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Abstract
Pulmonary nodule detection and segmentation are two important works for early diagnosis and treatment of lung cancer. 
The work of detection is to locate pulmonary nodules in a given chest CT scan, and the segmentation aims at extracting all 
the voxels from a CT scan within each nodule’s space. This paper propose a novel framework to process both nodule detec-
tion and segmentation integrately, which is implemented as the combination of SLIC supervoxel segmentation and CNN 
classification. The learning of CNN just require weakly labeled data annotations, where only a single coordinate is provided 
for each annotated nodule as the ground truth. The CNN architecture is designed as a 3D multi-level framework, which is 
able to comprehensively recognize nodules with variant sizes and shapes. Experiments on the dataset of LUNA16 challenge 
expressed prominent detecting performance, demonstrating the necessity and efficiency of 3D CNN architecture and multi-
level framework for computer-aided detection of pulmonary nodules. Meanwhile the evaluation of segmentation presented 
impressive performance, producing elegant shapes of real nodules, which proves the great efficiency of SLIC technique.
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1 Introduction

Lung cancer is a kind of severely mortal illness worldwide, 
lying at the top for both mortality and morbidity among all 
the cancerous diseases. In order to help lung cancer pre-
diction in the early stage, computer-aided diagnosis (CAD) 
systems are often used to assist radiologists to read medical 
images more precisely and efficiently. The works of CADs 
include various medical image processings such as denoising 

(Mingliang et al. 2016), segmentation (Ronneberger et al. 
2015; Tang et al. 2016), and detection or characterization of 
medical lesions (Tajbakhsh et al. 2016; Fakoor et al. 2013; 
Sirinukunwattana et al. 2016). CADs for lung cancer always 
focus on lung nodule analysis from volumetric thoracic 
computed tomography (CT), where lung nodule is a kind 
of granuloma regarded as an important reference factor in 
lung cancer diagnosis.

Nodule detection and segmentation are two main pro-
cesses in lung nodule analysis, where detection is to find 
out and localize nodules in CT scans by calculating a set 
of estimated coordinates to help release the manual cost of 
radiological screening, and segmentation is to give a precise 
voxel-wise presentation of nodule shape to help pathological 
diagnosis. Their main details are as follows.

1.1  Nodule detection

An automated pulmonary nodule detecting system usually 
consists of two steps: (1) candidate detection and (2) false 
positive reduction. The process of candidate detection aims 
to get a set of nodule candidate locations with the highest 
reachable sensitivity, which results in a large number of false 
positives. Then during the stage of false positive reduction, 
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candidates are filtered by a classifying scheme, where the 
numerous false positives are widely eliminated, leaving a 
precise detection result of true nodules.

The common candidate detecting methods are often 
simple and effective. Curvature thresholding and centering 
(Murphy et al. 2009) are proceeded to extract nodules with 
sphere-like shape, and some other methods just use double 
thresholding and morphological operations (Jacobs et al. 
2014; Setio et al. 2015) to find out other oddly shaped nod-
ules. In the step of false positive reduction, a set of delicate 
features are extracted, and one or more supervised classifiers 
are built for them to distinguish more detailed informations 
between true nodules and non-nodule candidates (Murphy 
et al. 2009; Jacobs et al. 2014; Messay et al. 2010).

Although above methods can help improve the reading 
efficiency of radiologists, they are far from practical appli-
cations. A significant reason is that nodules vary from a 
wide range in shape, size, and texture, while existing simple 
classifiers cannot entirely recognize such kind of complex 
features precisely. Another reason is the existence of nodule-
like false positives, where some general tissues within lung 
space look too similar to true nodules. Therefore, it’s hard 
to both eliminate the false positive rate and maintain a high 
sensitivity simultaneously.

