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Abstract
In Formal Concept Analysis (FCA), a concept lattice graphically portrays the underlying relationships between the objects 
and attributes of an information system. One of the key complexity problems of concept lattices lies in extracting the use-
ful information. The unorganized nature of attributes in huge contexts often does not yield an informative lattice in FCA. 
Moreover, understanding the collective relationships between attributes and objects in a larger many valued context is more 
complicated. In this paper, we introduce a novel approach for deducing a smaller and meaningful concept lattice from which 
excerpts of concepts can be inferred. In existing attribute-based concept lattice reduction methods for FCA, mostly either 
the attribute size or the context size is reduced. Our approach involves in organizing the attributes into clusters using their 
structural similarities and dissimilarities, which is commonly known as attribute clustering, to produce a derived context. 
We have observed that the deduced concept lattice inherits the structural relationship of the original one. Furthermore, we 
have mathematically proved that a unique surjective inclusion mapping from the original lattice to the deduced one exists.

Keywords  Attribute clustering · Concept lattice · Formal concept analysis · Many-valued context · Poset · Proximity

1  Introduction

Formal Concept Analysis (FCA) has emerged as a key tool 
in data analysis and knowledge processing (Ganter and Wille 
1999; Carpineto and Romano 2004; Priss 2006). It creates 
a hierarchical order of concepts in which each concept is 
comprised of two items—the extent and the intent. This hier-
archical order of sets forms a poset (partially ordered set), 
which can be represented by means of a lattice diagram. 
FCA focuses on obtaining two forms of outputs from any 
information system. The first one is a concept lattice, which 
is a poset of certain clusters of objects and attributes. The 
second one is a set of formulas known as attribute implica-
tions, which describe attribute dependencies that exist in 
the information system. FCA has been established to have 
wide range of applications in any knowledge discovery sys-
tem. Some of the areas of its applications include artificial 

intelligence, decision-making systems, gene expression 
data analysis, information retrieval, ontology design, fault 
diagnosis, software code analysis, expert systems, and so on 
(Carpineto and Romano 1996; Sumangali and Kumar 2014, 
2013; Kumar and Sumangali 2012; Kumar et al. 2015). In Li 
et al. (2015), the authors analyzed the cognitive mechanism 
of framing concepts from the principles of philosophy and 
psychology. Recently, Poelmans et al. presented a detailed 
survey on the applications of FCA in Poelmans et al. (2013). 
The generalization of the formalism of FCA determines the 
best patterns in pattern mining (Buzmakov et al. 2015).

FCA also has few short falls. FCA often produces a large 
number of formal concepts in the case of huge contexts, and 
this was pointed out as an open problem at ICFCA 2006 for 
the first time. Furthermore, the independent treatment of 
attributes yields much bigger and more complicated concept 
lattices (Carpineto and Romano 1996; Kumar 2011; Kumar 
and Srinivas 2010; Wu et al. 2009; Elloumi et al. 2004), and 
it is very difficult for the users to explore the truly relevant 
aspects from such lattices. So, after the formation of concept 
lattices, a prime task is to determine a minimal concept lat-
tice that can avoid redundancy and at the same time maintain 
structural consistency. To this end, we aim at grouping the 
attributes by their structural similarities and then modify the 
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context into a simplified form. Since the attributes are inter-
related by nature, it is clear that the grouping (clustering) of 
attributes can play a useful role in the process of knowledge 
extraction.

Clustering is a common approach by which a dataset is 
partitioned into groups of similar items. Cluster analysis 
has been used as an effective tool in extracting the data in 
various domains of knowledge mining (Han and Kamber 
2006). It is an unsupervised grouping of patterns obtained 
from observations, data collections, and attributes into sets 
(groups). In general, this type of clustering is performed on 
the group of objects. However, in order to achieve our aim 
we process the clustering on the attributes of the context. 
Standard clustering methods restrain the clusters to be mutu-
ally exclusive and exhaustive, implying that each item of the 
set is subsumed in exactly one of the clusters.

Researchers have handled the clustering techniques 
effectively in FCA environments too (Kumar and Srinivas 
2010). Tversky (1977) used conceptual clustering based on 
numerical data in his human psychology analysis. The clus-
tering method was used by Wen et al. (Wen et al. 2010) to 
reduce the size of the interval concept lattices based on the 
similarity threshold of the distance measure of concepts. 
Elloumi et al. (2004) used the clustering technique in FCA 
under a fuzzy environment to reduce the context size using 
association rules such that the resulting context retains the 
association rules. Kumar and Srinivas (2010) used the fuzzy 
k-means clustering technique in order to reduce the size of 
the concept lattice. Martin et al. (2013) proposed the clus-
tering approach to measure the changes in fuzzy concept 
lattices under different fuzzy environments of same context.

2 � Motivation

Next, we will explain the necessity for the need of a new 
methodology on the extraction procedure of knowledge 
discovery in bigger concept lattices. We list some of the 
drawbacks of the existing methods of knowledge extraction 
process from the literature.

Liu et al. (2007) carried out a rough set-based concept 
lattice reduction method in using discernibility functions. 
In this method, some features and objects of the original 
context are entirely neglected. In Kumar (2011), a random 
projection-based reduction technique for FCA was experi-
mented with using a healthcare dataset in which the dimen-
sionality of the context was reduced using expert rules. 
However, the analysis was for the discovery of rules and did 
not extract the concept lattices.

Another clustering method presented in Stumme et al. 
(2002) only focused on the abstraction of the concepts 
located at the peak of the concept lattice of a large database 
system, neglecting the concepts at the bottom and middle 

of the concept lattice. Thus, the information retrieved was 
not with full entity. Large concept lattice was browsed into 
simplified trees in Melo et al. (2013) and were then reduced 
with fault tolerance and conceptual clustering methods. It 
extracts and visualizes large concept lattices into simplified 
trees and thereby, the hierarchical structure of the lattice is 
dismantled.

Thus, the existing methods for concept lattice reduction 
lack the information in view of the factors listed below.

1.	 Very few methods deal with MV contexts and several 
methods are only applicable for rough/fuzzy contexts.

2.	 Some of the methods are aimed at the reduction of rules 
by which lattice reduction is not possible (Dias and 
Vieira 2010).

3.	 In some other methods, few sub contexts and concepts 
are neglected using some criterion and thereby the entity 
of the contexts/concept lattices lags (Stumme et  al. 
2002).

4.	 In several methods, the preservation of the original 
lattice in the reduced lattice is not discussed/validated 
mathematically (Kumar and Srinivas 2010).

Our proposed method for extracting knowledge from con-
cept lattices by means of attribute clustering aims to address 
these issues.

