
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:14959–14976 
https://doi.org/10.1007/s12652-017-0671-5

ORIGINAL RESEARCH

Adaptive rapid defect identification in ECPT based on K‑means 
and automatic segmentation algorithm

Xuegang Huang1 · Chun Yin2  · Sara Dadras3 · Yuhua Cheng2 · Libing Bai2

Received: 14 August 2017 / Accepted: 28 December 2017 / Published online: 11 January 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
To enhance the detection efficiency in eddy current pulsed thermography, an adaptive feature extraction algorithm for defect 
identification is developed in this paper. The proposed algorithm involves four stages, namely, the thermal image segmenta-
tion, the variable interval search, the distance correlation clustering analysis and the between-class distance decision making. 
The transient thermal responses (TTRs) with similar characteristics are collected into one data block. The thermal image 
segmentation and variable interval search can help reduce the repetitive calculation in defect identification by choosing local 
optimums in each data block. The global optimum that has the largest sum of the between-class distance, is derived by first 
classifying the local optimums and then calculating the correlation distance of the thermal responses with the center points 
of each class. Finally, the TTRs with the largest between-class distance are regarded as the typical ones which can be used to 
identify the discriminative defect features of infrared image sequence. Finally, the comparison experiments are carried out 
to demonstrate the effectiveness and advantages of the proposed approach.

Keywords Eddy current pulsed thermography · Transient thermal response · K-means clustering · Pearson correlation · 
Between-class distance · Inner-class-distance

1 Introduction

As an important detection technique, non-destructive testing 
and evaluation (NDT&E) has been widely implemented in 
science and technology industry to evaluate the properties 
of a material, component or structure, especially in the areas 
of mechanical engineering, automotive industry, aerospace 
industry, petro-chemical industry, military industry and so 

on (Cai et al. 2017; Huang et al. 2016; Islam et al. 2017; Lo 
et al. 2010). Partially, eddy current pulsed thermography 
(ECPT), which combines both Pulsed Eddy Current (PEC) 
technique and thermographic NDT approach, is considered 
as a promising high-efficiency NDT&E approach for non-
contact inspection of surface defects or sub-surface defects 
in magnetic or non-magnetic conductive materials (Arjun 
et al. 2015; Gao et al. 2014; Li et al. 2016; Xu et al. 2016). 
Under the stimulation force of transient magnetic field, the 
induced pulsed eddy current in the test specimens could con-
tinuously transform into the Joule heat near the surface of 
measured conductor material evenly. However, the surface 
defects change the density characteristic of induced pulsed 
eddy current, leading to the significant difference in the 
Joule heat distribution between the defect regions and the 
other normal regions. Hence, this thermal pattern informa-
tion can be captured in terms of infrared image sequence 
by IR camera in Maldague et al. (2001). In order to deal 
with these informative raw data in infrared image sequence 
of ECPT, some available mathematic methods of the data 
acquisition, fusion and self-adapting have been applied to 
analyze instability and nonlinearity in ECPT data process-
ing (Cao et al. 2016, 2017a, b; Yin et al. 2017; Yin2 et al. 
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2017). Moreover, in the past few years, a lot of efforts have 
been paid to enhance infrared image contrast and to restrain 
noise interference by extracting and separating the feature 
information from the infrared image sequences in He et al. 
(2015), such as Fourier transform-based amplitude and fre-
quency feature extraction (Al-Ayyoube et al. 2017; Wang 
et al. 2015; Yala et al. 2017), the principal components anal-
ysis (PCA) based discriminative defect pattern extraction (Bi 
et al. 2016; Chen et al. 2016; Li et al. 2015; Zuo et al. 2016) 
and independent component analysis (ICA) based discrimi-
native defect pattern extraction (Luo et al. 2013; Omar et al. 
2010; Xu et al. 2016).

However, the Fourier transform method suffers the defi-
ciency that the useful defect quantification information 
conceived in transient response is concealed undesirably 
in Chen et al. (2016). The main problems posed by PCA, 
meanwhile, are the indefinite physical meaning of each 
principal component and the absence of the criterion for 
defect detection, which make it difficult to support a fur-
ther defect information analysis in Avdelidis et al. (2003). 
The ICA is a widely used blind source separation algorithm 
which decomposes a multivariate signal into independent 
non-Gaussian signals. Moreover, ICA can automatically 
extract and highlight the abnormal defect feature patterns 
from infrared image sequences in both the spatial and the 
time domains (Bousse et al. 2017; Mourad et al. 2017). In 
ICA, the acquired original information is considered as 
the interactional result of several statistically independent 
components (ICs), and the object of ICA is to recover the 
unknown discriminative feature signals from original mixed 
data source. Theoretically, the statistical independent ICs 
can be estimated by the de-mixing matrix, and each inde-
pendent component (IC) represents certain physical mean-
ing. In practical image processing, both the whitening pre-
process of the original data and the iterative computation of 
the de-mixing matrix are the necessary pre-procedures of 
ICA. However, since the absence of any prior information, 
the time-consuming global search in whole data domain is 
inevitable for the iterative computation of the de-mixing 
matrix. Therefore, this inefficient data-processing technique 
based on ICA is beyond the need of the practical applica-
tions, so it is necessary to design some new efficient data-
processing techniques for ECPT (Cheng et al. 2016; Li et al. 
2017; Ruhi et al. 2015).

To proactively satisfy the above mentioned requirement, 
an adaptive characteristic pick-up algorithm is proposed 
to extract discriminative defect pattern information and to 
improve the processing efficiency of thermal image sequence 
in this paper. The fundamental process of this new algo-
rithm are given as: firstly, the algorithm divides the TTRs 
contained in thermal image into several parts by the thermal 
image segmentation technique and finds the low-correlation 
TTRs by a variable interval search approach. The specific 

criterion of variable interval is given to calculate the length 
of the region with largest temperature variation. And the 
variable interval search is designed to decrease the repetitive 
computation without losing typical TTRs. Secondly, the cor-
relation distance is calculated to classify the acquired TTRs. 
Place these TTRs into the cluster whose center point has the 
smallest correlation distance with themselves. Thirdly, the 
largest sum of between-class distances is applied to seek the 
typical TTRs. For one TTR , the sum of correlation distances 
with other clusters denotes as the sum of between-class 
distance value. The TTRs with the largest between-class 
distance are regarded as the typical ones. Finally, the typi-
cal TTRs can constitute a matrix to linearly transform the 
initial image sequence, and then the discriminative features 
of infrared image sequence can be extracted by the typical 
TTRs. In contrast with the iterative calculation, the selec-
tion of known information would be much more efficient 
and time-saving, that is why the typical TTRs are utilized to 
improve the processing velocity.

