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Abstract
Municipal solid waste (MSW) is considered as one of the primary factors that contribute greatly to the rising of climate 
change and global warming affecting sustainable development in many different ways. It is indeed necessary to investigate 
an efficient computerized method for the optimization of MSW collection that minimizes the environmental and other fac-
tors according to a given waste collection scenario. In this paper, we propose a heuristic-based smart routing algorithm for 
MSW collection and implement it by Python scripts in ArcGIS to calculate optimal solutions of the model including routes 
and total travelling distances and operational time of vehicles. The algorithm will be validated on a case study of Sfax city 
which is the second largest and among the most polluted cities in Tunisia. A novel optimization model for the MSW col-
lection in Sfax is designed and given to the algorithm for calculation. The achieved results are then compared with those 
of the current real scenario as well as evaluated by a multi-criteria decision aid method namely PROMETHEE in terms of 
environment and economic criteria.

Keywords  ArcGIS · Dijkstra · Municipal Solid Waste Collection · Optimization models · Sfax city · Vehicle Routing 
Problem

1  Introduction

Nowadays, the concentration of population in cities has 
directed influence to increasing quantities of municipal 
solid waste (MSW) which is one of the primary factors that 
contribute greatly to the rising of climate change and global 
warming affecting sustainable development in many differ-
ent ways (Chang et al. 2009; Son 2014). Road transport of a 
MSW collection scenario consumes more than 95% of oil, 
fossil fuels, CO2 emitter, greenhouse gas and burn 1 kg of 

gasoline or diesel emits 3.2 kg CO2 (Douaud and Technique 
2010). It is indeed recognizable as one of the main sources 
for environmental pollution in which evidences of pollu-
tion can be seen in lung cancer, asthma, allergies, and vari-
ous breathing problems along with severe and irreparable 
damage.

Another direct effect is the immediate alterations that 
the world is witnessing due to global warming affecting 
increased temperatures, sea levels rise, melting of ice, 
displacement and loss of habitat (Moisseeva et al. 2016). 
This raises an alarm of requisition of specific strategies for 
prevention and precaution of possible disasters that could 
be foreseen worldwide. For those reasons, the aim of this 
research is to investigate an efficient computerized method 
for the optimization of MSW collection that minimizes the 
environmental and other factors according to a given waste 
collection scenario.

In this research, we consider a real-world case study for 
the sake of illustration of a new computerized method for 
optimization of MSW collection. It is originated from the 
Sfax city which is the second largest (number of popula-
tion) city and among the most polluted cities in Tunisia- 
the Republic located in the North Africa, and resides of 24 
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regions. Tunisia contains 10.778 habitats and generated 
2.423 million tons in 2012 and 0.815 Kg/day per capita 
MSW generation in the urban areas in 2014 (Waste 2014) 
(Fig. 1). Ing et al. (2007) indicated Sfax has high pollution 
rate and high quantity of population with 272,801 habitats 
being located in the center city explaining the high aver-
age waste quantity (0.702 h kg/hab./day). Waste at Sfax is 
contained at two types of sources: the first type is a house-
hold waste from three main sources namely houses, hotels 
and streets; the second type is from other sources: markets, 
offices, restaurants, hospitals, institutions, prisons, etc. 
These sources are called the gather sites.

Current real scenario (called Scenario 0) of SFAX 
includes a depot (the starting place of vehicles), many gather 
sites and many collection centers (or transfer stations). The 
vehicles are responsible for collecting waste to the transfer 
stations. The agricultural tractor can carry up to 1.6 tons of 
waste. The dumper truck can transport a 2.3 tons to of waste 
and the compactor vehicle have the maximal capacity around 
7.4 tons of waste. Drivers start the first trip from the depot 
at the same time. After loading waste at some gather sites, 
and total load reaches the vehicle’s capacity, each vehicle 
will unload it at a collection center and start a new route. 
The restricted working times of all vehicles are depended 
by the boroughs. Inhomogeneous vehicles are used so that 
different operations are applied to various types of vehicles. 
The case study contains one depot, 39 gather sites, two trans-
fer stations and 4 vehicles including 2 tractors agricultural, 
1 dumper truck and 1 compactor vehicle. An alternative 
scenario (called Scenario 2) can be applied to Sfax as fol-
lows: all the vehicles start their trips from the depot, collect 
garbage from the gathers sites and unload waste at transfer 
stations 2, finally return to the depot. Using these scenarios 
for Sfax, the total travelling distances and operational time 
of vehicles are attributed to be minimal so that the environ-
mental effects are significantly reduced.