In the process of simplification techniques it is very 
important to validate the structure preservation of concept 
lattices due to the modified closure operators (Dias and 
Vieira 2015). To this end, concept stability and support 
measures, concept independence and concept probability 
measures are used to prune the concept lattices. The notion 
of inclusion related measures, namely the zeta function and 
degrees of inclusion, already exist in Xu et al. (2002); Mi 
et al. (2008); Knuth (2007). But such measures are dealt 
with in the concepts of a single lattice, and there are no such 
appropriate measures available for studying the inclusion of 
concepts of between two different lattices. Since there is a 
need for such comparisons, in our proposed work we define 
and use the concept inclusion map zeta ( � ) to validate the 
experimental results. We compare the original concept lat-
tice with the deduced one mathematically to ascertain the 
inclusion relationship between them using the concept inclu-
sion map zeta. It has been established that the zeta ( � ) map 
is a surjective homomorphism from the original lattice to 
the deduced one.

We organize our work as follows: in Sect. 3, we focus 
few basic terminologies related to FCA, and introduce some 
terms and notions related to our proposed work. We also 
discuss a few properties of the notions introduced. The 
background of the proposed work is outlined. Further, we 
outline some preliminaries about attribute clustering and 
our approach to using them in our proposed work. Next, 
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we present the proposed work in a detailed manner and 
mathematically simplify the original lattice. In Sect. 4, we 
illustrate the proposed work via real life context. Finally, we 
conclude this article by presenting the possible extensions 
and scope of our proposed method.

3 � Preliminaries

FCA is a mathematical model that was introduced by R. 
Wille (Ganter and Wille 1999) to formalize the notion of a 
concept. It is comprised of certain units of elements called 
concepts, wherein each concept subsumes two parts—exten-
sion and intension. The study of FCA begins with the organi-
zation of a context into a formal context.

3.1 � Basic notions of concepts and concept 
hierarchies

The collection of data in the form of a table is the first step 
towards the study of FCA and the data table is called a (for-
mal) context. Crosses and blank spaces denote the presence 
or absence of a relationship between objects and attributes. 
Let G be the set of objects and M be the set of attributes 
and I ⊆ G ×M be the incidence relation between G and M. 
Then, the triple ( G,M, I ) is referred to as a context, which 
is denoted by K. An object g ∈ G , possessing an attribute 
m ∈ M is given by (g,m) ∈ I or gIm, and we say that the 
object g has the attribute m.

For A ⊆ G and B ⊆ M , we define:
A� = {m ∈ M |g I m, ∀g ∈ A} (i.e., the set of attributes 

common to the objects in A)
B� = {g ∈ G |g I m, ∀m ∈ B} (i.e., the set of objects that 

have all attributes in B)
If A ⊆ G and B ⊆ M , such that A� = B and B� = A for the 

context (G, M, I), then the pair (A, B) is called a concept and 
A, B are said to be the extent and intent of the concept (A, B), 
respectively. Thus, the intent and the extent are the identities 
of a concept. The set of all objects belonging to the concept 
constitutes the extent; whereas the intent constitutes the set 
of all attributes that are shared by the objects.

3.2 � Many‑valued contexts and conceptual scaling

Features or attributes whose values are numerous in nature, 
such as weight, size, score, gender, etc., distinguishes several 
objects in real life. Such attributes are known as many-val-
ued attributes. Contexts with general attributes are efficiently 
handled by the many-valued (MV) context representation 
scheme in FCA. Unlike one-valued contexts, concept lattices 
cannot be directly derived for MV contexts. For this reason, 
a MV context is converted into a one-valued context using 

the conversion process known as conceptual scaling which 
is user specified one (Ganter and Wille 1999).

In literature we can find several research articles focus-
ing on MV contexts. It was first studied by Messai et al. 
(2008). They found that concept lattices derived from MV 
contexts have higher precision levels forming a multi-level 
concept lattice. In order to retrieve efficient information from 
complex queries, the use of MV context techniques will be 
more fruitful.

The remainder of this section focuses some basic ter-
minologies and notions so that the article may be fully 
self-contained. A brief foundation on FCA can be found 
in (Sumangali and Kumar 2017). Definitions 1–6 exist in 
Ganter and Wille (1999), while Definitions 7–9 are intro-
duced in this paper in order to mathematically substantiate 
the proposed work.

Definition 1a  (Join and Meet) Let (L,≤) be a partially 
ordered set and let S be its subset (S ⊆ L) . An upper bound 
of S is an element x ∈ S such that s ≤ x for all s ∈ S . Dually, 
a lower bound of S is an element y ∈ S such that y ≤ s for 
all s ∈ S . A smallest element amongst the set of all upper 
bounds of S is called the supremum or least upper bound of 
S and is denoted by ∨S . Dually, the greatest element amongst 
the lower bounds of S is called the infimum or greatest lower 
bound of S and is denoted by ∧S . If S = {x, y} , we write 
simply x ∨ y instead of ∨S and x ∧ y instead of ∧S . The terms 
supremum and infimum are also referred to as join and meet 
respectively.

Definition 1b  (Lattice) A poset (L,≤) is called a lattice, if 
∀a, b ∈ L, a ∨ b and a ∧ b exist in L. In other words, join and 
meet operations exist for any two elements of the poset L. If 
every subset of L has both infimum and supremum, then L 
is called a complete lattice.

Definition 2  (Context) A triple K = (G, M, I) is called a 
formal context, if G and M are non-empty sets of objects 
and attributes, respectively, and I ⊆ G ×M is the incidence 
(binary) relation between G and M.

Definition 3  (Many-valued context) A many-valued (MV) 
context (G,M,W, I) is comprised of sets of objects G, attrib-
utes M, attribute values W together with a ternary relation/
between G and M, W.

In other words, I ⊆ G ×M ×W  , wherein (G,M,W) ∈ I 
and (g,m, v) ∈ I imply w = v. By(g,m,w) ∈ I , we mean ‘for 
the object g, the attribute m possesses the value w’. If W
contains n elements, then the quadruple (G,M,W) ∈ I is 
called an n-valued context. Every MV attribute is a partial 
map m ∶ G → W  such that m(g) = w.
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Definition 4  (Concept) Let (G, M, I) be a formal context, 
then for any A ⊆ G and B ⊆ M , the pair (A, B) is called a 
formal concept, if A� = B and B� = A . The sets A and B are 
respectively known as the extent and the intent. A′ and B′ 
are the concept-forming operators (Carpineto and Romano 
2004). The set of all concepts (A, B) of a context (G, M, I) 
forms a complete lattice and is denoted by B(G, M, I) or 
B(K).

Definition 5  (Conceptual hierarchy) Let (G, M, I) be the 
set of all concepts.

For any two concepts (A1,B1), (A2,B2) ∈ B , the 
sub-super concept relation ‘ ≤ ’ is defined as follows: (
A1,B1

)
≤
(
A2,B2

)
⇔ A1 ⊆ A2 or B1 ⊇ B2 . The lower con-

cept is called the subconcept while the upper one is called 
the super concept.

Definition 6  (Lattice homomorphism) Let L1, L2 be two 
lattices. A map f ∶ L1 → L2 is said to be a lattice homo-
morphism if ‘f’ preserves join and meet operations i.e. 
∀a, b ∈ L f (a ∧ b) = f (a) ∧ f (b) and f (a ∨ b) = f (a) ∨ f (b) .