Recently, the newly popularized deep learning technique 
has brought such applications into a new stage of research. 
Convolutional neural networks (CNN) is a kind of image 
processing tool with sets of arithmetic units concatenated 
layer-by-layer to analyze inputs with various kinds of fea-
tures, which can easily adapt to applications of medical 
image analysis, improving accuracies of nodule detecting 
performance. Recent works have applied CNNs to precise 
classification of nodule candidates. Yang et al. (2016) used a 
4-layer 2D CNN with input of 50 × 50 cropped local patches 
to proceed classification in LIDC-IDRI dataset. Setio et al. 
(2016) proposed a multi-view approach by cropping multiple 
patches along nine symmetric planes of the local volume 
centering at each given candidate location, and put them 
separately into a 5-layer 2D CNN with fusion framework 
appended in the tail. Ramaswamy and Truong (2017) imple-
mented nodule classification with pretrained AlexNet and 
GoogleNet, and extended AlexNet into 3D architectures to 
analysis CT scans with the original dimension.

Early researches of CADs based on deep learning have 
often used 2D CNNs for their low cost of time and memory, 
and some pre-trained networks can improve the efficiency 
of training process. However, methods based on 2D CNNs 
still could not take full advantage of those with 3D CNNs to 
recognize nodules in complicated environments with variant 
characteristics, where 3D CNNs can encode richer spatial 
information and extract more representative features via 
training on complete 3D CT samples than those 2D models. 
Up to now, 3D CNN is still in an early stage of medical 

applications, and only a few 3D variants of CNNs have been 
lately proposed for pulmonary nodule analysis (Dou et al. 
2017). Because of the high memory and time cost of 3D 
CNNs, and the lack of professionally labeled training data, 
the performance of 3D CNNs are still limited, and need to 
be further explored.

1.2  Nodule segmentation

In analysis of pulmonary nodules, the shape of nodule is 
an important factor for diagnosis of nodule’s malignancy, 
where a segmentation process is needed. Traditional robust 
nodule segmentation method was proposed by Kuhnigk et al. 
(2006), with the combination of a number of morphological 
operations on the cubic volume of interest to acquire a robust 
nodule segmentation. Such method is applied after candidate 
detection, to provide information of shapes for further false 
positive reduction.

Recently, nodule segmentation methods based on deep 
learning have appeared. The segmentation with CNNs is 
hard to implement, for the lack of voxel-wise ground-truth 
labels, thus recent researches often emphasis on weakly-
supervised applications. For example, Anirudh et al. (2016) 
preprocessed weakly labeled data by supervoxel clustering 
to obtain estimated segmentation labels, and trained a 3D 
CNN to classify voxels within given CT scans. Feng et al. 
(2017) used slice-level labeled samples to train a binary 
classifying network, and generated the segmentation result 
from filter weights of the last fully-connected layer as nod-
ule activation maps (NAMs). Up to now, the accuracy of 
weakly-supervised segmentation approaches are still far 
from enough to help subsequent diagnosis, and is therefore 
in desperate need of further improvement.

In this paper, we propose a novel approach to conduct 
both nodule detection and nodule segmentation processes 
together. Instead of traditional candidate methods focus-
ing on thresholding of density and curvature, we utilize an 
efficient supervoxel method named simple linear iterative 
clustering (SLIC) (Achanta et al. 2012) to produce can-
didate supervoxel clusters of pulmonary tissues, which is 
more accurate to separate nodular voxels from normal tis-
sues. Then these supervoxels are classified with CNNs to 
denote whether they are within nodules or not. 3D CNN 
is used rather than 2D CNN to take full advantage of the 
3D spatial information, and the multi-level framework is 
designed to recognize nodules with large variations of sizes, 
where the technique of multi-level is widely applied to deep 
neural networks for common image processing (Shao et al. 
2014; Wu et al. 2016) to achieve better precision than the 
use of single deep networks, and can also perform well in 
medical imaging tasks such as pulmonary nodule detection. 
After classification, the class predictions of the supervoxels 
are combined and finally voxel-wise segmentation results of 
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nodules are produced, while the centers of nodules are easy 
to be calculated as the detection result. The 3D CNNs are 
trained on weakly-labeled lung nodule datasets with only a 
centering coordinate of each nodule annotated, or sometimes 
an approximate diameter provided, while the CNNs coop-
erating with SLIC can successfully proceed a voxel-level 
segmentation for each nodule.