In this paper, both the theoretical illustration of ICA and 
the mathematical foundation of the new adaptive algorithm 
are presented. The ultimate goal of this new adaptive algo-
rithm is to realize the automatic identification of discrimi-
native features as well as the improvement of the detection 
efficiency. Experimental tests are carried out to demonstrate 
the advantages of the proposed approach. Based on the sim-
ilarity analysis between the typical TTRs of the proposed 
algorithm and the mixing vectors representing the pseudo-
inverse of the de-mixing matrix in ICA, the effectiveness 
of the proposed approach can be verified accordingly. By 
comparing the processing time of the proposed algorithm 
and ICA method, the higher image processing efficiency of 
the proposed algorithm can be confirmed too.

The rest parts of this paper are arranged as follows: 
Sect. 2 briefly introduces the basic procedure and deficien-
cies of ICA. Section 3 describes the theoretical considera-
tions and realization of the new algorithm. Section 4 intro-
duces the experimental design and the parameters of two 
test specimens. Section 5 shows the experimental results. 
Section 6 presents the summary and prospect.

2  Illustration of ICA in ECPT

In order to have a better comparison between the ICA method 
and the proposed adaptive algorithm, it is necessary to first 
introduce the fundamental theories of ICA method in ECPT 
briefly. In a practical application, because of the increased and 
decreased eddy current density caused by defects, different 
stimulated regions of the sample have different temperature 
variety rates, all these spatial temperature responses of the 
sample are recorded as an infrared image sequence by an IR 
camera. These thermal responses can’t be directly identified by 
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infrared sensor but can be considered as the several independ-
ent feature regions that have different typical characteristic of 
thermal response, which will help us to extract the different 
independent signal image (ISI). On the basis of the above con-
siderations, the goal of ICA is to recover several independent 
signal images based on independent components (ICs) from 
the blind source signals of original infrared image sequence, 
as shown in Fig. 1 (Bai et al. 2013; Cheng et al. 2016). The 
number of the typical feature regions (or the number of ICs) 
is artificially set by the researchers or operators according to 
some personal experience, i.e. there are four typical feature 
regions defined in Fig. 1.

The basic mathematical model of ICA in ECPT can be pre-
sented by:

in which Y �(t) represents the preprocessed initial data. XT (t) 
denotes the ICs. W̄  is called as the de-mixing matrix. The 
pseudo-inverse matrix of W̄  describes the mixing matrix A 
building with mixing vectors. According to Bai et al. (2013) 
and Cheng et al. (2016), it is known that the mixing matrix 
A is similar with the typical features that are denoted as RE, 
hence, the calculation of the mixing matrix A can be evalu-
ated and simplified by selecting RE from the initial data. 
Actually, the Eq. (1) can be also described as Y = AXT , in 
which Y, A and X can be further represented by:

(1)XT (t) = W̄Y �(t),

(2)
Y =

⎡
⎢⎢⎢⎣

Y(1, 1) Y(1, 2) ⋯ Y(1,M ∗ N)

Y(2, 1) Y(2, 2) ⋯ Y(2,M ∗ N)

⋮ ⋮ ⋱ ⋮

Y(Z, 1) Y(Z, 2) ⋯ Y(Z,M ∗ N)

⎤
⎥⎥⎥⎦

=[Y(∶, 1), Y(∶, 2), ⋯ , Y(∶,M ∗ N)],

It should be noted that Y(i, ∶)(i = 1, 2,… , Z) denotes the ith 
column of the image matrix Y, which represents the infrared 
image vector spliced by columns in Y, and Z is the number 
of thermal images at the t axis. Meanwhile, the jth row of Y 
can be expressed as Y(∶, j), (j = 1, 2,… ,M ∗ N) , and M, N 
respectively represents the number of pixels in vertical and 
horizontal axis, which is determined by the sensor resolution 
of the infrared camera. Moreover, since that the location of 
the testing sample is stationary, Y( : , j) is exactly the thermal 
response of the jth pixel. L denotes the total number of ICs 
(i.e. L represents the number of the typical feature regions). 
Moreover, one can obtain:

Therefore, the ith thermal response can be expressed by:

(3)
A =

⎡
⎢⎢⎢⎣

A(1, 1) A(1, 2) ⋯ A(1, L)

A(2, 1) A(2, 2) ⋯ A(2, L)

⋮ ⋮ ⋱ ⋮

A(Z, 1) A(Z, 2) ⋯ A(Z, L)

⎤
⎥⎥⎥⎦

=[A(∶, 1), A(∶, 2), ⋯ , A(∶, L)],

(4)X =

⎡
⎢⎢⎢⎣

X(1, 1) X(1, 2) ⋯ X(1, L)

X(2, 1) X(2, 2) ⋯ X(2, L)

⋮ ⋮ ⋱ ⋮

X(M ∗ N, 1) X(M ∗ N, 2) ⋯ X(M ∗ N, L)

⎤
⎥⎥⎥⎦
.

(5)Y
T =

⎡⎢⎢⎢⎢⎣

X(1, 1) X(1, 2) ⋯ X(1,L)

X(2, 1) X(2, 2) ⋯ X(2,L)

⋮ ⋮ ⋱ ⋮

X(M ∗ N, 1) X(M ∗ N, 2) ⋯ X(M ∗ N, L)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

A
T (1, ∶)

A
T (2, ∶)

⋮

A
T (L, ∶)

⎤⎥⎥⎥⎥⎦
.

(6)
Y
T (i, ∶) =X(i, 1)A

T (1, ∶) + X(i, 2)A
T (2, ∶)

+⋯ + X(i, L)A
T (L, ∶).

