
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2019) 10:3035–3043 
https://doi.org/10.1007/s12652-018-0803-6

ORIGINAL RESEARCH

Effective android malware detection with a hybrid model based 
on deep autoencoder and convolutional neural network

Wei Wang1,2   · Mengxue Zhao1 · Jigang Wang3

Received: 27 December 2017 / Accepted: 14 April 2018 / Published online: 28 April 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Android security incidents occurred frequently in recent years. To improve the accuracy and efficiency of large-scale Android 
malware detection, in this work, we propose a hybrid model based on deep autoencoder (DAE) and convolutional neural 
network (CNN). First, to improve the accuracy of malware detection, we reconstruct the high-dimensional features of 
Android applications (apps) and employ multiple CNN to detect Android malware. In the serial convolutional neural network 
architecture (CNN-S), we use Relu, a non-linear function, as the activation function to increase sparseness and “dropout” to 
prevent over-fitting. The convolutional layer and pooling layer are combined with the full-connection layer to enhance feature 
extraction capability. Under these conditions, CNN-S shows powerful ability in feature extraction and malware detection. 
Second, to reduce the training time, we use deep autoencoder as a pre-training method of CNN. With the combination, deep 
autoencoder and CNN model (DAE-CNN) can learn more flexible patterns in a short time. We conduct experiments on 
10,000 benign apps and 13,000 malicious apps. CNN-S demonstrates a significant improvement compared with traditional 
machine learning methods in Android malware detection. In details, compared with SVM, the accuracy with the CNN-S 
model is improved by 5%, while the training time using DAE-CNN model is reduced by 83% compared with CNN-S model.

Keywords  Deep learning · Convolutional neural network · Autoencoder · Malware detection · Android applications

1  Introduction

Smart terminals have become fundamental personal equip-
ment. More and more customers use smart phones to get a 
wealth of information and contact with each other. On the 
one hand, the openness of Android markets plays an impor-
tant role in the popularity of Android applications (apps). 
On the other hand, Android apps have become the target 
of many attackers. According to the 2016 China Internet 

Security Report (China Internet Security 2016), a total of 
14.03 million new malware samples on Android platform 
have been intercepted by 360 Internet Security Center. Ran-
somware started to break out on mobile phones. Through-
out the year, 360 corporation intercepted 0.17 million new 
ransomware samples on mobile phones, attacking 1.70 mil-
lion mobile phones (China Internet Security 2016). In 2017, 
the number of infections in Android platform is expected to 
grow ten times revealed by the security report. Nowadays, 
how to process the big data in security has become more and 
more important (Hamedani et al. 2018; Wu et al. 2016a, b; 
Atat et al. 2017). Research on modern cryptographic solu-
tions for computer and cyber security is becoming increas-
ingly popular (Ibtihal et al. 2017; Gupta et al. 2016). With 
the increasing threats of Android malware, it is urgent to 
develop effective malware detection methods that help to 
keep the threats out of individuals and the markets.

In recent years, machine learning models have been 
widely employed in malware detection. These models can 
learn the distinctions between malicious and benign apps. 
Deep learning is a relatively new area in machine learn-
ing research. In deep learning methods, the low-level-layers 

 *	 Wei Wang 
	 wangwei1@bjtu.edu.cn

	 Mengxue Zhao 
	 mxzhao@bjtu.edu.cn

	 Jigang Wang 
	 wang.jigang@zte.com.cn

1	 Beijing Key Laboratory of Security and Privacy 
in Intelligent Transportation, Beijing Jiaotong University, 
Beijing, China

2	 Science and Technology on Electronic Information Control 
Laboratory, Chengdu, China

3	 ZTE Corporation, Chengdu, China

http://orcid.org/0000-0002-5974-1589
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-018-0803-6&domain=pdf


3036	 W. Wang et al.

1 3

extract fine features, while high-level-layers exhibit higher-
layered features. As one of the major models in deep learn-
ing, convolutional neural network (CNN) has been popu-
larly used for image recognition (Li et al. 2018b) and shown 
promising performance in contextual categorization. In this 
work, we are motivated to detect Android malicious apps 
with two different structures of CNN. We also propose a 
new pre-training strategy DAE to learn more suitable fea-
ture representations. The proposed approach improves both 
the efficiency and accuracy of Android malware detection 
compared with basic CNN and machine learning methods.

We make the following contributions:

•	 We use CNN with different structures to improve the 
detection accuracy in Android malware detection. The 
experimental results show that CNN-S can reach 99.8% 
prediction accuracy that is 5% higher than SVM.

•	 We develop two different CNN architectures. The experi-
mental results are different with different CNN architec-
tures. We finally use the model CNN-S and the experi-
mental results show that the detection accuracy with 
CNN-S is higher than that with CNN-P (99.80–99.82%) 
and is improved by 3% compared with basic CNN.

•	 We propose using DAE as a pre-training method of 
CNN-S to reduce the training time. We add the sparse 
rules to pre-train the models and use Relu, the non-linear 
function as the activation function, which can efficiently 
extract abstract features. Extensive experimental results 
demonstrate that DAE-CNN can reduce the training time 
by 83% compared with CNN-S.

