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Abstract
Polar codes have strongly entered into action within the standardization of the next generation 5G mobile communication 
systems, which are expected to be an enabling technology for the Internet of Things where networks with a large number 
of sensors have to handle massive connectivity demands. This paper proposes and investigates the use of systematic polar 
codes for joint source-channel coding of correlated sources in wireless sensor networks, thus allowing the compression of 
the volume of data to be transmitted over the network on one hand, and on the other hand, the protection of this data from 
channel impairments. Results show that systematic polar codes can achieve a distributed compression with rates close to theo-
retical limits, with better error rates obtained for larger blocks, and a better robustness against transmission errors obtained 
with stronger compression and shorter block lengths. Furthermore, while the system is able to overcome the effect of noise 
on parity information with adequate power management, noisy side information significantly degrades system performance 
with remarkable gaps towards the case of distributed compression with an ideal transmission channel.

Keywords Channel coding · Compression · Distributed source coding · Entropy · Systematic polar codes · Wireless sensor 
networks

1 Introduction

Forward error correction (FEC) has become a major com-
ponent in digital communication systems, allowing error 
recovery at the decoder whenever a data stream undergoes 
channel impairments. Several capacity-approaching codes 
driving system performance close to theoretical Shannon 
limits (Shannon 1948) have been designed and widely 
exploited, such as low density parity check (LDPC) codes 
(Gallager 1968), turbo codes (Berrou et al. 1993) and polar 
codes (Arikan 2009). Turbo and LDPC codes have been used 
in a wide range of standards and applications, such as in the 
third (3G) and fourth (4G) generations of mobile commu-
nication systems (e.g. UMTS, LTE, LTE-A,...) and digital 
video broadcasting (DVB) (Douillard et al. 2000), whereas 
the more recent polar codes are being considered for the 

FEC module in the air interface design of next generation 
(5G) systems (HUAWEI 2015).

The expected 5G will be an enabling technology for 
applications with massive connectivity demands (Tong et al. 
2015), such as the Internet of Things (IoT), where large num-
bers of devices with multiple sensors and actuators exchange 
information and control commands, thus forming a wire-
less sensor network (WSN) (Molano et al. 2017; Ryoo et al. 
2017). Large amounts of information data being exchanged 
in a WSN bring to our concern the problem of data compres-
sion, in order to alleviate bitrate and power requirements, 
without forgetting the necessity for channel coding to protect 
transmitted data from channel errors.

In WSN, source and channel coding incur additional com-
putational burden at the wireless sensors where resources 
(i.e. power and memory) are scarce. With distributed source 
compression (DSC) and joint source-channel coding (JSCC) 
techniques, a channel code can be used for source compres-
sion as well as for error protection, shifting the computa-
tional load to the decoder side where sufficient resources can 
be found (e.g. a base station or relay node). The concept of 
DSC is based on Slepian–Wolf theorem (Slepian and Wolf 
1973); considering two correlated sources X and Y, both 
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sources can be independently encoded and jointly decoded 
with the same compression efficiency as joint encoding and 
decoding. In other words, if both sources are jointly encoded 
and decoded, the best theoretically achievable compression 
is the joint entropy H(X, Y), while on the other hand, if Y 
is compressed to its entropy H(Y), X can be independently 
compressed to the conditional entropy H(X ∣ Y) provided 
that Y is available as side information for decoding X (i.e. 
joint decoding), thus resulting in the same overall compres-
sion since H(X, Y) = H(Y) + H(X ∣ Y) . Source correlation 
can be modeled as a noisy channel with one source (X) as 
the channel input and the other source (Y) as the output, and 
thus, channel coding techniques can be used to recover X 
by observing Y as a noisy version of X (Aaron et al. 2002; 
Ascenso and Pereira 2009; Farah et al. 2006; Liveris et al. 
2002; Sartipi and Fekri 2005; Yaacoub et al. 2007, 2008, 
2009). When a transmission channel is taken into account 
in a DSC application, channel codes used for forward error 
correction over the correlation channel can also be used for 
error protection over the transmission channel, thus allowing 
for joint source and channel coding.