The current MSW collection process (Scenario 0) in Sfax 
is done manually according to these scenarios which mean 
that the routes of vehicles are not optimized by any method 

but based solely on the experience of drivers. Yet, it has been 
shown that using computerized methods such as ArcGIS–a 
geographic information system to determine optimal routes 
of vehicles can again reduce the total travelling distances 
and operational time. Many works done in the past years 
used a vehicle routing algorithm such as Dijkstra in Arc-
GIS (ESRI 2006) to derive optimal solutions (Karadimas 
et al. 2007; Son 2014; Zhang et al. 2015; Zsigraiova et al. 
2013; Khan and Samadder 2014). Sanjeevi and Shahabudeen 
(2015, 2016), Zsigraiova et al. (2013), Tavares et al. (2009), 
Malakahmad et al. (2014) and Zhang et al. (2015) used 
ArcGIS Network Analyst to identify the best route for the 
municipal waste collection of large items. Khan and Sama-
dder (2014) addressed a mini review on various aspects of 
MSW management using GIS coupled with other tools to 
know how GIS can help in optimizing solid waste collec-
tion. Son and Louati (2016) proposed a generalized vehi-
cle routing model for MSW collection problem including 
multiple transfer stations. Han (2015) presented a review of 
waste collection techniques to solve MSW collection. Gal-
lardo et al. (2015) combined the planning methodology with 
ArcGIS to design an MSW management system in Castellón 
(Spain). Malakahmad et al. (2014) used ArcView to inves-
tigate MSW collection in Poh city aiming to optimize the 
length of routes and collection time. Santos et al. (2011) 
utilized GIS to minimize total traveled distances of vehicles 
with constraints such as shift time a vehicle capacity and 
network. It has been affirmed that ArcGIS is a good choice 
for the analysis of MSW collection (Bonomo et al. 2012; 
Syed et al. 2017; Avila-Torres et al. 2017).

Nonetheless, using ArcGIS for GIS data of Sfax accom-
panied with the information of waste quantities of all nodes 
(gather sites, transfer stations, etc.) is not enough to derive a 
good solution. That is to say, the Network Analyst function 
(or the vehicle routing function using the Dijkstra algorithm) 
in ArcGIS ignores the constraints of waste quantity of nodes 
and vehicles, for instance if a vehicle comes to a gather site, 
it must check whether its remained capacity is large enough 
to load (parts of) the waste quantity of that node. Analo-
gously, the total current waste quantities of a vehicle after 
leaving a node must be less than or equal to capacity of the 
vehicle. There are also many constraints that were not taken 
into account in ArcGIS; making the vehicle routing function 
pays much attention to the map’s topology (which means 
shortest paths between nodes) rather than the waste collec-
tion itself. The need of an optimization model for MSW 
collection at Sfax is indeed inevitable. This model should 
illustrate all required constraints and include the objectives 
of minimization of environment expressed through the total 
travelling distances and operational time of vehicles. On the 
other hand, an improvement of the vehicle routing function 
using Dijkstra (or in short the improved Dijkstra algorithm) 
should be designed to handle the optimization problem.Fig. 1   Variation in MSW composition in Tunisia (Waste 2014)
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From the above motivations, the contributions of this 
paper are two folds: Firstly, we propose a novel optimiza-
tion model for the MSW collection based on the current real 
scenario of waste collection in Sfax; Secondly, we propose 
a novel heuristic-based smart routing algorithm for MSW 
collection and implement it by Python scripts in ArcGIS to 
calculate optimal solutions of the model including routes 
and total travelling distances and operational time of vehi-
cles. The achieved results are then compared with those 
of the current real scenario (Scenario 0) and Scenario 2 in 
order to know whether or not using the new model and the 
smart routing algorithm can have better results than using 
the current manual scenario (Scenario 0) and Scenario 2 
implemented in ArcGIS with classical Dijkstra only (no new 
model is required herein). The comparison with Scenario 0 
is to verify the efficiency of the new optimization model vs. 
the manual collection process. Analogously, the comparison 
with Scenario 2 is to validate the capability of the improved 
Dijkstra algorithm vs. the classical one. All experimental 
results are then analyzed by a multi-criteria decision aid 
method namely PROMETHEE in terms of environment and 
economic criteria.

