such as image, audio, and other evaluation objects, 
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although the design parameters (search variables) are dif-
ferent. Therefore, the human model should be designed 
as a multi-modal function. The user of IEC optimization 
can obtain a satisfactory solution after a few generation 
evaluations, so the human model should be a big valley 
structure in the whole range view (see Fig. 3). For different 
applications, the fitness landscape needs to be tuned to be 
adaptive to a variety of such applications, so the complex-
ity and shape of human model should be controlled by 
tuning some parameters. Fig. 3 gives an example of GMM, 
its parameter design is in Eq. (1). Fig. 3 presents a three 
dimensional GMM landscape. In the common condition, 
the designed parameters should be controlled less than 
ten, the parameter search variable range (x) of this GMM 
is [−5.12, 5.12].

where

It is the fundamental difference between common EC and 
IEC that the fitness of IEC has relative and discrete charac-
teristics. The human model of IEC can support a relative fit-
ness value rather than an absolute value. Its implementation 
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lies in the separation of the fitness values into n level dis-
crete values, e.g., from one to five levels. Compared with the 
common EC algorithm, it needs an accurate and continuous 
fitness value.

3.2  Training of human model

From the systemic viewpoint of the evaluation in IEC opti-
mization, user input is the optimized parameters (in param-
eter space), and the output is subjective evaluations. We 
can establish this input-output relation with a mathemati-
cal model so as to analyse the human model to obtain the 
knowledge of a certain IEC user. At the same time, we can 
use such human model to help the IEC algorithm search to 
accelerate its search convergence. There are three primary 
modeling methods to establish a human model for IEC algo-
rithm research. They are the case reasoning-based human 
model (Machwe and Parmee 2009), neural network-based 
(NN) human model (Ohsaki and Takagi 1998), and fuzzy 
system-based human model (Kamalian et al. 2006).

3.2.1  Case Reasoning‑based Human Model

In the case reasoning-based human model, it is easy to cal-
culate the distance between designed variables in parameter 
space so as to obtain the differences of a new solution and 
searched solutions (Machwe and Parmee 2009). However, in 
a specific IEC-based optimization application, the influences 
of designed parameters are not equal. Because the relation 
of fitness and designed parameters is not linear, the influ-
ences of designed parameters are also different. From these 
designed parameter sensitive and unsensitive applications, 
we should distinguish these conditions. These conventional 
distance-based human model cannot obtain a good evalua-
tion result. A human model, which can distinguish parameter 
sensitive and parameter unsensitive cases, should be consid-
ered in such applications.

3.2.2  Neuron Networks‑based Human Model

Because the neural network is a universal approximator 
(Hornik et al. 1989), an NN-based human model can estab-
lish any relation of designed parameter and fitness using 
the non-linear modeling characteristic of NN (Ohsaki and 
Takagi 1998). The primary issue of NN-based human 
model lies in the training of the model. Because the IEC 
has the characteristics of less population size and less eval-
uation generations, it can only support a small number of 
input-output data. The trained NN by using such a small 
amount of data will lead to less accuracy of the human 
model, so that it restricts the application of the NN-based 
human model in IEC optimization. Therefore, only this 
NN-based model, which can be trained with less data sets 
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Fig. 3  A three dimensional view of a Gaussian mixture model
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and obtains high model accuracy, can be used in modeling 
the IEC human model.

3.2.3  Fuzzy System‑based Human Model

Fuzzy system-based models have been widely studied 
since fuzzy sets, fuzzy logic and fuzzy system were found 
(Zadeh 1965), and it was proven as a universal approxi-
mator as well (Wang and Mendel 1992). The advantage of 
the fuzzy system-based human model lies in its training 
(Kamalian et al. 2006). Because of the off-line training 
characteristic of the fuzzy system-based human model, it 
can be trained from the first generation of IEC optimiza-
tion, rather than the NN-based model, which needs more 
training data to a certain level of accuracy to be used in 
IEC optimization. Further, the NN-based human model 
cannot be used from the first generation of IEC optimi-
zation. These are two differences of fuzzy system-based 
human model and NN-based human model.