Our main contributions are as follows: (1) We propose an 
integrate framework to implement both works of pulmonary 
nodule detection and segmentation in a single process; (2) 
We design 3 3D CNNs with different scales of receptive 
fields, and evaluate their performance with 2 different fusion 
methods to more extensively analyse the contextual informa-
tion of the input; (3) We unite the SLIC and CNN classifica-
tion process, to implement voxel-level nodule segmentation 
with only weakly-labeled training data, such as dataset pro-
vided by LUNA16 challenge, to release the drawback of the 
poorly provided fully-labeled data.

The rest of this paper is organized as follows. The main 
details of our method are described in Sect. 2. The experi-
mental details and results are introduced in Sect. 3. Section 4 
organizes the discussion, and the conclusions are finally 
drawn in Sect. 5.

2  Method

The main process of our method is illustrated in Fig. 1. It 
can be summarised as four steps: (1) CT image preproc-
essing, (2) supervoxel generation, (3) deep learning based 
supervoxel classification and (4) predicted supervoxel com-
bination. The supervoxel generation can be regarded as a 
candidate detection process to produce a set of candidate 
coordinates for further classification, and supervoxel clas-
sification corresponds to the step of false positive reduction. 
Their main details are as follows.

2.1  Preprocessing

The input of our CAD system is a 3D CT image of a human’s 
chest. Such kind of CT images are produced from variant 

medical facilities, so their format differ very much, which 
makes it hard to analyse their spatial and contextual fea-
tures. Therefore, preprocessing is an essential step to fit large 
amounts of variant data into a conform standard.

Preprocessing is always conducted by researchers for years, 
and there’re some particular kind of implementations for this 
process. Firstly, CT values in CT scans should be converted 
into Hounsfield unit (HU) values sometimes, where HU is a 
common standard of CT image processing. For our data is of 
off-the-shelf format, this step is not necessary in this paper. 
Secondly, resampling is needed for CT scans with different 
resolutions, which proceeds mathematical interpolation to 
modulate them into the same per-voxel spacing. Thirdly, lung 
space segmentation is performed by connectivity analysis to 
extract voxels inside the lung, which eliminates unnecessary 
subsequent calculations on lung walls and the outside air. 
Finally, normalization and centering should always be applied 
for deep learning methods, because deep neural networks are 
fragile for complicated training gradients, while such two 
processes can limit the intensity of features and keep training 
gradients in control.

2.2  Supervoxel generation

In contrast to traditional density (Jacobs et al. 2014; Setio et al. 
2015) and curvature (Murphy et al. 2009) thresholding tech-
niques for candidate detection, we use SLIC (Achanta et al. 
2012) to produce candidate locations.

SLIC is an adaption of k-means superpixel method, while 
two improvements are applied: (1) The search space for dis-
tance calculation is set proportional to the size of the source 
superpixel instead of the overall pixel region to efficiently 
reduce the computational cost; (2) The distance measure com-
bines weighted color and spatial proximity to simultaneously 
control the sizes and compactness of the superpixels.

Original SLIC is applied to 2D natural images with 3 chan-
nels as RGB by range 0–255 per pixel, while pulmonary CT 
images are all 3D scans with HU value −1000 to 1000 per 
voxel. Fortunately, SLIC is a dimension-invariant method 
which can be easily extended to 3D supervoxels, where we 
need only alter the distance measurement to fit it into processes 
of CT scans.

For a CT scan with number of voxels N and number of tar-
get supervoxels k, the supervoxel grid length is set S =

√
N∕k . 

Each voxel contains 2 types of information, which are HU 
value l and position [x y z]T , then the distance between two 
voxels i and j is written as

(1)

ds =
√

(xj − xi)
2 + (yj − yi)

2 + (zj − zi)
2

dc = |li − lj|1

D =

√

d2
c
+

(
ds

S

)2

m2

Fig. 1  The main process of our method
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where S and m are defined as the maximum spatial and HU 
value distance within a given supervoxel. In practical, m is 
often controlled by users to weigh the relative importance 
between voxel value similarity and spatial proximity.