Turbo and LDPC codes have demonstrated superior per-
formance in multiple DSC and JSCC applications, compared 
to other FEC codes. For instance, Farah et al. (2006) used 
non-binary turbo codes for the compression of correlated 
sources, and extended their study to the case of joint source-
channel coding. Aaron et al. (2002) and Yaacoub et al. 
(2008, 2009) used turbo codes in a DSC approach for video 
compression referred as distributed video coding (DVC). 
LDPC codes have been used for the compression of binary 
sources with side information at the decoder (Liveris et al. 
2002) as well as for DVC (Ascenso and Pereira 2009). Dif-
ferent schemes for DSC or JSCC in wireless sensor networks 
have also been proposed based on turbo (Yaacoub et al. 
2007) and LDPC (Sartipi and Fekri 2005) codes.

Since their invention by Arikan (2009), polar codes have 
been well investigated in the literature. The idea behind polar 
codes is to create J new channels from J independent copies 
of a channel using a linear transformation, such that the new 
channels are polarized. Therefore, data can be transmitted 
over these synthesized good channels whereas only zeros 
(frozen bits) are sent over the bad channels, with the same 
overall capacity. Recent studies (Iscan et al. 2016; Zhang 
et al. 2016) have demonstrated the superior performance 
of polar codes compared to LDPC and turbo codes in the 
context of 5G test scenarios. In addition to their error correc-
tion capability that outperforms both turbo and LDPC codes 
for the case of short and moderate block lengths (HUAWEI 
2015), these codes can be constructed and decoded using 
simple algorithms that are more computationally efficient 
than LDPC and turbo codecs, which makes them suitable 
for a wide range of applications, including DSC and JSCC 
in wireless sensor networks.

The use of polar codes in DSC applications has been stud-
ied by Lv et al. (2013); Onay (2014); Trang et al. (2012) and 
Korada and Urbanke (2010). Yaacoub and Sarkis (2016) pro-
posed using polar codes in their systematic form within the 
context of DSC, due to their superior error correction capa-
bility compared to non-systematic codes (Arikan 2011) and 
to their intuitive design approach for DSC; with systematic 
codes, only parity bits are transmitted to the decoder where 
the missing systematic bits are replaced with the side infor-
mation. This study was later extended (Yaacoub and Sarkis 
2017) to the case of JSCC where a Gaussian model was 
considered for source correlation, and an additive Gaussian 
noise considered for the transmission channel. This paper is 
an extended version of Yaacoub and Sarkis (2017) with more 
in depth theoretical calculations, simulation scenarios and 
practical results. The remainder of this paper is organized as 
follows. In Sect. 2, a detailed description of the JSCC system 
model is presented in the context of WSN along with a brief 
review of systematic polar encoding. Simulation scenarios 
are presented in Sect. 3 and practical results are then dis-
cussed. Finally, conclusions are drawn in Sect. 4 with a brief 
discussion of future work perspectives.

2  System description

Consider a network of wireless sensors observing a com-
mon source of information, and transmitting data to a relay 
node or a central base station for decoding. This model 
fits for several practical scenarios where sensor data are 
correlated. For example, temperature measurements from 
different nodes in a dense region would be spatially and 
temporally correlated. Similarly, streams from multiple 
video sensors capturing the same scene from different 
views or angles (e.g. multiview video) would also be 
correlated. The proposed block diagram for JSCC in this 
context is shown in Fig. 1 where a network of 2 sensors 
is shown, for simplicity. One of the sensors (sensor 2 in 
Fig. 1) applies conventional source and channel encod-
ing (CSCE) techniques to transmit its observed data (Y) 
to the base station where the corresponding conventional 
source and channel decoders (CSCD) reside. The other 
sensor (sensor 1) independently encodes its data (X) using 
a systematic polar encoder (SPE). At the output of the 
SPE, systematic bits are dropped while only parity bits are 
transmitted over a noisy channel to the base station. While 
providing error protection over the transmission link, if 
the number of parity bits does not exceed the number of 
input (or equivalently, systematic) bits, compression is 
also achieved. A systematic polar decoder (SPD) at the 
base station uses the decoded source Y as a noisy version 
of the systematic data needed to recover X. In case of a 
larger number of sensors, only one would employ CSCE 
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to provide initial side information for the others. If the 
number of sensors is very large, they could be grouped 
into clusters where each cluster contains one sensor with 
CSCE. In the sequel, we will only consider the case of two 
sensors, while the generalization to an arbitrary number of 
sensors is straightforward.

