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Abstract
Recognition of sleep posture and its changes are related to information monitoring in a number of health-related applica-
tions such as apnea prevention and elderly care. This paper uses a less privacy-invading approach to classify sleep postures 
of a person in various configurations including side and supine postures. In order to accomplish this, a single depth sensor 
has been utilized to collect selective depth signals and populated a dataset associated with the depth data. The data is then 
analyzed by a novel frequency-based feature selection approach. These extracted features were then correlated in order to 
rank their information content in various 2D scans from the 3D point cloud in order to train a support vector machine (SVM). 
The data of subjects are collected under two conditions. First when they were covered with a thin blanket and second without 
any blanket. In order to reduce the dimensionality of the feature space, a T-test approach is employed to determine the most 
dominant set of features in the frequency domain. The proposed recognition approach based on the frequency domain is also 
compared with an approach using feature vector defined based on skeleton joints. The comparative studies are performed 
given various scenarios and by a variety of datasets. Through our study, it is shown that our proposed method offers better 
performance to that of the joint-based method.
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1 Introduction

Sleep is one of the most important parts of human life 
which can strongly affect both physical and mental state. 
The quality of sleep can determine the mental outlook and 
performance of an individual in his/her daily activities. 
This can be an important factor in yielding to various health 
problems like diabetes, obesity, and depression (Falie et al. 
2008). There are several indicators to diagnose sleep qual-
ity. Among them, the sleep posture and its changes can be 
an important indicator for sleep disorders such as snoring, 
night sweats, narcolepsy and especially sleep apnea (Hao 
et al. 2013) (i.e. recurring of restricted airflow leading dif-
ficulty in breathing during sleep). In this regard, monitor-
ing sleep posture and frequency of its changes are widely 

utilized for recognition and treatment of sleep apnea (Menon 
and Kumar 2013; Oksenberg et al. 2012; Oksenberg and 
Silverberg 1998; Sutherland and Cistulli 2015). In addition, 
in Gordon et al. (2007), authors show that supine postures 
can deteriorate the spine and increase back problems. Sleep 
disorders are even more important among elderlies. In Yao 
and Cheng (2008), authors illustrate the notable influence 
of sleep quality on the depression and social networking 
among independent older people. In Karlsen et al. (1999), 
insomnia is introduced as one of the most important factors 
to cause depression among older adult suffering from Par-
kinson. These factors are mentioned to be more significant 
than the severity of the disease itself. In Barbara and Ancoli-
Israelb (2001) and Bixler et al. (1998) authors focused on 
investigating the influence of aging on sleep disorders. They 
show that sleep apnea is more severe among elderly so by 
increasing the average age of population the need for sleep 
monitoring also raises.

Sleep posture can also play an important role in recov-
ering from serious surgical procedures. Nurses and hospi-
tal staff need to monitor the patient continuously during 
their sleep, in order to prevent any further problems due to 
the exertion of extra pressure on affected areas. However, 
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reliance on personnel’s observations cannot guarantee a 
timely warning on the changes in the sleep posture (Liu et al. 
2013). Thus, designing and developing of an automatic and 
less-human-dependent system for sleep posture monitor-
ing is necessary to improve patient’s life quality, promote 
care quality, and finally allow integration of sleep posture 
monitoring with the medical diagnosis system (Torres et al. 
2016).

Sleep posture estimation is a special case of human 
posture estimation. In literature, many methods have been 
employed to solve this general problem. However, estimation 
of human posture during sleep introduces some additional 
constraints and limitations to the general problem of human 
posture estimation. Variations in illumination conditions, a 
weak contrast between the subject and background (espe-
cially the bed), and privacy concerns are just some of the 
challenges in sleep posture estimation.

Visual sensing method through RGB cameras is one of 
the most popular approaches for human posture estimation. 
However, these methods need some level of illumination or 
some source of light to capture an appropriate image from 
the subject and in general, they can be considered as more 
privacy-invading sensing approaches.

In Panini and Cucchiara (2003), Wachs et al. (2009) and 
Fujiyoshi et al. (2004) authors utilize a 2D projection of a 
single camera. In Panini and Cucchiara (2003) authors first 
detected and tracked human silhouette in a single camera 
view. They then try to define four main body postures using 
a statistical example-based classifier. This is done through 
a probabilistic map of each predefined posture during the 
training phase and then map and classifies each of the human 
postures. In order to improve their proposed method, they 
present a head detector which investigates body’s boundaries 
using Jarvis-Convex Hull scan and light tracking phase.

Methods based on 2D projected images from RGB data 
have some limitations, including viewpoint dependency, 
occlusion sensitivity, environment features dependency, and 
environmental noise. To overcome some of the limitations 
of these 2D approaches, a 3D model of the human body was 
further utilized. For example (Boulay et al. 2006), generates 
some 3D models of human postures based on some of the 
feature points on the human body (e.g. abdomens, shoulders, 
elbows, knees, hips and pelvis) to extract 2D projection. To 
generate each 3D model, they introduce three Euler angles 
for each articulation in each posture and finally employ the 
Mesa library to illustrate 3D models. Then they detect fore-
ground objects from a 2D projected view to map 2D points 
onto various 3D models of human postures.

