
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2019) 10:2913–2927
https://doi.org/10.1007/s12652-017-0669-z

ORIGINAL RESEARCH

Rational adversary with flexible utility in secure two‑party
computation

Yilei Wang1 · Shuaifeng Zhang2 · Yi Tang3 · Qingtang Su1 · Beijing Chen4

Received: 17 October 2017 / Accepted: 23 December 2017 / Published online: 12 January 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Secure two-party computation evaluates a function among two distributed parties without revealing the parties’ inputs except
for the function’s outputs. Secure two-party computation can be applied into various fields like cloud computing, which is a
composition of distribute computing, parallel computing and utility computing etc. Rational secure two-party computation
may achieve some desirable properties under two assumptions deriving from STOC 2004. However, the emergence of new
computing paradigms like pay-as-you-go model restricts the application of rational protocols. Previous adversaries does
not consider payment in secure two-party protocols. Therefore, new type of adversaries should be propose for these new
paradigms. In this paper, we address this problem by proposing a new kind of rational adversary, who consider payment
in his relaxed utilities. The utilities are based on economic incentives instead of standard assumptions. Furthermore, the
new rational adversary is assumed to negotiate with rational parties in protocols. It’s similar to “cost corruption” but more
flexible. Our new adversary can dynamically negotiate with each rational party in different phases in order to maximize his
utilities. To verify the validity of the new adversary, we model a rational secure two-party protocol, which inherits the hybrid
framework of STOC 2007. We also prove the security in the presence of the new rational adversary under ideal/real paradigm.

Keywords  Rational adversary · Flexible utility · Secure two-party computation

1  Introduction

Rational secure two-party computation allows two rational
parties to learn the output of a function without leaking any
information. Meanwhile rational parties maximize their util-
ities. Utility function is a common notion in game theory,
which assigns a number for each possible outcome. Utility
presents the motivation for rational parties since a higher
utility implies preference on the corresponding outcome.
Generally, rational parties (Halpern and Teague 2004) (1)
prefer the outcome of learning the computation result and
(2) others not learning the result. That is, rational parties
hope to have an advantage over others. Rational computa-
tion in the presence of rational parties may handle difficult
tasks in cryptography like fairly information exchanging
(Kol and Naor 2008; Gupta et al. 2016) and Byzantine
agreement (Groce et al. 2012). Therefore, it’s meaningful
to delve into the utility functions of rational secure two-
party computation. It’s similar to deep learning enforcing
a specific behaviors, which optimizes algorithms according
to the accumulation of experiential data. It is well known
that deep learning is a hot topic in machine learning, which

 *	 Yilei Wang
	 wang_yilei2000@126.com

	 Shuaifeng Zhang
	 zsfeng2007@163.com

	 Yi Tang
	 ytang.bjs@139.com

	 Qingtang Su
	 sdytsqt@163.com

	 Beijing Chen
	 nbutimage@126.com

1	 School of Information and Electrical Engineering, Ludong
University, Yantai, China

2	 Shandong Huayu Aerospace Technology Co.,Ltd., Yantai,
China

3	 Department of Mathematics, Guangzhou University,
Guangzhou, China

4	 School of Computer and Software, Nanjing University
of Information Science and Technology, Nanjing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-017-0669-z&domain=pdf

2914	 Y. Wang et al.

1 3

can be applied into various fields (Yu et al. 2017; Ibtihal
and Hassan 2017), like biomedical data analysis (Jararweh
et al. 2017; Atawneh et al. 2017), neural network (Liang
et al. 2015; Leung et al. 2014; Gu et al. 2017) and image
processing etc. (Chan et al. 2015; Zhu et al. 2016; Ruijin
et al. 2016). Furthermore, it can reinforce learning a specific
behaviour (e.g. cooperation) to solve specific problems (Wen
et al. 2015; Bin et al. 2015a; Chang et al. 2017b; Gu et al.
2015b; Chang et al. 2017a). In this paper, we try to facili-
tate rational adversary with relaxed utility definition. Most
utility functions inherit from the basic structure of Halpern
and Teague (2004), which limit the application scenarios
of rational computation. The utility functions are fixed and
lack of extensibility to new computation paradigms. So new
flexible utility functions should be proposed to fit in with
these new requirements. Note that, the non-adversary par-
ties in rational protocols are rational as well. Therefore, it’s
possible for the adversary to “corrupt” them.