The rest of the paper is organized as follows. Section 2 
presents the optimization model of MSW collection in Sfax, 
the improved Dijkstra algorithm in ArcGIS and the PRO-
METHEE tool. Section 3 demonstrates the experimental 
results and discussions. Section 4 highlights conclusions 
and further works of this study.

2 � Materials and methods

2.1 � Modeling waste collection

Firstly, we make following assumptions to the model:

(a)	 The distance between each pair of nodes is known, con-
stant vehicle speed, hence the travelling time between 
nodes is also known.

(b)	 The numbers of node as well as their locations on the 
map are fixed.

(c)	 Working time all vehicles is the day shift.
(d)	 Load and unload time of a vehicle are equal. Partial 

loads are allowed.
(e)	 Capacities of each type of vehicles are not equal.
(f)	 All vehicles need to collect all waste before returning 

to the depot in a shift.
(g)	 We assume that the number of trips of all vehicles in 

a (day) shift is large enough to take all the waste in 
that shift. This means that waste is always less than the 
capacities of all vehicles in a (day) shift.

(h)	 We consider the static waste generation in a (day) shift. 
This means that waste of all gather sites in a (day) shift 

is fixed. If new waste comes (e.g. 2– 3 waste a day), we 
count it to the next shift.

Secondly, we propose some terms that will be used 
throughout the model (Table 1).

Thirdly, we propose the optimization model for MSW 
collection at Sfax city (Table 2).

The MSW collection at Sfax is modeled by the system 
( N+ , Z, V, Q) taken from a specific map of ArcGIS in the 
sense that each node in N+ has a specific location on the 
map and the distance between two nodes is calculated by 
the shortest path function in ArcGIS (ESRI 2009). The 
components Z and Q change dynamically by time. In the 
first time stamp, the waste quantities of all nodes except 
those of gather sites are set to zero. But when vehicles in 
V move to gather sites to load waste and dump them at the 
transfer station, the waste quantities of those nodes increase. 
Waste quantities that a vehicle takes from a node are added 
to the component Q of that vehicle. When dumping waste, 
Q is reduced by the dumped waste quantity. Partial loads 
are allowed that means a vehicle can take a part of the total 
waste quantity in a gather site so that it does not exceed the 
capacity of the vehicle. Thus, the objective of the MSW col-
lection problem is to minimize the travelling (operational) 
time which indirectly implies the minimum of total trav-
elling distances of vehicles. Now, we give an example to 
illustrate the model.

Example 1  Suppose that we have a MSW system ( N+ , Z, 
V, Q) consisting of a depot (ID: 1), a transfer station (ID: 
2) and 7 gather sites (IDs from 4 to 10). Waste quantities of 
all nodes in the first time stamp are shown in the Table 3. 
In the system, there are 4 vehicles including 2 tractor agri-
cultural (IDs: Ag1 and Ag2), 1 dumper truck (ID: D) and 
1 compactor vehicle (ID: C) whose capacities of vehicles 
are expressed in Table 4. The distance between each pair of 
nodes is presented in Table 5.

All vehicles started at the same time from the depot, and 
the results of the first move to nodes of vehicles are pre-
sented in Table 6. Those results satisfy constraint (A1).

The compactor vehicle starts a trip from the depot (con-
straint A3), and loads waste from node 9 ( Qj = 618) and node 
5 ( Qj = 814). It cannot load waste from node 7 or 10 because 
their waste quantities are greater than capacity of the vehicle 
(constraint A4). The vehicle loads 1432 kg waste quantity 
(constraint A5) and moves to the transfer station for dump-
ing. The vehicle starts the second trip from the transfer sta-
tion to node 10 to load 1020 kg of waste and return to the 
transfer station to unload again (Table 7).