The rest of this paper is organized as follows. Section 2 
introduces related work on Android malware detection and 
Deep learning methods. Section 3 describes the architecture 
and theoretical background of DAE, CNN and DAE-CNN. 
Section 4 shows how CNN can be used to detect Android 
malware. The experimental results are also demonstrated in 
Sect. 4 and the conclusions follow in Sect. 5.

2 � Related work

Existing work on the detection of malicious apps mainly 
focuses on the analysis of static features (Rastogi et al. 2016; 
Sarma et al. 2012; Pandita et al. 2013; Lu et al. 2012; Klieber 
et al. 2014), or dynamic features (Enck et al. 2014; Wu and 
Hung 2014; Amos et al. 2013). Li and Li (2015) proposed 
an Android malware detection method based on character-
istic trees. Yerima et al. (2014) developed machine-learning 
approaches based on Bayesian classification to detect uncov-
ering unknown Android malware. Zhou and Jiang (2012) 
proposed a permission based scheme to detect new Android 
malware family samples and applied a heuristics-based 

filtering scheme to identify certain inherent behaviors of 
unknown malicious families. Shabtai et al. (2010) studied 
the techniques of static analysis to analyze Android source 
code. They also applied machine learning techniques to cat-
egorize games and tools with static features extracted from 
Android apps. There exists work on securing smartphone 
authentication (Shen et al. 2018a, b, c, d) or securing cloud 
authentication (Li et al. 2018a, b; Wang et al. 2018a, b, c, d; 
Shen et al. 2018a, b, c, d; Xie et al. 2018; Chen et al. 2015) 
and securing user authentication (Shen et al. 2017). In our 
previous work, we employed the ensemble of multiple clas-
sifiers, namely, Support Vector Machine (SVM), K-Nearest 
Neighbor (KNN), Naive Bayes (NB), Classification and 
Regression Tree (CART) and Random Forest (RF), to detect 
malicious apps and to categorize benign apps (Wang et al. 
2018a, b, c, d). We also explored the permission-induced 
risk in Android apps on three levels in a systematic manner 
(Wang et al. 2014a, b). In addition, we gave insights regard-
ing what discriminatory features are most effective to char-
acterize malicious apps for building an effective and efficient 
malicious app detection system (Wang et al. 2017). We devel-
oped a tool called “SDFDroid” to identify the used sensors’ 
types and to generate the sensor data propagation graphs in 
each app (Liu et al. 2018). Feature selection is one of the 
significant steps in classification (Zhang et al. 2017; Lee et al. 
2017; Memos et al. 2018; Wang et al. 2015) or intrusion 
detection (Wang et al. 2008, 2014a, b, 2018a, b, c, d; Guan 
et al. 2009; Wang and Battiti 2006). Using machine learning 
methods can automatically analyze malicious behavior and 
detect malware effectively.

Deep learning is a new area of machine learning and 
has been widely applied to many scenes (Hamedani 
et al. 2018), such as event detection and analysis (Chang 
et al. 2017a, b; Chang and Yang 2017; Li et al. 2017a, 
b). It can also perform well in Android malware detec-
tion. Yuan et al. (2016) proposed to associate the fea-
tures from the static analysis with features from dynamic 
analysis of Android apps and characterize malware using 
Deep Belief Network (DBN) (Bengio 2009; Hinton et al. 
2014). CNN has shown popular performance in recogni-
tion and classification area, which is proposed by Lecun 
(Lecun et al. 1998) in 1998. The latest work employing 
CNN to Android malware detection has been found in 
2017 (Huang et al. 2017; Nix and Zhang 2017). Differ-
ent from existing work, we focus on the evaluation of 
different CNN structures and how to reduce the train-
ing time without changing the computing environments. 
To analyze the effect of different structures on detection 
accuracy, two different structures of CNN and one basic 
structure of CNN are employed in the same experimental 
environment. We also evaluate the influence of different 
activation functions. Due to the plenty of parameters, we 
use “dropout” (Hinton et al. 2012) technique to prevent 



3037Effective android malware detection with a hybrid model based on deep autoencoder and…

1 3

complex weights co-adaptations and reduce overfitting. 
In addition, we use the pre-training methods for the 
detection. Different from existing methods, we propose 
a hybrid model by combining DAE and CNN to reduce 
the training time.

3 � Methods

3.1 � Architecture of deep autoencoder (DAE)

Typical autoencoder (Hinton and Zemel 1994) is an unsu-
pervised model that learns to reconstruct the input. Deep 
learning models are capable of learning complex hierarchi-
cal nonlinear features, which are considered as better rep-
resentations for original data in many fields such as speech 
recognition and computer vision (Zhang et al. 2017). The 
basic structure of autoencoder contains encoder layer, hid-
den layer and decoder layer. The input of hidden layer is 
the output of encoder layer and the input of decoder layer 
is the output of hidden layer. The function of autoencoder 
is composed by the encoder and decoder with the sym-
metrical architecture to map Rd

→ Rd . The encode layer 
parameterized by � = {W, b} with input sequence x and 
output y is:

where σ(x) = max (0, x) is the activation function, Relu, of 
the encode layer. Compared with Sigmoid, Relu can usually 
eliminate the necessity of pre-training and make deep learn-
ing models converge to sometimes more discriminative solu-
tions more quickly, while keeping the model sparse (Lecun 
et al. 1998; Huang et al. 2017). The reconstructed function 
between hidden layer and decode layer is:

The main target of autoencoder is to minimize the fol-
lowing function:

to ensure that the hidden layer can reconstruct the input 
layer.