Definition 7  (Concept inclusion) For any two concepts 
l1, l2 from different concept lattices we say that l1 is con-
tained in l2 if both the extent and the intent of l1 are contained 
respectively in those of l2 and we denote l1 ⊆ l2 . In other 
words, for l1 = (A,B) ∈ L1 and l2 = (A�,B�) ∈ L2 , l1 ⊆ l2 if 
and only if A ⊆ A′ andB ⊆ B′.

Definition 8  (Cluster context) Let M be the set of all 
attributes and let Π(M) denote the set of all partitions of the 
set M. For any partition N ∈ Π(M) , let B (G, N, J) denote 
the concept lattice corresponding to the context (G, N, J) 
in which J ⊆ G × N  such that for any object g ∈ G , and, 
N� ∈ N, (g,N�) ∈ J if and only if there exists an attribute 
m ∈ Msuch that (g,m) ∈ Iand m ∈ N� . It can also be denoted 
as gJN′ . We call the context (G, N, J) thus formed a cluster 
context.

Definition 9  (Zeta ( �) map) Let L1 = B (G, M, I) and L2 = B 
(G, N, J). We define the concept inclusion map � from L1 to 
L2 as follows:

� ∶ L1 → L2 is a mapping from the lattice L1 to the lat-
tice L2 such that for any two conceptsl1 = (A,B) ∈ L1 and 
l2 = (A�,B�) ∈ L2 , �(l1) = l2 if and only if l1 ⊆ l2 and there 
exists no other concept lk ∈ L2 such that lk ≤ l2and l1 ⊆ lk 
where the relations ≤ and ⊆ are the usual partial ordering 
and concept inclusion respectively.

In Sect. 3.7, we prove that the map � is well defined, 
which enabled us to prove the mathematical foundations of 
our proposed work.

3.3 � Background on simplification techniques in FCA

The huge context available in nature often yields a com-
plicated concept lattice, which is difficult to understand in 
terms of magnitude and underlying relationships without 
losing relevant information. Since the crucial problem of 
the concept lattice is often deemed to be its complexity in 
terms of size, structural hierarchy, underlying information, 
etc., several methods with various characteristics have been 
suggested in literature for concept lattice reduction. Dias 
and Vieira have classified and analyzed the types of concept 
lattice reduction techniques (Dias and Vieira 2015).

In some of these methods, the redundant information is 
removed from the concept lattice. Generally, the reduction 
methods focus on finding the relevant set of objects or attrib-
utes that can maintain the structure of the original lattice and 
keep it unaltered (Medina 2012). Ganter and Wille (1999) 
obtained the clarified context by removing reducible objects 
and attributes, and the resulting concept lattice preserves the 
isomorphism with the original one. Extending FCA onto 
decision-based contexts, rough set oriented approaches 
unravel redundant knowledge from any information sys-
tem. Attribute reduction in the three frameworks of formal, 
object-oriented, and property-oriented concept lattices were 
studied by Medina (2012). Irrespective of the frameworks, 
it has been found that attributes can be classified into three 
levels of necessity and in any level the attribute reducts are 
identical.

The next class of reduction methods attempts to construct 
a summary of the concept lattices. In these methods, the 
researchers sought to attain a high level of simplification that 
unravels really important aspects (Belohlavek and Vychodil 
2009; Aswani Kumar and Srinivas 2010). Since our pro-
posed work in this paper is a simplification related technique 
on lattice reduction, we will elaborate on this discussion a 
little. By shrinking the number of concepts from a bigger 
concept lattice, simplification techniques have more utility 
than the previous ones. These methods are an abstraction of 
the concept lattice. In other words, they seek a broad over-
view of the lattice that only preserves important facets.

In some other simplification techniques, various levels of 
granularity (scales) are set on the attributes (Belohlávek and 
Sklenář 2005a, b). The granularity of an attribute increases 
with multi-valued attributes. Increasing or decreasing an 
attribute’s level of granularity can adjust its importance. 
The three-way decisions (acceptance, rejection, non-com-
mitment) theory has been introduced recently in FCA. Li 
et al. (2017) have proposed an axiomatic approach to gen-
eralize three-way concept learning via granular computing. 
The reduction of incidence relations from the formal context 
also controls the complexity of the concept lattice. The use 
of background knowledge in the simplification process of 
reduction techniques of FCA is another familiar approach in 
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literature. Such techniques can be found from (Belohlavek 
and Vychodil 2009; Belohlavek and Macko 2011; Cheung 
and Vogel 2005; Dias and Vieira 2010). Dias and Vieira 
(2010) introduced junction-based on object similarity 
(JBOS) method that utilizes the background knowledge in 
order to replace similar objects with representative elements 
using attribute similarity.

Next we will discuss matrix related simplification tech-
niques. A dimensionally bigger matrix can be projected to a 
smaller dimensional matrix by the Singular Value Decom-
position (SVD) method in linear algebra. Cheung and Vogel 
(2005) reduced the dimensionality of the concept lattice 
using the equivalence classes of objects in the process of 
information retrieval in which the SVD matrix reduction 
technique was adopted. Ch et al. (2015) addressed the issue 
of knowledge reduction in FCA, based on the non-negative 
matrix factorization (NMF) of the original context matrix. 
Kumar and Srinivas (2010) developed the fuzzy k-means 
algorithm, which is an extension of the existing k-means 
algorithm. In the fuzzy k-means algorithm, objects are clus-
tered. The members of a cluster are bonded with the cluster 
by their membership values and any object may belong to 
more than one cluster. Fuzzy conceptual clustering method 
has been adopted in (Quan et al. 2004) to generate auto-
matic concept hierarchy on uncertain data. Some more inter-
esting investigations/methods under fuzzy FCA and crisp 
FCA environment for concept/lattice reduction can be found 
in (Sumangali et al. 2017, Kauer and Krupka 2014, Kumar 
2012).

Another class of reduction methods works by the selec-
tion of formal concepts, objects, or attributes through appli-
cable principles or standards (Stumme et al. 2002; Suman-
gali and Kumar 2014). Belohlávek and Sklenář (2005a, b) 
proposed a method that reduces the number of concepts 
using certain constraints, which are derived from attribute 
dependency formulas (ADFs) that are additionally inputted 
along with the formal context. The set of concepts, which 
are compatible with the given set of ADFs, are reduced as 
important concepts. Another concept selection method using 
weights on attributes is proposed in (Belohlavek and Macko 
2011). An attribute priority-based background knowledge 
method was carried out in (Belohlavek and Vychodil 2009) 
for concept reduction.

3.4 � Attribute clustering

Attribute clustering is a method of grouping attributes that 
are correlated or interrelated with each other (Au et al. 
2005). The attributes within a cluster are more correlated 
themselves, whereas attributes from different clusters are 
less correlated. Use of attribute clustering can minimize the 
search dimension of the data-mining algorithm. Each cluster 
consists of a unique centroid, which possesses more common 

properties of the attributes within the cluster. Researchers 
mostly predefine the number of required clusters (Pham et al. 
2005; Han and Kamber 2006).