For example, rational adversary is fit for new computation
paradigm like pay-as-you-go model (Al-Roomi et al. 2013)
to complete computation in cloud (Ren et al. 2015; Li et al.
2014a, b, 2017a, b). Therefore in cloud computing, the pref-
erences on each outcome and utility functions should include
payment or cost. Unfortunately, utility functions in existing
works only rely on the achievement of security properties
like privacy and correctness without considering payment or
cost. It’s reasonable for an external adversary in cloud to pay
for the corruption if he “corrupts” rational parties. It’s simi-
lar to the work of Garay et al. (2013). The distinction is that
rational parties are conditional corrupted after they negoti-
ate with the adversary. That is, corrupted parties at least get
payment from the adversary. Note that corrupted parties get
nothing when they are corrupted in previous works. Another
problem is about the dynamic performance in could comput-
ing, where the adversary may corrupt different parties dur-
ing the computation. Consequently, the utilities for different
corruption may be also different, which may incur flexible
utility definition for the rational adversary. Therefore, there
are three practical problems when we define the rational
adversary: (1) preferences on outcome and flexible utility
functions including payment; (2) cost corruption when the
adversary negotiate; (3) dynamical corruption. To the best
of our knowledge, previous definitions on rational adver-
saries do not cover all three problems. Consequently, new
preferences and utilities should be redefined based on these
changes.

In this paper we propose a new rational adversary under
flexible utilities to address the above three problems in
cloud computing. The new rational adversary has flexible
utilities when they corrupt different subset of parties. There-
fore, the security discussion of two-party computation in
the presence of the new adversary is more practical since
the assumption on adversaries’ ability is more close to the

actual behavioural characters. The main contributions of this
paper are as follows.

1.	 We propose a new rational adversary under flexible
utilities, who consider corruption cost and dynamically
negotiate with parties during the computation.

2.	 We redefine the views for parties considering history
and utilities with respect to the new rational adversary.
More specifically, we combine the definition in Groce
and Katz (2012) and the bit coin cost (Ruffing et al.
2015; Bentov and Kumaresan 2014; Andrychowicz et al.
2014a; Kumaresan and Bentov 2014; Andrychowicz
et al. 2014b).

3.	 We follow the hybrid framework of Moran et al. (2009),
Katz (2007), Gordon et al. (2008), Gordon and Katz
(2012), Groce and Katz (2012) prove security under
ideal/real paradigm in the new rational adversary. To
the best of our knowledge, this is the first time to prove
security under such a practical scenario.

1.1 � Related works

Halpern and Teague (2004) propose rational secret sharing,
which is a specific example of multi-party computation.
However, their protocol is non-deterministic and does not fit
for two parties. Gordon and Katz (2006) revisit the problem
of rational secret sharing in the presence of two rational par-
ties, which is simpler than the work of Halpern and Teague
(2004). Maleka et al. (2008a, b) introduce repeated games
in rational secret sharing to propose a deterministic proto-
col. The utility definitions of these works follow the same
assumptions of Halpern and Teague (2004). That is, rational
parties are assumed to be rational and their utility are fixed.
These assumptions on utilities limit the applications of
rational protocols.