SLIC separates a CT image into a vast number of super-
voxels, examples of local patches are shown in Fig. 2. Vox-
els within the same supervoxel are distributed in a dense 
region, and contain similar HU values. In ideal condition, 
voxels belonging to a nodule should be always from different 
supervoxels with voxels of non-nodule tissues, while voxels 
of the same nodule may also sometimes scatter into differ-
ent supervoxels. To avoid rough clustering of voxels from 
small nodules, we carefully set the number of supervoxels 
to ensure the sizes of supervoxels lie in about 3 × 3 × 3 cor-
responding to the smallest valuable nodules with diameter 
3 voxels. We clipped the supervoxels by eliminating vox-
els with HU values below −600 , for they represent empty 
areas without need of further analysis. Then each remaining 
supervoxel here is regarded as a nodule candidate, and is 
intended to be classified as whether “within a nodule” or 
not in Sect. 2.3.

SLIC is more efficient than sliding window technique, 
for it can give us a spatial clustered set of candidate posi-
tions instead of sliding positions, which do not counter any 
relational informations between voxels within the same nod-
ule. This method is also sensitivity-preserving in contrast to 
traditional candidate detection methods (Jacobs et al. 2014; 
Setio et al. 2015; Murphy et al. 2009). Nevertheless, the 
false positive rate of such detection result often explode, 
which need to be solved in the next step of supervoxel 
classification.

2.3  Supervoxel classification: local volume 
extraction

In Sect. 2.2 we obtain a series of tissue clusters as supervox-
els from a given CT scan, and here we need to accurately 
classify each supervoxel into two categories, that is whether 
it is within the region of a nodule or not. After this process, 
the false positive supervoxels are meant to be all classified 
as non-nodule and eliminated from detection results.

A simple false positive reducing process by 3D CNN 
is straightforward. For each supervoxel, we firstly extract 

a cubic local volume centering at the supervoxel’s center, 
which contains a part of contextual information surrounding 
it, then put such volume into a designed 3D CNN to produce 
a binary classifying result for the centering supervoxel, and 
finally, combine the voxels of the true-nodule supervoxels to 
obtain the set of voxels within estimated nodules.

However, such simple process can not accurately rec-
ognize all the nodular supervoxels. A significant reason is 
that nodules’ sizes and shapes vary broadly, which directly 
caused context inconsistency. In this case, an input region 
with a smaller nodule often contains more contextual infor-
mation, and vice versa. If an input region contains too much 
redundant context, the classification model will be misled to 
pay more attention on voxels outside the nodule. Conversely 
if the region is too small for a large nodule, the surrounding 
environment of the nodule will not be sufficiently preserved, 
and the information within the nodule is even possible to be 
partially cut out.

In order to solve such kind of problems, Dou et al. (2017) 
proposed a multi-level anisotropic 3D CNNs model. In 
that method they proceeded a statistical analysis to nodule 
sizes, by which they designed 3 CNNs with corresponding 
3 scales of receptive fields: 20 × 20 × 6 , 30 × 30 × 10 and 
40 × 40 × 26 voxels (each included nodule sizes by 58%, 
85% and 99% of the overall nodules from LUNA16 dataset). 
Their model produced good performance on the dataset of 
LUNA16 challenge and achieved a high rank there.

Nevertheless, a drawback for that approach is that the 
3 dimensions of the data they processed are holding ani-
sotropic spacings between each neighboring voxels, which 
results in a deformation to the real shape of nodules. 
Though their model can adapt to the common deforma-
tions on LUNA16 dataset, it can not fit other datas with 
different spacing proportions. To attain spacing robust-
ness, we propose a multi-level isotropic model, where the 
scales of receptive fields for the 3 CNNs are respectively: 
20 × 20 × 20 , 30 × 30 × 30 and 40 × 40 × 40 voxels.