Using multiple cameras is an alternative approach to 
capture a 3D image of the body postures. In Pellegrini and 
Iocchi (2007), authors track and detect the human body in 
stereo images. They, first, extract the body and then ana-
lyze the tracked body to detect the body’s posture. They 

categorize main postures into five different groups (up, sit, 
bent, on-knee, laid) and also define three principal points in 
the head, pelvis, and legs. They calculate the angles of the 
vectors connecting these principal points and current height 
of the body to utilize them for the classification. They define 
a training phase to set these parameters in their algorithm.

Other sensing modalities are introduced in order to track 
human’s body and estimate its postures. For example Luštrek 
and Kaluža (2009), takes advantage of using infrared motion 
capture system in order to tag different parts of human bod-
ies including shoulders, elbows, wrists, hips, knees, and 
ankles. This is then used to recognize four different behav-
iors, falling, lying down, sitting down, standing/walking, 
sitting and lying. They then defined some attributes such as 
the angles between different parts of the body as a part of the 
machine learning algorithm for detecting fall.

Using Kinect I and II sensor is another efficient way to 
estimate human posture since it can provide the depth map 
of the environment. Kinect II takes advantage of IR laser and 
time of flight sensor to measure the distance, while Kinect 
I employs IR light patterns. In addition, Kinect II provides 
more Filed of view and more resolution compare to Kinect I.

In Shotton (2013), authors employ the Kinect I to esti-
mate the human postures in a single depth map image. They 
define a feature for some selected pixel in the image based 
on the depth value of the pixel and its neighbors to create a 
randomized decision forest and train the forest to determine 
the position of each pixel in the body. Then, they utilize a 
local mode finding method base on mean shift to accumulate 
the result of each pixel to estimate the final skeleton posi-
tion (they define 31 different labels for different parts of the 
body). They also utilize a comprehensive dataset including a 
wide variety of postures. However, lack of the sleep postures 
is tangible in this dataset.

In Xiao et al. (2012), authors use 31 labels for different 
parts of the body and generate a function to calculate the 
features of the depth data for each image. After generating 
the features, they propose an algorithm based on machine 
learning using the randomized decision forest classifier. 
Finally, they present a human skeleton joint model to col-
lect information across all pixels and determine the resultant 
estimation of the human posture. The paper also suggests 
the application of their method to detection of various other 
postures, but the results are limited to posture estimation of 
a calibration cube.

The capability of the depth sensor to work in low illumi-
nation makes it a suitable candidate for sleep posture estima-
tion and investigation of sleep disorders. In addition, since 
such sensor can also operate in dark setting, its operation 
does not create any other discomfort due to the presence of 
light source and also their integration offers another low-cost 
alternative to other sensing modalities (Yang et al. 2014; 
Torres et al. 2015; Lee et al. 2015; Falie et al. 2008). (Falie 
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et al. 2008) and Yang et al. (2014) focused on detecting 
apnea with Kinect sensor. Apnea and hypopnea are detected 
in Yang et al. (2014) by concentrating on detecting abdomi-
nal and chest movement using Kinect I. Authors fit a dual 
ellipse to the observed depth data and use the axes of the 
ellipse for providing graph based classification. They also 
define an optimization problem to de-noise the collected 
depth data and remove the unwanted temporal flickering.

In Yoshino and Nishimura (2016), authors define three 
different postures (supine, sideway, and prone position). 
They detected the head using color map under the assump-
tion of dark hair color of the local majority. They divide a 
human body into four different equal regions (head, chest, 
stomach, and legs) which the detected head is utilized to 
determine other regions. They then compare histogram of 
the depth data of each region to estimate sleep postures. In 
Metsis et al. (2014), a Kinect I and an force sensing array 
(FSA) pressure mat are employed to extract features for 
machine learning to detect sleep posture changes during 
sleep. They classify the position of the target into five groups 
e.g. side (left and right) and back and supine and also sitting.

More detailed sleep posture recognition methods are ben-
eficial in a more critical situation (i.e. hospital and ICU) 
and consequently need a more complex system to obtain a 
more accurate result for wider classification of sleep pos-
ture. In Torres et al. (2015, 2016), the proposed method is 
able to detect different sleep postures as fetal, log, yearner, 
soldier and faller. They use quite a complex system in their 
algorithm including multi-sensor (depth, RGB, and pressure 
sensors) and multi-view of the camera and Kinect sensors 
(top, head, and side). They are dependent on the pressure 
sensor to distinguish the presence of blanket as an occlusion.