Asharov and Lindell (2011) relax the standard assump-
tions on utility functions, which achieves utility inde-
pendence. While they do not consider corruption cost and
dynamical corruption. Micali and Shelat (2009) consider
the possibility of learning the wrong secret, which provides
a more comprehensive set of utilities. He regards rational
secret sharing as a specific kind of mechanism design. In
this paper, rational parties participate in the protocol by
themselves without considering corruption. Izmalkov et al.
(2005) extend rational secure computation to ideal mecha-
nism design, where utilities have more general forms. How-
ever, the implementation heavily relies on ballot-box, which
is much impractical. Mechanism design theory provides
good motivation for flexible utility functions for rational par-
ties. Garay et al. (2013) design a rational protocol between
protocol designer and an incentive-driven attacker. Suppose
the utility when the attacker achieves privacy and correct-
ness is positive. They also present a natural assumption that

2915Rational adversary with flexible utility in secure two‑party computation﻿	

1 3

corruption of each party brings the attacker negative utility.
Note that the adversary can adaptively corrupt parties such
that he may control the negative utilities. The attacker’s net
utility is the sum of the positive and negative one. It obvi-
ous that the attacker has incentives to corrupt other parties
when the net utility is positive. It reasonably explains the
rationality of the attacker. The a fly in the ointment is the
neglect of fairness in Garay et al. (2013). The consequently
work should focus on finding incentives for rational par-
ties to participate in the protocol. Komatsubara and Manabe
(2016) prove the game-theoretic security of bit commitment
protocols considering a practical cost model by following the
work of Higo et al. (2013). However, their works are specific
for commitment protocols and Lack of universality.

Cleve (1986) prove that complete fairness is impossible
in secure two-party computation. Generally, fairness can be
achieved either by relaxing the notion of fairness like partial
fairness (Gordon and Katz 2012) or relax the ability of par-
ties (Ong et al. 2009). Rational protocol belongs to the lat-
ter and can achieve fairness in the presence of rational par-
ties. William et al. (2011) achieve fairness in rational secret
sharing mixed by rational parties and honest majorities, and
later they add malicious parties in their protocol. Their util-
ity definition inherit from Asharov and Lindell (2011) and
do not consider corruption cost. Asharov et al. (2011) first
give formal definitions of privacy and correctness toward
the view of game theory and prove that these two proper-
ties can be achieved in rational protocols. Then they give
the definition of fairness and prove that the gradual release
properties are equal to fair computation. However there is a
negative result about fairness. Groce and Katz (2012) revisit
this problem and proposed a rational fair protocol for any
function. They design new utility definition for rational par-
ties and prove that fairness can be achieved given proper
conditions. Their works do not involve corruption cost and
dynamical corruption.

The crux of achieving fairness goes back to assigning
incentives for rational parties to participate in the proto-
col. Recently, bit-coins are utilized as a practical incentive
for parties to achieve fairness (Andrychowicz et al. 2014a;
Bentov and Kumaresan 2014; Kumaresan and Bentov 2014;
Andrychowicz et al. 2014b; Jethro 2016; Kiayias et al.
2016). The basic idea is to compensate those who did not
learn the output by electronic money like bit-coins (Naka-
moto 2009). That is, the adversary corrupts honest parties
with cost. He can either learn the result by paying for the
honest parties or learn nothing by paying nothing. The cost
corruption is similar to the work of Garay et al. (2013).

1.2 � Outlines

This paper is organized as follows. Section 2 presents some
basic notions such as adaptive security, which will be used in

following sections. Furthermore, we give our utility defini-
tion considering the cost of rational adversary, new defini-
tion of view with respect to history and utility. Section 3
presents our two-party computation protocol in ideal world
and hybrid world respectively. In Sect. 4, we use ideal/real
paradigm to prove the adaptive security of our hybrid pro-
tocol in the presence of rational adversary by constructing
an ideal simulator.

2 � Background

2.1 � Rational two‑party protocol and utility
definition

Rational protocols can be regarded as games just as men-
tioned in Alwen et al. (2012). In this paper, we follow the
basic notions of transitions between protocols and games
(Alwen et al. 2012). Recall that most definitions of utility
follow those in game theory such as Prisoner’s dilemma
game or Stackberg game (Osborne and Rubinstein 1994;
Halpern and Teague 2004). These utilities are static once
they are defined in the protocols. In fact, utilities maybe
change during the protocols. In Groce protocol Groce and
Katz (2012), the utilities are defined in the form of matrix
(ref. Table 1), where d0 > c0 ≥ a0 ≥ b0 . Note this is com-
mon used in game theory when presenting utility for two
rational parties.