3.2.4  Training Issues of Human Model

In order to obtain enough training data for the human 
model, it is necessary to collect evaluation data from the 
IEC user in the initial generations. After obtaining such 
a well trained human model, we can use it in the later 
generations of IEC optimization to replace the real human 
so that the IEC with large population size and more gen-
erations can enhance the IEC search capability to a fast 
convergence. This is a promising research topic for further 
investigation. We can also establish several human mod-
els in the IEC optimization, and find the best configured 
model in the specific application to replace the real human 
for accelerating the IEC search. This is another research 
subject regarding the IEC human model. In addition, how 
to find the difference of an IEC user and established human 
model, and how to reduce this difference are important 
research issues and topics in IEC human model study.

3.3  Use of multiple models of past IEC users

The human model of IEC evaluation is a promising research 
topic both to accelerate IEC search and to relieve IEC user 
fatigue. However, before using an IEC human model, the 
model must be made using inputs/outputs data to/from the 
user during the IEC optimization process in some early gen-
erations. An IEC human model can help its real human user 
after a trained model is obtained (see Fig. 4). In the worst 
case, the IEC optimization may end before a human model 
is made.

Preparing multiple models of past IEC users in advance 
and using the one most similar to the current IEC user 
among them until his/her model is actually trained out is 
one of the solutions for this problem (Henmi et al. 2006). 
We collect several past IEC user models before we start 
IEC optimization. When inputs are given to an IEC user, 
the same input data are given to these models and their 
model outputs are calculated. Next, actual IEC user evalu-
ation responses are compared to these model outputs, and 
one model whose outputs are the most similar to the actual 
user responses. This selected model is used as a temporal 
human model and is used to estimate user evaluation val-
ues for many individuals and the top best n individuals are 
given as offspring candidates in the next generation. During 
this temporal model’s use, the inputs/outputs to/from the 
actual IEC user are used to train his/her actual human model. 
This process is continued until the generation when his/her 
human model is made, and the trained human model is used 
to estimate his/her evaluation values since then (see Fig. 5).

4  Acceleration of search in interactive 
evolutionary computation

4.1  Function approximation of a fitness landscape

One of the EC acceleration methods is towards approximat-
ing a fitness landscape with a simpler shape and quickly 
reach towards the global area (Jin 2005). Unlike the original 
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complex fitness landscapes, it is possible to reach to the 
global optimum of the approximated simple function quickly 
without converging to a local optimum. This approach is 
based on an assumption that the global optimum of the 
approximated function is located near that of the original 
fitness landscape.

4.1.1  Fitness Landscape Approximation in Original Search 
Space

Our first proposal was to approximate a fitness landscape 
with a uni-modal (single peak) function and replace the 
worst individual with the peak point of the approximated 
function as an elite individual (Ingu and Takagi 1999) (see 
Fig. 6). The roughest approximation of any fitness landscape 
would be a uni-modal function, and we can obtain its peak 
location analytically, i.e., without EC search, when we use 
a certain kind of uni-modal function. We approximated an 
n-dimensional (n-D) fitness landscape with an n-D quadratic 
function and obtained an elite individual by solving n plural-
istic simultaneous equations in our experiments.

4.1.2  Fitness Landscape Approximation in Dimensionality 
Reduction Search Space

Our second proposal was to simplify our first proposal and 
reduce its computational cost for solving simultaneous equa-
tions (Pei and Takagi 2011). Its idea is to project an n-D fit-
ness landscape onto each parameter axis, approximate each 
projected one-dimensional (1-D) fitness landscape with a 
1-D uni-modal function, and estimate the elite by synthe-
sizing the peaks of n 1-D uni-modal functions instead of 
approximating an n-D fitness landscape with one n-D uni-
modal function directly (see Fig. 7). Experimental results 
showed the computational cost of the second method became 
1/3 - 1/2 of that of the first method while their acceleration 
performance are almost the same (Pei and Takagi 2013a).

4.2  Complexity analysis of fitness landscape using 
Fourier transform

The novelty of the Fourier transform approach is to accel-
erate EC search using frequency information of a fitness 
landscape (Pei and Takagi 2012b). We obtain fitness values 
of multiple search points at even intervals in a parameter 
space, apply fast Fourier transform (Heideman et al. 1985) to 
them, and obtain the frequency with the biggest amplitude, 
denoting this frequency as a principal frequency. Our idea 
is to approximate a fitness landscape with a sine or cosine 
curve obtained by the principal frequency and its phase 
information and use the peak point of the approximated 
sine or cosine curve as the elite with the same method as 
described above (see Fig. 8). Experimental results with eight 
benchmark functions showed that this method is efficient in 
accelerating most of them (Pei and Takagi 2012a).