With conventional encoding, Y can be compressed to a 
rate close to its entropy bound H(Y) and correctly recovered 
at the decoder. This can be achieved using any entropy cod-
ing scheme, e.g. Huffman coding (Huffman 1952), with a 
suitable FEC code. As stated earlier, by exploiting the cor-
relation between X and Y at the decoder, X can be com-
pressed to a rate close to the conditional entropy H(X ∣ Y) , 
thus achieving stronger compression compared to H(X), 
which represents the achievable compression rate when Y 
is not to be exploited for decoding X. For a (M, K) SPE, 
compression is achieved when M<2K, and the compression 
rate of X is defined as:

The case of a binary discrete memoryless source X with 
equally likely symbols is considered. A virtual channel is 
used to model the correlation between the sources, taking at 
its input the source X and giving Y at its output. As Y does 
not necessarily need to be discrete, a Gaussian correlation 
model is considered. After encoding X, systematic data { ds } 
is dropped while parity bits { dp } travel along with Y through 
an additive noise channel, as shown in the simplified model 
of Fig. 2.

(1)R =
M − K

K
=

M

K
− 1.

The correlation channel is modeled as a Gaussian chan-
nel. The binary source X is fed to a binary pulse ampli-
tude modulator (B-PAM) that outputs rectangular pulses of 
duration Tb and amplitudes ±

√
Eb∕Tb . Gaussian noise (N) is 

added to the transmitted pulse, and the channel output is then 
sampled to obtain the source Y. While source correlation 
models vary depending on the application (e.g. temperature 
measurement, multiview video, etc...), this correlation chan-
nel model (shown in Fig. 3) is borrowed from communica-
tions theory (Haykin 2001), where Eb represents bit energy 
and N represents a zero-mean additive white Gaussian noise 
(AWGN) with power spectral density N0∕2 . Therefore, the 
correlation between X and Y can be measured by the bit 
energy to noise density ratio Eb∕N0 (i.e. the higher the ratio, 
the more the sources are correlated).

According to Slepian–Wolf theory, the lower bound for 
R is H(X ∣ Y) which can be obtained by:

where I(X, Y) is the mutual information between X and 
Y, and H(X) = 1 since X is a discrete binary memoryless 
source with equally probable symbols. On the other hand, 
the mutual information for the case of our binary-input-
Gaussian-output channel is obtained by:

where px is the probability of occurrence of x and fY|X(y|x) 
is the probability density function (PDF) of Y knowing X, 
which is equivalent to the noise PDF in the AWGN channel. 

(2)H(X|Y) = H(X) − I(X, Y),

(3)

I(X, Y) =

1�
x=0

px ∫
+∞

−∞

fY�X(y�x)log2
⎛
⎜⎜⎜⎜⎝

fY�X(y�x)
1∑

x=0

pxfY�X(y�x)

⎞
⎟⎟⎟⎟⎠
dy,

Fig. 1  Block diagram of the 
proposed JSCC system model

Fig. 2  Simplified JSCC system model

Fig. 3  Source correlation model
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Additionally, the upper bound of Eq. (3) is the correlation 
channel capacity Imax:

Therefore Eq. (2) can be estimated as:

However, for this estimation to fit the distributed compres-
sion model, Eq. (4) has to be clipped to unity for the con-
straint 0 ≤ H(X|Y) ≤ H(X) ≤ 1 to be satisfied. Practically, 
there is always a gap between the theoretical bound and the 
achievable rate which depends on code design. In case of 
JSCC, additional redundancy bits are required to overcome 
channel impairments, and thus the gap towards H(X ∣ Y) 
further increases.

To illustrate the effect of the transmisison channel on com-
pression bound, let Ec∕N0 the transmitted bit energy to noise 
density ratio, and Hc(X ∣ Y) the new bound; Hc(X ∣ Y) depends 
on H(X ∣ Y) and on transmission channel capacity Ctrans as:

Figure 4 shows H(X ∣ Y) for the case of DSC as well as 
Hc(X ∣ Y) for the case of JSCC, for different values of Ec∕N0 . 
It can be observed that Hc(X ∣ Y) approaches H(X ∣ Y) for 
high values of Ec∕N0 . When transmission channel conditions 
worsen (i.e. Ec∕N0 decreases), Hc(X ∣ Y) increases and could 
reach values greater than unity. When Hc(X|Y) ≥ 1 , this 

(4)Imax =
1

2
log2

(
1 +

Eb

N0

)
.