2.4  Supervoxel classification: multi‑level 
framework

The main structure of our multi-level 3D CNNs frame-
work are shown in Fig. 3, where each network has four 

Fig. 2  SLIC segment on CT 
images, from left to right are 
respectively large nodule, small 
nodule and non-nodule patches
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convolutional layers. Both CNN-20 and CNN-30 contain 
one fully-connected layer, while the CNN-40 with larger 
receptive field contains 2 fully-connected layers. Batch 
normalization (Ioffe and Szegedy 2015) layers are inserted 
after each hidden layer to ensure a higher learning rate and 
reduce overfitting, with dropout layers (Hinton et al. 2012) 
appended to further reduce the performance of overfitting.

Each of the 3 architectures outputs a 2-D classifying pre-
diction to nodule or non-nodule from the last softmax layer 
and a 512-D feature vector from the last hidden layer, then 
their outputs should be combined into a single classifying 
result for the original given supervoxel. We used two data 
fusion techniques, namely committee-fusion (Van Gin-
neken et al. 2015) and late-fusion (Prasoon et al. 2013). 

In committee-fusion, the predictions output by each soft-
max layer of the 3 architectures are combined into a single 
probability with weighed averaging or a specific product 
rule (Van Ginneken et al. 2015). While for late-fusion, the 
3 features from the last hidden layer of the CNNs are con-
catenated into an integral feature vector and sent to a fully-
connected layer to produce the result of probability.

2.5  Prediction combination

After supervoxel classification, the supervoxels within 
nodules are meant to be entirely found out, then their cor-
responding voxels are combined into estimated nodules 
with 18-connected seed dispersal, and therefore produce 

Fig. 3  The supervoxel clas-
sification framework. 3 CNNs 
with different scales of recep-
tive fields are proposed to 
analyse a given supervoxel in 
cooperation. All the 3 networks 
have four convolutional layers, 
each layer with M kernels of 
size N × N × N is denoted as 
M@N × N × N . After the last 
hidden layer of each network, 
there’s a fully connected layer 
appended by a softmax layer to 
finally produce a probability of 
nodule or non-nodule classifica-
tion, and a fusion technique is 
proceeded to combine their fea-
tures and produce an integrate 
classifying result
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the nodule segmentation result. For detection task, accu-
rate coordinates within CT scans should be generated, so we 
calculated the center of the estimated nodules by averaging 
their inner voxel coordinates. Both detection and segmenta-
tion are proceeded by an integrate framework, with simply 
supervoxel techniques together with classifiers to implement 
works of other state-of-the-art approaches with separate 
complicated frameworks.

2.6  Training

The CNNs need training process to learn features of inputs 
with various contextual information. We trained the 3 
CNNs with a combined dataset of LUNA16 and another 
vast patient series provided by Shanghai Pulmonary Hospital 
(SPH) in China. The nodules’ annotations are used to make 
positive training samples. For LUNA16 provided a set of 
candidate locations for every CT scan, we utilized them to 
produce our negative training samples. For each nodule or 
non-nodule location, we extracted 3 cubic volumes centering 
at the given coordinate, with scales respectively correspond-
ing to the receptive fields of the 3 architectures, then these 
labeled local volumes are sent to CNNs for training.

A significant problem during training is the class imbal-
ance, where the number of negative samples is hundreds of 
times more than that of positive samples. We dealt with this 
in two ways, which are respectively data augmentation and 
loss adjustment.

2.6.1  Data augmentation

This process is often applied to release data imbalance and 
expand receptive domain of the models trained. In our exper-
iments, we rotated the positive input volume by 90◦ , 180◦ 
and 270◦ around each of the 3 spatial axis, and appended 
flipping respectively along these 3 directions, which pro-
duced 13 training volumes for every positive sample.