We also proposed a Fourier Niche method by modify-
ing the method mentioned to discover better multiple local 
optima. While the Fourier approach mentioned in the above 
uses only one major frequency, the Fourier Niche method 
uses not only it but also the second, third, and other major 
frequency components and approximates a fitness landscape 
to estimate the second, third, ... local optima. Experimen-
tal results with six one dimensional and two dimensional 
benchmark functions showed that this method was efficient 
in finding local optima and accelerating most of them.

4.3  Interactive differential evolution with (gravity + 
moving) vector

IEC user fatigue is a serious issue for practice of IEC appli-
cations as we described. However, many accelerating meth-
ods for differential evolution (DE) proposed so far are not 
always applicable to interactive differential evolution (IDE) 

Fig. 6  Function approximation of n-D parameter space with a uni-
modal function. The apex is used for search as an elite. We can use 
the elite to accelerate IEC search by replacing it with the worst indi-
vidual. It is a low risk and high return method Fig. 7  1-D function approximation and its obtained elite location in 

an projected 1-D parameter space. We estimate the elite by synthesiz-
ing the peaks of n 1-D uni-modal functions to accelerate IEC search
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(Takagi and Pallez 2009). Since IEC users cannot con-
tinue to evaluate IEC tasks for a long time, only methods 
which have acceleration effects that appear in early search 
generations with smaller population size without increas-
ing additional human evaluations can be used for IEC. Our 
development of IEC acceleration methods must satisfy these 
restrictions.

IEC can reach towards the global optimum area even 
when searching with a small population size in a few gen-
erations. This means that fitness landscapes of IEC tasks 
are simple. As the DE/best approach works better than the 
DE/rand approach for a simple fitness landscape in general 
(Storn and Price 1997), we want to use the IDE/best to make 
IDE converge quickly. However, an IDE user must compare 
all individuals to find the best individual when he/she uses 
IDE/best, and it loses the good feature of DE, a paired com-
parison nature, and increases IDE user fatigue.

We proposed the DE/gravity approach that uses the center 
of population gravity as a base vector (Funaki and Takagi 
2011). It does not increase the number of user evaluations, 
but its performance is close to the DE/best approach. We also 
proposed to use moving vector information from parent indi-
viduals to their offspring. The good news is that these two 
methods work complementary. When the global optimum 
locates around a center point in a parameter space, the DE/
best works well but moving vectors cancel each other and 
their average moving vector works ineffectively. On the other 
hand, when the global optimum locates around the edge of a 
search space, the average moving vector works well, while 
DE/gravity does not work well. Simulation results showed 
that the convergence speed of the (IDE/gravity + moving 

vector) is faster than the IDE/rand and close to the IDE/best 
thanks to their complementary effect without increasing the 
numbers of human evaluations.

4.4  Triple or quadruple comparisons‑based 
interactive differential evolution

We proposed a triple or quadruple comparisons-based 
mechanism to enhance differential evolution (DE), espe-
cially IDE, without increasing IDE user’s fatigue to a large 
extent (Pei and Takagi 2013b). Not only a target vector and a 
trial vector of canonical DE but also their opposite vector(s) 
generated by opposition-based learning (Tizhoosh 2005) are 
compared, and the best vector among them becomes an off-
spring in the next generation.

The biggest feature of the paired comparison-based IDE is 
“less user fatigue”, and the triple or quadruple comparisons-
based IDE weaken this feature. However, there are many 
IEC tasks that are shown to an IEC user time-sequentially 
but we can memorize/recall three or four task outputs eas-
ily (Miller 1956). These kinds of tasks do not increase IDE 
user fatigue seriously unlike interactive genetic algorithms 
(IGA) (Dawkins 1986). If the increased number of human 
comparisons in each generation results in the acceleration 
of IDE convergence and decreases the total number of user 
evaluations, it may be better than canonical IDE.

We evaluated the proposed method by comparing it with 
canonical IDE and conventional opposition-based IDE using 
a Gaussian mixture model for simulating IDE. We also com-
pare them using 24 benchmark functions for evaluating DE. 
The experiments showed that our proposed methods could 

Fig. 8  Obtaining frequency information by applying fast Fourier analysis and using an elite from a trigonometric function ( sin(x) or cos(x) ) to 
accelerate IEC search
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enhance IDE and DE search efficiently from several evalu-
ation indexes including the converged fitness values at the 
same generation numbers and the same number of fitness 
calculations, fitness calculation cost, success rates of con-
vergence, and acceleration rates (Pei and Takagi 2013b).