(5)H(X|Y) = 1 −
1

2
log2

(
1 +

Eb

N0

)
.

(6)Hc(X|Y) = H(X|Y)
Ctrans

=
2H(X|Y)

log2

(
1 +

Ec

N0

) .

bound indicates that compression cannot be achieved, i.e. 
the average number of transmitted bits per input bit should 
be greater than 1 in order to achieve an arbitrarily low bit 
error rate (BER).

Different systematic polar encoders are considered in this 
study. For a (M, K) SPE code, the number M of output bits is 
chosen as a power of 2 (i.e. M = 2n , for n = 8, 10, 12, 14, 16 , 
or 18), whereas the compression rate is varied by varying the 
number K of input data bits for a given value of M.

Define xin =
[
x{i}, 0{i}c

]
 , a vector of M bits that includes 

x{i} , the K information bits of input vector x at positions 
defined by the set of indices {i} , and 0{i}c , a set of M−K zeros 
at frozen bit indices {i}c . In a non-systematic polar encoder, 
the output codeword d is obtained by computing:

where F⊗n is the Kronecker product of n copies of the kernel 

F defined as: F =

[
1 0

1 1

]
.

In a SPE, the output codeword consists of systematic 
and parity bits such that d =

[
d{i}, d{i}c

]
 , where the sys-

tematic part is ds = d{i} = x{i} , and the parity component 
is dp = d{i}c . The systematic bits in SPE do not appear as 
the first K bits in the output codeword similar to systematic 
linear block codes, but they rather appear at information bit 
indices at the SPE output, and parity bits are therefore placed 
at frozen bit indices in d. Given the information vector x, the 
output codeword of an SPE is the solution of:

where z =
[
z{i}, 0{i}c

]
 , with z{i} and d{i}c being the unknowns. 

Algorithms for the solution of Eq. (8) were proposed by 
Vangala et al. (2016) along with their source codes (Vangala 
et al. 2015), whereas successive cancellation (Vangala et al. 
2016) is used at the decoder.

3  Practical results

In our simulations, the case of DSC (i.e. transmission 
channel is noiseless) is first considered. Figure 5 shows 
the gap between the achievable compression rate and 
the theoretical compression bound, for a target bit error 
rate (BER) of 10−6 , using SPEs with different values of 
n ∈ {8, 10, 12, 14, 16, 18} . It can be observed that rate curves 
have a behavior comparable to the theoretical limit, except 
for n = 16 and n = 18 where the rate quickly converges 
towards H(X ∣ Y) as the correlation between X and Y (i.e. the 
ratio Eb∕N0 ) increases. In general, the gap towards H(X ∣ Y) 
decreases as Eb∕N0 increases. For example, for n = 10 , the 
gap is reduced by 0.05 bits when Eb∕N0 increases from 1.5 
to 3 dB. On the other hand, these curves show that for a 
desired compression ratio, a greater energy to correlation 

(7)d = xin ⋅ F⊗n,

(8)d = z ⋅ F⊗n,

Fig. 4  Compression bound for different source correlation levels 
( E

b
∕N0 ) and transmission channel conditions ( E

c
∕N0 = 1, 2, 3 , or 4 

dB)
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noise ratio is required as n decreases in order to achieve the 
desired BER performance.

In Fig. 6, the BER obtained with different SPEs is shown 
as a function of the conditional entropy H(X ∣ Y) for a com-
pression rate of 0.64 with different values of n. The dot-
ted line represents the actual compression rate and the dis-
tance between this line and any data point represents the 
gap towards the compression bound for a given BER. For 
example, 0.15 bits (per input bit) are required in addition to 
H(X ∣ Y) to achieve a target BER of 10−8 for n = 18 . This gap 
increases to 0.34 bits for n = 12 . It can be clearly observed 
that for this compression rate, the BER curve corresponding 
to n = 18 is the closest to the dotted line and thus, the SPE 
with n = 18 achieves the best compression performance in 
this case. On the other hand, it can be noticed that in the 
region where H(X ∣ Y) is greater than the actual compression 

rate (i.e. right side of the dotted line in Fig. 6), the BER 
quickly increases as expected, since H(X ∣ Y) represents the 
minimum rate required to achieve low BER.

