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Abstract
This paper investigates the route choice problem on a network with uncertain travel times along the arcs and possible blocked 
nodes. The route choice decision is made with the simultaneous consideration of these two kinds of nondeterministic factors. 
In order to deal with these nondeterministic factors, online algorithms are introduced to develop adaptive route choice strate-
gies responding to the successively observed blocked nodes; and accordingly, an uncertain competitive analysis framework, 
taking expected competitive ratio as the metric, is proposed to evaluate the performances of the online algorithms associ-
ated with uncertain travel times. It is proved that the competitive analysis for this route choice problem can be handled in 
the framework of traditional online shortest path problem via its equivalent counterpart on the corresponding deterministic 
network. Furthermore, two typical online strategies, i.e., reset strategy and greedy strategy, for route choice decision-making 
and the resulted performance difference are analyzed in detail following from the proposed framework.

Keywords Route choice · Online routing · Shortest path problem · Uncertain competitive analysis · Expected competitive 
ratio

1 Introduction

The route choice problem (Bovy and Stern 1990) is to find 
an optimal way to travel between two places, with minimal 
travel time, distance, or cost. In a deterministic or static envi-
ronment, it can be modeled as the well known and studied 
classical Shortest Path Problem (SPP) (Yu and Yang 1998). 
However, in practice, it usually should be considered in a 
nondeterministic or dynamic environment due to the traffic 
variations over time. In live traffic circumstances, the cho-
sen route may become unavailable since of some blocked 
nodes caused by unforeseen accidents or other uncertain 
disruptions; and meanwhile, the travel times along the arcs 
of the traffic network also cannot be accurately predicted in 
advance. Therefore, we investigate the route choice prob-
lem on a network with uncertain travel times and possible 
blocked nodes in this paper. Two kinds of nondeterministic 

factors are combined to be considered simultaneously while 
making the route choice: one is concerned with the uncertain 
travel times along the arcs of the network, and the other is 
related to the possible blocked nodes.

Considering the successively observed blocked nodes, if 
we should make real-time responses and dynamically adjust 
the route decision, the route choice decision is a typical 
online SPP (Papadimitriou and Yannakakis 1991; Waller and 
Ziliaskopoulos 2002). In the traditional online SPP, it aims 
at computing the shortest path (with minimal travel time, 
distance, or cost) based on live traffic circumstances. For 
example, some nodes in the traffic network may be blocked 
and thus paths getting through these nodes cannot be passed 
anymore. If the blocked nodes appear successively, or the 
information of the blocked nodes is received incrementally, 
one piece at a time, how to get a shortest path with no secure 
knowledge of future possible blocked nodes?

Another kind of nondeterministic factor considered in 
this paper is the uncertain property concerning the travel 
times experienced by travelers along the arcs of the net-
work. Since travel times are not always deterministic in real 
applications, and some researchers believed that they con-
form to randomness or fuzziness, the probability theory or 
fuzzy set theory was introduced into SPP. Consequently, the 
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notions of stochastic SPP (Ji 2005; Wang et al. 2016; Jafari 
and Boyles 2017) and fuzzy SPP (Okada and Gen 1994; 
Okada and Soper 2000; Niroomand et al. 2017) were pro-
posed, respectively.

However, it has been illustrated by many investigations 
(Liu 2007, 2012; Kahneman and Tversky 2013) that it is 
inappropriate to describe the nondeterministic phenomena 
as randomness or fuzziness in some scenarios, particularly 
those involving human beings’ subjective judgements. In 
the practical route choice problem, travelers’ route choices 
are usually made relying on their personal experiences and 
subjective judgements with the aid of some real traffic infor-
mation (Dia 2002; Ben-Elia et al. 2008). While making the 
route choice, the travel times are hard to be accurately pre-
dicted in advance, particularly for the situations suffering 
accidental disruptions. Even if adequate historical data or 
real-time information is provided to make informed deci-
sions at the beginning of their trips, each traveler’s actual 
travel time may vary from case to case due to different vehi-
cles, personal driving habits, psychological effects (Ben-Elia 
and Avineri 2015) or other factors. Therefore, the travel 
times estimated by individual travelers are usually associ-
ated with their subjective beliefs. In this case, probability 
theory or fuzzy set theory is no longer suitable for modeling 
their subjective beliefs on the uncertain travel times, whereas 
uncertainty theory proposed by Liu (2007) provides a new 
powerful tool to rationally deal with this type of uncertain 
quantities.

Therefore, following from the uncertainty theory, in this 
paper, we investigate the route choice problem on a net-
work with uncertain travel times along the arcs and possible 
blocked nodes, called the Online Uncertain Route Choice 
(OURC) problem. It can be treated as a natural extension 
of the traditional online SPP by considering that the travel 
times are assumed to be uncertain variables. The objective 
is to seek an optimal (shortest) path in the uncertain net-
work without knowing the online releasing blocked nodes 
in advance. For this OURC problem, online algorithms are 
introduced to make real-time responses to the successively 
observed blocked nodes ; and accordingly, an uncertain com-
petitive analysis framework, taking expected competitive 
ratio as the metric, is proposed to evaluate the performances 
of the online algorithms associated with uncertain travel 
times. Following from the proposed framework, two typical 
online strategies, i.e., reset strategy and greedy strategy, are 
adopted to develop online algorithms for the OURC prob-
lem, and their performances are analyzed in detail as well.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the related work. Section 3 describes 
the traditional online SPP as well as the OURC problem. 
In Sect. 4, an uncertain competitive analysis framework is 
proposed. Then, the reset strategy and greedy strategy based 
online algorithms and their performances are discussed in 

Sects. 5 and 6, respectively. Finally, conclusions are given 
in Sect. 7.