In this paper, the problem of sleep posture estimation for 
various caregiving facilities such as the elderly care by using 
a single depth sensor. To effectively distinguish each sleep 
posture, the overall depth data are sampled with various 2D 
scans. These scans are then analyzed using FFT for the defi-
nition of feature vectors which are then utilized to train the 
support vector machine (SVM) classifier. As it is shown, the 
proposed method can detect the sleep posture even when the 
person is covered with a blanket. A blanket cover is used to 
better simulate the natural sleeping environment. In addition, 
our approach is independent of the tilt angle of the sensor. 
This feature is also important since a number of proposed 
approaches relays on the sensor to be installed directly on 
top of the bed and facing the bed (Metsis et al. 2014; Tor-
res et al. 2015). It is shown that in our proposed method the 
depth sensor can be mounted on the sides of the bed hav-
ing various adjustable tilting angle. This feature makes the 
installation of the sensor easier and thus make it appropriate 
for in-house monitoring or a care center which can place the 
sensor in a comfortable range away from the direct line of 
sight of the person (see Fig. 1).

The remaining of the paper is organized as follows. The 
overview of preliminaries including data preprocessing 
and 2D cross-sectional is presented in Sect. 2. The fea-
ture extraction method is described in Sect. 3. Section 4 
includes the dataset preparation and the experimental 
results. Finally, Sect. 5 presents a discussion and conclud-
ing remarks.

Fig. 1  a Environment setup located at a care center environment. Fig-
ure shows that the possible mounting location of the sensor including 
the side walls, facing the bed and away from the line of sight of the 
person (society). b Schematics of the placement of the sensor dur-
ing the experiment and the definition of the virtual view (i.e. a view 
from the bed advantage point to map the body point of cloud to the 
bed frame). c Bed coordinate frame (x, y, and z axes are along height, 
width and the normal of the bed, respectively) and the Kinect coordi-
nate frame. d A sample subject under a thin blanket
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2  Preliminaries

In this work, a single depth sensor (Kinect II sensor) is 
employed to estimate the sleep postures. A depth sensor 
estimates the distance from an object with respect to the 
image plane of the sensor (usually the measurements can be 
represented in millimeter using the sensor resolution of the 
depth map as 512 × 424 obtained at 30 frames per second). 
Our approach is divided into two steps, first, is estimating 
main sleep postures and second is estimating the configura-
tion of hands and legs during sleep.

Sleep postures can be divided into two mains groups, 
namely side, and supine postures. In many sleep monitor-
ing studies, it is usually sufficient to detect changes among 
these dominant postures. For example, in Menon and Kumar 
(2013) authors provide a review of the postures which can 
affect sleep apnea. In their review, they summarize the 
results of 14 different studies which all emphasize the impor-
tance of identifying two dominant postures during the moni-
toring process.

The classification of sleep postures is usually defined 
based on the position of hands and legs. In Sleep Position 
Gives Personality Clue (2003), the most common sleep pos-
tures are divided into six groups (Fig. 2). In general, four 
different hand positions can be identified. For example, in 
the soldier posture, hands are aligned with the body and are 
positioned close to the body (referred to the first position). In 
foetus and yearner postures, the position of hands is around 
the head and located on one side (referred to the second 
position). In log posture, hands are positioned downward 
and to the side (the third position). Finally, in freefaller and 
starfish hands are positioned around the head (the fourth 
position).

Similarly, three different positions can be recognized for 
legs. In the foetous posture, legs are curled up toward the 
stomach (the first position of legs). In yearner and log pos-
tures, legs are stretched down together (the second position) 
and in the soldier, freefaller, and starfish postures legs are 
spread and stretched down separately (the third position). 

To extract the features from the depth signals, fast Fourier 
transformation (FFT) is performed on selected 2D scan 
planes. Cross-sectional 2D scans of the 3D point cloud are 
performed on instances of the captured depth map in vari-
ous positions.

In this section, some preliminary steps in preparing the 
raw depth data are described follow up by a discussion on 
the feature selection approach based on 2D scans and their 
FFT analysis.

2.1  Depth data pre‑processing

As it is shown in Fig. 1a, the depth sensor can be installed in 
the monitoring room on any of the accessible walls. For our 
experimental studies, the sensor has been placed on a tripod 
positioned beside the bed as shown in Fig. 1a. Each depth 
frame (depth map) contains a measurement of the distance 
of objects to the sensor’s image plane based on optical signal 
processing (Dal Mutto et al. 2012) (which uses a projec-
tor and a receiver to implement a stereo vision algorithm 
resulting in noisy images). The dependency on the sensor’s 
plane and noise should be resolved first, in order to provide 
a better estimation.

Figure 3 shows the overall procedure in preparing the data 
to capture various 2D scans, in order to provide a unique 
body measurement data regardless of the position of the sen-
sor and its inclination angle. As it can be seen in this Figure, 
after averaging over frames, median filters are utilized for 
noise removal. Then, the bed plane is extracted, and the body 
has been aligned to the bed plane to make the sample ready 
to extract features for sleep posture estimation. In the follow-
ing details associated with each of these steps are presented.