Fig. 1  The typical feature areas of one thermal image
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Since that A is similar with RE (i.e. A ≈ RE ), Eq. (6) can be 
shown as follows:

It means that Y can be expressed linearly through the vectors 
in RE. In other words, the maximal linearly independent 
subsets of Y are included and the typical features in Y can 
be reserved as much as possible in the actual testing. The 
correlation degree for thermal responses in Y can be deter-
mined by Pearson Correlation Coefficient (PCC). Actually, 
the thermal responses with smaller correlation degrees in 
Y are selected to evaluate RE. Hence, the number of the 
linearly independent vectors is decided by the number of 
mixing vectors in A, due to A ≈ RE.

In general, the mixing vectors in ICA involve the tem-
perature distribution laws of thermal image sequence, and 
the physical description of ICs is similar with the independ-
ent feature regions. However, in order to obtain the ICs, the 
initial data should be pre-processed by a whitening algo-
rithm (Rao et al. 2005), meanwhile, the de-mixing matrix 
W̄  should be iteratively calculated too. Hence, the computa-
tional cost of ICA method is usually high, which will slow 
down the defect detection in real ECPT applications.

Considering that TTRs reveal the spatial temperature dis-
tributions in the sample, so the typical TTRs (RE) share a 
similar physical description for thermal images to the mix-
ing vectors in ICA. It means that only L typical TTRs rather 
than all TTRs are needed to represent the typical features of 
one thermal image sequence. Thus, extracting typical TTRs 
is good enough for the feature extraction of thermal images. 
With this objective, a new algorithm focusing on typical 
TTRs selection is proposed to avoid the iterative computation 
of de-mixing matrix W̄  in this paper, which is more efficient 
than global iterative approaches. Meanwhile, without the 
whitening procedure in ICA, the new algorithm can dramati-
cally reduce the processing time even more.

Remark 2.1 It should be mentioned that the number of typi-
cal feature areas in ICA (i.e. L) is manually set. In the fol-
lowing sections, the proposed algorithm will investigate how 
to automatically choose the number of typical feature areas. 
It can avoid the negative influence of human intervention 
may existed in ICA of ECPT.

3  The proposed algorithm in ECPT

The following notations are used in the proposed algorithm: 
S represents the 3D matrix of the initial thermal image 
sequence. M denotes the number of rows in S, which indi-
cates the number of pixels in vertical axis. N means the 

(7)
Y
T (i, ∶) ≈ X(i, 1)RET (1, ∶) + X(i, 2)RET (2, ∶)

+⋯ + X(i,L)RET (L, ∶).

number of columns in S, which indicates the number of pix-
els in horizontal axis. Z represents the number of thermal 
images in t axis. L is the number of classes. PCC stands for 
the Pearson Correlation Coefficient which can be calculated 
as PCCX,Y =

C(X,Y)√
var(X)var(Y)

 , C(X, Y) denotes the covariance of 

vector X and vector Y, and var(·) means the variance.
The proposed algorithm is arranged as follows: Step 1 

gives the basic concept. Step 2 to Step 4 realize the thermal 
image segmentation and the calculation of column and vari-
able row interval. Step 5 shows the process of the variable 
interval search. Step 6 guarantees the distance correlation 
cluster analysis by the K-means technique. Step 7 describes 
the between-class distance based typical TTRs selection 
approach. Step 8 shows the linear transformation for typical 
feature extraction with the matrix composed with the typical 
TTRs selected in Step 7.

Step 1: For each thermal image of the initial thermal 
image sequence, S(i, j,  : ) represents its pixel in the ith row 
and jth column, where the third index denotes the corre-
sponding time in t axis. Hence, S(i, j,  : ) includes every pix-
el’s transient thermal response of thermal image sequence.

Step 2: LP = maxm=1,…,Mn=1,…,Nz=1,…,Z
[S(m, n, z)] . ILP , 

JLP , and TLP denote separately the vertical coordinate, the 
horizontal coordinate and the t coordinate of LP. To seek the 
length (i.e. the number of pixels in horizontal axis) of area 
that contains the largest temperature variation in horizontal 
axis ,  the  PCCs  of  S(ILP, JLP, ∶) and S(ILP, j, ∶) , 
(j = 1, 2,… , JLP − 1, JLP + 1,… ,N) are computed until their 
corresponding PCC is less than the threshold RefCL . That is, 
RefCL is used to seek the length of area with largest tempera-
ture variation. The number of vectors S(ILP, j, ∶) , whose PCC 
with S(ILP, JLP, ∶) is greater than RefCL , is recorded as the 
column interval value CL.

Step 3:  Set K, (K = 1, 2, 3,…) time thresholds 
T(k), (k = 1, 2, 3,… ,K) in descending order. The time of 
peak  va lue  of  the  ith  TTR  i s  recorded  as 
ti
peak

, (i = 1, 2,… ,M ∗ N) . With the comparison between 

T(k), (k = 1, 2,… ,K) and ti
peak

, (i = 1, 2,… ,M ∗ N) , the 

TTRs are divided into K + 1 data blocks. The TTR  of the 
kth, (k = 1, 2,… ,K + 1) data block in mth row and 
nth, (n = 1, 1 + CL, 1 + 2 ∗ CL,… ,N) column is recorded as 
Sk(m, n, ∶).

Step 4: Calculate PVk

n
= maxm=1,…,Mz=1,…,Z

[Sk(m, n, z)],

(k = 1, 2, … ,K + 1;n = 1, 1 + CL, 1 + 2 ∗ CL,… ,N). Ik
n
, Jk

n
 

and Tk
n
 denote respectively the corresponding vertical coor-

dinate, the corresponding horizontal coordinate and the 
corresponding t coordinate of PVk

n
 . Compute the PCC of 

Sk(Ik
n
, Jk

n
, ∶) and Sk(i, Jk

n
, ∶), (i = 1, 2,… ,M) until their PCC 

is less than the threshold REFRk, (k = 1, 2,… ,K) . The 
number of vectors Sk(i, Jk

n
, ∶), (i = 1, 2,… ,M) , in which 
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PCC is greater than REFRk , is denoted by RLk
n
 . RLk

n
 is the 

row interval value of the kth data block in the nth column.