The use of clustering related techniques in the process 
of simplification are available in literature. Jain, Murty, 
and Flynn (1999) have presented an overview of clustering 
techniques using statistical pattern recognition techniques. 
According to them, basic steps in the process of cluster-
ing are: (1) data representation, (2) similarity measures, (3) 
grouping, and (4) cluster representation. Furthermore, they 
have identified a few areas, such as information retrieval, 
object and character recognition, image segmentation, and 
data mining, as applicable areas of clustering techniques. 
Clustering techniques can be adopted with sets of objects or 
attributes or formal concepts. The clustering technique was 
already adopted in the FCA environment with incomplete 
contexts. Li et al. (2016) to compress a concept lattice by 
choosing median concepts that are centrally located.

Very few papers deal with attribute clustering-based 
reduction techniques in literature. Attribute clustering 
techniques has been utilized in the rough set background 
for the computation of reducts (Janusz and Slezak 2012). 
Belohlavek et al. (2005) presented a method for the reduc-
tion of concepts in FCA using clustering techniques. How-
ever, the partition is only carried out on objects.

There are several clustering techniques available in the 
literature. Among them k-means, hierarchical, DB Scan, 
OPTICS, and STING are a few of the popular clustering 
techniques (Han and Kamber 2006). The proximity measures 
are explicitly or implicitly used in almost all clustering tech-
niques (Xu and Wunsch 2005). Since the comparison of the 
quality of the clusters produced by the above techniques is a 
difficult task in the study of FCA, sometimes these clustering 
techniques may not be appropriate. Furthermore, developing 
a suitable measure of comparison for determining the qual-
ity of the clusters remains a daunted task, as the clusters do 
not exhibit the entire set of relationships among the objects/
attributes. To obviate this shortcoming we have proposed 
attribute clustering based on the well-known notions of simi-
larity measures. Additionally, such clustering techniques do 
not require any validation, since the validation measures are 
similarity measures themselves. The proximity of data in 
the process of data mining is often measured using similar-
ity/distance related measures. In keeping with this, Jaccard 
coefficients of similarity and distance measures are widely 
used (Han and Kamber 2006).

Euclidean or related distance measures cannot be applied 
to measure the distances between the attributes in the case 
of binary, categorical, ordinal, or mixed attributes. So, the 
distance measure is revised by the notion of dissimilarity 
between attributes/objects (Han and Kamber 2006). Usually 
the distance measures are performed on the set of objects 
and the the clustering techniques are only performed on the 
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set of objects. But, in order to achieve our aim, we use these 
measures on the set of attributes.

The distance between any two attributes can be eas-
ily calculated by the use of a contingency table (Han and 
Kamber 2006) in the case of binary natured attributes. A 
binary attribute is symmetric if both of its states are equally 
important; otherwise it is an asymmetric binary attribute. 
In the case of binary attributes, the distance measure varies 
depending on their symmetricity. The binary states 1 and 
0 respectively denote the presence or absence of the cor-
responding attribute. Further, the cardinalities given in the 
cells of the contingency table denote the number of objects 
with stated properties. The measure that is used the most 
often on the similarity between the objects or attributes is 
the Jaccard index or the Jaccard similarity coefficient.

A sample contingency table for binary data is shown in 
Table 1.

Using the contingency table shown in Table 1, the Jaccard 
index between two attributes/objects can be stated briefly as:

In a similar manner, the distance between two attributes/
objects is measured using the formula:

Clearly, the distance measure is metric by nature and 
the range of these two measures lies between 0 and 1. (i.e., 
0 ≤ J(i, j), d(i, j) ≤ 1).

3.5 � Proposed method

We organize our proposed method as follows: During ini-
tialization first we obtain the original information system. In 
the case of numerical data, it can be transformed into a cate-
gorical (many-valued) context. We then determine its formal 
concepts and thereby its concept lattice. We use the cluster-
ing measures viz., Jaccard index and distance measure in 
the process of attribute clustering, which were used, respec-
tively, to determine the centroids of clusters and to group the 
attributes. After framing the attribute clusters we form the 
cluster context (G, N, J), where N ∈ Π(M) and Π(M) denote 
the set of all partitions of the set M, respectively, derived 

(1)J(i, j) =
q

q + r + s

(2)d(i, j) =
r + s

q + r + s + t

from the original one. In this cluster context, the objects 
remain the same while the attributes are the newly formed 
clusters. In the formation of the cluster context, we adopt 
the union principle to determine the presence or absence 
of features of a cluster for an object. In other words, any 
object is considered to be present in a particular cluster if 
it possesses at least any one of the attributes of the cluster. 
We infer that this derived cluster context was also a clari-
fied context (Ganter and Wille 1999). The context that was 
derived was analyzed to yield a concept lattice. Furthermore, 
we mathematically prove that the extracted concept lattice 
preserves the original lattice of the given context using the 
concept inclusion map zeta. We analyze few properties of 
the concept inclusion (�)map to substantiate the conclusion 
that the extracted concept lattice is the core information sys-
tem. The entire procedure for our proposed method can be 
systematically carried out according to the following steps:

Step 1: Initialization: (a) Input many-valued context, (b) 
transform formal context, (c) obtain formal concepts, (d) 
obtain concept lattice

Step 2: Attribute clustering

a.	 Centroids selection

	 i.	 Compute the Jaccard similarity coefficient 
matrix for the given attributes.

	 ii.	 Predefine the number of clusters and accord-
ingly select an equal number of centroids 
from the attributes that have a higher average 
Jaccard coefficient.

b.	 Clustering of attributes

	 i.	 Compute the distance matrix for the given 
attributes.

	 ii.	 Choose each non-centroid attribute row-wise 
and group it with the centroid that has the 
lowest value than other centroids in the dis-
tance matrix.

Step 3: Cluster context: Form the cluster context (G, N, 
J), whereN ∈ Π(M) and Π(M) denotes the set of all parti-
tions of the set M. (refer to Definition 8 in Sect. 3.)

Step 4: Concept lattice: Obtain the lattice B(G, N, J).
Step 5: Mapping: Map the concepts of the original lattice 

to the simplified lattice using the concept inclusion map zeta 
� (refer to Sect. 4).

Step 6: Output assessment: Analyze the extraction of 
concepts from the resulting lattice with those of the original 
lattice using concept comparison measures (refer to Sect. 4).

Now we will look at the computational aspects of our 
proposed method. Kumar and Srinivas pointed out that the 
computational cost of reduction techniques using algebraic 

Table 1   Contingency table for binary data

Attribute j

Attribute i 1 0 Sum
1 q r q + r
0 s t s + t
Sum q + s r + t p
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methods remains high (Kumar and Srinivas 2010). The gen-
eration of all concepts and their hierarchical classification 
exhibits exponential behavior in the worst case (Kuznet-
sov 2001). In our proposed method, we compute the two 
symmetric matrices on the proximity measure whose com-
plexity is 1

2
O(m2) , where each totals O(m2) and where m is 

the number of attributes. The computation of the average 
Jaccard measure yields the complexity measure as O(m) . 
The selection of centroids gives the complexity measure as 
O(m logm) , and when in the process of grouping the attrib-
utes into clusters it is O(m2) . On the whole, the total com-
plexity is obtained as O(m2).