2.6.2  Loss adjustment

The loss most commonly used for nodule detection is the 
cross entropy loss. Nevertheless, such form of loss is easy 
to be affected by data imbalance, because samples in the 
prominent class often provide much more importance on 
back-propagated gradients, which misleads networks to rec-
ognize non-nodule supervoxels better, resulting a high false 
positive rate. Therefore, Lin et al. (2017) proposed focal loss 
to help weak class gain emphasis in training gradients. The 
focal loss is an adaption of cross entropy, with a modulating 
factor (1 − pt)

� inserted to formulate the loss as:

(2)FL(pt) = −(1 − pt)
� log(pt)

where � is a focusing parameter with � ≥ 0 , and pt is the 
correction factor. We set � = 2 as recommended in Lin 
et al. (2017) for our experiments. For the ground truth label 
y = {0, 1} and probability p produced by the classifier on the 
class with label y = 1 , the correctness is defined as:

By this form of loss, the importance of misclassified exam-
ples are significantly increased in positive samples, while the 
effect of the majority redundant negative samples are greatly 
reduced for more balanced gradients.

3  Experiments

3.1  Preprocessing and supervoxel generation

In preprocessing, we resampled all the input CT scans into 
an uniform scale by 1 mm spacing between each neigh-
boring voxels. For local volumes input into networks, we 
performed normalization with upper bound 512 and lower 
bound −1024 , and centering with mean value 0.25. Normali-
zation was also conducted before the generation of super-
voxels. For testing process, we segmented the lung space in 
tested CT scans by connectivity analyse, with morphological 
closing appended to prevent omission of nodules located on 
lung walls.

Then SLIC was proceeded to over-segment voxels within 
lung space. The preprocessing before SLIC is a normaliza-
tion to make the HU compactness among voxels easy to 
control, where we set the compacting factor to m = 0.001 for 
the following SLIC process. After clustering, we appended 
a postprocessing step as thresholding on the range of origi-
nal HU values for −600 . Such threshold is consulted from 
pulmonary specialists, while only voxels with HU above it 
is possible to locate within nodules. Thus we filtered out 
voxels below this threshold, simultaneously eliminating a 
large number of supervoxels and reduced the computational 
cost. The finally remaining supervoxels were all of inner 
tissues, and were to be further filtered in the next process of 
false positive reduction.

3.2  Datasets

To train the classifying CNNs, we used two annotated pul-
monary datasets. One is the LUNA16 dataset, and the other 
is the provided SPH dataset.

The dataset released by LUNA16 challenge held in con-
junction with ISBI 2016 is adapted from LIDC-IDRI dataset, 
containing 888 CT scans annotated by 4 radiological experts 
voxelwise. In LUNA16 nodules with diameter less than 3 

(3)pt =

{
p, if y = 1;

1 − p, otherwise.
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mm or voted by less than 3 radiologists are eliminated, and 
each annotation of a nodule is simplified to two informations 
as a centering coordinate and the corresponding diameter 
in mm units.

For datas of SPH, the CT scans are circulated among 
nosocomial departments in a complicated procedure while 
we’ve got just 892 CT scans at present, and a pulmonary 
expert is engaged in annotations by presenting an approxi-
mate centering coordinate inside each nodule’s area. For 
there are no other characteristics like nodule diameters pro-
vided from this dataset, it is simply used during training, and 
evaluations are conducted on only the dataset of LUNA16.

3.3  Evaluations

Our multi-level framework consists of 3 networks with dif-
ferent structures, and two kinds of fusion techniques. We 
conducted evaluations on each of these networks, and on the 
combined structure with each of the fusion methods.

Our experiments totally contain two tasks, which are 
pulmonary nodule detection and segmentation. The overall 
process is a streamline, while the detection result of a nodule 
is calculated at last as the center of the previous segmented 
nodules.

Figure 4 presents examples of segmentation. We filtered 
the predicted supervoxels with the threshold of 0.2, which 
eliminated predictions outside nodules. The remaining 
supervoxels were combined into a nodule segmentation 
mask, where the supervoxels close to a nodule’s center 
are of higher confidence, and supervoxels near the border 
are predicted lower. The results show that our framework 
can obtain accurate shape of nodules with different sizes 

and textures, even difficult nodules attaching to lung walls 
can be differentiated well. In the meantime, some ambient 
tissues suspected to lie within nodules were successfully 
recognized, but of a relatively low confidence to support 
further analysis.