Remark 3.1 From the characteristics of thermal images, CL, 
RLk

n
, (k = 1, 2,… ,K + 1;n = 1, 1 + CL, 1 + 2 ∗ CL,… ,N 

are chosen to reduce the repeated calculation of PCC from 
Step 2 to Step 4. To avoid the lose of significant features, 
the criterion of the setting interval value is important. For 
fixed column interval CL, one appropriate method is to seek 
the length of area with the largest temperature variation. 
The TTR  with largest peak value is often around the area 
with the largest temperature variation. Hence, in Step 2, the 
coordinate value of LP (i.e. the largest peak value in S) is 
applied to seek the length of area with the largest tempera-
ture variation. On the other hand, for variable row intervals 
RLk

n
, (k = 1, 2,… ,K + 1;n = 1, 1 + CL, 1 + 2 ∗ CL,… ,N) , 

the principle of the setting method is similar as CL. The dif-
ference is that the PCCs are computed between two TTRs 
in the same data block and column. The row intervals are 
set in different data blocks and in different columns. Hence, 
the algorithm can find all the typical temperature varia-
tions which are called as the typical features in the image 
sequence.

Step 5: Set the threshold value CC. Compute the PCC 
between two TTRs with the intervals. X( : , 1), that is equal 
to the TTR  with the largest value, is chosen as the starting 
point for the loop computing function. The specific calcu-
lation process is shown as Fig. 2: 

(a)  Compute PCC of Sk(i, j, ∶) and X( : , z), where X( : , z) 
denotes the TTR  whose PCC with X(∶, z − 1) is less 
than the threshold CC.

(b)  If PCC < CC , Sk(i, j, ∶) is considered as a new feature 
since that the correlation of Sk(i, j, ∶) and X( : , z) is 
low. Then, let z = z + 1 and X(∶, z) = Sk(i, j, ∶) , (save 
the new feature). Otherwise (i.e. PCC ≥ CC ), let i = 
i + RLk

n
 , where RLk

n
 should be altered if k in Sk(i, j, ∶) 

or the horizontal coordinate n is altered. Furthermore, 
compute PCC of the next TTR  with X( : , z).

(c)  If i > M , let i = i −M . If the row number exceeds the 
total row number, change to the j + CL column.

(d)  If j > N , the specific calculation process is finished.

 

Remark 3.2 RefCL in Step 2 and REFRk in Step 4 are thresh-
old which help to find the length of area with the largest 
temperature variation in one data block. To reserve the 
important TTRs, RefCL and REFRk is always chosen to be 
larger than 0.9. Moreover, T(k) is applied to split the TTRs 
into several parts. The threshold CC in Step 5 is also defined 

to be smaller than 0.9. If the PCC of two TTRs is larger than 
CC, it means that the two TTRs are similar. Only one TTR  
should be reserved.

Step 6: The TTRs in X(∶, z), (z = 1, 2,… ,G) are clas-
sified through an adaptive cluster algorithm based on 
K-means. (K-means method is widely used for cluster 
analysis in data mining, Chan et al. 2016; He et al. 2016). 
X( : , z) saves the specific value of TTRs. The total number 
of TTRs in X is denoted as G. sumi and maxi are the sum 
of inner-class distance and the maximum-between-class 
distance when L = i , respectively. The clustering number 
is L, which is determined by the variation speed of sumi 
and maxi . IPi

, (i = 1, 2,⋯ ,L) is ith initial points. dis(x, y) 
is the correlation distance of vector x and vector y. (That 
is, dis(x, y) = 1 − PCC .) n(m), (m = 1, 2,… , L) is the total 
number of TTRs of cluster m. As shown in Fig. 3, the adap-
tive cluster selection is implemented as follows:

(a) At first, initialize the cluster number L = 1 and the 
cycle index k = 1.
(b) Define these initial conditions IP1 = X(∶, 1),

Cen
1

k
= IP

1
, sum1 =

∑
z=1,…,G

dis(X(∶, z),Cen1)  a n d 

Fig. 2  The specific calculation process in Step 5
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max1 = 0, in which Cen1 = 1

G

∑
z=1,…,G X(∶, z) . Moreover, 

set IP2 = maxy=2,⋯,G dis(Cen1
k
,X(∶, y)) and Cen2

k
= IP2.

(c) According to the K-means algorithm, the following 
substeps (c1)–(c3) is used to cluster X( : , z):

(c1) Let n(m) = 0, (m = 1, 2,… , L) . If Dm
z
= mini=1,⋯,L 

dis(X(∶, z),Ceni
k
), (z = 1, 2,… ,G) , it means that 

X( : , z) belongs to the mth cluster. Next, let n(m) = 
n(m) + 1 and TXm(∶, n(m)) = X(∶, z).
(c2) Moreover, let k = k + 1 . Calculate Cenm

k
=

1

n(m)
 

∑
j=1,…,n(m) TX

m(∶, j) ,  (m = 1, 2,… , L) .  If Cenm
k
= 

Cenm
k−1

 , stop Step 6; else, go to (c1). (That is, 
X(∶, z), (z = 1, 2,… ,G) are clustered.)
(c3) Then, record the clustering results: (1) Xm(∶, z) 
is defined as the concept that X( : , z) belongs to the 
mth cluster, ( m = 1, 2,… , L ); (2) k(m) is defined as 
the total number of TTRs in the mth cluster; 3) Cenm 
is defined as the final center point of the mth cluster, 
where m = 1, 2,… , L.

(d) Compute maxL = maxz=1,…,G maxj=1,…,m−1,m+1,…,L

dis(X
m(∶ , z),Cenj) and sumL =

∑
m=1,…,L

∑
z=1,…,k(m)

dis(X
m(∶, z), Cenm) . Furthermore, record maxL and sumL.

(e) If L > 3 , go to (f); else, go to (g).

(f) If 
|||||
| sumi−1 − sumi | − | sumi −sum

i+1 |
| sumi − sumi+1 | − | sumi+1 − sumi+2 |

|||||
> 2, (i = 2, 

… , L − 2) , go to (h); else, go to (g).
(g) Let L = L + 1 and IPL = maxm=1,…,L maxy=2,…,k(m)

dis(Cenm, Xm(∶, y)) . And initialize k = 1 . then, go to (c).
(h) If maxi+1 −maxi ≤ 0.05 , the final cluster number of 
TTRs is equal to i − 1 , stop clustering; else, i = i + 1 , go 
to (k).
(k) If i < L , go to (h); else, go to (g).