In this work, we use DAE model, which has more than 
one hidden layer to extract features from training data. In 
addition, we extend DAE to complete the classification 
of Android apps. There are four layers in DAE model (as 
illustrated in Fig. 1), one encoding layer, two hidden layers 
and one classification layer. Using softmax as the activa-
tion function of classification layer and training data with 
labels, we achieved the goal of detecting Android malware.

(1)y = f�(x) = �(W × x + b)

(2)z = f�� (y) = �(W � × y + b�)

(3)�, �� = min�,��

d
∑

i=1

L(xi, zi)

3.2 � CNN with different architectures

The CNN-S model architecture, shown in Fig. 2, is a slight 
variant of basic CNN architecture.

We reconstruct the extracted features of each app as 
the input of the convolutional layer. Given xi ∈ Rk as the 
k-dimensional feature vector corresponding to the i-th fea-
ture in the feature codes of each Android app, the Android 
app of length n (padded where necessary) can be represented 
as:

The input data are convoluted by the kernels and learn-
able filters. A filter applied to a window of m features to pro-
duce a new feature. For example, the feature yi is generated 
from a window of features xi∶ i+m−1 filtered with W ∈ Rm∗k 
by:

(4)x1∶ n = x1 ⊕ x2 ⊕…⊕ xn

(5)yi = f (W ∗ xi∶i+m−1 + b)

W1 W2 W3

Softmax

Fig. 1   Deep autoencoder model

Input_layer

conv_0 layer

pooling_0 layer

conv_1 layer

pooling_1 layer

conv_2 layer

Fully-connected layer

Softmax layer

Fig. 2   CNN-S model



3038	 W. Wang et al.

1 3

where f (x) = max (0, x) is a nonlinear activation func-
tion Relu, b ∈ R is a bias term. The filter W ∈ Rm∗k 
is applied to each possible window of features in 
{x1∶ m, x2∶ m+1, … , xn−m+1∶ n} to produce a feature map 
y ∈ R(n−m+1)∗1 . The feature maps are imported to the max-
pooling layer, taking the maximum value Y = max{y} , cap-
turing the most important features and reducing the feature 
dimension for each feature map.

The CNN-S model consists of three convolutional layers 
with max-pooling layers located between two of them. The 
activation function of each convolutional layer is Relu. A 
small and non-zero gradient is obtained with the help of 
Relu and the accuracy of the CNN increases. Different from 
the basic CNN, the output of the third convolutional layer 
is imported to the fully connected layer together with the 
second max-pooling layer to maximize the extraction of 
features. In this layer, the neurons are fully connected to all 
activations in the former layers.

After that, we add a dropout layer to the fully connected 
layer to prevent co-adaptation of hidden neurons. The 
dropped-out neurons do nothing to the forward pass and only 
the neurons without dropout participate in back-propagation. 
Therefore, this layer helps to reduce the complex of co-adap-
tation of neurons. Without dropout, the experimental result 
exhibits substantial overfitting.

At the end of CNN-S model, the softmax layer is 
employed to do classification whose output is the probability 
distribution over labels.

The CNN-P architecture, illustrated in Fig. 3, is another 
variant of basic CNN architecture. The CNN-P model uses 
three multiple filters with different window sizes to extract 
multiple features. The penultimate layer is formed with these 
features. Thus, the features are imported to a fully connected 
layer. In both the two models proposed, the error between 
the actual output and network output are computed and mini-
mized by being back propagated. The weights of the CNN 
are then further adjusted to fine-tune them.

Time complexity determines the model’s training and 
testing time. If the complexity is too high, it will take a great 

deal of time to train and test a model. Due to high complex-
ity, a model cannot be evaluated quickly or make a quick 
prediction. The factors that affect the time complexity of a 
convolutional layer include the sizes of input feature maps, 
the sizes of kernels, the quantities of input channels and 
output channels. Given D as the depth of CNN model, l as 
the name of a convolutional layer, Ml as the sizes of feature 
maps, Kl as the sizes of kernels, Cin and Cout as the quantities 
of input channels and output channels, the time complexity 
of a CNN model can be represented as:

Training time can be reduced if we can reduce the dimen-
sion of input data according to the equation.

3.3 � Architecture of proposed DAE‑CNN

Due to the high dimensional features of Android apps, it is 
too expensive to train the deep neural networks. To reduce 
the training time and take advantage of the power of CNN, 
we combine DAE with CNN. Using DAE as a pre-training 
method can capture the essensial features of Android apps 
efficiently. We extract the output of hidden layer in DAE and 
add sparse rules to make it available for CNN. Consider-
ing the time complexity mentioned in Sect. 3.2, DAE-CNN, 
shown in Fig. 4, can learn more flexible patterns of training 
data in a short time.