After dumping and finishing the shift day, the vehicle 
goes to the depot (Constraint A2).
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Table 1   Definitions and denotation of variables and terms

Term Definition and Explanation

num_ts The number of transfer stations
num_gs The number of gather sites
N =

{

1, 2, 3, 4, ..,N+
} An ordered list of nodes representing for the MSW collection system including

 ‘1’: ID of the depot
 ‘2’: ID of the first transfer station
 ‘2’: ID of the second transfer station
 ‘4’,..,’N+’: IDs of the gather sites

Z =
{

Z1,Z2,Z3,Z4, ..,ZN+

}

Waste capacity of all nodes
 Z1 = 0 : waste capacity of depot
 Z2,Z3 : waste capacities of the first and second transfer stations, respectively
 Z4, ..,ZN+ : waste capacity of gather sites

V = {1, 2, 3, 4} An ordered list of vehicles including
 ‘1’: id of the first Agricultural tractor
 ‘2’: id of the second Agricultural tractor
 ‘3’: id of the Dumper truck
 ‘4’: id of the Compactor vehicle

C =
{

C1,C2,C3,C4

}

The capacity of vehicles where
  C1,C2 : Capacity of the Agricultural tractor
  C3 : Capacity of the Dumper truck
  C4 : Capacity of the Compactor vehicle

Q =
{

Qi
k

}

k: id of a vehicle and i: id of a node
Qi

k
 : Current waste quantities of vehicles k after leaving node i

Xi
j
(k) An arc’s weight that measures the capability of vehicle k to travel from node i to node j

 Xi
i
(k) = 1 if vehicle k is able to travel this arc

 Xi
i
(k) = 0 otherwise

tij(k) Travelling time between nodes i and j of the vehicle k

Table 2   The optimization model

Objective Function Explanation

A0 min
∑

k∈V

∑

i, j ∈2,N
+

tij(k) x
i
j
(k) Minimize the travelling time

Constraints
Network
A1

N+

∑

j=4

x1
j
(k) = 1

 ( ∀k ∈ V)

Each route starts from the depot

A2
3
∑

i=2

xi
1
(k) = 1

(∀k ∈ V)

The last trip from a node in that route should return to the depot

Waste volume
A3

∑

i=1,2,3

∑

j∈N

Qi
k
xi
j
(k) = 0

 ( ∀k ∈ V)
Waste volume of each vehicle leaving the depot and the transfer station equals to 

zero
A4

∑

∀i,j∈N

Qi
k
xi
j
(k) ⩽ Ck

 (∀k ∈ V)

The total current waste quantities of a vehicle after leaving a node must be less than 
or equal to the capacity of that vehicle

A5
(

Q
j

k
− Qi

k

)

xi
j
(k) = Zj ( (∀k ∈ V , ∀i, j ∈ N))

The waste quantities is load at a node must be less than or equal to the capacity of 
that node

Table 3   The initial waste 
quantities of nodes (kilograms)

*The capacity of a node

Ñ 1 2 4 5 6 7 8 9 10

R 0 60,000* 735 814 730 828 868 618 1020
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It is obvious that the model allows validating of a possible 
move of a vehicle from a node to another satisfying the con-
straints regarding waste quantities and network which can-
not be accurately performed by the current Network Analyst 
function for GIS data only in ArcGIS.

2.2 � New smart routing algorithm

In this section, we propose a novel heuristic-based smart 
routing algorithm for MSW collection. The basic idea of this 
algorithm is to derive an optimal solution for the model pro-
posed in Tables 1 and 2. In order to do so, a heuristic based 
method is appropriate to both find the solution and obtain 
reasonable processing time which is an urgent matter in such 
the real-world application. The heuristic method considers 
the objective function and constraints as in Table 2 with real 
data from the case study. An important note is that it must 
integrate the final results with the map so that the trips of 
each vehicle are visually expressed therein. For those reason, 
we try to integrate the new smart routing algorithm to the 
ArcGIS software in which the classical Dijkstra algorithm is 

replaced with the new method. As a result, the smart routing 
algorithm is not a trivial improvement of Dijkstra but follow 
its idea to generate the optimal solutions instead.

ArcGIS Desktop 10.1 (ESRI 2006)- a geographical infor-
mation system aided method (GIS), provides detailed infor-
mation of spatially referenced events and phenomena. Arc-
GIS Network Analyst permits to create and build a network 
dataset from feature classes stored within a geo-database and 
perform analyses on a network dataset, with define connec-
tivity rules and network attributes. ArcGIS Network Ana-
lyst allows creating a model for finding the fastest collection 
route. The routing solvers within ArcGIS Network Analyst 
namely the Route, Closest Facility and OD Cost Matrix are 
based on the well-known Dijkstra algorithm for finding 
shortest paths. Each of these three solvers implements two 
types of path-finding algorithms. The first type is the exact 
shortest path, and the second is a hierarchical path solver for 
faster performance.