Remark 3.3 The first initial point is X( : , 1) with the largest 
peak value. Define IP1 = X(∶, 1) . The second initial point 
IP2 is the TTR  with maxy=2,…,G dis(IP1

,X(∶, y)) . From Step 
6, all TTRs can be divided into two clusters. The TTR  which 
has the largest inner-class distance is chosen as the third 

Fig. 3  The adaptive cluster 
number selection in Step 6
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initial point IP3 . Step 6 is repeated to continuously clas-
sify TTRs into three clusters. The TTR  that has the larg-
est inner-class distance is the fourth initial point IP4 . More 
initial points can be found by repeating this procedure. It is 
apparent that the computational complexity of the method 
will not be increased. It is more stable than random initial 
points. All TTRs can be classified suitably. Actually, L is set 
through the adaptive cluster algorithm based on K-means in 
Step 6. Unlike ICA in Gao et al. (2014) and Bai et al. (2013) 
(that is, the number of the typical feature regions (or the 
number of ICs) is artificially set by the researchers or opera-
tors according to some personal experience), the proposed 
algorithm can automatically find the number of the typical 
feature areas.

Step 7: Select L final representative transient thermal 
responses from L clusters.

First, the distance between the TTRj in the tth class and 
other classes is defined as MPjt =

∑
m=1,…,t−1,t+1,…,L MPCCm

jt
 

(i.e. the between-class distance), in which MPCCm

jt
, (j = 1, 2, 

… ,K(t)) denotes the correlation distance between Cenm and 
CLUt

j
, (m = 1, 2,… , t − 1, t + 1,… , L;t = 1, 2,… , L) . jt rep-

resents the jth TTR  in the tth class. K(t) means the whole 
number of TTRs in the tth class. CLUt

j
 denotes the jth TTR  of 

the tth cluster.
Next, calculate REt = maxj=1,…,K(t) MPjt in the tth (t = 1, 2, 

… , L) class. Furthermore, define the TTR  with REt as the 
final representation TTR  of tth classification. The TTR  with 
REt (t = 1, 2,… , L) is stored into Y(∶, t), (t = 1, 2,… , L).

Remark 3.4 The final purpose of the proposed algorithm is to 
select the typical thermal responses. These typical responses 
have small correlation value with each other in ECPT. The 
larger the between-class distance is, the greater difference 
of the response with others is.

Fig. 4  The experimental schematic diagram

Fig. 5  The infrared thermal image sequence of the sample 1 with the 
defect

Fig. 6  a The sample 2 with a hole; b one image of the sequence of 
the sample 2
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Step 8: Transform the 3D initial image sequence matrix S 
into a 2D matrix O. The elements in one row of O are taken 
columnwise from S(∶, ∶, p), p = 1, 2,… ,P . Then, calculate 
X̂ and solve this linear transformation:

in which X̂ denotes the pseudo-inverse matrix of X, R rep-
resents the result of the proposed method. It contains the 
features of the initial image sequence extracted by the pro-
posed algorithm.

Remark 3.5 In ICA, the number of the main features (L) 
should be given artificially in Bai et al. (2013) and Gao 
et al. (2014), which affects the efficiency and accuracy of 
the feature extraction results. That is, the process of arti-
ficial parameter decision in ICA (i.e. choosing the number 
of the typical feature regions in ICA) is time-consuming, 
meanwhile, the accuracy and the consistency of this method 
are hard to be guaranteed too. On the contrary, this problem 
has been well addressed in the proposed algorithm by clus-
tering transient thermal responses. The proposed method 
aims at selecting RE, where RE is evaluated by non-corre-
lation degree from the initial thermal responses. That is, L 
is equal to the proper cluster number when the initial ther-
mal responses have been clustered appropriately. K-means 
algorithm is used to cluster the transient thermal responses. 
Record the maximum-inner-cluster-distance, while L ( L > 1 ) 
has the different values. The number of L is determined by 
the variation speed of the sum of inner-class distance and 
the maximum-between-class distance.

Moreover, comparing with ICA in ECPT, the proposed 
algorithm can reduce processing time since that: (1) the 
data whitening procedure is omitted in the proposed algo-
rithm (considering that the whitening preprocedure in ICA 
is time-consuming); (2) the nonlinear calculation formula 
wp(k + 1) = E(Zg(wT

p
(k)Z)) − E(g�(wT

p
(k)Z))wp(k) should be 

performed repeatedly in ICA, where g(⋅) is a nonlinear func-
tion and g�(⋅) is its derivation. While such time-consuming 
nonlinear calculation is avoided in this proposed algorithm, 
which help to speed up the searching.

4  Experiment setup

The ECPT utilizes eddy current in materials for defects 
detection. In our experiments, the eddy current is induced 
and the surface temperature of sample is recorded in one 
time. The experimental schematic diagram is displayed in 
Fig. 4, which consists of five functional units. The induc-
tion heater produces high frequency alternating current, 
which is applied for coil excitation. A rectangular coil is 
located at the back of the sample, which is utilized to heat 

(8)R = X̂ ∗ O,

the sample by applying directional excitation. The IR cam-
era is used to record the thermal distribution of the sample 
surface. The heating time is set as 0.1 s for inspection, 
which is long enough to elicit an available temperature 
distribution pattern.

A steel sample (sample 1) with a slot of 10 mm length, 
2 mm width is used in the experiment, which is displayed 
in Fig. 5. It also shows the sequence of the thermal images 
of the sample 1 with the slot. The thermal image sequence 
records the constant surface transient thermal responses 
of the sample. The image at the end of heating (0.1 s) has 
been marked for four positions. The four positions corre-
spond to four independent typical thermal response areas, 
respectively. Figure 6a shows another steel sample with a 
hole of 3 mm diameter. Figure 6b represents the thermal 
image of the sample 2, which has two independent typical 
positions. 