4 � Malware detection with CNN

Figure 5 illustrates the proposed DAE-CNN model. As 
described in the figure, we extract features from 23,000 apps 
collected from various app stores and process the data to 
adapt into deep learning models. We use keras, the python 
deep learning library, to implement the deep learning mod-
els. In order to demonstrate that DAE-CNN can improve the 
detection accuracy, experiments with DAE-CNN and with 

(6)Time ∼ O

(

D
∑

l=1

M2

l
∗ K2

l
∗ Cl−1 ∗ Cl

)

Input_layer
pooling_0 layer

conv_0 layer

conv_1 layer

conv_2 layer

pooling_1 layer

pooling_2 layer

Fully-connected layer

Softmax layer

Fig. 3   CNN-P model

Input_layer

conv_0 layer

pooling_0 layer

conv_1 layer

pooling_1 layer

conv_2 layer

Fully-connected layer

Softmax layer

Data_process

DAE

Fig. 4   DAE-CNN-S model



3039Effective android malware detection with a hybrid model based on deep autoencoder and…

1 3

other traditional machine learning methods are conducted. 
To analyze the effect of CNN models under different param-
eters, CNN models with different structures are applied for 
malware detection. We also compare DAE-CNN models 
with CNN models to verify that using DAE-CNN can reduce 
training time.

4.1 � Data preparation

We crawl 10,000 apps from Anzhi play store. Scanned by 
Virustotal, all the 10,000 apps are confirmed as benign apps. 
We collect 13,000 malicious apps from VirusShare. With 
23,000 apps, we thoroughly train and test various models.

In this work, we are motivated to conduct experiments 
on high dimensional features of large scale Android apps. 
Compared with dynamic analyses, static analyses cost less 
in time and complexity. Therefore, we conduct static analy-
ses to extract features from each app by Androguard and 
Android SDK Tools. In this way, we obtain a total of 34,570 
features for each app. The seven categories of static features 
are permissions, requested permissions, filtered intents, 
restricted API calls, hardware features, code related patterns, 
and suspicious API calls. The number of features is too large 
to be processed efficiently. We reconstruct the structure of 
features. In detail, we encode all the features and use the 
feature code to indicate each app and pad where necessary 
with zero. Therefore, the dimension of dataset is reduced 
from 34,570 to 413.

To make it available for CNN model and improve the 
accuracy, we use xi ∈ R256 to signify the 256-dimensional 
feature vector corresponding to the i-th feature in the feature 
codes of each Android app. Therefore, each app is indicated 
as a matrix with size 413 × 256. Dataset is randomly divided 
into training data and testing data by 4:1.

4.2 � Experimental setup

We conduct experiments with several variants of deep learn-
ing models and other machine learning models. All the 
experiments are conducted in the same circumstance with 
the same dataset. Keras is a high-level neural networks API. 
It was written in Python and is capable of running on top of 
TensorFlow or Theano. Deep learning models are trained 
and tested by calling Keras functional API.

•	 Basic CNN (CNN-0) The baseline model consists of one 
convolutional layer, one max-pooling layer and one fully 
connected layer (shown in Fig. 6). The activation of con-
volutional layer is relu and the fully connected layer is 
sofmax.

•	 CNN-S The structure of CNN-S model is illustrated in 
Fig. 2. CNN-S is trained from scratch. Kernel size and 
filter size are the main factors affecting the accracy of the 
training model. According to the dimension of input data 
and output data, we design the CNN-S model. The filter 
window of the first convolutional layer is set as 4 × 256 
with 50 kernels. The pool size of the first max-pooling 

Suspicious API calls

Used permissions

Requested permissions

Filtered intents

Restricted API calls

Hardware features

Code related patterns

Feature extract
Android apps

Feature matrix

Benign apps

Malicious apps

Data preparation Pre-training + Deep learning

Fig. 5   Framework of DAE-CNN models

Fig. 6   Traditional CNN model
Convolutional layer pooling layer Fully connected layer



3040	 W. Wang et al.

1 3

layer is 10 × 1. The filter window of the second convo-
lutional layer is set as 6 × 1 with 50 kernels. The pool 
size of the second max-pooling layer is 6 × 1. The filter 
window of the third convolutional layer is set as 6 × 1. 
For each convolutional layer, we apply Relu, the non-
linear activation function, to achieve scale invariance. 
We adopt two fully connected layers to aggregate the 
features learned from the second pooling layer and the 
third convolutional layer to do classification. The detailed 
parameters are shown in Table 1.

•	 CNN-P CNN-P is pre-trained on CNN-multichannel 
(Kim 2014) and then fine-tuned. Finally, the hyberpa-
rameters in CNN-P model are set as follows: three filter 
windows of 3 × 256, 4 × 256, 5 × 256 with 80 kernels 
each, the nonlinear activition function Relu, pool sizes 
in maxpooling layers of 411 × 1, 410 × 1409 × 1, drop-
out rate of 0.5, the interation number of 50. Based on 
the hyberparameters, we get 240 feature maps which are 
the most optimal features for classfication. The detailed 
parameters are shown in Table 2.

•	 DAE We conduct four different DAE structures including 
413-200-100-2, 413-200-2, 413-100-20-2, 413-200-100-
20-2 on the dataset. For each structure, we apply Relu 
as the activation function on each layer. Threre are two 
keys in DAE training, one is the structure, the other is 
the number of iterations. Due to overfitting, a model does 
not always perform better as the number of interations 
increases. We try different numbers of interations in 413-
200-100-20-2. With the increasing numbers of interation, 
the performance of DAE keeps (Table 3). Based on the 
results of DAE model, the structure of 413-200-100-20 
is chosen for pretraining of CNN.