4.5  Triple comparisons‑based interactive 
differential evolution with memetic search

Another implementation of multiple comparison-based IDE 
algorithm uses memetic search to construct its optimiza-
tion framework (Pei and Takagi 2017). In conventional IDE, 
the comparison of target vector and trial vector supports a 
local fitness landscape where is the promising search area 
in parameter space. If the fitness of target vector is better 
than that of the trial vector, we can apply a memetic search 
around the target to obtain a third vector, and vice versa. We 
compare the target vector, trial vector, and the third vector 
to implement another form of triple comparison-based IDE. 
The evaluation results presented a better optimization capa-
bility comparing with conventional IDE.

4.6  Prediction of an estimated convergence point

IEC is a stochastic optimization algorithm. From the funda-
mental point of view, it can be explained by the probability 
theory. If we embed a deterministic search method in IEC 
or EC algorithms, its optimization should be enhanced. A 
moving vector from the last generation to current genera-
tion supports fitness landscape information where the global 
optimum is located. If we use such information to estimate 
the convergence point, IEC and EC searches should be 
enhanced.

We introduce a method to estimate a convergence point 
analytically to accelerate an IEC or EC search (Murata 
et  al. 2015). When we search a d-dimensional param-
eter space using one of the IEC or EC algorithms with n 
individuals, let the i-th parent individual, its offspring 
individual, and moving vector be �i , �i , �i = �i − �i , 
respect ively;  {(�i, �i), i = 1, 2, ..., n; �i, �i ∈ �d} (see 
Fig. 9). The unit directional vector of �i is also defined as 
�0i = �i∕‖�i‖ (�T

0i
�0i = 1) . In Fig. 9, when we refer to a 

vector we mean a column vector. Given n vectors, �i , that 
extend from n vectors, �i , let � ∈ �d be the point that is 
nearest to the lines made by extending the line segments 

(2)

�̂ =

(
n∑
i=1

Hi

)−1( n∑
i=1

Hi�i

)
.

=

{
n∑
i=1

(
Id − �0i�

�
0i

)}−1{ n∑
i=1

(
Id − �0i�

�
0i

)
�i

}
.

�i ( � is indicated by the ⋆ mark in Fig. 9.). Eq. (2) shows 
how to estimate � , where Id is an identity matrix, and 
Hi = �0i�

T
0i
− Id . We can use this elite point to accelerate 

EC and IEC search (Yu et al. 2016), and perspectively it can 
be extended into multi-modal (Yu and Takagi 2015) and 
multi-objective optimization tasks.

5  New algorithm framework of interactive 
evolutionary computation

5.1  Paired comparison‑based interactive 
differential evolution

It is hard for an IGA user to evaluate tasks displayed time-
sequentially, such as sounds or movies, because he or she 
cannot compare them at once and must compare them in 
his/her memory, which increase human fatigues. IGA is not 
suitable for tasks for which individuals cannot be given to 
an IGA user at once.

Tournament GA is one of its solutions, and a tournament 
IGA user chooses a better individual or gives fitness to 
paired individuals (Miller et al. 1995). Although pair-based 
comparisons can reduce IGA user’s fatigue, the tournament 
method does not compare whole individuals, and therefore 
fitness values must include noise, which reduces their search 
capability.

We pointed out that DE includes paired comparison in 
its algorithm and is suitable for IEC, and we proposed the 
paired comparison-based IDE (Takagi and Pallez 2009). 
The final stage of DE operation is the comparison of the 
target vector and a trial vector, and the better one becomes 
an offspring individual in the next generation. The IDE 
user compares pairs of sounds, movies, and other tasks 

a1

c1

a2

c2

a3

c3

an

cn

Fig. 9  The convergence point ( ⋆ ) estimated by the moving vectors 
between individuals ( �i , i = 1, 2, ..., n ) in the d-dimensional parameter 
space in the k-th generation and those ( �i , i = 1, 2, ..., n ) in the ( k + 1)-
th generation. We can use this estimated point as an elite individual to 
accelerate EC or IEC search. This method also can be extended into 
multi-modal and multi-objective optimization tasks
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without any modification of the DE algorithm unlike the 
tournament IGA.