5  Experimental results

Example 1 The TTRs with different variation trend have 
been recorded to characterize the discriminative informa-
tion of the defects. For the sample 1, the time range of the 
thermal image sequence is 0.53 s. Two time thresholds are 
set as: T(1) = 0.03s and T(2) = 0.06s . Let RefCL = 0.95 . 
The number of the PCC which is greater than RefCL is 12. 
The transient thermal responses are divided into three parts, 
namely, REFR1 = 0.94 , REFR2 = 0.94 , REFR3 = 0.94 . 
RLk

n
, (k = 1, 2, 3;n = 1, 13, 25,… , 313) should be separately 

equal to the numbers of TTRs, whose temperature variations 
are similar in one data block and in one column. 13 thermal 
responses have been selected by Step 3 with CC = 0.6.
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Fig. 7  The sum of inner-class distance with different cluster numbers 
of 13 TTRs 
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Next, 13 TTRs should be classified by Step 6. Specially, the 
following details show the realization of the adaptive cluster 
number selection. Firstly, let the cluster number L = 1 and 
the first initial center point IP1 as TTR1 . Moreover, one can 
derive sum1 =

∑
m=1

∑
z=1,…,13

dis(X1(∶, z),Cen1) = 2.1262 
and max1 = 0.

Secondly, set L = 2 . The second initial center 
point IP2 is TTR4 which has the largest inner-class-
distance. Then, let Cen1

1
= IP1 ,  Cen2

1
= IP2 ,  com-

pu te  Dm
z
= mini=1,2 dis(X(∶, z),Cen

i
k
) ,  z = 1, 2,… , 13 . 

According to Dm
z

 , put the TTRz into the mth cluster whose 
center point Cenm

1
 has the smallest distance with X( : , z). 

13 TTRs can be classified into the 2 clusters. Record 
sum2 =

∑
m=1,2

∑
z=1,…,k(m) dis(X

m(∶, z),Cenm) = 0.8515 and 
max2 = 1.0289.

Thirdly, set L = 3 . The third initial center point IP3 is 
TTR6 which has the largest inner-class-distance. Then, let 
Cen1

1
= IP1 , Cen2

1
= IP2 and Cen3

1
= IP3 . Furthermore, com-

pute Dm
z
= mini=1,2,3 dis(X(∶, z),Cen

i
k
) ,  z = 1, 2,… , 13 . 

According to the Dm
z

 , put the TTRz into the mth cluster 
whose center point Cenm

1
 has the smallest distance with 

X( : , z). 13 TTRs can be classified into the 3 clusters. Record 
sum3 =

∑
m=1,2,3

∑
z=1,…,k(m) dis(X

m(∶, z),Cenm) = 0.2790 
and max3 = 1.3051.

Fourthly, set L = 4 . The fourth initial center point IP4 is 
TTR2 which has the largest inner-class-distance. Then, let 
Cen1

1
= IP1 , Cen2

1
= IP2 , Cen3

1
= IP3 and Cen4

1
= IP4 . Com-

pute Dm
z
= mini=1,2,3,4 dis(X(∶, z),Cen

i
k
) , z = 1, 2,… , 13 . 

According to Dm
z

 , put the TTRz into the mth cluster whose 
center point Cenm

1
 has the smallest distance with X( : , z). 13 

TTRs can be classified into the 4 clusters. Record 
sum4 =

∑
m=1,2,3,4

∑
z=1,…,13

dis(X4(∶, z),Cen4) = 0.0970  , 
max4 = 1.3894  .  T h e n , |||||
| sum1 − sum2 | − | sum2 −sum

3 |
| sum2 − sum3 | − | sum3 − sum4 |

|||||
= 1.7982 < 2 (i.e. i = 2 ). 

Hence, continue to cluster the TTRs. Set L = 5 and the fourth 
initial center point IP5 is TTR13 that has the largest inner-
class-distance. Then, let Cen1

1
= IP1 , Cen2

1
= IP2 , Cen3

1
 = IP3 , 

Cen4
1
= IP4 and Cen5

1
= IP5 . Moreover, calculate Dm

z
 

= mini=1,2,3,4,5 dis(X(∶, z),Cen
i
k
) in which z = 1, 2,… , 13 . 

According to Dm
z

 , put the TTRz into the mth cluster whose 
center point Cenm

1
 has the smallest distance with X( : , z). 13 
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Fig. 8  The maximum-between-class distance with different cluster 
numbers of 13 TTRs 

Fig. 9  The total procedure of this algorithm in Step 6

Table 1  The sum of between-class correlation distance of center 
point with each TTR  in the third cluster

TTRj MPCC1

j3
MPCC2

j3
MPCC3

j3
MPj3

TTR3 0.8518 0.2130 0.2698 1.3346
TTR5 0.8653 0.2008 0.2825 1.3486
TTR7 0.6218 0.3803 0.1223 1.1244
TTR9 0.7717 0.2716 0.2136 1.2569
TTR13 0.6027 0.3312 0.1377 1.0716

Table 2  The sum of between-class correlation distance of center 
point with each TTR  in the fourth cluster

TTRj MPCC1

j4
MPCC2

j4
MPCC3

j4
MPj4

TTR2 0.3557 0.6343 0.1095 1.0995
TTR8 0.1530 0.8782 0.2791 1.3103
TTR10 0.2241 0.7974 0.2114 1.2329
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No. New algorithm result Selected TTR
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TTRs can be classified into the 5 clusters. Then, record sum5 
=
∑

m=1,2,3,4,5

∑
z=1,…,13

dis(Xm(∶, z),Cenm) = 0.0749  and 
max5 = 1.3894  .  T h e n , |||||
| sum2 − sum3 | − | sum3 − sum4 |
| sum3 − sum4 | − | sum4 − sum5 |

|||||
= 2.4422 > 2 ( i = 3 ). The 

supplementary condition max4 −max3 = 0.0843 , ( i = 3 ) is 
not less than 0.05. Then, set i = 4 , max5-max4 = 0 < 0.01 . 
Hence, the number of cluster L is selected as 4. The variation 
trends of sumi and maxi with different cluster number L are 
separately shown in Figs. 7 and 8. Therefore, 13 TTRs is 
divided into 4 clusters. According to the correlation dis-
tance, put every TTR  into the corresponding cluster whose 
center point has the smallest correlation distance with it. 
Finally, one has that TTR1 is in the first cluster; TTR4, TTR6 
and TTR12 are in the second cluster; TTR3, TTR5, TTR7, TTR9 
and TTR13 are in the third cluster; TTR2, TTR8 and TTR10 are 
in the fourth cluster. The total procedure of this algorithm is 
given in Fig.  9.  