In Fig. 7, H(X ∣ Y) is fixed to 0.315 (dotted line) and 
the BER is measured for different compression rates. As 
expected, a stronger compression results in increased BER, 
regardless of the value of n. By observing the system behav-
ior for larger values of n (i.e. n = 14 , 16, and 18), it can be 
noticed that the BER increases with n for R ≤ 0.4 (roughly). 
After this threshold (i.e. for R > 0.4 ), the BER sharply 
drops and decreases as n increases. This is due to the fact 
that an arbitrarily low BER cannot be achieved as the rate 
approaches zero (very strong compression) in a (M, K) SPE 
with very large M, which is not the case with polar codes 
used in channel coding applications where a better perfor-
mance is always obtained by increasing M whose maxi-
mum value is bound by physical constraints (e.g. memory 
requirements...).

After evaluating our SPE-based DSC system, we study 
next the case of JSCC, i.e. the influence of transmission 
channel errors on system performance. In a first scenario, 
the side information (Y) is assumed successfully recovered 
at the decoder using conventional source and channel cod-
ing techniques (i.e. referring to Fig. 2, Y is not affected by 
channel noise) whereas the SPE is jointly used for both com-
pression and forward error correction, for the transmission 
and reconstruction of the source X. The correlation channel 
is the same used for DSC, whereas the transmitted symbol 
energy to noise density ratio ( Ec∕N0 ) is varied on the parity 
transmission channel (i.e. the channel carrying parity bits) 
in order to analyze our JSCC system performance in terms 
of BER.

We consider codes with M = 212 and M = 216 , compres-
sion rates of 0.45 and 0.64, and Ec∕N0 = 1, 2, 3.5 , and 5 dB. 
The BER is measured in each case and results are reported 

Fig. 5  Achievable compression rate for a target BER of 10−6 in case 
of DSC

Fig. 6  BER with respect to H(X ∣ Y) obtained with a compression 
rate of 0.64 represented as a dotted line

Fig. 7  BER with respect to compression rate obtained with 
H(X ∣ Y) = 0.315 represented as a dotted line
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in Figs. 8, 9, 10, and 11. In those figures, the BER is not 
represented as a function of H(X ∣ Y) as in Fig. 6, since the 
uncertainty about the transmitted source increases due to 
noisy transmission and consequently, H(X ∣ Y) would not be 
the same. Therefore, we plot BER curves as a function of the 
correlation parameter Eb∕N0 , for different values of Ec∕N0 . 
Furthermore, we keep, for reference, the BER obtained in 
case of DSC represented as a dotted curve and labeled as 
noise-free on the figures. These reference lines represent the 
best achievable performance obtained when there is no noise 
affecting the transmission of source X. Two major observa-
tions can be made from Fig. 8 through Fig. 11. The first 
observation is that for the same input block length (i.e. fix-
ing n = 12 or n = 16 ), the stronger the compression the less 
the system is sensitive to noise. For example, for n = 12 at 
Eb∕N0 = 0 dB, the BER increases from roughly 0.005 to 0.1 
(i.e. 20 times) when Ec∕N0 decreases from 5 dB to 1 dB for 

a compression rate of 0.45, whereas with a compression rate 
of 0.64, at the same source correlation level ( Eb∕N0 = 0 dB ) 
and the same noise levels, the BER increases by a factor of 
100 (i.e. from 10−4 to 10−2 ). Though the BER shows lower 
values for the weaker compression (i.e. compression ratio 
of 0.64), implying a better BER performance, the BER 
increases faster with noise in case of higher compression 
ratio (i.e. weaker compression), indicating higher sensitivity 
to noise. Similarly, for n = 16 at Eb∕N0 = 0 dB , when Ec∕N0 
decreases from 5 to 1 dB, the BER increases by a factor of 
100 for a compression ratio of 0.45, whereas it increases by a 
factor of 1000 when the compression rate is 0.64. Therefore, 
despite the fact that the error rate increases with stronger 
compression, one can conclude that for a fixed value of n, the 
BER increases with noise at a slower rate in case a stronger 
compression was applied, compared to the case of a weaker 
compression. The second observation is that for the same 