2.2 � Basic framework of a rational two‑party
protocol

Normally, the security of two-party computation is proved
under ideal/real paradigm. There exists a trusted third party
in the ideal world protocol, which fulfils all the security
properties. However there does not exist such a trusted party
in the real world protocol. If the views and outputs of the
real world are computationally indistinguishable from the
ideal one, the protocol in the real world is secure as that
of the ideal one. In this paper, we follow the basic hybrid
framework of Moran et al. (2009), Katz (2007), Gordon et al.
(2008), Gordon and Katz (2012), Groce and Katz (2012),
where the protocol consists of two stages. The first stage
is a “pre-processing” step in the presence of a third trusted
party and the second stage includes several rounds, where
two parties alternatively exchange their messages such that
they can finally get the correct output. For example, the first
party (say P1 ) sends his message to the second party (say P0 )
and then P0 sends his information to P1 . Figure 1 presents
the basic idea of the second stage. The hollow circle denotes
that it’s turn for P1 to send his message and the solid circle
denotes that it’s turn for P0 to send his message. The hollow

2916	 Y. Wang et al.

1 3

square denotes that the protocol ends and the bigger square
with dashed line denotes one round of the second stage.

To prove the security of the protocol, we only need to
construct an ideal simulator which can simulate the behav-
iours of real adversary.

2.3 � Views and computational indistinguishability

The basic notions about views are as follows Goldreich
(2001, 2009).

•	 Let x0, x1 be inputs for P0 and P1 respectively. Let
f (x0, x1) = (f1(x0, x1), f2(x0, x1)) be probabilistic polyno-
mial-time functionality and let � be a two-party protocol
to compute functionality f (⋅) . Here we only consider a
simple case where f (x0, x1) = f1(x0, x1) = f2(x0, x1).

•	 The view of one party (say x0 ) includes the input x0 ,
random strings ri

0
 and received messages mi

0
 in the ith

round. Therefore, we can denote the view of x0 as view 0
�

(x0, x1, n) = (x0, r
i
0
,mi

0
) , where n is the security parameter.

Since the rational adversary adaptively corrupts honest
parties, the view of rational adversary is denoted as fol-
lows: view adv

�
 (x0, x1, n) = (xadv, r

i
adv

,mi
adv

) . Here xadv is
the input of the adversary. In fact it’s the input of the
corrupted party.

•	 Denote output0
�
 (x, y, n) (output1

�
 (x, y, n)) as the output

of honest parties. Denote outputadv
�

 (x, y, n) as the output
of rational adversary.

A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈ℕ is
an infinite sequence of random variables indexed by

a ∈ {0, 1}∗ and n ∈ ℕ , where n is the security parameter.
Two distribution ensembles X = {X(a, n)}a∈{0,1}∗;n∈ℕ and
Y = {Y(a, n)}a∈{0,1}∗;n∈ℕ are called computationally indis-
tinguishable, which is denoted as X

c
≡ Y  . It means that for

every non-uniform polynomial-time algorithm D, there
exists a negligible function �(⋅) such that for a ∈ {0, 1}∗
and n ∈ ℕ,

Definition 1  Let f (x0, x1) be a functionality. � securely com-
puters f in the presence of adaptive rational adversaries if
there exist probabilistic polynomial-time algorithms  such
that:

3 � Some new definitions for rational
adversary

3.1 � Corruption sequence for rational adversary

In real-world attack, it’s hard to fix the subset of corrupted
parties beforehand. It is practical to allow rational adversary
to dynamically corrupt parties during the protocol. In the
second stage of hybrid protocol, two parties alternatively
send their messages. The rational adversary may corrupt
P0 or P1 during the protocol. There are altogether five cases
according to the sequence of corruption.

1.	 Only P0 is corrupted.
2.	 Only P1 is corrupted.
3.	 First corrupt P1 and then P0.
4.	 Corrupt both P0 and P1 at the same time.
5.	 No one is corrupted.