3.6 � Experimental analysis

In this section we demonstrate the proposed method using 
two examples. To be exhaustive in the demonstration, we 
consider a numerical context. This is often useful to analyze 
the interrelationship between various attributes or between 
groups of attributes. For instance, in the post-examination 
result analysis of students from a class, we may be interested 
to know the interrelationship between the mark ranges of 

different subjects in an examination. In such cases, the clus-
tering of categorical attributes can portray this situation. As 
such, we cluster the attributes before scrutinizing under FCA. 
Usually FCA-based analysis concentrates on the hierarchical 
relationship between individual attributes, whereas the FCA 
produced after the clustering of attributes depicts the hierar-
chical relationship between more similar sets of attributes.

Example 1  In the first example we consider the following 
information system (Agarwal 2009) of the examination 
scores obtained by ten students in three different subjects 
as shown in Table 2. In order to analyze this MV context 
using FCA, one may be aware that this context must be 
transformed into a formal context. As such, we transform 
it into a formal context by covering the numerical values of 
each attribute over several ranges.

Though the result analyzer may prefer his/her own split up 
of ranges for each attribute, we split the range of numerical 
values into three ranges, in order to be simple and uniform, 
and it resulted in a formal context, as shown in Table 3.

The set of all concepts of the context presented in Table 3 
were determined to be as shown in Table 4 using the next clo-
sure algorithm (Carpineto and Romano 2004). With the help 
of the ConExp tool (http://sourceforgenet/projects/conexp), 
the above set of all of the concepts form a complete lattice 
under the partial order relation ≤, as shown in Fig. 1. Even 
though there are only 24 concepts, the information they pro-
vide may not be interesting or useful for the result analyzer. 
For instance, the analyzer may want to know the interrelation-
ship in various ranges of marks between different subjects.

This can help the teacher or analyzer to identify the 
potentials and flaws of a group of students falling in a clus-
ter. The result analysis on individual students performed 
subject-wise may not yield good reasons about the indi-
vidual’s status, whereas cluster-based analysis can bring 
effective results in identifying the students’ problems. He/

Table 2   Many-valued context 
for student marks data

English Physics Maths

52 65 84
53 68 81
42 43 91
60 38 60
45 77 68
41 48 62
37 35 86
38 30 58
25 25 35
27 50 49

Table 3   Formal context 
transformed from student data 
Table 2

English Physics Maths

E1 E2 E3 P1 P2 P3 M1 M2 M3

≤ 36 ≤ 48 ≤ 60 ≤ 42 ≤ 60 ≤ 78 ≤ 53 ≤ 72 ≤ 91

S1 X X X
S2 X X X
S3 X X X
S4 X X X
S5 X X X
S6 X X X
S7 X X X
S8 X X X
S9 X X X
S10 X X X
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she may also want to identify the overall levels of students 
and may want to train the weaker students in many subjects 
by using the overall brighter students. In such cases it is 
necessary to identify the interrelated score ranges between 

different subjects. For this purpose, we cluster the attributes 
of the MV context.

In the clustering process, we first identify the centroids of 
the clusters. In each cluster, an attribute more similar to the 
remaining attributes can better serve as a centroid. Hence, 
we select the attributes that have, on average, high similarity 
measure as the centroids of the clusters. Thus, the Jaccard 
index is more optimal for the selection of the centroids. The 
Jaccard index of attributes for the given context is computed 
as shown in Table 5 using Eq. (1).

For the selection of k, the number of clusters is usually 
defined by the user (Han and Kamber 2006). Though the 
selection of k can be exclusively discussed as done in (Pham 
et al. 2005), we limit our scope by excluding such discus-
sions and assumed k to be the user’s choice. We deem it 
reasonable to consider the number of clusters as three. We 
then proceed to select the centroids of the clusters. Attributes 
with a high Jaccard coefficient average become centroids. 
Note that for each attribute the average measure is com-
puted over the number of non-zero measures. The computa-
tions are presented in Table 6. Whenever there is a tie in the 
average Jaccard coefficient of attributes, centroids can be 
selected randomly from all of them or sometimes some of 
them if the constraint on the number of clusters is reached. 
In our example, the centroids were E1, P3, and M1. Though 
the categorical attributes E3 and P3 had the same average 
Jaccard index, we prefer P3, since the previously selected 
centroid E1 and E3 both fall within the attribute of “Eng-
lish.” Yet, it is left to the user to choose.

After having selected the centroids of the clusters, the 
next process is to cluster the remaining attributes with the 
centroids. In order to do this, we determine the binary dis-
tance matrix of the attributes, which was symmetric, as 
shown in Table 7 using Eq. (2). We start with the centroids 
of the clusters. Each of the remaining attributes was added 

Table 4   Set of all concepts derived from a formal context of Table 3

Concept Extent Intent

1 {} {E1, E2, E3, P1, 
P2, P3, M1, M2, 
M3}

2 {S1, S2} {E3, P3, M3}
3 {S5} {E2, P3, M2}
4 {S3} {E2, P2, M3}
5 {S6} {E2, P2, M2}
6 {S7} {E2, M3, P1}
7 {S4} {M2, E3, P1}
8 {S8} {E2, M2, P1}
9 {S10} {P2, E1, M1}
10 {S9} {P1, E1, M1}
11 {S1, S2, S5} {P3}
12 {S1, S2, S4} {E3}
13 {S3, S7} {E2, M3}
14 {S3, S6} {E2, P2}
15 {S5, S6, S8} {E2, M2}
16 {S7, S8} {E2, P1}
17 {S4, S8} {M2, P1}
18 {S9, S10} {E1, M1}
19 {S1, S2, S3, S7} {M3}
20 {S3, S5, S6, S7, S8} {E2}
21 {S4, S5, S6, S8} {M2}
22 {S3, S6, S10} {P2}
23 {S4, S7, S8, S9} {P1}
24 {S1, S2, S3, S4, S5, S6, S7, 

S8, S9, S10}
{}

Fig. 1   Concept lattice for the 
formal context of Table 3
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to the cluster whose centroid was closer than other centroids. 
In case of a tie, (i.e., if two or more centroids are equidistant 
from the attribute) the attribute can be grouped into any one 
of the clusters whose centroids are equidistant from it. Thus, 
the attributes of the given context are clustered as shown 
below. The first member in cluster denotes its centroid.

Cluster1: E1, P2; Cluster2: P3, E2, E3, M2, M3; Cluster3: 
M1, P1.

Once the clusters were framed, we modify the given con-
text wherein each clusters served as an attribute. For any 
object, the possession of any attribute (cluster) is determined 

using the union principle of individual attributes within any 
particular cluster. We found that the context that was derived 
was also a clarified context, as shown in Table 8.