Fig. 8  BER for different source correlation levels and parity channel 
conditions obtained in case of JSCC, with a compression rate of 0.45 
and n = 12

Fig. 9  BER for different source correlation levels and parity channel 
conditions obtained in case of JSCC, with a compression rate of 0.64 
and n = 12

Fig. 10  BER for different source correlation levels and parity channel 
conditions obtained in case of JSCC, with a compression rate of 0.45 
and n = 16

Fig. 11  BER for different source correlation levels and parity channel 
conditions obtained in case of JSCC, with a compression rate of 0.64 
and n = 16
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compression ratio, the system is more sensitive to noise 
when the block length increases. For example, considering 
the same operating points previously discussed, when the 
block length increases from n = 12 to n = 16 , the rate of 
BER increase goes from 100 to 1000 with a compression 
ratio of 0.64, and from 20 to 100 with a compression ratio of 
0.45. In other words, for a fixed compression ratio, the BER 
increases faster with noise for larger values of n, compared 
to the case of smaller blocks.

In contrast with the previous simulation setup where 
the side information Y was assumed perfectly recovered 
at the receiver, we consider next that the decoder relies 
on a noisy version of Y for decoding X. With reference to 
the system model in Fig. 2, Y undergoes an additive noise 
with same statistical properties as the noise on parity bits. 
Codes with M = 212 and M = 216 are considered with com-
pression rates of 0.45 and 0.64 as in the previous scenario. 
The BER is measured in each case for Ec∕N0 = 2 , 3.5, 5, 
and 7 dB, and the results are shown in Figs. 12, 13, 14, 

and 15, where the dotted lines represent the best achiev-
able performance when no noise is present neither on side 
information nor on parity bits. Significant performance 
degradation can be observed compared to the case where 
Y is perfectly recovered. For example, for Ec∕N0 = 2 dB 
and Eb∕N0 = 4 dB, with n = 12 and a compression rate of 
0.45, the BER obtained with a noisy side information is 
about 200 times the BER obtained when Y is recovered 
error-free. For a compression rate of 0.64, n = 16 , and 
Eb∕N0 = 4 dB, Ec∕N0 should be increased by 6 dB with 
noisy SI compared to the case of ideal SI in order to obtain 
the same BER. Similar observations can be made for dif-
ferent values of Eb∕N0 , Ec∕N0 , n and compression rate. On 
the other hand, in case of a noiseless SI channel, system 
performance (in terms of BER) converges towards the case 
of DSC when Ec∕N0 approaches 5 dB, whereas with noise-
less SI, BER curves seem to reach an error floor with a 
significant gap towards the noise-free (DSC) scenario even 
for values of Ec∕N0 greater than 5 dB.

Fig. 12  BER for different source correlation levels and parity channel 
conditions obtained in case of JSCC with noise on SI, a compression 
rate of 0.45 and n = 12

Fig. 13  BER for different source correlation levels and parity channel 
conditions obtained in case of JSCC with noise on SI, a compression 
rate of 0.64 and n = 12

Fig. 14  BER for different source correlation levels and parity channel 
conditions obtained in case of JSCC with noise on SI, a compression 
rate of 0.45 and n = 16

Fig. 15  BER for different source correlation levels and parity channel 
conditions obtained in case of JSCC with noise on SI, a compression 
rate of 0.64 and n = 16
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4  Conclusion

In this paper, we investigated the use of systematic polar 
codes for the joint source-channel coding of correlated 
sources, in the context of wireless sensor networks. A 
Gaussian model has been considered to represent source 
correlation, and a Gaussian channel has been considered for 
transmission. A simple scenario of two correlated sources 
has been considered for simplicity, but the generalization 
to an arbitrary number of sources is straightforward. It has 
been shown that a better error rate can be obtained with less 
compression and longer blocks, whereas it was observed that 
the system with stronger compression and shorter blocks is 
more robust to degradation due transmission channel impair-
ments. It was also noticed that noise on side information sig-
nificantly degrades the system performance whereas when 
the side information is perfectly recovered at the receiver 
and only parity bits undergo channel impairments, adequate 
power management would allow the system to overcome the 
effect of noise and perform similarly to the case of distrib-
uted source compression.

As for future work perspectives, we aim at considering 
more practical scenarios with large numbers of sensors, mul-
tiple relay nodes, and fading channels.
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