•	 DAE-CNN As the layers of deep learning model increase, 
the number of feature maps increase exponentially. The 
training time grows rapidly as well. It is necessary to 

build a layer to reduce the dimension of input data. 
We use the output of the third layer of DAE (413-200-
100-20-2) as the input of the first convolutional layer in 
CNN-S and the input of the CNN-P as well to compen-
sate for CNN’s limitation and reduce the training time. 
We add the sparse rules (Glorot et al. 2011) to the 20 
features of each app extracted from DAE model to apply 
CNN-S and CNN-P. The hyberparameters of DAE-CNN-
S are set as follows: the filter window of convolutional 
layers are 3 × 256, 3 × 1, 2 × 1, the pool size of the pool-
ing layers are 3 × 1, 3 × 1.The parameters of DAE-CNN-S 
are set as follows: the pool size of the pooling layers are 
18 × 1, 17 × 1, 16 × 1.

•	 Other traditional machine learning methods We com-
pare the proposed methods with some machine learning 
methods mentioned in Sect. 2. We employ scikit-learn 
(​Pedregosa et al. 2011; Glorot et al. 2011) packages 
written in Python as the machine learning tools in the 
experiments. The methods using the same training set 
and testing set are given as follows: SVM, Decision Tree, 
Random Forest (RF), K-Nearest Neighbor (KNN).

Table 1   Parameters of CNN-S model

Layer Output shape Parameters

input_1 (None, 413) 0
embedding_1 (None, 413, 256) 540,928
reshape_1 (None, 413, 256, 1) 0
conv2d_1 (None, 410, 1, 50) 51,250
max_pooling2d_1 (None, 41, 1, 50) 0
conv2d_2 (None, 36, 1, 50) 15,050
max_pooling2d_2 (None, 6, 1, 50) 0
conv2d_3 (None, 1, 1, 50) 15,050
flatten_1 (None, 300) 0
dropout_1 (None, 300) 0
flatten_2 (None, 50) 0
merge_1 (None, 350) 0
dense_1 (None, 2) 702

Table 2   Parameters of CNN-P model

Layer Output shape Parameters

input_1 (None, 413) 0
input_1 (None, 413) 0
embedding_1 (None, 413, 256) 540,928
reshape_1 (None, 413, 256, 1) 0
conv2d_1 (None, 411, 1, 80) 61,520
conv2d_2 (None, 410, 1, 80) 82,000
conv2d_3 (None, 409, 1, 80) 102,480
max_pooling2d_1 (None, 1, 1, 80) 0
max_pooling2d_2 (None, 1, 1, 80) 0
max_pooling2d_3 (None, 1, 1, 80) 0
merge_1 (None, 3, 1, 80) 0
flatten_1 (None, 240) 0
dropout_1 (None, 240) 0

Table 3   Detection results with DAE model

Bold values indicate the best performance (with pre-set parameters or 
models)

Iteration Structure FPR TPR ACC​

20 431-200-100-2 7.6 96.5 94.7
100 431-200-100-2 4.9 98.7 97.1
50 431-200-100-2 2.9 98.7 98.1
50 431-200-100-20-2 2.1 98.1 98.0
50 431-100-20-2 2.9 97.2 97.1
50 431-200-2 9.1 85.3 88.1



3041Effective android malware detection with a hybrid model based on deep autoencoder and…

1 3

4.3 � Results

The results of ten experiments are illustrated in Table 4. The 
operating characteristics to evaluate the performance of the 
structures are set as follows: FPR (false positive rate), TPR 
(true positive rate), ACC (accuracy), Recall, PPV (positive 
predict value), FSCORE (the harmonic mean of precision 
and sensitivity: FSCORE = 2TP∕2TP + FP + FN ), Train-
ing Time.

4.4 � Evaluations

•	 Effect of CNN structures: All the experiments are con-
ducted in the same environment. Figure 7 shows the ACC 
and FPR of the proposed algorithms. It can be seen from 
Fig. 7 that different CNN structures have different perfor-
mance. The CNN-S achieves better accuracy and F-score 
than basic CNN and CNN-P. Compared with traditional 
machine learning methods, training with CNN can 
improve the accuracy apparently. Compared with SVM, 

the accuracy with the CNN-S model is improved by 5%. 
The CNN models have disadvantages either. Traditional 
machine learning methods only need to store a matrix 
for prediction, while CNN has to store the whole model. 
The parameters in training a CNN model are thousands 
mutiples of parameters in traditional machine learning. 
Thus training machine learning models takes short time 
and little space compared with CNN models.