2  Literature review

Route choice problem has received much attention and 
plenty of studies due to its importance to people’s daily 
lives and the traffic management. In this paper, we focus 
on the optimal route choice decisions for individual travel-
ers, rather than modelling route choice behaviors as well as 
their impacts on traffic equilibrium (e.g., Dia 2002; Yang 
and Jiang 2014; Xu et al. 2017).

For the route choice problem considered in nondeter-
ministic or dynamic environments, different approaches 
have been proposed in the literature, among which the most 
popular methodology is formulating the problem as a sto-
chastic model based on assumptions about the distributions 
of the relevant uncertain quantities, such as travel times 
along the arcs of the network, the time and locations of the 
blocked nodes that may appear. For instance, considering 
stochastic arc length, Ji (2005) proposed the concepts of 
expected shortest path, �-shortest path and the most shortest 
path as well as their solution algorithms for stochastic SPP, 
according to different decision criteria. Jafari and Boyles 
(2017) further investigated the multi criteria stochastic SPP. 
Moreover, Chen et al. (2013) proposed the reliable SSP on 
networks with stochastic travel times, and the corresponding 
dominance conditions as well as solution algorithms of this 
problem were presented. Wang et al. (2016) studied the SPP 
with stochastic correlated link travel times, considering flow 
balance and side constraints as well as the unique link selec-
tion constraint. Concerning the adaptive route choices with 
respect to the dynamic traffic conditions, Gao et al. (2010) 
presented a route choice model based on prospect theory to 
capture travelers strategic behavior in a stochastic network.

However, these stochastic optimization approaches, which 
aim to optimize the outcomes in average or with some con-
fidence levels, or the probability of achieving some prede-
termined goals, may yield some online solutions (decisions 
made before getting the accurate information) that are far 
from the relevant optimal offline solutions (decisions made 
after the realizations of uncertain factors being observed) 
under some scenarios. Furthermore, it is usually hard to 
accurately estimate the probability distributions of such 
uncertain quantities, especially for the blocked nodes caused 
by unforeseen accidents. In this situation, the probabilistic 
analysis based approach is no longer applicable for handling 
this type of problem, whereas competitive analysis approach 
proposed by Sleator and Tarjan (1985) provides an alterna-
tive appropriate framework to deal with them. Following 
from the idea of competitive analysis, Papadimitriou and 
Yannakakis (1991) originally proposed the online decision 
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version of the SPP without a map, in which the informa-
tion about the graph was acquired in a dynamic manner, and 
proved that there is no bounded worst-case ratio for general 
graphs. Following that, Kalyanasundaram and Pruhs (1993) 
studied the problem of exploring an initially unknown 
weighted graph and proposed a constant competitive algo-
rithm. Ma and Chen (2005) and Ma et al. (2008) discussed 
the online SPP and the most reliable path problem as well as 
their competitive algorithms on a fuzzy network. Recently, 
instead of finding optimal solutions or strategies according 
to some decision criteria like that in stochastic optimization 
and competitive analysis approaches, Schmidt et al. (2017) 
discussed the dominance relations between strategies for the 
route choice problem with uncertain disruptions. For results 
on the more generalized online routing problem, readers may 
refer to Jaillet and Wagner (2008), Harks et al. (2009), and 
Zheng et al. (2017).

On the other hand, as previously mentioned, since the 
route choice decision is usually associated with traveler’s 
subjective judgements on the traffic conditions, we assume 
that the travel times along the arcs of the network are uncer-
tain variables, estimated by the travelers according to their 
personal experiences and some real traffic information, in 
this paper. For networks with uncertain arc lengths which 
are formulated as uncertain variables, three types of uncer-
tain programming models were proposed by Liu (2010b) to 
address the SPP. Subsequently, Gao (2011) further discussed 
the uncertainty distributions of the length of the shortest 
path and proposed effective solution approaches to find the 
�-shortest path and the most shortest path. Following from 
the notion of uncertain �-shortest path, the inverse SPP on 
an uncertain network was discussed by Zhou et al. (2014) 
to make a predetermined path become the shortest one with 
minimal modification on the arc lengths. Recently, Zhang 
et al. (2015) investigated the uncertain multi-modal SPP 
with bi-objectives. Besides SPP, some other traditional net-
work optimization problems, such as minimum spanning 
tree problem (Zhou et al. 2015, 2016), also have been revis-
ited in the literature and some new properties were proposed 
with consideration of the new feature that arc lengths of the 
networks were formulated as uncertain variables.

In this paper, we consider online route choices, with the 
capability of adapting to possible blocked nodes, on a net-
work with uncertain travel times along the arcs. This study 
differs from the above related work in the following two 
aspects. First, two kinds of nondeterministic factors are con-
sidered simultaneously in the route choice problem, which 
makes the performance of the route choice decision be not 
only subject to the responses to the successively observed 
blocked nodes, but also influenced by the uncertain travel 
times along the arcs. Second, the competitive analysis 
approach and the uncertainty theory are integrated to han-
dle the presented OURC problem. Some theoretical results 

with respect to the proposed uncertain competitive analysis 
framework and two typical online strategies are presented 
as well.

3  Problem description

In this section, we briefly introduce the traditional online 
SPP first. Then the OURC problem is proposed, which is 
an extension of the traditional problem by considering it 
on a network with uncertain arc lengths representing the 
uncertain travel times.

3.1  Traditional online shortest path problem

Given a connected network, we can easily find the shortest 
path between any pair of nodes in the network by employing 
the classical shortest path algorithms such as the Dijkstra 
algorithm (Dijkstra 1959). However, if some blocked nodes 
appear in the network, indicating that these nodes cannot be 
passed, then how to find the shortest path between a given 
pair of nodes?