One way to reduce the effect of noise is averaging over 
depth map (i.e. use the average of obtained depth value 
over 50 successive depth map). In Lachat et al. (2015), the 
advantages of averaging over the different numbers of suc-
cessive depth map evaluated. It also shows that the accuracy 
improves by increasing the number of frames. However, it 
is also shown that using more than 50 frames for averaging 
results has no effect in further removing the unwanted noise.

The Kinect Body Indicator (Bodyframe Class 2014) is 
utilized to distinguish the human body from the background. 
This indicator first determines whether each pixel belongs to 
a human body and then gives the depth measurement of the 
body with respect to the origin of the sensor which changes 
depending on the position and orientation of the sensor with 
respect to the body. First, the 2D image plane coordinates 
are mapped to that of the 3D sensor frame using a pinhole 
camera model (Dal Mutto et al. 2012). Figure 1c shows the 
sensor coordinate system. where each pixel in the depth 
map image ( I(u, v), 0 ≤ u ≤ 512, 0 ≤ v ≤ 424)is mapped 
to a real point cloud (X, Y , Z) (all in meter) which shows the 

Fig. 2  Most popular sleeping postures (Sleep Position Gives Person-
ality Clue 2003)
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actual position of a pixel I(u, v) with respect to the coordi-
nate frame of the Kinect sensor.

The calculated values of X , Y  , and Z show the position 
of the body with respect to the frame of the Kinect sensor. 

These values change when the sensor changes since they 
are dependent on the position and inclination of the sen-
sor. To overcome this dependency and still maintaining the 
global depth profile of the sensed data, a bed virtual view 

Fig. 3  The preprocessing of the raw depth data. In the initialization phase the plane of the bed is first estimated. Each 50 frames are then aver-
aged and mapped to the virtual view. Finally, median filter and signal thresholding are applied to reduce the unwanted noise
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is defined which maps a depth image from the bed coordi-
nate in the reference frame to this new view. Mapping the 
depth data to the virtual view facilitates the signal classifi-
cation method by making the view-invariant with respect to 
the sensor placement and its orientation with respect to the 
bed. This virtual view provides a unique representation of 
the body regardless of the Kinect inclination angle (e.g. tilt 
angle) or its position (the height of the Kinect). Figure 1b 
shows the bed virtual view and real Kinect sensor view and 
Fig. 1c shows the bed coordinate system and the correspond-
ing Kinect coordinate system. In order to map the current 
Kinect view of the body to the bed view, the first step is to 
obtain the bed’s position in the Kinect view.

The main idea is to first find the bed plane in the depth 
sensor view using few sample points which are located in 
the physical position of the bed. In order to obtain these 
points, two different depth map frames are employed. The 
first frame is captured when there is no subject sleeping on 
the bed and second frame is captured when the subject is 
sleeping on the bed. We refer to these two frames as Ipr(u, v)
and IORG(u, v) , respectively. Then, we define Eq. (1).

The Ibed(u, v) contains the value of the distance between 
bed points and the sensor origin and it contains zero for 
other points which don’t belong to the bed. Let’s define 
points (Xb, Yb, Zb) ∈ Sbed where Sbed is the set of bed points 
( points which Ibed(u, v) ≠ 0 ) transformed to the real point 
cloud. Figure 4a shows the point cloud of the bed ( Sbed ) in 
the Kinect sensor view.

The description of the plane, representing the bed in the 
sensor coordinate frame, can be def ined as: 
Pbed = A x + By + Cz + D = 0 . This representation can be 
computed through a collection of measured sample points 
belonging to the bed, or (x0, y0, z0) ∈ Sbed by minimizing 
∑

�

Axb+Byb+Czb+D
√

(A2+B2+c2)

�2

 . Figure 4a shows an example of col-

lected data (i.e. (Xb, Yb, Zb) ∈ Sbed ) and Fig. 4b shows the 
final plane using this approach.

In order to obtain the virtual view of the sleeping body, 
we compute the distance between each body’s point and the 
bed plane. Figure 4c shows the resultant segmented body in 
the bed virtual view. It should be mentioned that the sensor 
should be able to capture the whole body in each position 
and due to limited field of view (FOV) and feasible range of 
Kinect, not all Kinect position can record the whole-body 
data. Figure 5 illustrates the impact of Kinect limitation on 
the final possible Kinect’s position.

Figure 6 illustrates the image of a sleep posture under 
two different tilt orientations of the depth sensor. Figure 6a 
shows the bed plane in these two different sensor’s tilts and 
Fig. 6b shows the final posture under both camera positions. 

(1)Ibed(u, v) =

{

Ipr(u, v), Ipr(u, v) − IORG(u, v) ≠ 0

0, O.w

Fig. 4  a Bed points in Kinect sensor view Ibed. b Fitted plane to the 
bed in the Kinect sensor view. c The final body point cloud in bed 
virtual view. Vertical color bar shows the distance of the point cloud 
from the X–Y plane in each view, the vertical color map shows the 
color of each distance in meter. (Colour figure online)



2005A novel depth image analysis for sleep posture estimation  

1 3

As you can see, although, the subject’s position in X–Y plane 
is slightly different, Z values on which our proposed feature 
extraction method is based on, are almost the same. The dif-
ference in X–Y  plane is due to different sensor tilts.