•	 Effect of pre-training methods: To reduce the training 
time, the DAE-CNN models are proposed. As shown in 
Fig. 8, models with the DAE pre-training method con-
sume less time than CNN models without DAE. The effi-
ciency of detection with DAE-CNN-S is improved by 
83% compared with CNN-S model. Although the accu-
racy of DAE-CNN is a little lower than CNN models, it 
is still higher than traditonal machine learning methods. 
In general, taking time and other evaluation index into 
consideration, DAE-CNN-S has more advantages than 
other methods mentioned in this paper in Android mal-

Table 4   Detection results

Bold values indicate the best performance (with pre-set parameters or models)
This part of our paper mainly investigates the methods DAE-CNN-S and DAE-CNN-P and their efficiency. 
Thus they are shown with italics values for significance

FPR (%) TPR (%) ACC (%) Recall (%) PPV (%) FScore (%) Time (mins)

CNN-0 0.49 97.87 97.80 97.87 97.78 97.82 311.9
CNN-S 0.21 99.89 99.82 99.89 99.84 99.86 332.9
DAE-CNN-S 1.82 98.65 98.60 98.65 98.73 98.69 59.6
CNN-P 0.33 99.91 99.80 99.91 99.74 99.82 1101.9
DAE-CNN-P 1.67 98.57 98.50 98.57 98.71 98.64 183.1
DAE 7.62 96.53 94.72 96.53 94.27 95.78 3.6
SVM 5.06 95.56 95.29 95.56 96.09 95.82 6.5
Decision tree 1.84 97.85 97.54 97.85 97.58 97.71 0.43
RF 1.69 97.91 97.65 97.91 97.70 97.80 0.3
K-NN 15.98 93.60 89.01 93.60 88.38 90.92 0.73

Fig. 7   Comparison of ACC and F-Score in ten different models Fig. 8   Comparation of Time and ACC between CNN models with 
and without DAE



3042	 W. Wang et al.

1 3

ware detection. We believe that the combination of DAE 
and CNN has potential ability for high accuracy when the 
dataset is large enough.

•	 Other hyberparameters in CNN models: Using Relu 
(Nair and Hinton 2010) as the activation function can 
avoid the gradient from nonsaturate in the positive region 
and increase the accuracy of the CNN. We also con-
duct experiments using sigmoid and the results shown 
in Table 5 prove that Relu can improve the behavior of 
CNN. Dropout can be used as an efficient way to prevent 
overfitting.

5 � Conclusion

In this work, we propose a hybrid model for Android mal-
ware detection with DAE and CNN to improve the detec-
tion accuracy and reduce the training time. The CNN-S and 
CNN-P structures are employed in the training process, dur-
ing which the “dropout” technique is used to prevent over-
fitting. Experimental results demonstrate that the proposed 
model is effective for large-scale Android malware detec-
tion. Compared with SVM, the accuracy of CNN-S model 
is improved by 5%. The time consumption for training with 
DAE-CNN is reduced by 83% compared with CNN-S model. 
In future work, we will extract more fine-grained features 
from Android apps and explore more effective algorithms 
to analyze and detect more sophisticated Android malware.

Acknowledgements  The work reported in this paper was sup-
ported in part by National Key R&D Program of China, under Grant 
2017YFB0802805, in part by Shanghai Key Laboratory of Integrated 
Administration Technologies for Information Security, under Grant 
AGK2015002, in part by ZTE Corporation Foundation, under Grant 
K17L00190, in part by funds of Science and Technology on Electronic 
Information Control Laboratory, under Grant K16GY00040, in part by 
the Fundamental Research funds for the central Universities of China, 
under Grant K17JB00060 and K17JB00020, and in part by Natural 
Science Foundation of China, under Grant U1736114 and 61672092.

References

Amos B, Turner H, White J (2013) Applying machine learning classifi-
ers to dynamic android malware detection at scale. In: 9th interna-
tional wireless communications and mobile computing conference 
(IWCMC), July 1–5, 2013, Sardinia, Italy, pp 1666–1671

Atat R, Liu L, Chen H, Wu J, Li H, Yi Y (2017) Enabling cyber-
physical communication in 5G cellular networks: challenges, 

spatial spectrum sensing, and cyber-security. IET Cyber-Phys 
Syst Theory Appl 2(1):49–54

Bengio Y (2009) Learning deep architectures for AI. Foundations & 
Trends®. Mach Learn 2(1):1–127

Chang X, Yang Y (2017) Semisupervised feature analysis by mining 
correlations among multiple tasks. IEEE Trans Neural Netw 
Learn Syst 28(10):2294–2305

Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017a) Bi-level 
semantic representation analysis for multimedia event detection. 
IEEE Trans Cybern 47(5):1180–1197

Chang X, Yu YL, Yang Y, Xing EP (2017b) Semantic pooling for 
complex event analysis in untrimmed videos. IEEE Trans Pat-
tern Anal Mach Intell 39(8):1617–1632

Chen X, Li J, Huang X, Ma J, Lou W (2015) New publicly verifiable 
databases with efficient updates. IEEE Trans Dependable Secure 
Comput 12(5):546–556

China Internet Security (2016) Research report. http://zt.360.
cn/11010​61855​.php?dtid=11010​61451​&did=49030​1065. 
Accessed Dec 2017

Enck W, Gilbert P, Han S, Tendulkar V, Chun B, Cox LP, Jung 
J, McDaniel P, Sheth AN (2014) TaintDroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. Acm Trans Comput Syst (TOCS) 32(2):1–29

Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural 
networks. In: Proceedings of the 14th international conference 
on artificial intelligence and statistics (AISTATS), April 11–13, 
2011, Ft. Lauderdale, FL, USA, pp 315–323

Guan X, Wang X, Zhang X (2009) Fast intrusion detection based 
on a non-negative matrix factorization model. J Netw Comput 
Appl 32(1):31–44