The Dijkstra algorithm solves the single-source, shortest-
path problem on a weighted graph. To find a shortest path 
from a starting location to a destination, Dijkstra maintains 
a set of junctions, S, whose final shortest path from the start-
ing has already been computed. The algorithm repeatedly 
finds a junction in the set of junctions that has the minimum 
shortest-path estimate, adds it to the set of junctions S, and 
updates the shortest-path estimates of all neighbors of this 
junction that are not in S. The algorithm continues until the 
destination junction is added to S (Table 8).

Nonetheless, in order to use Dijkstra within the context 
of real-world transportation data, it must be modified to 
represent user settings such as waste quantity and network 
constraints while minimizing a user-specified cost attribute. 
In addition, the algorithm needs to be able to model the 
locations anywhere along an edge, not just on junctions. In 
what follows, we present a novel heuristic-based smart rout-
ing algorithm that mimic the idea of Dijkstra with the con-
straints of the model and the operation of multiple vehicles 

Table 4   The capacities of 
vehicles (kilograms)

V Ag1 Ag2 D C

C 800 800 1000 1500

Table 5   Distances between each node in kilometer unit (no. trip)

N+ 1 5 9 2 10

1 0 7.9 11 22.2 33.8
5 7.9 0 3.1 14.3 25.9
9 11 3.1 0 11.2 22.8
2 22.2 14.3 11.2 0 11.6
10 33.8 25.9 22.8 11.6 0

Table 6   The results of the first 
trip

V Ag1 C4 Ag2 zd D C4

nodes
Qj

4 5 6 7 8 9 10

735 814 730 828 828 618 1020
Status Full Full Full 828 Full Full 1020

Table 7   The results of the 
second trip

V D C4

Nodes 4 5 6 7 8 9 10
Qjj 0 0 0 828 0 0 1020
Status Empty Empty Empty Empty Empty Empty Empty
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being integrated. The algorithm has been implemented in 
Python script in ArcGIS. Table 9 shows the pseudo-code of 
the new smart routing algorithm.

In this table, the Neighbor (a, V) procedure aims to find 
gather sites which are neighbors of a node ‘a’ in the order of 
closest to farthest. The Constraint (a, b, i) procedure checks 
whether a vehicle ‘I’ can go from node ‘a’ to node ‘b’ by 
constraints of the model and Dijkstra’s strategy (expressed 
in the condition: L(b) < L(a) + distance[a][b]). The Print 
(result) is used to print the optimal routes of a vehicle. 
Finally, the most important function—Route() shows the 
main idea of the smart routing algorithm in which we itera-
tively try to find a possible move for a vehicle according 
to the current waste quantity until the vehicle is full. By 
this strategy, all vehicles are programmed to collect waste 
automatically. Finally, the collection system stops working 
when waste is dumped completely. We can realize that the 
principle of Dijkstra reflects in the Constraint (a, b, i) and 
the Route() procedures with major changes of model adapta-
tion. This shows the novelty of the algorithm.

Figure 2 shows the flowchart of the algorithm.

2.3 � PROMETHEE

The PROMETHEE (Preference Ranking Organization 
METHod for the Enrichment of Evaluations) method was 
developed by Professor Jean-Pierre Brans in 1982. In 1988, 
GAIA (Graphical Analysis for Interactive Aid) was intro-
duced as a graphical complement to the PROMETHEE 
rankings. PROMETHEE have successfully been applied to 
many problems and a number of researchers have used them 
in decision making problems in solid waste management 
research (Soltani et al. 2015). In this method, decision mak-
ers must define the following information:

(a)	 Weights (wj) the weight of a criterion measures how 
much importance to other criteria. The descriptions of 
criteria and their values are shown in Tables 10 and 
11 (Behzadian et al. 2010; Vinodh and Jeya Girubha 
2011). The used scale for qualitative criterion is 5-point 
in Table 12.

(b)	 The performance function defines how pairwise evalu-
ation differences are translated into degrees of prefer-

Table 8   The classical Dijkstra 
algorithm
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Table 9   The heuristic-based 
smart routing algorithm
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Table 9   (continued)
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ence. It reflects perception of the criterion scale by the 
decision-maker (Mareschal 2013). Brans and Vincke 
(1985) proposed six preference functions namely the 
Usual, U-shape, V-shape, level, Linear and Gaussian. 
Vinodh and Jeya Girubha (2011) described different 
preference functions and Behzadian et al. (2010) pre-
sented some steps for PROMETHEE as follows.