Next, the four typical TTRs with the largest sum of the 
between-class distances will be selected as the final typical 
TTRs in the above 4 clusters. The specific process is: record 
the final center point Cenm of each cluster when L = 4 . In the 
first cluster, TTR1 as the only element should be chosen as 
the typical one of the first cluster. In the second cluster, the 
between-cluster correlation distances of TTR4 with other 
c lus te r s’  cen te r  po in t s  a re  MPCC1

1
2 = 1.3894  , 

MPCC3

1
2
= 0.4012 and MPCC4

1
2 = 0.9059 , respectively. 

Then, MP
1
2 =

∑
m=1,3,4 MPCCm

1
2 = 2.6965 (for TTR4 ). The 

between-cluster correlation distances of TTR6 are 
MPCC1

2
2 = 1.2915  ,  MPCC3

2
2

 = 0.2561  a n d 
MPCC4

2
2 = 0.7427  ,  r e s p e c t i v e l y .  T h e n , 

MP
2
2 =

∑
i=1,3,4 MPCCi

2
2 = 2.2903 (for TTR6 ). The between-

cluster correlation distances of TTR12 are MPCC1

3
2 = 1.2270 , 

MPCC3

3
2
 = 0.1982 and MPCC4

3
2 = 0.6610 . Hence, one has 

MP
3
2 =

∑
i=1,3,4 MPCCi

3
2 = 2.0862 (for TTR12 ). Thus, one 

has RE2 = maxj=1,2,3 MPj2 = 2.6965 . That is, TTR4 is 
selected as the typical TTR  of the second cluster. MPCCm

jt
 

and MPjt in the third and fourth clusters are listed in Tables 1 
a n d  2 .  I n  t h e  t h i r d  c l u s t e r , 
RE3 = maxj=1,2,3,4,5 MPj3 = MP

2
3 = 1.3486 . Hence, TTR5 is 

selected as the typical TTR  of the third cluster. In the fourth 
cluster, RE4 = max

j=1,2,3
MPj4 = MP

2
4 = 1.3103 . TTR8 is chosen 

as the typical TTR  of the fourth cluster. 
The discriminative features can be extracted from TTR1 , 

TTR8, TTR5 and TTR4 by Step 8. The extraction results of the 

proposed algorithm and the ICA method are exhibited in 
Figs. 10, 11 and 12, respectively. The first column of Fig. 10 
depicts the four typical areas highlighted by the proposed 
algorithm. The second column of Fig. 10 shows the features 
extracted by the proposed method. Figure 11 plots the defect 
detection under ICA (that is, four ICs separately highlight 
four typical areas, as shown in Fig. 11). The PPCs between 
the mixing vector 1, 2, 3, 4 and TTR1, TTR8, TTR5 and TTR4 
are computed as 0.9990, 0.9965, 0.9816 and 0.9917, respec-
tively. Meanwhile, Fig. 12 shows that the features extracted 
by the proposed method are similar to the mixing vector 
1, 2, 3, 4 under ICA. Hence, it is demonstrated that the pro-
posed algorithm can select the typical thermal responses and 
extracted discriminative features successfully. Moreover, the 
processing efficiency of the proposed method has increased 
substantially in comparison with that of ICA. Figure 13 
shows the comparisons of processing time between ICA 
and the proposed method. It is obvious that the proposed 
algorithm spends less time in completing the feature extrac-
tion process.

Figure 13 also shows the relation curves between the 
processing time and the number of sequence frames, while 
the comparison of processing efficiency between two dif-
ferent algorithms is introduced accordingly. Figure 13a 
shows the processing times of ICA, which are separately 
1.02, 1.39, 1.83, 2.45 and 3.15 s corresponding to the num-
ber of frames as 200, 300, 400, 500 and 600. Obviously, 
the total processing times of ICA are rapidly increased 
along with the increase of image frames. Figure  13b 
shows the processing time of the proposed algorithm. As 
opposed to ICA, the proposed algorithm just consumes 
0.50, 0.63, 0.68, 0.72 and 0.79 s, for the number of the 
frames as 200, 300, 400, 500, 600, respectively. The ratios 
of time under the proposed algorithm and ICA are drawn in 
Fig.  13c, which are 2.04, 2.21, 2.69, 3.40 and 3.99 respec-
tively. Hence, the proposed algorithm is more efficient than 
ICA, with the increase of data volume.

Example 2 For the sample 2, the time range of the thermal 
image sequence is 2s. Two temperature thresholds are set 
as: T(1) = 0.75 s and T(2) = 1.5 s. The transient thermal 
responses are separated into three parts. Let REFR1 = 0.96 , 
REFR3 = 0.96 , REFR3 = 0.96 and CL = 10 . 7 thermal 
responses are selected by Step 3 in which CC = 0.7.

Next, the 7 TTRs should be classified by Step 6. Firstly, 
set the cluster number L = 1 . The first initial center point IP1 
is TTR1 . Compute sum1 = 0.8374 and max1 = 0 . Secondly, 
set L = 2 . The second initial center point IP2 is TTR4 which 
has the largest inner-class-distance. Let Cen1

1
= IP1 and 

Cen2
1
= IP2 . Compute Dm

z
 = mini=1,2 dis(X(∶, z),Cen

i
k
) , 

z = 1, 2,… , 7 . According to Dm
z

 , put the TTRz into the mth 
cluster whose center point Cenm

1
 has the smallest distance 

Fig. 10  a The corresponding image of TTR1 by using the proposed 
algorithm; b TTR1 ; c the corresponding image of TTR8 by using the 
proposed algorithm; d TTR8 ; e the corresponding image of TTR5 by 
using the proposed algorithm; f TTR5 ; g the corresponding image of 
TTR4 by using the proposed algorithm; h TTR4