The context deduced for the clusters, as presented above, 
yielded the concept lattice that is shown in Fig. 2. The 
concept lattice of the derived context for clusters, which is 
shown below, contains 8 concepts with a height of 3, which 
are comparatively less than the respective measures of the 
original lattice that contained 24 concepts with a height of 
4. It can be inferred that the lattice structure of the extracted 
one, as shown in Fig. 2, subsumes the original lattice struc-
ture, which is shown in Fig. 1. Furthermore, the extracted 
lattice in this case is a complemented, distributive lattice, 
which makes it Boolean algebra. In Sect. 3.7, we mathemati-
cally prove these inheritance properties using the concept 
inclusion map zeta (defined in Sect. 3), from the original 
lattice to the extracted lattice.

Example 2  We next consider a many-valued information 
system on drive concepts for motorcars dealt in (Ganter and 
Wille 1999) to implement our method on lattice simplifica-
tion and analyze the results.

The above context Table 9 can be transformed into a one-
valued context in FCA using conceptual scaling as shown in 
Table 10. The attributes are abbreviated according to the list 
presented below the table. The derived context contains 5 
objects and 25 attributes, which is comparatively bigger than 

Table 5   Similarity Jaccard 
coefficient

E1 E2 E3 P1 P2 P3 M1 M2 M3

E1 0 0 0 1/5 1/4 0 1 0 0
E2 0 0 0 2/7 2/6 1/7 0 3/6 2/7
E3 0 0 0 1/6 0 2/4 0 1/6 2/5
P1 1/5 2/7 1/6 0 0 0 1/5 2/6 1/7
P2 1/4 2/6 0 0 0 0 1/4 1/6 1/6
P3 0 1/7 2/4 0 0 0 0 1/6 2/5
M1 1 0 0 1/5 1/4 0 0 0 0
M2 0 3/6 1/6 2/6 1/6 1/6 0 0 0
M3 0 2/7 2/5 1/7 1/6 2/5 0 0 0

Table 6   Computation of average Jaccard coefficient

Scaled attribute Jaccard coefficient Cardinality of 
non-zero Items

Average 
Jaccard coef-
ficient

E1 1.45 3 0.4833
E2 1.5476 5 0.3095
E3 1.2333 4 0.3083
P1 1.3285 6 0.2214
P2 1.1666 5 0.2333
P3 1.2095 4 0.302
M1 1.45 3 0.4833
M2 1.3333 5 0.2666
M3 1.3952 5 0.2790

Table 7   Distance matrix 
derived from Table 3 using 
Table 1

E1 E2 E3 P1 P2 P3 M1 M2 M3

E1 0 7/10 5/10 4/10 3/10 5/10 0 6/10 6/10
E2 7/10 0 8/10 5/10 4/10 6/10 7/10 3/10 5/10
E3 5/10 8/10 0 5/10 6/10 2/10 5/10 5/10 3/10
P1 4/10 5/10 5/10 0 7/10 7/10 4/10 4/10 6/10
P2 3/10 4/10 6/10 7/10 0 6/10 3/10 5/10 5/10
P3 5/10 6/10 2/10 7/10 6/10 0 5/10 5/10 3/10
M1 0 7/10 5/10 4/10 3/10 5/10 0 6/10 6/10
M2 6/10 3/10 5/10 4/10 5/10 5/10 6/10 0 8/10
M3 6/10 5/10 3/10 6/10 5/10 3/10 6/10 8/10 0
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the context dealt in previous example. The concept lattice of 
the context Table 10 contains 26 concepts and the same is 
presented in the Fig. 3.

The transformed context produced 24 concepts. In the 
lattice structure, they are numbered from bottom to top and 
left to right. For brevity, the labels of the extreme concepts 
only are shown in the Fig. 3. In view of the conciseness of 
the work we omit the interpretations on the inherited con-
cepts and their units viz, intents and extents. In the process 
of concept lattice simplification we next compute the two 
proximity measures discussed earlier. The matrix representa-
tion of these measures require a square matrix of order 25. 

Since they can be found as in the previous example, we do 
not present them for brevity reasons. We fix the number of 
clusters to be six. We select six attributes as centroids from 
the high valued Jaccard coefficients.

The remaining attributes are clustered to the nearest cen-
troid using distance measure. The following Table 11, lists 
the six attribute clusters row-wise with each cluster starting 
with its centroid.

After framing the clusters we determine the cluster con-
text using the union principle discussed earlier and the same 
is presented in Table 12.

Finally, the simplified concept lattice is determined and 
the same is presented in Fig. 4. The simplified concept lat-
tice contains 12 concepts and it preserves the structure of 
the original concept lattice.

3.7 � Mathematical results: concept inclusion map 
zeta for validation

In this section we demonstrate some of the algebraic prop-
erties of the concept inclusion map, zeta� . To this end, 
throughout this section we let L = B (G, M, I) and L′ = B (G, 
N, J). (For further clarification on these notions, readers may 
refer to Sect. 3.)

Theorem 1  The map  � ∶ L → L� defined in Sect. 3 is well 
defined.

Proof  Let l = (A,B) ∈ L be arbitrary.

For any l� =
(
A�,B�

)
∈ L� , we know that A′ and B′are the 

set of extents and intents in the cluster (partition) context, 
respectively. In particular, B′ is the union of attributes from 
one or more set of clusters. This implies that for any intent 
B ⊆ M of the original concept lattice L , there exists some 
intent B′ ⊆ M in the cluster concept lattice L′ such that 
B ⊆ B′ . SinceB ⊆ B′ , and the union principle is adopted in 
the formation of cluster context (G, N, J), (see Definition 7 
in Sect. 3) we must have A ⊆ A′ . Therefore, (A,B) ⊆

(
A�,B�

)
 

(i.e., l ⊆ l′).
Furthermore, without the loss of generality, we can 

choosel� ∈ L� , such that l′ is the smallest concept containing 

Table 8   Example 1- Cluster context (G, N, J) where N ∈ Π(M)

E1, P2 P3, E2, E3, M2, M3 M1, P1

S1 X
S2 X
S3 X X
S4 X X
S5 X
S6 X X
S7 X X
S8 X X
S9 X X
S10 X X

Fig. 2   Simplified concept lattice derived from context Table 8

Table 9   A many-valued 
context: Drive concepts for 
motorcars (Ganter and Wille 
1999)

De DI R S E C M

Conventional Poor Good Good Understeering Good Medium Excellent
Front-wheel Good Poor Excellent Understeering Excellent Very low Good
Rear-wheel Excellent Excellent Very poor Oversteering Poor Low Very poor
Mid-engine Excellent Excellent Good Neutral Very poor Low Very poor
All-wheel Excellent Excellent Good Understeering/neutral Good High Poor
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l  , which in turn results as �(l) = l� . The uniqueness of 
l� ∈ L� is clear.

Since l ∈ L is arbitrary, the map � is well defined.

Theorem 2  The map � ∶ L → L� is surjective.

Proof  Let l� =
(
A�,B�

)
∈ L� be any concept in L′ . Then, A′ 

and B′ are the extents and intents of some concept in the 
cluster context (G, N, J). Since attributes are clustered in the 
context (G, N, J), B′ contains more attributes than those in 
the intents of concepts at the same level in the original lat-
tice L . Clearly, there must exist some concept l = (A,B) ∈ L 
whose intent B is such that B ⊆ B′ . If B ⊆ B′ , obviously, 
A ⊆ A′ , implying that l ⊆ l′.