Obviously, this problem can be considered in the follow-
ing two cases:

1. If all the blocked nodes are known in advance, how 
to choose the route to minimize the total travel time 
between the origin and destination nodes?

2. If the blocked nodes appear successively, and they can 
be observed only if their adjacent nodes are reached, 
then how to choose the route on condition that we 
only have the previous information about the observed 
blocked nodes?

It is clear that the problem (1) is an offline problem 
whereas (2) is an online problem. The difference between 
them lies on the complete or incomplete information con-
cerning the blocked nodes. Taking the network shown in 
Fig. 1 for example, which consists of 10 nodes and 19 arcs. 
The values on the arcs denote the arc lengths represent-
ing the travel times. The gray nodes d and h are blocked 
nodes and thus cannot be passed. For the problem (1), 

Fig. 1  An illustration of the traditional online shortest path problem
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the blocked nodes are known before making the decision. 
Therefore, we can remove the blocked nodes as well as the 
arcs directly connected to these nodes (denoted by dashed 
lines in the figure), and then find out the shortest path 
between a given pair of nodes. For instance, the shortest 
path from a to j is that starting from a, and then sequen-
tially passing the nodes c, e, and i, and finally reaching j. 
This path can be denoted by the sequence of reached nodes 
as a → c → e → i → j. Obviously, the offline problem can 
be easily solved by classical shortest path algorithms, 
since complete information is available while making the 
decision.

The problem (2) is called the online SPP. For exam-
ple, we want to travel from a to j in the network shown in 
Fig. 1. While determining the travelling path, the blocked 
nodes are not observed. Generally, we may take the shortest 
path between a and j as a good solution. Without consid-
eration of the blocked nodes (we know nothing about the 
possible blocked nodes at the beginning), the shortest path 
is a → b → d → g → i → j. However, after we reached b, 
it is observed that the node d is blocked and thus cannot 
be passed. Then we have to adjust the route. If we replan 
the route and take the shortest path between the currently 
reached node and the destination (namely, b and j), the new 
route is b → f → h → j. After we reached f, it is found again 
that h is blocked. The online version of the SPP therefore 
becomes more complex because of the significant effects 
of the sequence of blocked nodes on the optimal solution.

In the online SPP, we know nothing about the future pos-
sible blocked nodes. An algorithm is said to be online if it 
dynamically adjusts its route and makes real-time responses 
to the successively observed blocked nodes. In general, due 
to the absence of complete information, it is hard to make 
an online algorithm respond to the incrementally received 
information in an optimal fashion. Following from the idea 
of competitive analysis, the performance of an online algo-
rithm can be measured against that of the optimal offline 
algorithm, which knows complete information when mak-
ing its decision and thus it can be optimized. Formally, the 
approach of competitive analysis and the notion of competi-
tive algorithm are presented as below.

Definition 1 (Borodin and El-Yaniv 1998) Let I be an input 
sequence which denotes the future uncertain events, and 
CON(I) and COPT(I) be the costs paid by an online algorithm 
ON and the optimal offline algorithm OPT in processing the 
input sequence I, respectively. The algorithm ON is called a 
competitive algorithm if there exist constants � ( � ≥ 1 ) and 
� such that

holds for any possible input sequences I. The constant � is 
called the competitive ratio.

(1)CON(I) ≤ � ⋅ COPT(I) + �,

A competitive algorithm with competitive ratio � is also 
called an �-competitive algorithm, which implies that the 
cost of the online algorithm will not exceed � times of the 
optimal offline cost for any inputs. It is clear that this per-
formance measure provides very robust statements about 
the performance of an online algorithm, against all possible 
future scenarios.

3.2  Online uncertain route choice problem

In the traditional online SPP, the arc lengths (representing 
the travel times along these arcs) of the network on which 
the problem is considered are assumed to be deterministic. 
However, they are not always deterministic in real applica-
tions due to the traffic variations over time. As discussed in 
the section of Introduction, while planning their traveling 
routes, the travel times estimated by the travelers are usually 
associated with their subjective judgements on the traffic 
conditions based on some real traffic information. Therefore, 
we assume the nondeterministic travel times are uncertain 
variables, and consider the traditional online SPP on a net-
work with uncertain arc lengths, called the online uncertain 
route choice problem.

Let N = (V ,A, �) denote a connected network, 
where V = {v1, v2,… , vn} is a finite set of nodes, 
A = {a1, a2,… , am} is the set of arcs, and � = (�1, �2,… , �m) 
is the uncertain arc length vector. In general, it is assumed 
that all the uncertain variables �i , i = 1, 2,… ,m , are 
independent throughout this paper. For simplicity, a path 
between a pair of origin-destination nodes (O, D), O,D ∈ V  
and O ≠ D , is represented by the set of arcs contained in this 
path and denoted as P(O,D). Then the travel time of a path P 
can be formulated as:

Let I = {c1, c2,… , ck} denote a sequence of blocked nodes 
in the network N = (V ,A, �) , where ci ∈ V  ( 0 ≤ i ≤ k ) is 
the ith blocked node and k ≥ 0 is the total number of the 
blocked nodes. If k = 0 , the online problem degenerates to 
an offline problem, which implies that all the information 
having impacts on the optimal decision is known in advance.

For a given pair of origin-destination nodes (O, D), the 
OURC problem is to find a path from the origin O to the 
destination D in the uncertain network N = (V ,A, �) to 
minimize the total travel time on condition that the infor-
mation about the possible blocked nodes is received in an 
online fashion. Moreover, we assume that: the origin and 
destination nodes for traveler’s route planning would never 
be blocked; the network is still connected after the blocked 
nodes and their directly connected arcs are removed; the 
blocked nodes can be observed only if one of their adjacent 

(2)L
(

P(O,D), �
)

=
∑

ai∈P(O,D)

�i.
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nodes is reached; once a node is blocked, it remains blocked 
and can not be passed in the whole decision process.