Step 1  Calculate the deviation value of alternatives a and b:

where gj(a) is the evaluation of alternative a for criterion j.

Step 2  Calculate the preference function (j = 1..k):

dj(a, b) = gj(a) − gj(b)

Fig. 2   Flowchart of the smart routing algorithm
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Step 3  Calculate the global preference index

where wj is the weight of jth criterion.

Step 4  Calculate the positive and negative outranking flows 
for each alternative:

Pj(a, b) = Pj

[

dj(a, b)
]

�(a, b) =

k
∑

j=1

wjPj(a, b),

Φ+(a) =
1

(n − 1)

∑

x∈A

∏

(a, x)

Φ−(a) =
1

(n − 1)

∑∏

(x, a)

Step 5  Calculate the outranking flow where the best alterna-
tive is the one with highest net flow dominance.

3 � Results and discussions

3.1 � Results

Firstly, we present the comparative results of the new 
method (with the new routing method and the new model) 
vs. those of the current real scenario (Scenario 0) and Sce-
nario 2 implemented in ArcGIS with classical Dijkstra only 
(no new model is required herein) (Fig. 3). It is clear that the 
new method achieves better results than others.

Secondly, the following tables show the details of vehicles 
of each method (Figs. 4, 5, 6).

Thirdly, the following figures show the route map of each 
method (Figs. 7, 8, 9).

3.2 � Analyzing the results by PROMETHEE

In this section, we analyze the achieved results by PRO-
METHEE and make a sensitivity analysis with GAIA to 
discover conflicts among criteria, fix priorities, identify 
potential compromise and verify the robustness with respect 

Φ(a) = Φ+(a) − Φ−(a)

Table 10   The criteria

Criteria Description

Road length Capability of routes to minimize the roads lengths
Fuel consumption cost Capability of routes to minimize fuel cost
Emission gas Capability of routes to minimize quantity of emission gas
Reliability Policy may have been only tested in laboratory or only performed in pilot plants, or it could be still improved
Compatibility with the national 

energy policy objectives
The criterion also takes into account the government’s support, the tendency of institutional actors, and the 

policy of public information
Labor acceptance Capability of routes to maximize labor satisfaction

Table 11   Recommended values of criteria

Name Scale Units Direction Preference function Weight Thresholds 
indifference

Preference

Road length quantitative Km Min Level 20 10 30
Fuel consumption quantitative dollars Min V-shape 23 0 7
Emission gas quantitative g/km Min V-shape 17 0 100,30
Reliability qualitative 5-point Max Level 20 1 2
Compatibility with national 

energy policy objectives
qualitative 5-point Max Level 10 1 2

Labor acceptance qualitative 5-point Max Level 10 1 2

Table 12   Evaluations for 
reliability and compatibility 
criteria

Level Value

very bad 1
Bad 2
Average 3
Good 4
very good 5
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to weight values. Firstly, we present the evaluation for two 
criteria: reliability and compatibility in Table 13.

3.2.1 � Deviation calculation

The deviation show the difference between two alternatives 
for each criterion (Scenario 0, Scenario 2), (Scenario 2, 
New method), etc. The total number of deviations in this 
context is 6. The deviation values are shown in Tables 14 
and 15.

3.2.2 � Preference function and global preference index

The preference is calculated using the respective preference 
function formula (Brans and Vincke 1985). To have a com-
mon scale of values, non-commensurable criteria should be 
converted into the dimensionless criteria. In order to nor-
malize the weights of the criterion, relative weight has to be 
obtained using the following equation with the sum of the 
relative weights of criteria being equal to one (Vinodh and 
Jeya Girubha 2011).

 where wj the weight of the jth criterion; ∑wj is the sum of 
weights of all criteria. The preference function’s value and 
weight of each criterion are shown in Tables 16 and 17. For 
each couple of actions a, b ϵ A, we first define a preference 
function for a to b over the criteria (Reliability and Compat-
ibility). The multi-criteria preference index gives a measure 
of the preference of a over b for the two criteria. The global 
preference index is calculated from the results in Fig. 3 and 
Tables 16 and 17.