In the first two cases, only one party is corrupted. The simu-
lator can learn the input of the corrupted party. In the third
and fourth cases, two parties are corrupted. Note that the
corruption has an order in adaptive corruption setting. In the
fourth case, the simulator can learn the inputs and outputs
of corrupted parties at the beginning of the simulation. In
the third case, the simulator cannot, which makes it much
complex to analyze. Note that we do not include the case
where P0 is first corrupted and then P1 is corrupted since it
is identical with the fourth case.

3.2 � New utility for rational adversary

As mentioned above, cloud computing is a model to share
computing resources like servers, storage and services
etc (Li et al. 2018). All these resources need minimal

|Pr[D(X(a, n)) = 1] − Pr[D(Y(a, n)) = 1]| ≤ �(n).

(1n, xadv, f (x0, x1))x0,x1,n

= {����adv
�

(x0, x1, n), ������
adv
�

(x, y, n)}x0,x1,n.

P0P0

PP1

P0P0

PP1

PP1

Round 1

Round 2

Fig. 1   The flow of the second stage

Table 1   Utility definition of the
Groce protocol

Correct Incorrect

Correct (a0, a1) (b0, c1)

Incorrect (c0, b1) (d0, d1)

2917Rational adversary with flexible utility in secure two‑party computation﻿	

1 3

management effort or service provider interaction. Users
must pay for it if they want to utilize these resources.
Meanwhile the cloud should provide corresponding
resources when they are paid. Therefore, it is not free for
rational adversary to corrupt parties since they consider
their utility at each step. In this paper, the rational adver-
sary pays g bit coins for corrupting each party. Here cor-
rupting means the rational adversary buys the copyright
of shares from the corrupted parties. That is, the corrupted
parties can not use his shares even if he still holds the
shares. We add a session ID in each round of the second
stage in the protocol such that one share can be used only
once. Therefore, the corrupted parties gets g instead of
the result of the protocol. On the other hand, the adver-
sary loses g but gets the result of the protocol. Note that
the result of the protocol is either reconstruct the output
or not. The original utilities are defined in Table 1 when
we did not consider the cost for corrupting. In order to
present the utilities when considering corruption cost, we
must present new utility definition. It’s obvious improper
by simply minus cost g in Table 1 since we cannot present
utility definition in matrix. Therefore, we present the util-
ity in a tree just like that in the game theory.

Before presenting the utility tree, we first briefly intro-
duce the action set for rational adversary and the flow of
the second stage. Let A = {𝛷Pb

, 𝛷̄, follow, abort} is the
action set for rational adversary and honest parties. �Pb

denotes the action of corrupting party Pb ( b ∈ {0, 1} ) and
𝛷̄ denotes the action of corrupting no one. When rational
adversary adopts �Pb

 , the corrupted party adopts either
abort or follow. In the former case, the corrupted party
quits and the protocol ends. In the latter case, the cor-
rupted party follows the protocol. Obviously, the honest
parties always adopt follow.

Recall that the second stage includes several rounds r,
where exists a key round i∗ . Parties reconstruct random out-
put before i∗ round and correct output after i∗ round. In each
round i ( 1 ≤ i ≤ r ), there are two steps.

1.	 Step 1: P1 first sends his message to P0 . P1 may decide
whether to send his message.

(a)	 Case 1: P1 is corrupted by the rational adversary.
In this case, P1 will not send message to P0 . Con-
sequently, both parties reconstruct the output by
messages received before the ith round. Note that
if i = 1 , then both parties return a random value.

(b)	 Case 2: P1 is not corrupted. In this case, P1 will
send message to P0 . Consequently, the protocol
enters into Step 2.

2.	 Step 2: P0 sends his message to P1 . It is similar with Step
1.

(a)	 Case 1: P0 is corrupted by the rational adversary.
P0 decides not to send message to P1 . Then P0
reconstructs the output by using the messages
before the ith round. On the other hand, P1 recon-
structs the output by using the messages before the
(i − 1) th round. Note that if i = 1 , then both parties
return a random value.

(b)	 Step 2: P0 is not corrupted. Both parties recon-
structs the output by using the messages before the
ith round. When we say the messages before the
ith round, it includes the message in the ith round.