Finally, a 2-D median filter is applied to the resulting 
image to smooth it and remove the remaining noise. Figure 7 
shows the impact of 2D-median filter on the final image.

2.2  2D cross‑sectional

Figure 8 shows the main idea of cross-sectional scans along 
X and Y axes, i.e., horizontal and vertical scans, respectively. 
Horizontal scans are along the height of the bed and verti-
cal scans are along the width of the bed. In Fig. 8, vertical 
scans are shown in blue and vertical scans are shown in red. 
As it can be seen in the figure, each scan reveals the relative 
information of a particular part of the body. The location of 
the scan plane is very important and contains other spatial 
information regarding the local position with respect to the 
bed frame and the expected body position. Designing a method 
which can sequentially define an order of scan planes can also 
be used as a part of the efficient signal classification method. 
For example, a vertical scan from the upper part of the body 
reveals some signal information about the possible position 
of the head or a vertical scan of the lower part of the body can 
contain the data pertaining to the position of the legs. The 2D 
scans of the depth data are first normalized within the range 
of [0, 255]. The fast Fourier transformation (FFT) can be per-
formed on the 2Dcross sectional scans signals. This will result 

in a set of metrics which can be used as a feature vector in the 
follow-up pattern classification for sleep posture detection.

3  Feature selection

Inspired by the fact that the position of different parts of the 
body and the relationship among them can assist in recog-
nizing the sleep posture, the features from the horizontal 
and vertical 2D cross-sectional scans are extracted from the 
depth map. In the following, we dig into the details of the 
features.

3.1  Features selection for main postures 
classification

In general, there exists potentially a large number of locations 
for defining the scan planes. For two main postures i.e. supine 

Fig. 5  The range of the Kinect position (including tilt and height of 
the sensor). The limitation in the Kinect field of view and recording 
range will restrict the final possible position of the Kinect

Fig. 6  Comparison of two different Kinect sensor tilts. a The bed 
planes. As it can be seen the bed plane is different in each sensor 
position since the angle between the Kinect sensor and bed is differ-
ent for each tilt. b The final body posture. The same posture in two 
camera tilts as it can be seen there is no angle between these two pos-
tures since both are mapped to the bed view
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and side postures the most relevant scans with higher infor-
mation about the sleep posture should be selected. The scans 
with the most body pixels are selected as the final scan planes. 

Figure 9 shows two sample scans by performing this method. 
Figure 9a, b show the view of the body in supine and side pos-
tures, respectively. Figure 9c, d illustrate selected horizontal 
(highlighted red line) scan and their FFT results of their above 
postures and similarly Fig. 9e, f show the vertical (highlighted 
blue line) scan and their FFT results of their above postures. 
The FFT of both vertical and horizontal scans are utilized to 
extract features to estimate the main postures.

3.2  Features selection for classification of hands 
and legs

Various scans in different locations can also result in useful 
information about the sleep posture and the details of the body 
parts. Exploring the most relevant scan planes are required to 
efficiently find details of hands and legs configurations during 
sleep in order to estimate the details of each sleep posture.

Generally, with the assumption that the position of the head 
is located on the top of the bed. the point cloud representing 
the sleeping body can be divided into two equal regions, which 
the first region belongs to the upper part of the body and the 
second one is the foot region.

Figure 10 shows the location of the scans which should 
be performed to estimate the position of hands and legs. To 
examine the positions of hands, the first region of the body 
(upper part of the body) is considered and four scans are per-
formed. Each scan is located in 12.5% of whole pixels of the 
body in the upper part. Similarly, to estimate the position of 
legs, four horizontal scans are performed in the second region 
of the body (foot region). Each scan is located at 25% of the 
whole width of the body. Figure 11 shows the horizontal scans 
to estimate the position of legs. The corresponding posture is 
shown on the right side, and the signal of the selected scans 
with its FFT result is shown in the left hand of the figure. The 
blue lines show the horizontal boundary scans of the body 
and the green lines are selected scans. Selected scans signals 
are shown in the next column, starting from the far-right scan. 
Similarly, Fig. 12 illustrates the obtained vertical scans to 
estimate the position of hands. The corresponding posture is 
shown on the right side and its corresponding scan and the 
FFT result of each scan is shown in the left hand of the figure. 
The red lines show the middle and the lowest scans of the body 
and the green lines are selected scans to estimate the position 
of hands. The first scan, in the middle column, is pertaining to 
the head of the subject and others are shown in the same order.