Gupta BB, Agrawal DP, Yamaguchi S (2016) Handbook of 
research on modern cryptographic solutions for computer 
and cyber Security, 1st edn. IGI Publishing, Hershey, PA. 
ISBN:1522501053 9781522501053

Hamedani K, Liu L, Atat R, Wu J, Yi Y (2018) Reservoir comput-
ing meets smart grids: attack detection using delayed feedback 
networks. IEEE Trans Ind Inf 14(2):734–743

Hinton GE, Zemel RS (1994) Autoencoders, minimum description 
length and Helmholtz free energy. Adv Neural Inf Process Syst 
(NIPS) 6:3–10

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov 
RR (2012) Improving neural networks by preventing co-adap-
tation of feature detectors. CoRR 1207:0580

Hinton GE, Osindero S, Teh YW (2014) A fast learning algorithm 
for deep belief nets. Neural Comput 18(7):1527–1554

Huang HD, Yu CM, Kao HY (2017) R2-D2: color-inspired convolu-
tional neural network (cnn)-based android malware detections. 
CoRR 1705:04448

Ibtihal M, Driss EO, Hassan N (2017) Homomorphic encryption 
as a service for outsourced images in mobile cloud computing 
environment. Int J Cloud Appl Comput 7(2):27–40

Kim Y (2014) Convolutional neural networks for sentence classifica-
tion. In: Proceedings of the 2014 conference on empirical meth-
ods in natural language processing (EMNLP), October 25–29, 
2014 Doha, Qatar, pp 1746–1751

Klieber W, Flynn L, Bhosale A, Jia L, Bauer L (2014) Android taint 
flow analysis for app sets. In: Proceedings of the 3rd ACM SIG-
PLAN international workshop on the state of the art in Java 
program analysis, June 9–11, 2014, Edinburgh, United King-
dom, pp 1–6

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based 
learning applied to document recognition. Proc IEEE 
86(11):2278–2324

Lee K, Choi HO, Min SD, Lee J, Gupta B, Nam Y (2017) A com-
parative evaluation of atrial fibrillation detection methods in 

Table 5   Detection results with DAE model

Structure FPR (%) TPR (%) ACC (%)

CNN-0 (Relu) 0.49 96.5 94.7
CNN-0 (Sigmoid) 2.57 96.28 95.91

http://zt.360.cn/1101061855.php?dtid=1101061451&did=490301065
http://zt.360.cn/1101061855.php?dtid=1101061451&did=490301065


3043Effective android malware detection with a hybrid model based on deep autoencoder and…

1 3

koreans based on optical recordings using a smartphone. IEEE 
Access 5:11437–11443

Li Q, Li X (2015) Android malware detection based on static analy-
sis of characteristic tree. In: 2015 International conference on 
cyber-enabled distributed computing and knowledge discovery 
(CyberC), September 17–19, 2015, Xi’an, China, pp 84–91

Li P, Li J, Huang Z, Gao CZ, Chen WB, Chen K (2017a) Privacy-
preserving outsourced classification in cloud computing. Cluster 
Comput. https​://doi.org/10.1007/s1058​6-017-0849-9

Li Z, Nie F, Chang X, Yang Y (2017b) Beyond trace ratio: weighted 
harmonic mean of trace ratios for multiclass discriminant analysis. 
IEEE Trans Knowl Data Eng 29(10):2100–2110

Li J, Sun L, Yan Q, Li Z, Srisa-an W, Ye H (2018a) Significant permis-
sion identification for machine learning based android malware 
detection. IEEE Trans Industr Inf PP(99):1–1

Li Y, Wang G, Nie L, Wang Q (2018b) Distance metric optimization 
driven convolutional neural network for age invariant face recog-
nition. Pattern Recogn 75C:51–62

Liu X, Liu J, Wang W, He Y, Zhang X (2018) Discovering and under-
standing android sensor usage behaviors with data flow analysis. 
World Wide Web 21(1):105–126

Lu L, Li Z, Wu Z, Lee W, Jiang G (2012) CHEX: statically vetting 
android apps for component hijacking vulnerabilities. In: ACM 
conference on computer and communications security, October 
16–18, 2012, Raleigh, NC, USA, pp 229–240

Memos VA, Psannis KE, Ishibashi Y, Kim BG, Gupta B (2018) An effi-
cient algorithm for media-based surveillance system (EAMSuS) in 
IoT smart city framework. Future Gener Comput Syst 83:619–628

Nair V, Hinton GE (2010) Rectified linear units improve restricted 
Boltzmann machines. In: Proceedings of the 27th international 
conference on machine learning (ICML-10), June 21–24, 2010, 
Haifa, Israel, pp 807–814

Nix R, Zhang J (2017) Classification of Android apps and malware 
using deep neural networks. Int Jt Conf Neural Netw (IJCNN) 
May 14–19, 2017, Alaska, USA, pp 1871–1878

Pandita R, Xiao X, Yang W, Enck W, Xie T (2013) WHYPER: towards 
automating risk assessment of mobile applications. Usenix Conf 
Secur 2013:527–542

Pedregosa F, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, 
Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine 
learning in Python. Mach Learn Res 12(10):2825–2830

Rastogi S, Bhushan K, Gupta BB (2016) Android applications repack-
aging detection techniques for smartphone devices. Procedia 
Comput Sci 78:26–32