Graphical user interfaces of IGA and IDE are shown 
in Fig. 10. The IGA user compares all individuals and 
gives a relative evaluation value to each of them. When 
the tasks are sounds or movies, it is hard for IGA user to 
memorize them and evaluate them. The IDE user com-
pares a pair of individuals and chooses the better one. It 
is not hard to compare two individuals even if they are 
sounds or movies. We confirmed that the IDE converges 
faster than IGA through simulation experiments (Takagi 
and Pallez 2009) and are evaluating user fatigue through 
human subjective test.

5.2  Interactive particle swarm optimization

Particle swarm optimization (PSO) is a meta-heuristic 
population-based algorithm inspired from the particle 
behaviour of animals (Eberhart and Kennedy 1995). The 
primary mechanism of it optimization follows the princi-
ple of evolution using the search positions of the particle 
itself, the best local particle, and the best global particle.

From the current comparison study of PSO, the optimi-
zation performance of PSO is better than that of genetic 
algorithm (GA) for these problems with the simple fit-
ness landscape, and on the contrary, GA is better than 
PSO for these problems with complex fitness landscape. 
Interactive PSO can converge due to simple landscape of 
human evaluation space, when the interactive PSO algo-
rithm has less generations and less population size. So the 
framework of PSO can be used in interactive application. 
However, when the interactive problem has evaluation 
noise, the interactive PSO is worse than IGA (Nakano 
and Takagi 2009). How to reduce noise from the human 
subjective evaluation, it is a promising research subject 
for further investigation in interactive PSO.

5.3  Interactive fireworks algorithm

The fireworks algorithm is an optimization algorithm that 
simulates the fireworks explosion phenomenon in parameter 
search space (Tan and Zhu 2010). In its algorithm frame-
work, the search range and the number of generated off-
spring are decided dynamically by considering global explo-
ration and local exploitation. We have studied approximation 
sampling issues of firework algorithms, and found it only 
needs a few of individuals in its optimization process (Pei 
et al. 2012). Because there are smaller population sizes (usu-
ally less than ten individuals) in the fireworks algorithm, it 
should be a great search algorithm in the IEC framework. 
The development of interactive fireworks algorithm and 
application of this algorithm is also a potential research 
subject for further study.

5.4  Interactive chaotic evolution

Determinism, probability, and chaos are three fundamental 
philosophies and methodologies in scientific research (Pei 
2015). In the optimization field, determinative and stochas-
tic optimization algorithms are well studied with theoreti-
cal supports from determinism and probability. However, 
there is little research that mentions chaotic optimization 
supported by chaos theory. Chaotic evolution is a new type 
of evolutionary computation algorithm that fuses the ergo-
dicity of chaos and the iteration of evaluation (Pei 2014). It 
should be one of implementations of the chaotic optimiza-
tion method.

The primary operation of chaotic evolution simulates cha-
otic motion in a parameter space when chaos occurs in the 
system. Because there is a paired-comparison mechanism 
in its optimization framework, and its convergent speed is 
better than DE, interactive chaotic evolution should be bet-
ter than IDE, however, it also needs experimental evalu-
ation to verify this hypothesis. Developing the interactive 
chaotic evolution algorithm, multi-modal chaotic evolution 
algorithm, and multi-objective chaotic evolution algorithm 
(Pei and Hao 2017) are three promising research subjects in 
chaotic evolution.

6  Multi‑objective interactive evolutionary 
computation

The new framework of IEC research is the combination of 
IEC with evolutionary multi-objective optimization (EMO). 
Since EMO algorithms handle solutions in an objective 
space, the coordinates of the solutions must be specified 
by numerical objective values. However, there are multi-
objective tasks with objects that are not clearly specified 
numerically. For example, let’s consider apartment search. 

select select

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

(b)(a)

Fig. 10  Graphical user interfaces of a IGA and b IDE. The IGA user 
compares all individuals simultaneously and gives a relative evalua-
tion value to each of them. The IDE user compares a pair of individu-
als and chooses the better one
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EMO is applicable to finding less expensive and wider apart-
ments located near a train station as these three objects have 
numerical values. However, it does not work for finding 
apartments with object(s) that have to be evaluated subjec-
tively, e.g., “greater view from a room window”. The frame-
work of IEC+EMO is developed for EMO tasks with objects 
that are evaluated not only objectively but also subjectively.