The OURC problem can be found in many real applica-
tion scenes, such as people’s daily travels when suffering 
accidental disruptions and the emergency relief logistics 
distribution in natural disasters. Taking the latter case for 
instance, while suffering from disasters (e.g., earthquake, 
hurricane, and flood), the traffic network may be destroyed 
and the information about the latest traffic condition cannot 
be acquired immediately. Therefore, travel times along the 
roads in disaster areas are hard to be accurately predicted. In 
order to make quick responses, we can distribute the relief 
logistics based on some evaluations about the traffic condi-
tion made by experts. However, what is worse, the roads 
may be completely blocked at some spots and this informa-
tion would be acquired incrementally while exploring on the 
roads. Then, how to make an adaptive strategy considering 
the uncertain traffic condition in this situation? The prob-
lem in this case becomes an online route choice problem as 
presented above.

In the following sections, we propose an uncertain com-
petitive analysis framework to analyze the OURC problem 
following from the uncertainty theory founded by Liu (2007, 
2010a). Then online algorithms for this problem and their 
performances are discussed in detail.

4  An uncertain competitive analysis 
framework

In the OURC problem, since the arc lengths �i , 
i = 1, 2,… ,m , are uncertain variables, the travel time of a 
path is an uncertain variable as well. Consequently, the cost 
associated with an algorithm (namely, the total travel time 
of the planned route) is uncertain, which makes the defini-
tions of competitive algorithm and competitive ratio (see 
Definition 1) in the traditional framework of competitive 
analysis useless for the uncertain version of the online SPP. 
Therefore, an uncertain competitive analysis framework is 
proposed in this section as follows.

4.1  Expected optimal offline algorithm

In order to evaluate the performance of an online algorithm 
by comparing it with the optimal offline one, the concept 
of optimal offline algorithm involving uncertain variables 
should be explicitly defined first.

Generally, for a given pair of origin–destination nodes, 
there exist more than one path from the origin to the des-
tination. In order to explicitly define a shortest path with 
uncertain arc lengths, it is natural to determine the shortest 
one by comparing the expected values of travel times of 
all possible paths between the given pair of nodes. Based 

on this idea, the notion of expected shortest path was pro-
posed by Liu (2010b).

Definition 2 (Liu 2010b, Expected shortest path) Given a 
connected uncertain network N = (V ,A, �) and a pair of ori-
gin-destination nodes (O, D), O,D ∈ V  , a path P0 between 
O and D is called an expected shortest path if

holds for any path P between O and D , where E[L(P0

(O,D)
, �)] 

and E[L(P(O,D), �)] are the expected values of the travel times 
of path P0 and P, respectively. E[L(P0

(O,D)
, �)] is called the 

expected shortest travel time between O and D.

In the following discussion, we denote the expected 
shortest travel time between O and D by L

0

(O,D)
 for simplic-

ity. That is L
0

(O,D)
= E[L(P0

(O,D)
, �)].

Given an uncertain network with blocked nodes, it is 
clear that both the total travel times travelled by an online 
algorithm and an offline algorithm are uncertain variables, 
due to the uncertainty of the arc lengths. For the offline 
algorithms, we define the expected optimal offline algo-
rithm as follows.

Definition 3 (Expected optimal offline algorithm) Given a 
connected uncertain network N = (V ,A, �) and a sequence 
of blocked nodes I, let TOPT(I) and TOFF(I) be the total travel 
times from O to D in the network N with blocked nodes 
I along the routes planned by the offline algorithms OPT 
and OFF, respectively. Then the algorithm OPT is called an 
expected optimal offline algorithm if:

holds for any offline algorithm OFF, where E[TOPT(I)] 
and E[TOPT(I)] are the expected values of the travel times 
experienced by the algorithms OPT and OFF, respectively. 
E[TOPT(I)] is called the expected optimal offline solution.

Concerning the expected optimal offline algorithm 
for the uncertain SPP, it is easy to get the following 
conclusion.

Theorem  1 Given a connected uncertain network 
N = (V ,A, �) with a sequence of blocked nodes I , let N′ 
denote the new network obtained by removing the blocked 
nodes in the sequence I and their directly connected arcs 
from N. The expected optimal offline algorithm for finding a 
shortest path from O to D in the network N with I is to take 
the expected shortest path between O and D in the network 
N′.

(3)E
[

L
(

P0

(O,D)
, �

)]

≤ E
[

L
(

P(O,D), �
)]

,

(4)E
[

TOPT(I)
]

≤ E
[

TOFF(I)
]

,
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Proof Since the offline algorithms know all the blocked 
nodes when they schedule the routes, the offline uncertain 
SPP on the network N with blocked nodes I is actually to 
find a shortest path in the network N′. Therefore, it is obvi-
ous that the expected optimal offline algorithm is to take the 
expected shortest path of the new network N′ , in which the 
blocked nodes and unavailable arcs are removed, because its 
expected travel time does not exceed any other paths.  
 □

4.2  Expected competitive ratio

Following from the concept of expected optimal offline 
algorithm, the performance of an online algorithm for the 
OURC problem can be evaluated by comparing the expected 
value of the total travel time experienced by this algorithm 
with the expected optimal offline solution. Consequently, the 
notion of expected competitive ratio is proposed as follows.