W j =
wj

∑k

j=1
wj

Fig. 3   The comparative results

Fig. 4   The results of practical routes in Scenario 0

Fig. 5   The results of Scenario 2 using ArcGIS with GIS data

Fig. 6   The results of the new smart routing method
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Fig. 7   The route map of Scenario 0 (practical routes)

Fig. 8   The route map of Scenario 2 (ArcGIS)
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Fig. 9   The route map of the new smart routing method

Table 13   Evaluations for reliability and compatibility criteria

Reliability Compatibility

Scenario 0 5 3
Scenario 2 3 4
New method 4 5
Weights 20 10

Table 14   Pair-wise comparison between scenarios on the Reliability 
criterion

d(a,b) Scenario 0 Scenario 2 New method

Scenario 0 0 2 1
Scenario 2 − 2 0 − 1
New method − 1 1 0

Table 15   Pair-wise comparison between scenarios on the Compatibil-
ity with the national energy policy objectives criterion

d(a,b) Scenario 0 Scenario 2 New method

Scenario 0 0 − 1 − 2
Scenario 2 1 0 − 1
New method 2 1 0

Table 16   Preference function for the Reliability criterion

Pj(a, b) Scenario 0 Scenario 2 New method

Scenario 0 0 0.5 0
Scenario 2 0 0 0
New method 0 0 0

Table 17   Preference function for Compatibility (national energy pol-
icy objectives criterion)

Pj(a, b) Scenario 0 Scenario 2 New method

Scenario 0 0 0 0
Scenario 2 0 0 0
New method 0.5 0 0

Table 18   Flow result for Reliability and Compatibility criteria

Bold values imply that the larger phi+ or the smaller phi−, the better 
the action

Pi(ai,aj) Scenario 0 Scenario 2 New 
method

Positive flow 
(phi+)

Scenario 0 0 10 0 0.33
Scenario 2 0 0 0 0
New method 5 0 0 0.16
Negative flow (phi-) 0.16 0.33 0
Net flow 0.16 − 0.33 0.16
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3.2.3 � Compute the positive and negative outranking flows 
(Tables 18, 19)

3.2.4 � The final outranking flow (Table 20)

It is clearly that the new method has the highest net flow 
value. Thus, the new method achieves the best results among 

all in terms of multiple criteria. In what follows, we perform 
sensitivity analysis for the results.

3.3 � Sensitivity analysis

The Visual Stability Intervals window can be used for to 
change the weights of the criteria and see the impact of the 
ranking (Fig. 10).

The visual stability analysis for criterion figure is split 
into two parts:

The upper part is a bar chart showing the PRO-
METHEE Complete Ranking and the lower part is a 
bar chart showing the weights of the criteria. For each 
active action, a line is drawn to show how the net value 
changes when the weight of the criterion is modified. 

Table 19   Uni-criterion 
preference flows

Road length Fuel consumption Emission gas Reliability Compatibility Labor 
accept-
ance

Scenario 0 − 0.5 − 0.1729 − 1 0.5 − 0.5 0
Scenario 2 0.25 0.065 0.3115 − 0.5 0 0
New method 0.25 0.1079 0.6885 0 0.5 0

Table 20   PROMETHEE flow

Rank Action Net flow Leaving flow Entering flow

1 New method 0.2491 0.2419 0
2 Scenario 2 0.0179 0.1532 0.1353
3 Scenario 0 − 0.2598 0.1 0.3598

Fig. 10   The visual stability intervals window
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After changing equals weights for each criterion, it can 
be seen that the new method is at the top of the PRO-
METHEE ranking. The weight stability interval indicates 

how the Phi multi-criteria net flow scores change as a 
function of the weight of a criterion (Figs. 11, 12, 13, 
14, 15).

Fig. 11   The weight stability 
interval for road length criterion

Fig. 12   The weight stability 
interval for fuel consumption 
cost
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The weight stability intervals for criteria: Road length, 
Fuel consumption cost, Emission gas, Compatibility and 
Labour acceptance in three scenarios belong to [0%, 100%]. 
Thus, the PROMETHEE ranking do not change whatever the 
weight of the Road length criterion and the new method in 
the top of ranking, but the ranking can change if weight of 
the Reliability criterion exceeds the weight stability inter-
val [0%, 66.21%] when Scenario 0 dominates Scenario 2 

and [0%, 42.68%] when Scenario 0 is in the top of ranking 
(Figs. 16, 17, 18, 19).