6.1  Micro‑electro‑mechanical system design

Micro-Electro-Mechanical Systems (MEMS) have been 
designed manually by using a computer-aided design sys-
tem. To automate this design, EMO was applied together 
with an MEMS simulation tool calculating fitness values 
(Zhou et al. 2002). However, it is not easy to automate the 
design completely. One of the reasons is that we cannot 
describe all design knowledge into the system, and optimi-
zation parameters in MEMS design do not cover all design 
aspects influencing MEMS performance.

IEC can overcome this problem and increase the per-
formance of MEMS design by cooperating with designers’ 
subjective evaluations. MEMS design experts can evaluate 
how designed MEMSs are good by just glancing at whole 
designs based on their experience and knowledge.

We compared the EMO+IEC-based approach and EMO-
only approach by applying it to designing an MEMS resona-
tor. The objectives of EMO are MEMS area size, a resonant 
frequency, and stiffness, and IEC users evaluated designed 
MEMS circuits visually. Sign test result showed that the 
evaluations of the EMO+IEC-based approach was signifi-
cantly higher than that of the EMO-only approach (Kama-
lian et al. 2004).

6.2  Architectural room floor planning

Room floor planning includes multi-restrictions and multi-
objectives such as room sizes, room shapes, moving line 
to any room without passing through other private rooms, 
and window sizes requested by architectural laws. Archi-
tects design floor layouts taking account of these points. If 
there is an automated room floor planning support system, 
architects can save their design time, and house owners can 
enjoy designing their houses before asking professional 
architects. This support system should be based on EMO to 
find solutions taking account of the above objectives. How-
ever, this task has further object; this is the satisfaction of 
architects or house owners with regard to the design plans. 
The EMO algorithm cannot handle qualitative objectives, 
and EMO+IEC is necessary for the support system. We 
developed an algorithm for generating room floor layouts 
(Inoue and Takagi 2008), combined it with EMO and IEC, 
and evaluated the designed layouts (Inoue and Takagi 2009). 
A professional architect used the system and discovered a 

new type of room layout that he usually does not consider 
in his manual designing. His evaluation was that the system 
is useful as an inspiration-assist system.

7  Psychological and physiological 
research using interactive evolutionary 
computation

7.1  Measuring perceived emotional expression

We applied IEC to measure a happy–sad range in the human 
mind and compared the ranges of schizophrenics and men-
tally healthy people. Some therapists feel that the emotional 
impressions shown on the faces of schizophrenic patients 
are fewer than those of mentally healthy people based on 
their experience. However, there was no way to measure 
this range. We asked three schizophrenics and five mentally 
healthy students to design 3-D computer graphics lighting of 
the happy impression and the sad impression using our IEC-
based 3-D computer graphic lighting design support system 
(Aoki and Takagi 1997), and asked 33 human subjects to 
evaluate 28 pairs (=(3+5)C2 ) of designed lighting images.

Fig. 11 is the psychological scale of happy constructed 
using the Scheffé’s method of paired comparison. The 
happy–sad ranges obtained from the experimental results 
imply that it is hard for schizophrenic patients to identify 
especially a happy impression in lighting, and it is expected 
that this IEC approach may provide new data that are helpful 
for psychiatric diagnostics (Takagi et al. 2004).

7.2  Hearing‑aid fitting and discovering unknown 
knowledge

IEC is the best way to carry out hearing-aid fitting because 
sound qualities for a certain hearing-aid users cannot be 
measured. Another advantage is that it allows us to fit a hear-
ing aid using any daily-life sounds, while the conventional 
fitting method has to use only pure tones and narrow band 
noise. Thanks to this feature, we could find several unknown 
facts (Takagi and Ohsaki 2007). They are:

Fig. 11  Psychological scale constructed using the Scheffé’s method 
of paired comparison and impression levels of the eight best lightings 
designed by three schizophrenics (PK, PT, and PM) and five mental 
healthy students (NH, NY, NK, NN, and ND). The bigger measure 
values, the higher evaluation of happy 
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1. the characteristics of hearing aids optimized using 
speech sounds that were different from those optimized 
using pure tones or band pass noise;

2. those optimized using speech sounds of speaker i with/
without noise were almost similar ( i = 1, 2, ... ); and

3. those optimized using speech sounds were different from 
those optimized using music.