Note that rational adversary and the honest party may get
different utilities in different rounds. Here, we consider the
effect of fairness in utility definitions since it’s an important
property in secure two-party computation. Therefore, we
give their utilities in the follow three cases.

The first case i ∈ [1, i∗ − 1].
Under this case, both rational adversary and honest par-

ties reconstructs random values no matter whom rational
adversary corrupts. Note that the probability 1

|f (x0,x1)|
 that par-

ties guess the correct output is negligible suppose the output
range |f (x0, x1)| is large enough. Therefore, fairness can be
trivially achieved since both adversary and honest parties do
not get correct output. Note that rational adversary should
pay kg for corrupting parties, where k is the number of cor-
rupted parties and g is the cost for each corruption.

We present the utility definition under this case in Fig. 2,
where Adv denotes the rational adversary. The shadowed
circle denotes that Adv decides whether to adopt 𝛷̄ . The
dashed hollow circle denotes that the protocol will enter
to the next round. The triple denotes the utility of parties,
where the first element denotes the utility of Adv, the sec-
ond element denotes the utility of P1 and the third element
denotes the utility of P0 . In this case, all parties cannot get
correct output. Therefore, all of them get d0 = d1 according
to the utility matrix in Table 1. If the rational adversary
corrupts one party, then the corrupted party will get g as a
compensation for sending values to Adv.

As mentioned above, there are altogether five cases. We
will present the utility definition for each of them.

1.	 Figure 2a. Adv adopts 𝛷̄ and corrupts no one. Therefore,
two honest parties adopt follow in each round. Conse-
quently, 0 is the utility for the rational adversary and d0 ,
d1 for P0 and P1 respectively. Note that at the beginning
of the protocol, the rational adversary deposits kg bit
coins. Here k is the maximize number of corrupted par-
ties. Each corrupted party will get g after he agrees to
be corrupted and sends back proper information to the
adversary. Note that we do not use simply bribing the
party to prevent the following scenario. One party may

2918	 Y. Wang et al.

1 3

pretend agree to be corrupted but he may go back on his
word after he receives the bribery money. Therefore, we
utilize deposits in this paper.

2.	 Figure 2b. Adv adopts �P0,P1
 and corrupts P0 , P1 at the

beginning of the protocol. Then two corrupted parties
adopt follow in each round. Consequently, they will not
get any utility since they are corrupted and the utility
goes to the rational adversary. Adv learns the incorrect
output and get utility d1 − 2g or d0 − 2g . While each
honest party gets g. Recall that 2g is the corruption cost
for two parties. Note that the optimal strategy for them
is to “follow” the protocol since “follow” leads to higher
utility. Therefore, both parties will coordinate to “fol-
low” when they are corrupted at the same time.

3.	 Figure 2c. Adv adopts �P1
 and only corrupts P1 . Then

Adv has two choices.

(a)	 If he adopts abort, then the protocol ends in Step
1 and both parties (the corrupted P1 and P0 ) learn
the incorrect output. Adv gets utility d1 − g , P1
gets g, and P0 gets utility d0.

(b)	 If he adopts follow, then the protocol enters into
Step 2. The honest P0 adopts follow in the second
step. Consequently, both parties (the corrupted P1
and P0 ) learn the incorrect output. Adv gets utility
d1 − g , P1 gets g, and P0 gets utility d0 . Note that
in round 1 ≤ i ≤ i∗ − 1 , parties always learn incor-
rect outputs.

4.	 Figure 2d. The honest P1 first adopts follow and then the
rational adversary adopts �P0

 . As in Fig. 2c. Adv has two
choices.

P0P0

P1
PP1

P0P0

P0P0

PP1 PP1

P0P0

(a) No party is corrupted. (c) Only P1 is corrupted.

(d) Only P0 is corrupted. (e) P1 is first corrupted and then P0 .

follow abort

abort

abort

abort

follow follow

follow

follow

follow

follow

follow

(0, d1, d0)

(d1-g, g, d0)

(d1-g, g, d0)

(d0-g, d1, g)
(d1-2g, g, g)

Adv Adv
P1

Adv
P0

Adv
P1

Adv
P0

(d0-g, d1, g)

(d1-g, g, d0)

(d1-2g, g, g)

P

PP1
follow

(d1-2g, g, g)

AdvP1 0P,

follow

(b) P1 and P0 are corrupted currently.