Definition 4 (Expected competitive ratio) Let I be an 
input sequence of blocked nodes in the uncertain network 
N = (V ,A, �) , and TON(I) be the total travel times from O 
to D in the network N with blocked nodes I along the route 
planned by an online uncertain algorithm ON. The algorithm 
ON is called an expected competitive algorithm if there exist 
deterministic constants � ( � ≥ 1 ) and � such that:

holds for any possible input sequences I, where E[TON(I)] 
is the expected value of the travel time experienced by the 
algorithms ON, and E[TOPT(I)] is the expected optimal 
offline solution. The constant � is called the expected com-
petitive ratio.

Concerning the expected competitive ratio of an online 
algorithm for the OURC problem, we have the following 
theorem.

Theorem  2 (Equivalent counterpart of expected com-
petitive algorithm) Given a connected uncertain network 
N = (V ,A, �) with blocked nodes, an online algorithm ON 
is an �-expected competitive algorithm for the online uncer-
tain route choice problem on the network N, if and only if 
the route travelled by the algorithm ON is an �-competitive 
solution for the traditional online shortest path problem on 
a deterministic network N = (V ,A,E[�]) , where the deter-
ministic arc length vector E[�] is:

Proof Let N′ and N
′
 denote the networks obtained by remov-

ing the blocked nodes and unavailable arcs from N and N , 
respectively. It is clear that N′ and N

′
 have the same node set 

and arc set, and the arc length vector of N
′
 is the expected 

(5)E
[

TON(I)
]

≤ � ⋅ E
[

TOPT(I)
]

+ �,

(6)E[�] =
(

E[�1],E[�2],… ,E[�m]
)

.

value of the uncertain arc length vector of N′. According 
to Definition 3, the expected optimal offline solution to the 
uncertain SPP on the network N with blocked nodes is to 
take the expected shortest path of the network N′ , which is 
denoted as P0. Then E[L(P0)] ≤ E[L(P)] holds for any path 
P. Since the arc lengths �i , i = 1, 2,… ,m , are independent 
uncertain variables, following from the linearity of expected 
value operator for independent uncertain variables (Liu 
2010a), we have:

Similarly,

Therefore, E[L(P0)] ≤ E[L(P)] holds if and only if 
∑

ei∈P
0 E[�i] ≤

∑

ej∈P
E[�j] is true, which implies that P0 is 

the expected shortest path of the network N′ if and only if P0 
is the shortest path of the deterministic network N

′
. In other 

words, the expected optimal offline solution to the uncertain 
SPP on the network N with blocked nodes is same with the 
optimal offline solution to the problem on the determinist 
network N.

Let TON(I) and TOPT(I) denote the total travel times from 
O to D in the network N with blocked nodes I along the 
route planned by an online uncertain algorithm ON and the 
expected optimal offline algorithm OPT, respectively. Then 
we have E[TOPT(I)] = E[L(P0)] =

∑

ai∈P
0 E[�i]. Denote by 

R the route travelled by an online uncertain algorithm ON 
from O to D. Note that R may contain some repeated arcs, 
since the online traveler should continually adjust its route 
while reaching a blocked node. Without loss of generality, 
we can represent R by listing the arcs being successively 
travelled as a sequence R = {aR1, aR2,… , aR�, } , where � 
is the count of its travelled arcs. Correspondingly, the arc 
lengths are �R1, �R2,… , �R�. Similarly, according to the lin-
earity of expected value operator for independent uncertain 
variables (Liu 2010a), we have

where 
∑

1≤i≤� E[�Ri] is the total travel time of the route R 
from O to D in the deterministic network N playing against 
the blocked nodes I, and 

∑

ei∈P
0 E[�i] is the optimal offline 

solution to the problem on N with I.

(7)E[L(P0)] = E

[

∑

ei∈P
0

�i

]

=
∑

ei∈P
0

E[�i].

(8)E[L(P)] =
∑

ej∈P

E[�j].

(9)

E
�

TON(I)
�

≤ � ⋅ E
�

TOPT(I)
�

+ �

⇔ E
�
∑

1≤i≤� �Ri
�

≤ � ⋅ E
�

∑

ei∈P
0 �i

�

+ �

⇔

∑

1≤i≤� E
�

�Ri
�

≤ � ⋅
∑

ei∈P
0 E[�i] + �,
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According to Definition  1, the last inequality in (9) 
implies that the route R is an �-competitive solution for 
online SPP on the network N = (V ,A,E[�]). The theorem 
is proved.   □

So far we have proposed an uncertain competitive anal-
ysis framework to analyze the OURC problem, in which 
the performance of an online algorithm is evaluated by the 
expected competitive ratio. It is shown that the competitive 
analysis for the OURC problem which involves uncertain 
variables can be handled in the framework of traditional 
online SPP via its equivalent counterpart on a deterministic 
network.

In order to develop effective online algorithms for the 
OURC problem, two typical strategies (namely, reset strat-
egy and greedy strategy) and their performances in the sense 
of competitive analysis are discussed following from the 
proposed uncertain competitive analysis framework in the 
following sections, respectively.

5  Reset strategy based online algorithm

Firstly, we adopt the reset strategy to address the problem. 
Roughly speaking, the reset strategy always chooses the 
expected shortest path from the origin to the destination with 
the known information about the blocked nodes. Whenever 
a blocked node is met, it goes back to the origin and then 
travels along the new expected shortest path. In other words, 
it resets the problem and starts a new cycle whenever new 
information about the blocked nodes is learned.

Formally, the reset strategy based online algorithm for the 
OURC problem is presented as follows.

Algorithm RS: Reset strategy based online algorithm
For the online uncertain route choice problem on a given 

uncertain network N = (V ,A, �) with blocked nodes, the RS 
algorithm travels from the origin O to the destination D as 
follows.

 Step 1. Calculate E[�i] , i = 1, 2,… ,m , respectively, and 
then obtain a corresponding deterministic network 
N = (V ,A,E[�]).