Nobody had recognized the fact that the best characteristics 
of hearing aids depend on the kinds of sounds used for fit-
ting. This implies that an audible range in human sense level 
is not the final cue for the best hearing. We could make these 
observations thanks to the IEC technique.

7.3  Cochlea implant fitting and discovering 
unknown knowledge

Cochlea-implant fitting is a similar task to a hearing-aid fit-
ting and has been conducted based on two hypotheses for 
better fitting: (1) the more electric channels of a cochlea-
implant, the better and (2) the wider dynamic range of each 
channel, the better. As frequency resolution increase accord-
ing to the number of electric channels, the hypothesis (1) 
means that higher frequency resolution helps to distinguish 
the difference of frequency characteristics of phonemes; 
this hypothesis sounds natural. The hypothesis (2) means 
that enabling a user to hear sounds from the minimum level 
to the maximum comfortable level is helpful to distinguish 
sounds; this hypothesis also sounds natural.

IGA was used to tune the fitting parameters of cochlea 
implants (Legrand et al. 2007). Their experimental result 
was that the dynamic ranges of all 15 channels were almost 
0 except for three or four channels, and the dynamic ranges 
of the exceptional three or four channels are narrower 
than the maximum ranges (see Fig. 12). Nevertheless, its 
recognition rate with IGA fitting was higher than that of 
manual fitting. This result did not match the two hypotheses 

mentioned. This implies that there must be unknown audio-
psychophysiological facts. It is a valuable subject to discover 
these unknown facts using IEC techniques. We will continue 
researching this subject in the future.

7.4  Interactive evolutionary computation 
framework using physiological measurement

The fitness of a conventional IEC algorithm comes from 
the subjective evaluation of humans, and these evaluations 
are representations of human’s physiological space. IEC 
framework using physiological measurement is an extension 
of conventional IEC. There are further potential research 
directions for IEC framework using physiological measure-
ment. The first direction uses physiological measurement as 
the IEC fitness function to tune the human’s physiological 
condition to a certain level. We can use this framework to 
influence and study human’s physiological condition. The 
fitness of IEC framework using physiological measurement 
can use blood pressure, frequency of heart beat, frequency 
of respiration, etc as the physiological measurement. Refer-
ence (Takagi et al. 2005) proposed an extension framework 
of IEC using physiological measurement, and conducted the 
experimental study using a simulated physiological signal. 
Fig. 13 presents an extension IEC framework.

The second new type of IEC research is adapting physi-
ological data. Usually, IEC optimizes a target system based 
on an IEC user’s subjective evaluation, i.e., psychological 
evaluation. We may extend the evaluation from a psycho-
logical one to a physiological one. When the outputs of 
an IEC target system are given to an IEC user, such as 
listening to music, watching movies, or enjoying vibra-
tions, some physical stimuli influence his/her physiology. 
Then, we may be able to drive his/her physiology by con-
trolling the physical stimuli. Suppose that physiologists 
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Fig. 12  Fitting characteristics of conventional cochlear implant fit-
ting and that using IEC. Horizontal axis means electric channels and 
a vertical axis means electric voltage of each channel. This figure was 
remade based on an image in (Legrand et al. 2007) Fig. 13  Framework of extended IEC. IEC optimizes physical features 

of movies or music using a fitness value that is the difference between 
the target physiological responses and real one of an IEC user
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advise us on the ideal physiological conditions for relaxa-
tion, excitement, or other target mental conditions. IEC 
framework may be able to direct the human physiological 
conditions to the ideal by minimizing the error between 
measured physiological data and this ideal. Trials have 
been held in applying the extended IEC to control eight 
parameters of a vibration chair using physiological data of 
an extended IEC user on the chair and to direct emotions 
of video movie viewers (Takagi 2007) though they have 
not been completed. Another trial using physiological data 
is to guess IEC fitness by using the eye-tracking of an IEC 
user (Pallez et al. 2007). Other physiological data such 
as electroencephalogram can be used to guess IEC user’s 
evaluation for the selection of better individuals.

7.5  Aesthetic selection analysis using subjective 
evaluation from interactive evolutionary 
computation

The machine learning algorithm attempts to find knowledge 
from data, and most machine learning research uses deter-
ministic data analysis techniques to achieve this objective. 
There is some research that tries to apply human related 
computing techniques for assisting machine learning algo-
rithms to discover the aesthetic selection of humans.