Fig. 2   The utility definition for the case i ∈ [1, i∗ − 1]

2919Rational adversary with flexible utility in secure two‑party computation﻿	

1 3

(a)	 If he adopts abort, then the protocol ends Step 2
and both parties ( P1 and the corrupted P0 ) learn
the incorrect output. Adv gets utility d0 − g , P1
gets d1 , and P0 gets g.

(b)	 If he adopts follow, then the protocol enters into
the next round. Consequently, both parties learn
the incorrect output. Adv gets utility d0 − g , P1
gets d1 , and P0 gets g.

5.	 Figure 2e. Adv first adopts �P1
 . Then Adv has two

choices.

(a)	 If he adopts abort, then the protocol ends in the
first step and both parties (the corrupted P1 and
P0 ) learn the incorrect output. Adv gets utility
d1 − g , P1 gets g, and P0 gets utility d0.

(b)	 If he adopts follow, then the protocol enters into
the second step. The honest P0 will adopt follow

in the second step. However, things are different
from Fig. 2c. Here Adv then corrupts P0 at this
point. As a rational adversary, the secondly cor-
rupted party P0 still may adopt abort or follow.

	 i.	 If he adopts abort, the protocol ends in
Step 2 and Adv learns the incorrect out-
put. Adv gets utility d1 − 2g , P1 and P0
gets g respectively since they are cor-
rupted.

	 ii.	 If he adopts follow, the protocol enters
into the next round. Consequently, Adv
learns the incorrect output gets utility
d1 − 2g . At the same time P1 and P0 gets
g respectively.

The second case i = i∗.
This case is much complex. Fairness may be broken if P0

is corrupted by the rational adversary, who does not send his

P0P0

P1
PP1

P0P0

P0P0

PP1 PP1

P0P0

(a) No party is corrupted. (c) Only P1 is corrupted.

(d) Only P0 is corrupted. (e) P1 is first corrupted and then P0 .

follow abort

abort

abort

abort

follow follow

follow

follow

follow

follow

follow

(0, a1, a0)

(d1-g, g, d0)

(a1-g, g, a0)

(c0-g, b1, g)
(a1-2g, g, g)

Adv Adv
P1

Adv
P0

Adv
P1

Adv
P0

(a0-g, a1, g)

(d1-g, g, d0)

(a1-2g, g, g)

P

PP1
follow

(a1-2g, g, g)

AdvP1 0P,

follow

(b) P1 and P0 are corrupted currently.

Fig. 3   The utility definition for the case i = i
∗

2920	 Y. Wang et al.

1 3

message to P1 in Step 2. The utility of this case is complex
as shown in Fig. 3.

1.	 Figure 3a. Adv adopts 𝛷̄ and corrupts no one. Therefore,
two honest parties adopt follow in each round. Conse-
quently, 0 is the utility for the rational adversary and a0 ,
a1 for P0 and P1 respectively.

2.	 Figure 3b. Adv adopts �P0,P1
 and corrupts P0 , P1 cur-

rently at the beginning of the protocol. Then two cor-
rupted parties adopt follow in each round. Consequently,
Adv learns the correct output and gets utility a1 − 2g
or a0 − 2g . While the honest parties get g respectively.
Recall that 2g is the corruption cost for two parties.

3.	 Figure 3c. Adv adopts �P1
 and only corrupts P1 . Then

Adv has two choices.

(a)	 If he adopts abort, then the protocol ends in Step 1
and both parties (the corrupted P1 and P0 ) cannot
learn the correct output. Adv gets utility d1 − g ,
P1 gets g, and P0 gets utility d0 . In this case, both
P1 and P0 reconstruct the output of round i∗ − 1 .
Recall the output is correct after round i∗.