4  Pattern classification and experimental 
results

In order to evaluate the proposed approach, a dataset includ-
ing different sleep postures under a variety of conditions is 
constructed. Fourteen subjects participated in the dataset 

Fig. 7  The effect of the threshold and median filter on the final 
image. a After averaging of frames and applying threshold and 
changing the viewpoints. b Final body point cloud after applying 
median filter

Fig. 8  2D cross sectional scans. Red and blue lines represent horizon-
tal and vertical scans, respectively, the highlighted red and blue lines 
show the sample scans which are taken to extract the feature of each 
posture. (Colour figure online)
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preparation sessions. None of them knew about the final 
purpose of the experiments. In each session, the subject was 
requested to sleep with different postures as they usually do 
in their bed. In addition, in several sessions, the subject is 
covered with a thin blanket (Fig. 1d). Table 1 summarizes 

the samples in the dataset. The height and weight of subjects 
are reported as an indicator of the body mass. Also, men and 
women have different body mass. The number of data col-
lected for main postures is also reported in this table.

4.1  Main postures estimation

The FFT result of each scan reveals the frequency compo-
nent of the scan signal. In general, it was observed that a 
scan belongs to smoother postures (i.e. supine) contains 
lower frequencies components compare to a posture such 
as a side posture. The 2D cross-sectional scans provide a 
smaller number of features about the posture in compari-
son with the FFT of the whole image. Still, each 2D scan 
contains many data with some redundant information. For 
example, to estimate the main postures, 10 vertical and 10 

Fig. 9  Sample horizontal and 
vertical scans. a The supine 
posture red lines are possible 
horizontal scans and the high-
lighted red line is the selected 
horizontal scan and blue lines 
are the vertical scans and the 
highlighted blue line is selected 
vertical scan. b The side pos-
tures with the same colored line 
as a. c Corresponding selected 
horizontal scan of the supine 
posture in a and its FFT result. 
d Corresponding selected hori-
zontal scan of the side posture 
in b and its FFT result. e Corre-
sponding selected vertical scan 
of the supine posture in a and 
its FFT result. f Corresponding 
selected vertical scan of the side 
posture in b and its FFT result. 
(Colour figure online)

Fig. 10  Scans to estimate the position of hands and legs. a Four verti-
cal scans to extract the features for estimating hands positions. b Four 
horizontal scans to extract the features for estimating legs positions



2008 M. S. Rasouli D, S. Payandeh 

1 3

horizontal scans are utilized providing 9342 features for each 
depth map in the dataset. In order to extract more dominant 
data, T-test ranking method is employed which is a statisti-
cal method deployed, in order to rank features for training a 
classifier (Theodoridis and Koutroumbas 1999). Figure 13 
illustrates ranking of the features associated with FFT result 
of 2D cross-sectional scans. As it can be seen, the first 3000 
features (i.e. frequency components) are the most dominant 
features which were then used to train the SVM model.

Fig. 11  scans to estimate position of legs. a First leg position and 
its corresponding scans the blue lines show the horizontal boundary 
scans of the body the green lines are selected scans to estimate the 
position of legs. Each blue signal in the left is one of the scans cor-

responding to one of green signal and the red chart is its correspond-
ing FFT result. b Second leg position and its corresponding scans. c 
Third leg position and its corresponding scans. (Colour figure online)

Fig. 12  Scans to estimate hands positions. a First hands position and 
its corresponding scans. The red lines show the middle and the lowest 
scans of the body and the green lines are selected scans to estimate 
the position of hands. Each blue signal in the left column is one of 
the scans corresponding to one of green scan and the red signal in the 
middle column is its corresponding FFT result. b Second hands posi-
tion and its corresponding scans. c Third hand position and its cor-
responding scans. d Forth hand positions and its corresponding scans. 
(Colour figure online)

▸
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The features extracted from skeleton joint provided by 
Kinect SDK library is employed to compare with our pro-
posed approach. The skeleton joints are widely utilized 
for posture and sleep posture estimation. For example, in 
Lee et al. (2015) these skeleton joints are utilized to detect 
motion and sleep posture. In Mongkolnam et al. (2017), the 
skeleton joints are utilized to detect the position and situa-
tion in the bed along with pressure sensors. In Manzi et al. 
(2016), the skeleton joints are employed to distinguish dif-
ferent postures including the sleep posture. Therefore, the 
skeleton joints are utilized to provide a comparison with 
our method. The similar approach as utilized in Manzi et al. 
(2016)is employed to normalize the captured skeleton joints 
by Kinect SDK. Two different experiments are carried out 
to evaluate the proposed approach and compared with the 
result of features extracted from skeleton joints. In the first 
experiment, shown in the Table 2, both training and test-
ing data are captured from one subject. In many cases, the 
monitoring system is designed to monitor a specific subject 
in these cases the analysis of the result when the training and 
Testing dataset is captured from one subject is important. 