 Step 2. Use the Dijkstra algorithm to find the shortest 
path from O to D in the network N , which is also the 
expected shortest path from O to D in the network N, 
and then travels along this path until a blocked node is 
found on its adjacent node. Denote the current location 
by H.

 Step 3. Go back to the origin O from H along the path 
which has been travelled when going from O to H.

 Step 4. Remove the blocked node and its directly connected 
arcs from the network N.

 Step 5. Repeat Steps 2, 3, and 4 until the destination D is 
arrived.

The uncertain network shown in Fig. 2 is taken for example 
to illustrate the proposed algorithm. It consists of 13 nodes 
and 23 arcs. The grey nodes f, g and h are blocked nodes 
and thus cannot be passed. The unavailable arcs, which 
are directly connected to the blocked nodes, are denoted 
by dashed lines. However, the information about blocked 
nodes is not known by the online traveler. The couples (x, y) 
and triplets (x, y, z) labeled on the arcs denote that the cor-
responding arc lengths are uncertain variables with linear 
distributions (x, y) and zigzag distributions (x, y, z) (Liu 
2010a), respectively. Note that the expected value of a linear 
uncertain variable � ∼ (a, b) can be calculated as

while the zigzag uncertain variable � ∼ (a, b, c) has an 
expected value

 
The algorithm RS addresses the OURC problem on this 

network as follows.
Firstly, according to (10) and (11), a corresponding deter-

ministic network N = (V ,A,E[�]) can be obtained as shown 
in Fig. 3. The shortest path from O to D in the network N is 
O → d → f → g → D , which is also the expected shortest 
path from O to D in the network N.

Then, the online traveler travels along this path from O to 
D. However, after he reaches the node d, f is found blocked 
and thus the formerly planned path is not passable. Accord-
ing to the reset strategy, he goes back to the origin O and 
recomputes the shortest path from O to D in the network N 
on condition that the blocked node f and its directly con-
nected arcs have been removed. The new shortest path is 
O → a → g → D. Then he travels along this new path until 
a blocked node is found again. These steps are repeated until 
the destination D is finally arrived.

(10)E[�] =
a + b

2
,

(11)E[�] =
a + 2b + c

4
.

Fig. 2  An uncertain network N = (V ,A, �)
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As a result, the route travelled by the online trave-
ler from O to D according to the algorithm RS is 
O → d → O → a → O → e → i → j → k → D.  T h e 
total travel time of this route on the network N  is 
5 + 5 + 8.25 + 8.25 + 5 + 4 + 5 + 5 + 5 = 50.5, which is 
also the expected value of the total travel time of this route 
on the uncertain network N.

On the other hand, it is easy to get the expected optimal 
offline solution of the uncertain SPP on the network N, since 
the offline traveler knows the information about the blocked 
nodes while making his decision. As mentioned in the proof 
of Theorem 2, the expected optimal offline solution is same 
with the optimal offline solution to the problem on the cor-
responding deterministic network N. In this example, the 
expected optimal offline solution is O → e → i → j → k → D 
with expected total travel time 5 + 4 + 5 + 5 + 5 = 24. It can 
be seen that the total travel time experienced by the online 
traveler according to the algorithm RS is 50.5

24
≈ 2.1 times of 

the expected optimal offline solution.
Next, we analyze the performance of the online algorithm 

RS theoretically, following from the uncertain competitive 
analysis framework. For the expected competitive ratio of 
the algorithm RS, we have the following theorem.

Theorem 3 For the online uncertain route choice problem 
on a given uncertain network N = (V ,A, �) with k ( k ≥ 1 ) 
blocked nodes, the online algorithm RS is an expected com-
petitive algorithm with expected competitive ratio 2k − 1.

Proof For convenience, we denote the sequence of the j 
( 0 ≤ j ≤ k ) blocked nodes found by the online traveler as Ij , 
i.e., Ij = {c1, c2,… , cj}. Let TRS(Ij) and TOPT(Ij) be the total 
travel times from O to D along the routes planned by the 
algorithm RS and the expected optimal offline algorithm, 
respectively, on condition that the observed blocked node 
sequence is Ij. Note that there are k blocked nodes in total, 
but not all of them may affect the traveler’s decision. Then if 
there is not any blocked node found on the online traveler’s 
route ( j = 0 ), the expected shortest path is the solution of 

the algorithm RS, which is also the expected optimal offline 
solution. That is:

where L
0

(O,D)
 is the expected shortest travel time between O 

and D in the network N without blocked node.
When the first blocked node comes, without loss of gen-

erality, assume it is found at the node H1 (the pervious node 
of the blocked one). According to the algorithm RS, for this 
case the online traveler needs to go back the origin O from 
H1 , and then chooses another expected shortest path from O 
to D in the new network in which the blocked node and its 
directly connected arcs are removed away. It is clear that the 
online solution TRS(I1) for this case with only one observed 
blocked node satisfies the following inequality (13), since 
L
0

(O,H1)
= L

0

(H1,O)
≤ L

0

(O,D)
.

If the second blocked node comes, assume that it is found 
at the node H2. Denote by L(O,H2) the expected travel time 
between O and H2 along the path planned in the last step. 
L(O,H2) = L(H2,O) ≤ E[TOPT(I1)] holds. Then we have

Similarly, for 2 ≤ j ≤ k , we have

According to the algorithm RS, every time the traveler 
gets back to the origin, the current expected shortest path 
(blocked nodes and unavailable arcs are removed) is chosen. 
Therefore, for any i ≤ j , E[TOPT(Ii)] ≤ E[TOPT(Ij)] holds. By 
substituting it into (15), we have

(12)E
[

TRS(I0)
]

= E
[

TOPT(I0)
]

= L
0

(O,D)
,

(13)

E
[

TRS(I1)
]

= L
0

(O,H1)
+ L

0

(H1,O)
+ E

[

TOPT(I1)
]

≤ L
0

(O,D)
+ L

0

(D,O)
+ E

[

TOPT(I1)
]

= E
[

TOPT(I1)
]

+ 2L
0

(O,D)
.