Reference (Pei 2017) presents a work that uses IEC to 
select principal components of compressed images and tries 
to find human visual perception knowledge from human’s 
subjective evaluation. The work compresses an image using 
principal component analysis (Pearson 1901), and in the pro-
cess of resorting the image, pared comparison-based IDE 
algorithm is applied to display to the IEC user two restored 
images for judging which one is the clearer one. The selec-
tion results indicate that:

1. Human’s subjective selection can obtain more detailed 
information from the visual perception;

2. Humans can perceive more detailed visual information 
that is presented by the principal components with the 
small eigenvalues;

3. Subjects’ aesthetic characteristics can be obtained by 
analyzing the data of principal components; and

4. Human visual perception is sensitive to the shape and 
frame information from images’ comparisons.

This work is an attempt to apply IEC techniques in machine 
learning algorithms to find the aesthetic characteristics of 
humans. Although some of the conclusions and analysis 
results need to be seriously verified by psychological and 
physiological fundamentals of human, hopefully, there will 
be an opportunity to apply IEC in such human related knowl-
edge discovery.

7.6  Awareness computing using interactive 
evolutionary computation

IEC can be used as a tool to analyse human’s psychological 
and physiological characteristics. In awareness computing, 
IEC can also be used to analyse human’s awareness mech-
anism (Takagi 2012). Much research has different defini-
tions on awareness computing from a variety of viewpoints. 
Although there are many studies on awareness computing, 
there is a need to further deepen the research on the human 
awareness mechanism, and establish the fundamentals of 
awareness computing.

Reference (Takagi 2012) defines awareness computing 
as follows. Awareness computing is a process that helps 
us to understand unknown or potential facts and concepts. 
This can use IEC to achieve such an objective. For example, 
when we evaluate a student with a mathematic credit, litera-
ture credit, and physics credit, and with his/her height, and 
weight, we can determine academic capability and physical 
condition, these two concepts, from this data. The process 
of obtaining these two concepts is a process of awareness 
computing, and these two concepts are the definitions of 
awareness of this process.

The model of awareness uses human’s input as the mod-
el’s input, and output after a human recognizes it as the 
model’s output. The model helps us to find relations between 
this input and output. We can use input and output of IEC 
optimization to establish a model using machine learning 
methods, and then, separate this model into two parts to 
find the potential factors and concepts. It is a method to 
establish awareness model and implement awareness com-
puting. For example, variables (x, z, y) present input, output, 
and potential concepts, respectively. We can establish an 
evaluation model z = f (x) , and awareness computing sepa-
rates f(x) into y1 = g1(x), y1 = g1(x), ... to find yi, i = 1, 2, ... 
that presents the potential concepts (see Fig. 14). The pri-
mary issues of this process try to find effective methods to 
separate the model. Principal component analysis (Pearson 
1901), factor analysis (Spearman 1904), and non-negative 
matrix factorization (Lee and Seung 1999), these feature 
selection methods, can be applied in model separation for 
implementing awareness computing. This is a promising 
research issue and topic in awareness computing with IEC.

8  Conclusion

IEC was born when Richard Dawkins showed that com-
plex figures could be generated based on visual evaluation, 
and showed evolved 2-D line figures (biomorph) as is seen 
in examples in his book (Dawkins 1986). Since the 1990’s, 
IEC application areas have spread from computer graphic 
applications to engineering, entertainment, and many other 
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areas. We did not mention this major IEC research in this 
paper but explained our research on accelerating IEC and 
developing new IEC frameworks on the second research 
direction. Almost all IEC research works are categorized 
into either of these research directions.

As a new feature, we introduced our research, IEC for 
human science, as the third direction of IEC research. 
Artificial intelligence (AI) has become a hot keyword not 
only in computer science, but also in common scientific 
research. IEC can act as an interface for the design of a 
system that is more friendly between human and human, 
human and computer, human and machine, human and 
robot pet, etc. It also can be an effective AI tool in human-
centered computing, such as home-assisted robot design 
and pet robot design, to contribute to an aging society in 
some countries. The analysis and understanding of human 
characteristics is an important issue to implement these 
designs, and IEC is also a great tool to contribute to this 
field. We hope that many people realize that the capability 
of IEC is not only optimization from these efforts and IEC 
can make a much wider contribution.
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