Examples of successfully detected nodules are listed in 
Fig. 5. It can be observed that our framework is able to rec-
ognize nodules with variant sizes, shapes and locations in a 
pretty high confidence. For quantitative evaluation, the pre-
dicted locations were compared with ground-truth locations 
provided from annotations, where an estimated location was 
considered as true positive if it is within the radius of a 
true nodule’s center. The competition performance metric 
(CPM) (Niemeijer et al. 2011) was calculated as the aver-
age sensitivity at seven corresponding false positive rates 
as respectively 1/8, 1/4, 1/2, 1, 2, 4 and 8 FPs per scan, and 
free receiver operation characteristic (FROC) analysis was 
performed by setting thresholds on the rawly predicted prob-
abilities according to the target FPs per scan, and obtaining 
the statistical sensitivities correspondingly.

The FROC curves of our different modules are shown 
in Fig. 6, where the network of CNN-30 generates the best 
scores among the 3 single models, and the committee-fusion 
of 3 networks exceeds the single CNN-30 to reach the top 
performance. Table 1 lists the sensitivities of our different 
modules at different false positive rates, both of the modules 
CNN-30 and committee-fusion achieve sensitivities beyond 
90% under the false positive rate of 4 and 8 per scan, and 
the sensitivities of committee-fusion is generally higher than 
CNN-30 at most of the false positive rates, which proves the 
effectiveness of cooperation among networks with different 
receptive fields.

Fig. 4  Examples of pulmonary 
nodule segmentation results of 
our framework. The top row 
lists patches as representative 
transverse planes of nodules 
with variant sizes and shapes, 
and the bottom row presents 
their segmentation masks. The 
lighter mask indicate a higher 
confidence of nodules’ super-
voxels
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Comparisons of sensitivities and CPM scores among dif-
ferent approaches are listed in Table 2. Our method achieves 
the highest CPM score among these methods, exceeding pre-
vious multi-level method. Our sensitivity at false positive 
rate of 8 per scan reaches 0.943 beyond all the other meth-
ods. The sensitivity of our framework at low false positive 
rates also ranks top among other approaches, reaching 0.695 
at 0.125 false positives per scan.  

4  Discussion

We propose a novel approach based on SLIC (Achanta et al. 
2012) and CNN classifier to proceed pulmonary nodule 
detection and segmentation. SLIC divides pulmonary tis-
sues into a large number of small supervoxels, and CNN 
classifier discriminates these supervoxels as whether lying 
within nodules or not. Then the classifying result forms a 
nodule segmentation mask, and finally the nodules’ centers 
are decided as the center of each connected mask. The works 
of nodule detection and segmentation are conducted by an 
integrate process, instead of a separate implementation.

The CNN classifiers are only trained on weakly labeled 
datasets, with a single coordinate within each nodule or 
sometimes an approximate diameter provided additionally, 
while our framework with such kind of training data can 
produce a voxel-level nodule segmentation result.

For CNN architecture, we construct a 3D multi-level 
CNNs framework and apply two different fusion techniques 
to support comprehensive experiments. In contrast to previ-
ous 2D based CNNs, 3D CNNs are capable to analyse 3D 
spatial features around nodule space, and recognize nodules 
more precisely. The multi-level CNNs framework consists 

Fig. 5  Examples of pulmonary 
nodule detection results of our 
framework. Each patch is a 
transverse plane of an anno-
tated nodule, and the p value 
presented below is its estimated 
probability to be the nodule

Fig. 6  FROC curves of different CNN architectures and fusion meth-
ods

Table 1  Sensitivities of our architectures respectively under different 
false positive rates