(14)

E
[

TRS(I2)
]

= L
0

(O,H1)
+ L

0

(H1,O)
+ L(O,H2)

+ L(H2,O) + E
[

TOPT(I2)
]

≤ E
[

TOPT(I2)
]

+ 2E
[

TOPT(I1)
]

+ 2L
0

(O,D)
.

(15)
E
�

TRS(Ij)
�

≤ E
�

TOPT(Ij)
�

+ 2
∑j−1

i=1
E
�

TOPT(Ii)
�

+ 2L
0

(O,D)
.

(16)

E
[

TRS(Ij)
]

≤ E
[

TOPT(Ij)
]

+ 2(j − 1)E
[

TOPT(Ij)
]

+ 2L
0

(O,D)

= (2j − 1)E
[

TOPT(Ij)
]

+ 2L
0

(O,D)
.

Fig. 3  The corresponding deterministic network N = (V ,A,E[�])
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Since there are k blocked nodes in total, it is easy to verify 
that

holds for any possible sequence Ij , 0 ≤ j ≤ k , where 2L
0

(O,D)
 

is a constant with respect to the network N.
According to Definition 4, the algorithm RS is an 

expected competitive algorithm and the expected competi-
tive ratio is 2k − 1.   □

6  Greedy strategy based online algorithm

For the OURC problem, since the online traveler does not 
know the information about the blocked nodes until their 
adjacent nodes have been reached, it is natural to adopt 
greedy strategy to develop the online algorithm. Roughly 
speaking, the greedy strategy always chooses the expected 
shortest path from the current location to the destination 
based on the known information. Whenever a blocked node 
is found, it recomputes the new expected shortest path from 
the current location to the destination until the destination 
is finally arrived.

Formally, the greedy strategy based online algorithm for 
the OURC problem is presented as follows.

Algorithm GS: Greedy strategy based online algorithm
For the online uncertain route choice problem on a given 

uncertain network N = (V ,A, �) with blocked nodes, the GS 
algorithm travels from the origin O to the destination D as 
follows.

 Step 1. Calculate E[�i] , i = 1, 2,… ,m , respectively, and 
then obtain a corresponding deterministic network 
N = (V ,A,E[�]).

 Step 2. Use the Dijkstra algorithm to find the shortest 
path from O to D in the network N , which is also the 
expected shortest path from O to D in the network N, 
and then travels along this path until a blocked node is 
found on its adjacent node. Denote the current location 
by H.

 Step 3. Remove the blocked node and its directly connected 
arcs from the networks N and N.

 Step 4. Use the Dijkstra algorithm to find the shortest path 
from H to D in the network N in which found blocked 
nodes and unavailable arcs have been removed, which 
is also the expected shortest path from H to D in the 
new network N, and then travels along this new path 
until another blocked node is found. Denote the current 
location by H.

(17)E
[

TRS(Ij)
]

≤ (2k − 1)E
[

TOPT(Ij)
]

+ 2L
0

(O,D)

 Step 5. Repeat Steps 3 and 4 until the destination D is 
arrived.

Similarly, we take the uncertain network shown in Fig. 2 
for instance to illustrate the proposed algorithm GS. Firstly, 
the online traveler travels along the expected shortest path 
O → d → f → g → D. After he reaches the node d, f is found 
blocked. Then according to the greedy strategy, he recom-
putes the shortest path from d to D in the network N on con-
dition that the blocked node f and its directly connected arcs 
have been removed. It is d → a → g → D. Next, he travels 
along this new path. After he reaches the node a, g is found 
blocked again. Then he recomputes the shortest path from a 
to D on condition that all the formerly found blocked nodes 
and unavailable arcs have been removed, and travels along 
this new path until another blocked node is found. These 
steps are repeated until the destination D is finally arrived.

As a result, the route travelled by the online trave-
ler from O to D according to the algorithm GS is 
O → d → a → b → c → b → a → d → e → i → j → k → D. 
The expected value of the total travel time of this 
route on the uncertain network N is 5 + 5 + 5 + 5+

5 + 5 + 5 + 5 + 4 + 5 + 5 + 5 = 59. It is 59
24

≈ 2.5 times of 
the expected optimal offline solution.

Concerning the expected competitive ratio of the algo-
rithm GS, we have the following theorem.

Theorem 4 For the online uncertain route choice problem 
on a given uncertain network N = (V ,A, �) with k ( k ≥ 1 ) 
blocked nodes, the online algorithm GS is an expected com-
petitive algorithm with expected competitive ratio 2k+1 − 1.

Proof Similarly, we denote the sequence of the j ( 0 ≤ j ≤ k ) 
blocked nodes found by the online traveler as Ij , i.e., 
Ij = {c1, c2,… , cj}. Let TGS(Ij) and TOPT(Ij) be the total travel 
times from O to D along the routes planned by the algo-
rithm GS and the expected optimal offline algorithm, respec-
tively, on condition that the found blocked node sequence 
is Ij. Then if there is not any blocked node found on the 
online traveler’s route ( j = 0 ), the expected shortest path is 
the solution of the algorithm GS, which is also the expected 
optimal offline solution. That is

where L
0

(O,D)
 is the expected shortest travel time between O 

and D in the network N without blocked node.
When the first blocked node comes, without loss of gen-

erality, assume that it is found at the node H1. According to 
the algorithm GS, for this case the online traveler need to 
recompute the expected shortest path from H1 to D in the 
new network in which the blocked node and its directly con-
nected arcs are removed away. Denote by L(H1,D) the 

(18)E
[

TGS(I0)
]

= E
[

TOPT(I0)
]

= L
0

(O,D)
,
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expected travel time between H1 and D along the new 
planned path. It is clear that L(H1,D)

≤ L
0

(H1,O)
+ E[TOPT(I1)] 

holds. Then, there are two cases to be discussed.