The result of this experiment is shown in the Table 2. The 
experiment is performed on four different subjects among 
male and females with different body mass. The gender, 
height, and weight of each subject are reported in the table 
as an indicator of the body mass. In addition, the total num-
ber of captured data of each subject is written in the table, 
for each set of data (with and without cover) 30% of the 
whole depth map is utilized to train SVM and 70% are uti-
lized to test. The SVM classifier is based on finding the best 
hyperplane to separate the points of one class from those 
of other classes. The best hyperplane provides the largest 
margin between the points of classes. For some sample 
points, the different kernel for the SVM hyperplane can be 
employed to improve the classifier separation accuracy. One 
of the possible kernels is radial basis function (RBF) which 
uses a Gaussian function. The experiment is conducted over 
three different datasets for each subject. The first dataset is 
collected when the subjects don’t use any blanket, the sec-
ond one is captured when the subjects are covered by a thin 
blanket, and the final dataset is the union of both datasets. 
The SVM test and train have been run over 1000 times to 
provide the average accuracy. The selected SVM classifier 
kernel is RBF with sigma equal to 0.67 and in all cases, the 
proposed approach is also compared with skeleton joints 
features. As it can be seen the proposed approach has a better 
result in most of the cases without the need of extracting the 
skeleton joints in advanced which is a challenging task. The 
result in the Table 2 shows the comparable accuracy of two 
approaches. However, our proposed approach doesn’t require 
any preliminary learning stage in order to detect the joints 
associated with the skeleton model. In addition, the sensor 
needs to be located directly above the subject in order to be 
able to detect all of the points of the human body in skeleton 
joints approach.

In the second experiment, the depth maps captured from 
14 subjects are employed to train and test the SVM classifier. 
30% of the collected data is utilized for training and 70% is 
utilized for testing. Table 3 shows the result of this experi-
ment. Like the first scenario (shown in Table 2), the experi-
ment is conducted over three datasets (data of sleeping with 
cover, without cover and union of both datasets) over 1000 
run. The results are shown in the first row of Table 3. As it 
can be seen the results of the proposed approach is better 
than the approach using skeleton joints. In fact, using FFT 
of the signals is more robust to estimate the sleep posture 
of various body mass. In addition, the results of SVM train-
ing and testing on datasets consisting of samples associated 
with blanket cover case, shows reduction in the accuracy. 
This reduction was expected since the blanket cover cre-
ates an occlusion and hence reduction in detecting details 
of the subject’s body. The second row of Table 3 shows the 
time utilized for training in a machine with CPU of core i7, 
3.3 GHz and 16 GB of ram, the third row shows the number 

Table 1  Details of the employed dataset to evaluate the proposed 
sleep posture estimation approach

The number of collected data in each posture and the characteristics 
of subjects participated in the experiment are reported in this table

Height 
range

Weight 
range

Gender Number of 
data

With cover 138–185 48–110 Male, 
female

Side 180
Supine 265
Total 445

Without 
cover

138–185 48–110 Male, 
female

Side 602
Supine 569
Total 1171

Fig. 13  The rank of FFT of 2D cross-sectional features (sorted by 
their rank) utilizing T-test method
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of data utilized for training. It should be mentioned, how-
ever, our proposed approach needs more time for training 
it does not need any training phase for extracting skeleton 
joints.

In the third experiment, the training datasets (with cover, 
without cover and union of both) is collected from only 
one female subject with normal boy mass (subject one in 
Table 2) while the test data is collected from different sub-
jects (13 subjects). The details of the datasets are reported 
in Table 4a. Table 4b–d show the confusion matrices of this 
experiment with using the proposed approach and skeleton 
joints approach when data is collected with no cover, with 
cover, and union of both datasets, respectively. As it can be 
seen the proposed approach shows a significant improvement 
over skeleton joints approach. This experiment shows that 
our approach is robust under different conditions including 
various body mass and cloths, different sensor positions and 
tilt. As it can be seen, the frequency elements of scans pro-
vide better interpretation of depth images during sleep since 
it extracts the level of smoothness of the posture which is the 
main factor in estimating the correct sleep posture.

4.2  Hands and legs positions

Similarly, SVM is utilized to evaluate the performance of the 
proposed approach to estimate more detailed posture con-
figurations. These configurations are illustrated in Fig. 2. 
As mentioned in Sect. 2, the configuration of hands and 
legs is the distinguished elements to determine these sleep 
postures. Three different configurations are defined for legs 
and four different configurations for hands. The collected 
data belongs to an individual who asked to sleep in differ-
ent postures without cover. Table 5a shows the number of 
data collected for each posture. In this part, four classes are 
considered to estimate hands position and three classes to 
estimate the legs position. We also take advantage of the 
T-test method to rank available features.

Table 5b shows the confusion matrix of the proposed 
approach for estimating the position of hands. In this table, 
the entry of hand1 refers to the first hands configuration 
(Fig. 12a), hand2 refers to the second hands configuration 
(Fig. 12b), hand3 is the third hands configuration (Fig. 12c), 
and hand4 is the fourth hands configuration (Fig. 12d).