Sarma BP, Li N, Gates C, Potharaju R, Nita-Rotaru C, Molloy I (2012) 
Android permissions: a perspective combining risks and benefits. 
In: ACM symposium on access control models and technologies. 
June 21–23, 2017, Indianapolis, IN, USA, pp 13–22

Shabtai A, Fledel Y, Elovici Y (2010) Automated static code analysis 
for classifying android applications using machine learning. In: 
2010 international conference on computational intelligence and 
security (CIS), December 11–14, 2010, Nanning, Guangxi, China, 
pp 329–333

Shen C, Chen Y, Guan X, Maxion Y (2017) Pattern-growth based 
mining mouse-interaction behavior for an active user authentica-
tion system. IEEE Trans Dependable Secur Comput PP(99):1–1

Shen J, Zhou T, Chen X, Li J, Susilo W (2018a) Anonymous and 
traceable group data sharing in cloud computing. IEEE Trans Inf 
Forensics Secur 13(4):912–925

Shen C, Li Y, Chen Y, Guan X, Maxion R (2018b) Performance analy-
sis of multi-motion sensor behavior for active smartphone authen-
tication. IEEE Trans Inf Forensics Secur 13(1):48–62

Shen J, Gui Z, Ji S, Shen J, Tan H, Tang Y (2018c) Cloud-aided light-
weight certificateless authentication protocol with anonymity for 
wireless body area networks. Netw Comput Appl 106:117–123

Shen C, Chen Y, Guan X (2018d) Performance evaluation of implicit 
smartphones authentication via sensor-behavior analysis. Inf Sci 
430:538–553

Wang W, Battiti R (2006) Identifying intrusions in computer networks 
with principal component analysis. ARES 2006:270–279

Wang W, Guan X, Zhang X (2008) Processing of massive audit data 
streams for real-time anomaly intrusion detection. Comput Com-
mun 31(1):58–72

Wang W, Guyet T, Quiniou R, Cordier M, Masseglia F, Zhang X 
(2014a) Autonomic intrusion detection: adaptively detecting 
anomalies over unlabeled audit data streams in computer net-
works. Knowl Based Syst 70:103–117

Wang W, Wang X, Feng D, Liu J, Han Z, Zhang X (2014b) Explor-
ing permission-induced risk in android applications for mali-
cious application detection. IEEE Trans Inf Forensics Secur 
9(11):1869–1882

Wang W, He Y, Liu J, Gombault S (2015) Constructing important 
features from massive network traffic for lightweight intrusion 
detection. IET Inf Secur 9(6):374–379

Wang X, Wang W, He Y, Liu J, Han Z, Zhang X (2017) Characterizing 
android apps’ behavior for effective detection of malapps at large 
scale. Future Gener Comput Syst 75:30–45

Wang Y, Zhu G, Shi Y (2018a) Transportation spherical watermarking. 
IEEE Trans Image Process 27(4):2063–2077

Wang H, Wang W, Cui Z, Zhou X, Zhao J, Li Y (2018b) A new 
dynamic firefly algorithm for demand estimation of water 
resources. Inf Sci 438:95–106

Wang W, Li Y, Wang X, Liu J, Zhang X (2018c) Detecting android 
malicious apps and categorizing benign apps with ensemble of 
classifiers. Future Gener Comput Syst 78:987–994

Wang W, Liu J, Pitsilis G, Zhang X (2018d) Abstracting massive data 
for lightweight intrusion detection in computer networks. Inf Sci 
433–434:417–430

Wu WC, Hung SH (2014) DroidDolphin: a dynamic android malware 
detection framework using big data and machine learning. In: 
Proceedings of the 2014 conference on research in adaptive and 
convergent systems (RACS), pp 247–252

Wu J, Guo S, Li J, Zeng D (2016a) Big data meet green challenges: 
greening big data. IEEE Syst J 10(3):873–887

Wu J, Guo S, Li J, Zeng D (2016b) Big data meet green challenges: 
big data toward green applications. IEEE Syst J 10(3):888–900

Xie D, Lai X, Lei X, Fan L (2018) Cognitive multiuser energy harvest-
ing decode-and-forward relaying system with direct links. IEEE 
Access 6:5596–5606

Yerima SY, Sezer S, McWilliams G (2014) Analysis of Bayesian clas-
sification-based approaches for android malware detection. IET 
Inf Secur 8(1):25–36

Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware charac-
terization and detection using deep learning. Tsinghua Sci Tech-
nol 21(1):114–123

Zhang C, Liu C, Zhang X Almpanidis G (2017) An up-to-date com-
parison of state-of-the-art classification algorithms. Expert Syst 
Appl 82:128–150

Zhou Y, Jiang X (2012) Dissecting android malware: characterization 
and evolution. In: IEEE symposium on security and privacy (SP), 
May 20–23, 2012, San Francisco, USA, pp 95–109

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10586-017-0849-9

	Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network
	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Architecture of deep autoencoder (DAE)
	3.2 CNN with different architectures
	3.3 Architecture of proposed DAE-CNN

	4 Malware detection with CNN
	4.1 Data preparation
	4.2 Experimental setup
	4.3 Results
	4.4 Evaluations

	5 Conclusion
	Acknowledgements 
	References