1) If there is not any blocked node on the planned path from 
H1 to D, then we have 

2) If another blocked node appears on the planned path 
from H1 to D, which is found when the traveler reaches 
the node H2 , then the algorithm GS recompute the 
expected shortest path from H2 to D in the new net-
work in which the blocked node and unavailable arcs 
are removed again. Then the above steps are repeated. 
Without loss of generality, it is assumed that there are j 
blocked nodes found by the online traveler. Denote by 
H1,H2,… ,Hj the nodes where the j blocked nodes are 
found (adjacent nodes to the observed blocked nodes). 
Following from the above analysis, we have

For the planned path from Hj to D, we have

By substituting (21) into (20), we have

Similarly, for the planned path from Hi ( 1 < i < j ) to D, we 
also have

(19)

E
[

TGS(I1)
]

= L
0

(O,H1)
+ L(H1,D)

≤ L
0

(O,H1)
+ L

0

(H1,O)
+ E

[

TOPT(I1)
]

≤ E
[

TOPT(I1)
]

+ 2L
0

(O,D)
.

(20)
E
[

TGS(Ij)
]

= L
0

(O,H1)
+ L(H1,H2)

+⋯

+ L(Hj−1,Hj) + L(Hj,D).

(21)
L(Hj,D)

≤ L
0

(O,H1)
+ L(H1,H2)

+⋯

+ L(Hj−1,Hj) + E
[

TOPT(Ij)
]

.

(22)

E
[

TGS(Ij)
]

≤ 2

(

L
0

(O,H1)
+ L(H1,H2)

+⋯

+ L(Hj−1,Hj)

)

+ E
[

TOPT(Ij)
]

≤ 2

(

L
0

(O,H1)
+⋯ + L(Hj−2,Hj−1)

+ L(Hj−1,D)
)

+ E
[

TOPT(Ij)
]

.

(23)
L(Hi,D)

≤ L
0

(O,H1)
+ L(H1,H2)

+⋯

+ L(Hi−1,Hi) + E
[

TOPT(Ii)
]

.

By substituting (23) into (22) and repeating this step, we 
can get

Since there are k blocked nodes in total,

holds for any possible sequence Ij , 0 ≤ j ≤ k.

According to Definition 4, the algorithm GS is an 
expected competitive algorithm and the expected competi-
tive ratio is 2k+1 − 1. □

Comparing the expected competitive ratios of the algo-
rithms RS and GS, it can be seen that the reset strategy 
performs better than the greedy strategy in the sense of 
competitive analysis. Note that the expected competitive 
ratio defined in the proposed uncertain competitive analysis 
framework is a worst-case measure with respect to the pos-
sible blocked nodes, and thus the performances measured by 
this ratio tend to be pessimistic and conservative. However, 
it provides very robust statements about the performances 
of the online strategies against all possible scenarios, so it 
can be used as an effective or at least alternative measure 
to estimate the route choice decision. In this paper, it is 
assumed that we know nothing about the future possible 
blocked nodes, and these nondeterministic factors are coped 
with by utilizing worst-case based competitive analysis. If 
more information about the possible blocked nodes can be 
acquired while making the route choice decision, such as the 
probabilities of the nodes to be blocked, the performances 
of the online strategies can be much improved. This would 
be our future work.

7  Conclusion

Since the travel times in a traffic network are not always 
deterministic in real applications, the online route choice 
problem was considered on an uncertain network where the 

(24)

E
�

TGS(Ij)
�

≤ 2

�

2

�

L
0

(O,H1)
+
∑j−1

i=2
L(Hi−1,Hi)

�

+ E
�

TOPT(Ij−1)
�

�

+ E
�

TOPT(Ij)
�

≤ 2

�

2

�

L
0

(O,H1)
+
∑j−1

i=2
L(Hi−1,Hi)

�

+ E
�

TOPT(Ij)
�

�

+ E
�

TOPT(Ij)
�

⋯

≤ E
�

TOPT(Ij)
�

⋅
∑j

i=0
2i

≤ (2j+1 − 1) ⋅ E
�

TOPT(Ij)
�

(25)E
[

TGS(Ij)
]

≤ (2k+1 − 1)E
[

TOPT(Ij)
]
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arc lengths (representing travel times) were assumed to be 
uncertain variables. Due to the uncertainty of the travel time 
associated with the route chosen by an online algorithm, the 
traditional competitive analysis approach cannot be utilized 
directly to analyze the online routing problems involving 
uncertain variables. Therefore, an uncertain competitive 
analysis framework was proposed following from the uncer-
tainty theory founded by Liu (2007, 2010a), in which the 
performance of an online uncertain algorithm was evalu-
ated by its expected travel time against that of the optimal 
offline algorithm. Following from this framework, it was 
shown that the competitive analysis for the OURC problem 
could be handled in the framework of traditional online SPP 
via its equivalent counterpart on the corresponding deter-
ministic network. Furthermore, the typical reset strategy 
and greedy strategy for route choice decision-making were 
analyzed as well. The proposed analysis approach is also 
applicable for decision-makers to design and analyze their 
real-time response strategies for future uncertain events in 
other decision-making activities.
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