The horizontal dimension corresponds to the weight 
of the selected criterion, and the vertical dimension cor-
responds to the Phi net flow score. For each action, a line is 
drawn that shows the net flow score as a function of weight 
of the criterion. At the right edge, the weight of criterion is 
equal to 100% and the actions are ranked according to that 

Fig. 13   The weight stabil-
ity interval for emission gas 
criterion

Fig. 14   The weight stability 
interval for Compatibility
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single criterion. At the left edge, the weight of the criterion 
is equal to 0%. The position of the vertical green and red 
bar corresponds to the current weight of the criterion. The 
intersection of the action lines with the vertical bar gives the 
PROMETHEE complete ranking (see Figs. 16, 17, 18, 19).

It can see that the scores of the Scenario 0 upwards when 
the weight of the Reliability criterion increases while the 
scores of Scenario 2 and the new method increase. Again, it 
affirms that the new method achieves the best results among 
all.

4 � Conclusions

In this paper, we aimed to propose a novel heuristic-based 
smart routing algorithm for municipal solid waste (MSW) 
collection. It was implemented in ArcGIS to calculate 
optimal solutions of the model including routes and total 
travelling distances and operational time of vehicles. It is 
capable to represent user settings, such as waste quantity 
and network constraints, and model locations along an 
edge, not just on junctions. The new algorithm could take 

Fig. 15   The weight stability 
interval for labour acceptance 
criterion

Fig. 16   The weight stability 
interval for Reliability criterion
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into account constraints of a vehicle routing model and 
operations of multiple vehicles. The comparison between 
the original and the new algorithms was given so that 
one can easily implement it for a specific optimization 
problem.

In order to illustrate the efficiency of the algorithm, we 
have investigated a case study of MSW collection in Sfax 

city, which is the second largest (number of population) city 
and among the most polluted cities in Tunisia - the Repub-
lic located in the North Africa, and resides of 24 regions. 
Tunisia contains 10.778 habitats and generated 2.423 million 
tons in 2012 and 0.815 Kg/day per capita MSW generation 
in the urban areas in 2014. In Tunisia, Sfax has high pol-
lution rate and high quantity of population with 272,801 

Fig. 17   The PROMETHEE 
ranking of scenarios after 
changing value of Reliability

Fig. 18   The weight stabil-
ity interval for the Reliability 
criterion
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habitats being located in the center city explaining the high 
average waste quantity (0.702 kg/hab./day). The current 
MSW collection in Sfax is done manually in the sense that 
routes of vehicles are not optimized by any method but based 
solely on the experience of drivers. It was emphasized that 
using computerized methods to determine optimal routes of 
vehicles can reduce total travelling distances and operational 
time. Therefore, we proposed a novel optimization model for 
the MSW collection based on the current real scenario of 
waste collection in Sfax, then applied the new smart routing 
algorithm for MSW collection. All the methodologies have 
been clearly demonstrated throughout the paper.

The results were compared with those of the practical 
routes (Scenario 0) and Scenario 2 (implemented in ArcGIS 
with classical Dijkstra with no new model). They showed 
that the total distances and operational time of vehicles 
produced by the new method are 154.6 km and 10.83 h, 
which are less than those of Scenario 0 (resp. 166.75 km 
and 14.10 h) and Scenario 2 (resp. 155.2 km and 10.9 h). 
The experimental results are then analyzed by a multi-cri-
teria decision aid method namely PROMETHEE in terms 
of environment and economic criteria. PROMETHEE and 
its graphical complement—GAIA have successfully been 
applied to many problems in solid waste management 
research for multi-criteria analysis. It has been demonstrated 
that the new method has the highest net flow value in PRO-
METHEE which implies the best results among all in terms 
of multiple criteria. Sensitivity analysis was performed and 
affirmed the findings of the paper.

Further works of this study will investigate another 
improvement of vehicle routing algorithms to get bet-
ter planning results of the waste collection scenario. The 
problem of choosing optimal locations of waste bin is also 
our further direction. Other approaches using information 
systems (Thanh et al. 2017), picture clustering (Thong and 
Son 2017; Ngan et al. 2016; Son et al. 2011, 2017; Son and 
Phong 2016; Phong and Son 2017) are also our target.
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