Furthermore, suppose that there exists a concept 
l1
� =

(
A1

�,B1
�
)
∈ L� such that l ⊆ l1

′ . This implies A ⊆ A′
1
 

and B ⊆ B1
′.

Suppose that l1′ < l′ . Then 
(
A1

′,B1
′
)
≤
(
A′,B′

)
 . Accord-

ing to the properties of concept lattices this means that 
A′
1
⊆ A′and B1

′ ⊇ B′ . Since l ⊆ l′ , we deduce that A ⊆ A′ 
but B ⊆ B1

′ ⊇ B′ . This implies that B ⊄ B′ . This deduction 
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Fig. 3   Concept lattice derived from context Table 10

Table 11   Attribute clusters of the given context example 2

Cluster1 De++ De+ C_h M−
Cluster2 DI+ + DI+ E− E−−
Cluster3 R−− DI− R++ C_l
Cluster4 S_o S_u/n E++ S_n
Cluster5 C_m De− E+ M++ M−−
Cluster6 M+ S_u C_vl R+
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leads to a contradiction of the fact that l ⊆ l′ . Thus, the 
assumption that l1′ < l′ is wrong. Summarizing our argu-
ments, we state that for any l� ∈ L� , there exists some 
l ∈ L such that l ⊆ l′ , and there exists no other concept 
l1
� ∈ L� , such that l ⊆ l1

′ andl1′ < l′ . From the definition of 
the � map we conclude that �(l) = l� . Therefore, the map 
� ∶ L → L� is surjective (onto).

Theorem 3  The zeta map � ∶ L → L� is unique.

Proof  Suppose that there exist two distinct surjective zeta 
maps �1 and �2.

Since �1 ≠ �2 , there exists some l ∈ L , such that 
�1(l) ≠ �2(l).

Let �1
(
l1
)
= l1

�and �2(l) = l2
� for some l1�, l2� ∈ L� . 

Clearly, l1′ ≠ l2
′ . Since l1′, l2′ are the nodes of a lattice, 

two possibilities arise, either l1′ < l2
′ or l2′ < l1

′.
Obviously, l ⊆ l1

′ and l ⊆ l2
′.

	 i.	 If l1′ < l2
′ , then since l ⊆ l1

′ and l1′ < l2
′ , the map 

�2(l) = l2
� is wrong.

	 ii.	 If l2′ < l1
′ , then since l1 ⊆ l2

′ and l2′ < l1
′ , the map 

�1
(
l1
)
= l1

� is wrong.

From (i) and (ii) we can infer that the zeta mapping is 
unique.

Note: However, the zeta map � ∶ L → L� seems to pre-
serve the homomorphism under the join and meet operations 
of the lattices L and L′ , it is not so.

As an example, consider the lattice L and L′ , which are 
given in Figs. 3 and 4 respectively.

Consider the concepts l14 and l15 in Fig. 3.

Similarly,

Whereas, for concepts l16 and l17 , the homomorphism of 
the map � is not preserved, as seen below.

The mathematical Theorem 1 on well definedness of the 
zeta map strongly establishes the inclusion of the derived 
concepts from those of original one. The second theorem 
about the surjective nature of the zeta map concludes that 
every extracted concept forms a basis for several original 
concepts. And finally, the uniqueness theorem substantiates 
that the extraction thus derived is the best and that the proce-
dure cannot be improved anymore. As such, we can conclude 
that our proposed work is the best method for extraction.

3.8 � Quality of structures between original 
and simplified lattices

In this section, we clarify the extraction of the concepts of 
the resulting lattice with those of the original lattice.

Under the topic of “morphisms and bonds”, Ganter and 
Wille (1999) discussed the concept comparison measures 
between two concept lattices B(K1) and B(K2) corresponding 
to the contexts K1 and K2.

We used their idea to compare the two concept lattices B 
(G, M, I) and B (G, N, J) .

�
(
l14 ∨ l15

)
= �

(
l20

)
= l6

�, �
(
l14

)
∨ �

(
l15

)
= l4

� ∨ l6
� = l6

�

�
(
l14 ∧ l15

)
= �

(
l5
)
= l4

�, �
(
l14

)
∧ �

(
l15

)
= l4

� ∧ l6
� = l4

�

�
(
l16 ∨ l17

)
= �

(
l24

)
= l8

�, �
(
l16

)
∨ �

(
l17

)
= l2

� ∨ l2
� = l2

�

�
(
l16 ∧ l17

)
= �

(
l8
)
= l2

�, �
(
l16

)
∧ �

(
l17

)
= l2

� ∧ l2
� = l2

�

Table 12   Example 2- Cluster 
context (G, N, J) where 
N ∈ Π(M)

De+ + DI+ + R−− S_o C_m M+

Conventional x x x
Front-wheel x x x x x
Rear-wheel x x x x x
Mid-engine x x x x x x
All-wheel x x x x x

Fig. 4   Simplified concept lattice derived from context Table 12
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In our discussion we have two contexts viz., 
K1 ∶= (G,M, I) and K2 ∶= (G,N, J),N ∈ Π(M), where the 
first one is the original context and the next one is the modi-
fied cluster context.

For comparison purpose two maps � ∶ G → H  and 
� ∶ M → N  are defined. These maps actually map from 
the original context to the cluster context. In our proposed 
method “ (�, �) ” is an identical map � ∶ G → G . The map 
(�, �)maps the extents of K1 to those of K2 . The map �maps 
intents in a similar manner.

Consider the map � ∶ K1 → K2 . The map (�, �) is called 
“extensionally continuous,” if for every extent “ U ” of K2 , 
the pre-image �−1(U) is an extent of K1 . Furthermore, (�, �) 
is said to be “extensionally closed,” if the image �(U) of an 
extent “ U ” of K1 is always an extent of K2 . The analogous 
terms of intensionally continuous and intensionally closed 
can be defined for � with respect to the intents of K1 and K2.

The pair of maps (�, �) ∶ K1 → K2 will be known 
as “incidence preserving” if g I m ⇒ �(g)J�(m) . (i.e., 
g I m ⇒ gJ�(m)).

The pair of maps (�, �) ∶ K1 → K2 is said to be “continu-
ous” if (�, �) is extensionally continuous and � is intension-
ally continuous. The map pair (�, �) is said to be “concept 
preserving” if, for every concept (A,B) ∈ B(K1) , the pair (
�
(
B�
)
, �(A)�

)
 is a concept of K2 . In our discussion, the pair 

of maps given by (�, �) is replaced by the concept inclusion 
map � ∶ L → L� In fact, K1 and K2 can play the role of L and 
L′ without loss of generality.

The concept inclusion zeta map, maps the intents and 
extents of K1 with those of K2 , respectively. Hence, we find 
that the map � ∶ L → L� is: (i) extensionally continuous, 
(ii) extensionally closed, (iii) intensionally continuous, (iv) 
intensionally closed, and, hence, (v) continuous, (vi) inci-
dence preserving, and (vii) concept preserving, since the � 
maps every concept in L to a concept in L′.