FP/scan CNN-20 CNN-30 CNN-40 Committee Late

0.125 0.552 0.693 0.581 0.695 0.571
0.25 0.648 0.705 0.695 0.771 0.695
0.5 0.743 0.762 0.762 0.790 0.752
1 0.762 0.819 0.771 0.810 0.771
2 0.771 0.867 0.848 0.886 0.809
4 0.829 0.914 0.886 0.933 0.810
8 0.894 0.942 0.896 0.943 0.867
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of 3 CNNs with different scales of receptive fields to handle 
nodules with different sizes, and the fusion techniques con-
duct a more comprehensive recognition of variant nodules. 
In our experiments, the committee-fusion produced the best 
result, exceeding other methods in the dataset of LUNA16 
challenge. However, the late-fusion technique did not per-
form prominently, which may result from an insufficient 
quantity of training samples, while the architecture of multi-
level 3D CNNs concatenated by an integrate fully-connected 
layer requires more training data to reduce overfitting, thus 
further utilization of more annotated 3D samples can be pos-
sible to improve this technique.

Figure 7 lists some nodule detection results with low 
confidence. The left group shows some real nodules with 
relatively low predictions. while they often present irregular 
shapes or obscure boundaries, and a threshold of 0.6 can be 
employed to successfully retrieve these challenging cases. 
Nevertheless, some of the real nodules are also poorly pre-
dicted by our framework, as shown in the right group, where 

these kind of nodules often contain complex surrounding 
characteristics, or featureless textures with too little occu-
pancy spaces, that an emphatic training can be proceeded in 
further experiments to increase the detecting performance 
on these outliers.

Our CNN classifier can also work for simple false positive 
reduction, where SLIC can be regarded as a form of candi-
date detecting process preserving full sensitivity but high 
false positive rate per scan. Therefore, the CNN architec-
tures can be separated out from the whole framework inde-
pendently and combined with any other candidate detecting 
process as another work of pulmonary nodule detection.

5  Conclusion

In this paper, a novel framework based on efficient clus-
tering cooperating with 3D CNN classification is proposed 
to perform computer-aided detection and segmentation of 

Table 2  Results of the false positive reduction track in ISBI LUNA16 challenge

The bold value indicates the key expression of the performance of our approach, which present superiority to other approaches listed

Method CNN type 0.125 0.25 0.5 1 2 4 8 CPM score

DIAG (Setio et al. 2016) 2D 0.636 0.727 0.792 0.844 0.876 0.905 0.916 0.814
iitm03 2D 0.394 0.491 0.570 0.660 0.732 0.795 0.851 0.642
luna16cad 3D 0.640 0.698 0.750 0.804 0.847 0.874 0.897 0.787
LungNess 2D 0.453 0.535 0.591 0.635 0.696 0.741 0.797 0.635
UACNN 2D 0.655 0.745 0.807 0.849 0.880 0.907 0.925 0.824
NResNet (Dobrenkii et al. 2017) 3D 0.517 0.602 0.720 0.788 0.822 0.839 0.856 0.735
CUMedVis (Dou et al. 2017) 3D 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.827
Ours 3D 0.695 0.771 0.790 0.810 0.886 0.933 0.943 0.833

Fig. 7  Examples of pulmonary 
nodule detection results of our 
framework. Each patch is a 
transverse plane of an annotated 
nodule, and the p value below is 
its prediction as the confidence 
to be a nodule generated by our 
framework
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pulmonary nodules from volumetric CT scans. The experi-
ment is just supported by weakly labeled datas, while a 
voxel-level nodule segmentation can be performed by our 
framework. The CNN classifier is designed as a multi-level 
framework, consisting of 3 CNNs with different sizes of 
receptive fields to process nodules with variant sizes and 
shapes, and consequently our nodule detection system 
has conducted impressive performance in the dataset of 
LUNA16 challenge.

Future research still need to promote the accuracy of pul-
monary nodule detection and segmentation, and the quanti-
zation of nodules’ malignancy is also necessary for further 
investigation to perform a more comprehensive pathologi-
cal diagnosis for patients. The future development requires 
active cooperation with pulmonary experts. With profes-
sional knowledge exchange, and vast dataflow containing 
valuable spatial and pathological information, experiments 
can be more efficiently proceeded in future works.
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