◂
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Fig. 11  a ICA1 ; b the corresponding mixing vector 1; c ICA2 ; d the corresponding mixing vector 2; e ICA3 ; f the corresponding mixing vector 3; 
g ICA4 ; h the corresponding mixing vector 4
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with X( : , z). 7 TTRs can be classified into the 2 clusters. 
Record sum2 = 0.0626 and max2 = 0.4621 . Thirdly, set 
L = 3 and the third initial center point IP3 is TTR7 which has 
the largest inner-class-distance. Then, let Cen1

1
= IP1 , 

Cen2
1
= IP2 and Cen3

1
= IP3 . According to Dm

z
 , 7 TTRs can be 

classified into the 3 clusters. Record sum3 = 0.0340 and 
max3=0.4751. Fourthly, set L = 4 . The fourth initial center 
point IP4 is TTR2 which has the largest inner-class-distance. 
Moreover, let Cen1

1
= IP1 , Cen2

1
= IP2 , Cen3

1
= IP3 and 

Cen4
1
= IP4 . According to Dm

z
 , 7 TTRs can be classified into 

the 4 clusters. Record sum4 = 0.0118 . max4 = 0.4751 . At 

this time, 
|||||
| sum1 − sum2 | − | sum2 −sum

3 |
| sum2 − sum3 | − | sum3 − sum4 |

|||||
= 116.59 > 2 

(  i = 2  ) .  T h e  s u p p l e m e n t a r y  c o n d i t i o n 
max3 −max2 = 0.013 < 0.05 . The variation trends of sumi 
and maxi with different cluster number L are separately 

shown in Figs. 14 and 15. Hence, one can obtain L=2. That 
is, the 7 TTRs should be classified into 2 clusters. Further-
more, one can derive that TTR1, TTR3, TTR5 and TTR7 are in 
the first cluster; TTR2, TTR4 and TTR6 are in the second 
cluster. 

MPCCm

jt
 and MPjt in the first and second clusters are listed 

in Tables 3 and 4. From the criterion of the largest between-
class-distance, RE1 = maxj=1,2,3,4 MPj1 = MP

3
1 = 0.4621 and 

RE2 = maxj=1,2,3 MPj2 = MP
2
2 = 0.4294 . TTR5 and TTR4 are 

selected separately as the typical TTRs of the first and second 
clusters. 

TTR5 and TTR4 are used to extract the discriminative 
features by Step 6. The first column of Fig. 16 shows the 
two typical areas highlighted by the proposed algorithm. 
The extraction results are depicted in the second column of 
Fig. 16. The result of the proposed algorithm is similar to 
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Fig. 12  a the normalized mixing vector 1 and TTR1 ; b the normalized mixing vector 2 and TTR8 ; c the normalized mixing vector 3 and TTR5 ; d 
the normalized mixing vector 4 and TTR4
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the result of ICA, which is displayed in Fig. 17. Moreover, 
the PPC between the mixing vector 1 and TTR5 is 0.9901, 
as well as the one between the mixing vector 4 and TTR4 is 
0.9931, as shown in Fig. 18. The experimental results reveal 

that the proposed algorithm can select the typical thermal 
response and extract discriminative features successfully.   

Figure 19a shows the processing time of ICA, which are 
separately 1.47, 1.65, 1.91, and 2.20 s for the number of 
frames as 175, 200, 250 and 305. Meanwhile, the processing 
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Fig. 13  a The processing time of ICA of the sample 1; b the processing time of the proposed algorithm of the sample 1; c the ratios of time 
under ICA and the proposed algorithm
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times of the proposed algorithm are 0.34, 0.43, 0.47 and 0.54 
s, corresponding to the number of frames as 175, 200, 250 
and 305, as shown in Fig. 19b. The proposed algorithm 

performs consistently better with a lower processing time 
than ICA for the sample 2, as shown in Fig. 19c.

The experimental results about the sample 1 and the sam-
ple 2 can be utilized to confirm the high efficiency of pro-
posed method on extracting the discriminative information 
of the thermal image sequences.

6  Conclusions and future work

In this research, an adaptive feature extraction algorithm is 
developed for defects identification in eddy current pulsed 
thermography, which utilizing both the K-means algorithm 
and automatic segmentation method to realize the thermal 
image segmentation and variable interval search. The experi-
mental results convinced the validity and efficiency of the 
proposed method. The main advantages of this new approach 
can be summarized as follows:

Table 3  The sum of between-
class correlation distance of 
each center point with each TTR  
in the first cluster

TTRj MPCC1

j2
MPj1

TTR1 0.4615 0.4615
TTR3 0.4343 0.4343
TTR5 0.4621 0.4621
TTR7 0.3833 0.3833

Table 4  The sum of between-
class correlation distance of 
each center point with each TTR  
in the second cluster

TTRj MPCC2

j2
MPj2

TTR2 0.4181 0.4181
TTR4 0.4619 0.4619
TTR6 0.4294 0.4294
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Fig. 16  a The corresponding image of TTR5 by using the proposed algorithm; b TTR5 ; c the corresponding image of TTR4 by using the proposed 
algorithm; d TTR4
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Fig. 17  a ICA1 ; b the corresponding mixing vector 1; c ICA2 ; d the corresponding mixing vector 2
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1. Combining the exact physical meaning of feature region 
in ECPT and the similar mathematical expression in 
ICA, the proposed algorithm provides good identifica-
tion capability and detection quality for the discrimina-
tive features extracting of the thermal image sequences.

2. Without the whitening pre-process of the original data 
and the iterative computation of the de-mixing matrix 
in ICA, the image processing efficiency of the proposed 
approach can be improved appreciably. Especially when 
the frames number of the thermal image sequence is 
increased, the superiority of the new approach is more 
significant comparing with ICA.

3. The number of typical feature areas (typical TTRs) can 
be automatically set in the proposed algorithm, which 
can avoid the negative influence of human intervention 
and will increase the automation level of the defects 
identification in ECPT.

In the future, the research effort will focus on how to further 
enhance the measurement accuracy and processing speed of 
the proposed method. Considering the effects of threshold 
value selection on the precision of defects detection in the 

practical application, how to diminish the negative influence 
of threshold value will be another important research.
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