Krotzsch et al. (2005) used these terms mentioned above 
to study the structural properties of available knowledge in 
a formal context. The extent and intent of a concept not only 
plays an important role in the process of reduction in FCA, 
but sometimes they are also used to measure the quality of 
reduction. In Codocedo et al. (2011), extensional and inten-
sional stability measures are carried out to measure the good 
quality of the reduced context in the absence of some of the 
objects and attributes in a large original context.

4 � Discussion

This paper has mainly focused on the analysis of the FCA 
involving the MV context. We classify the attributes cat-
egorically and grouped the attributes that had more similar 
outputs. Then we analyze the interrelationship between these 
attribute groups.

Generally, the analysis of a MV context in an FCA back-
ground is a critical task for arriving at valid decisions. For 
example, in the analysis of the student mark data above the 
class teacher may wish to determine the various mark layers 
of each subject in which many students lie, and he/she may 
wish to find out the set of common score layers from differ-
ent subjects. The teacher is now able to identify the group 
of students who are poor in many subjects, in a few, or on 
average in the learning platform. Accordingly, the teacher 
can split the students into a few teams, which may include 
excellent students who can serve as peer-tutors to train the 
weaker students in the team. Moreover, one can easily deter-
mine whether a student who struggles in one subject strug-
gles in other subjects, and, hence, the teacher can monitor 
the progress of the students individually and more closely.

In the first example presented, the original lattice of the 
given MV context contains 24 concepts, which is vague and 
complex from the decision-making point of view; whereas, 
the simplified concept lattice contains only 8 concepts, 
which is easy and clear for any reader to understand and 
analyze. The set of original concepts that are mapped to 
a common concept in the extracted lattice is encircled by 
closed curves, as shown in Fig. 5, and this set of concepts is 
termed “conceptual clusters”.

Let us analyze the extraction of concepts by using our 
proposed method. The concepts of the original lattice are 
mapped to the simplified lattice using a concept inclusion 
� map. Obviously, this mapping does not need to be one-
to-one mapping. Let there be “n” concepts in the extracted 
lattice; label them as 1, 2,…, n. We group the concepts in 
the original lattice, which are mapped to the same ith con-
cept in the extracted lattice, by the zeta map to form an ith 
conceptual cluster. We infer that the extent and intent of 
each concept in any ith conceptual cluster is subsumed in 
the corresponding ith concept of the extracted lattice. As a 
result, we realize that there is no loss in the extraction of the 
concept lattice shown in Fig. 6.

For example, the concepts 6, 7, 8, 16, and 17 from the 2nd 
conceptual cluster of the original lattice have the following 
extents and intents in pairs, respectively, ({S7}, {E2, M3, 
P1}), ({S4},{M2, E3, P1}), ({S8}, {E2, M2, P1}), ({S7, 
S8}, {E2, P1}), ({S4, S8}, {M2, P1}) and are mapped to the 
2nd concept of the extracted lattice with the extent and intent 
pair ({S4, S7, S8}, {E2, E3, P1, P3, M1, M2, M3}) accord-
ing to the zeta map. We can easily infer that the extent and 
the intent of each of these original concepts are subsumed in 
those of the 2nd concept of the extracted lattice. The same 
can be verified for any conceptual cluster of the original 
lattice. The consolidated concept clusters are presented in 
the Table 13. Thus, the concept inclusion zeta map, maps 
the concepts from the original lattice to the extracted lattice 
without a loss of any information in regards to the extents 
and intents of concepts and, thereby, the zeta map maintains 
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the structure of the original lattice with regard to the hierar-
chical order of the concept lattice.

In terms of practical understanding from the original con-
text, we see that the students S4, S7, and S8 possess one or 
more characteristics either individually or as a group. This 
generates more concepts in which it is very difficult to per-
ceive any information. By adopting our proposed method, 
one can more generally arrive at the conclusion that as a 
group, all of the students S4, S7, and S8, possess most of 
the characteristics of the item-set E2, E3, P1, P3, M1, M2, 
and M3. Thus, our proposed method reduces the number 
of subsets on the intents and extents, and the information 
is extracted within the minimum number of concepts. As 

such, the user can arrive at a conclusion more precisely and 
concisely.

Similarly in the second example presented, the inclusion 
of concepts from the original lattice can be observed in clus-
ters as in the first example. We leave the same as an exercise 
to the readers. As a hint we have shown conceptual clusters 
6 and 9 from the original concept lattice (Fig. 7) which are 
mapped using the zeta map to the concept nodes 6 and 9 in 
the reduced concept lattice (Fig. 8) respectively. The reduced 
number of concepts can be increased or decreased by enlarg-
ing or diminishing the size of the clusters.

5 � Conclusions

We have devised a method to simplify a larger concept lat-
tice derived out from many-valued (MV) contexts using an 
attribute clustering technique. We found that the resulting 
lattice maintains the structural consistency and information 
of the original lattice. In order to validate the simplified con-
cepts, we defined and used the concept inclusion map zeta 
( � ). Consequent to the mathematical establishment of its 
well definition and some of its properties, the logical validity 
of the method becomes evident. Furthermore, the proposed 
method is easy to understand and compute. The similarity of 
the structural morphisms between the original and the sim-
plified concept lattices were established by using measures 
on morphisms and bonds.

Fig. 5   Conceptual clusters 
obtained from zeta map in 
example 1

Fig. 6   Simplified lattice obtained out of clusters in example 1
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Table 13   Concepts and their Clusters

Cluster # Original concept numbers Extents Intents

1 1 {} {E1, E2, E3, P1, P2, P3, M1, M2, M3}
2 6, 7, 8

16, 17
{S7}, {S4}, {S8}, {S7,S8}
{S4,S8}

{E2, M3, P1}, {M2, E3, P1}, {E2, M2, P1}, {E2, P1}, {M2, P1}

3 9, 10, 18 {S9}, {S10}, {S9, S10} {P2, E1, M1}, {P2, E1, M1}
{E1, M1}

4 4, 5, 14 {S3},{S6},{S3, S6} {E2, P2, M2}, {E2, P2, M2}, {E2, M2}
5 23 {S4, S7, S8, S9} {P1}
6 2, 3, 11, 12, 13, 15, 19. 20, 21 {S1, S2}, {S5}, {S1, S2, S5}

{S1, S2, S4}, {S3, S7}
{S5, S6, S8}, {S1, S2, S3, 

S7}, {S3, S5, S6, S7, S8}
{S4, S5, S6, S8}

{E1, P3, M3}, {E2, P3, M2}, {P3}, {E3}, {E2, M3}, {E2, M2}, 
{M3}, {E2}, {M2}

7 22 {S3, S6, S10} {P2}
8 24 {S1, S2, S3, S4, S5, S6, S7, 

S8, S9, S10}
{}

Fig. 7   Conceptual clusters 
obtained from zeta map in 
example 2
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