Table 2  Accuracy of the 
proposed approach when the 
testing and training dataset 
are collected from one single 
subject

The result is shown for different subject with different body mass. The experiment for each subject has 
been carried out when the subject is covered with blanket, without blanket and both. The first and second 
subjects are considered as normal body mass among men and women. The third subject has higher body 
mass and forth subject has a lower body mass
a Height (cm)
b Weight (kg)
c The proposed method
d The method using features extracted from Skeleton point (Manzi et al. 2016)
e Number of data 70% is utilized for testing and 30% for training over 1000 run

Posture detection accuracy percentage

Test and training sets 
are from one subject

Gender H1 W2 Without cover With cover Combined

P3 S4 #5 P3 S4 #5 P3 S4

Subj1 Female 165 59 100 100 337 99.32 96.66 135 98.86 96.76
Subj2 Male 183 75 100 99.08 36 100 96.89 27 100 97.14
Subj3 Male 175 90 100 99.86 66 98.44 98.38 50 99.01 99.21
Subj4 Female 170 48 100 100 95 98.44 96.28 78 99.21 97.91

Table 3  The accuracy of the proposed approach and the skeleton joint approach

Results are reported for dataset containing data of 14 different individuals in conditions when no cover is used, when the subject is covered by a 
thin blanket and combination of both datasets. The second row shows the time for training and third row shows the number of data utilized for 
training in each scenario

Test and training sets are 
among different subjects

Without cover With cover combined

Proposed approach Skeleton joint Proposed approach Skeleton joint Proposed approach Skeleton joint

98.75% 96.19% 96.24% 96.14% 97.96% 95.60%

Training time (s) 0.0711 0.0149 0.0284 0.0097 0.0942 0.0174
Number of training data 351 351 133 133 484 484
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Table 5c shows the confusion matrix on estimating the 
position of legs. Similarly, the first leg position is shown in 
the table by leg1, second by leg2, and third by leg3 (Fig. 11). 
Results in this table show that the position of hands and 

legs are estimated accurately by the proposed approach. In 
estimating the position of hands, only one false positive is 
reported for hand position 2. Results for leg positions show 
that the main confusion was between leg positions 2 (log 

Table 4  Results of the experiment conducted when the training data belongs to only one subject and the test data is gathered from different sub-
jects (13 more subjects) the confusion matrix for both cases of using the proposed approach and the skeleton joint features is provided

(a) Numbers of test and train data. (b) The confusion matrix of the sleep posture without cover. (c) The confusion matrix of the sleep posture 
with cover. (d) The confusion matrix of the sleep posture using the combination of both datasets

(a) Postures Without cover With cover

TRAIN TEST TRAIN TEST

Number of data for train and test Side 197 461 56 252
Supine 140 372 79 209

(b) Without cover Proposed method Skeleton joint

Side Supine Result (%) Side Supine Result (%)

Side 310 6 98.1 58 34 63.0
Supine 62 456 88.0 314 427 57.6
Results 83.3% 98.7% 91.5 15.6% 92.6% 58.2

(c) With cover Proposed method Skeleton joint

Side Supine Result (%) Side Supine Result (%)

Side 194 20 90.7 197 134 59.5
Supine 58 189 76.5 54 75 58.1
Results 77.0% 90.4% 83.1 78.5% 35.9% 59.1

(d) Combined Proposed method Skeleton joint

Side Supine Result (%) Side Supine Result (%)

Side 520 58 90.0 189 120 61.2
Supine 104 613 85.5 434 550 55.9
Results 83.3% 91.4% 87.1 30.3% 82.1% 57.2

Table 5  The confusion matrix of the proposed approach to estimate the position of hands and legs

(a) The number of data in dataset for each posture mentioned in Fig. 2. (b) The confusion matrix of hand positions. (c) The confusion matrix of 
legs positions

(a) Posture Foetus Free faller Log Soldier Starfish Yearner

Number of data 41 74 141 145 108 103

(b) Hand1 Hand2 Hand3 Hand4 Result (%)

Hand1 102 1 0 0 99.0
Hand2 0 100 0 0 100
Hand3 0 0 99 0 100
Hand4 0 0 0 128 100
Results 100% 99.0% 100% 100% 99.8

(c) Leg1 Leg2 Leg3 Result (%)

Leg1 29 1 0 100.0
Leg2 0 221 0 100
Leg3 0 8 171 95.5
Results 100% 96.5% 100% 98.1
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posture, which is a side posture) and 3 (soldier, start fish and 
free faller which are supine posture). This suggests that such 
prediction can be improved by combining the results with 
the main postures estimation.

5  Conclusions

This paper proposes a novel approach to address the sleep 
posture estimation problem. The most informative features 
of the sleep postures are extracted by performing a fast Fou-
rier transformation to the selected 2D cross-section depth 
map of the body. Then the extracted features are ranked 
by T-test method to train a SVM to classify postures into 
two main groups of side and supine with and without the 
presence of a blanket. The performance of the proposed 
approach to estimate more detailed postures is shown. The 
more details are provided by using more cross-sectional pos-
tures to determine the position of hands and legs.

Employing 2D cross-sectional scans can provide comple-
mentary features in other applications too. As it was shown 
in this work, they can produce distinctive features to recog-
nize the different parts of the human body which makes it 
a reasonable approach to estimate a wider range of human 
postures in a daily life.
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