(b)	 If he adopts follow, then the protocol enters into
Step 2. The honest P0 adopts follow in Step 2. In
this case, both parties reconstruct the output of
round i∗ . Consequently, both parties (the Adv and
P0 ) learn the incorrect output. Adv gets utility
a1 − g , P1 gets g, and P0 gets utility a0.

4.	 Figure 3d. The honest P1 first adopt follow and then the
rational adversary adopts �P0

 . Adv has two choices.

(a)	 If he adopts abort, then fairness will be broken.
Adv (the corrupted P0 ) reconstructs the output of
round i∗ since in Step 1, the honest P1 sends his
message to him. However, in Step 2, Adv adopts
Abort and does not send message to honest P1 .
Consequently, P1 can only reconstruct the output
of round i∗ − 1 . Therefore, Adv gets utility c0 − g ,
P1 gets b1 , and P0 gets g.

(b)	 If he adopts follow, then the protocol enters into
the next round. Both parties will reconstruct the
message of round i∗ . Consequently, both parties
learn the correct output. Adv gets utility a0 − g ,
P1 gets a1 , and P0 gets g.

4.	 Figure 3e. Adv first adopts �P1
 . Then Adv has two

choices.

(a)	 If he adopts abort, then the protocol ends in Step 1
and both parties (the corrupted P1 and P0 ) recon-
struct the incorrect output of round i∗ − 1 . Adv
gets utility d1 − g , P1 gets g, and P0 gets utility d0.

(b)	 If he adopts follow, then the protocol enters into
Step 2. Adv corrupts P0 at this point. As a rational
adversary, the secondly corrupted party P0 adopts
abort or follow. However, it does not affect Adv
to reconstruct the correct output in round i∗ . Adv
learns the messages of P0 once he corrupts P0 .
Therefore Adv gets a1 − 2g and the corrupted par-
ties get g respectively.

The third case i ∈ [i∗ + 1, r].
Under this case, both rational adversary and honest par-

ties get correct values no matter whom rational adversary
corrupts. Therefore, fairness can be trivially achieved since
both adversary and honest parties get correct output.

We present the utility definition under this case in Fig. 4.
As mentioned above, there are altogether five cases. The
definitions are similar to Fig. 2. We only replace d0 and d1
with a0 and a1 Fig. 4.

3.3 � New view definition for rational adversary

Previous works about rational parties/adversaries use tradi-
tional view notions. In this paper, we add history and utility
into the definition of view. Recall A = {𝛷Pb

, 𝛷̄, follow, abort}
is the action set for rational adversary and honest parties.
Denote ai

0
∈ A , ai

1
∈ A, ai

adv
∈ A as the actions in the ith

round for P0,P1 and rational adversary respectively. Denote
hi = (ai

0
, ai

1
, ai

adv
) as the action tuple in the ith round and

h0 = � as the initial action tuple. Let H = (h0, h1,… .) denote
the history of the protocol. Let ui = (ui

0
, ui

1
, ui

adv
) denote the

utility tuple in the ith round. Let U = (u1, u2,… .) denote the
utility of the protocol as described in Figs. 2, 3, 4.

Definition 2  The view of one party (say x0 ) includes the
input x0 , random strings ri

0
 , received messages mi

0
 , the his-

tory tuple hi and the utility tuple ui in the ith round. There-
fore, we can denote the view of x0 as view 0

�
 (x0, x1, n)

= (x0, r
i
0
,mi

0
, hi, ui) , where n is the security parameter. The

view of rational adversary is denoted as follows: view adv
�

(x0, x1, n) = (xadv, r

i
adv

,mi
adv

, hi, ui).

4 � Ideal and real paradigm

4.1 � Ideal world

Just as the model in Moran et al. (2009), Katz (2007), Gor-
don et al. (2008), Gordon and Katz (2012), Groce and Katz
(2012), our ideal model consists of a third trusted party
(TTP) and trust ledger for adversary to deposit (Ruffing et al.
2015; Bentov and Kumaresan 2014; Andrychowicz et al.
2014a; Kumaresan and Bentov 2014; Andrychowicz et al.
2014b). The protocol in the ideal world is defined as follows.

2921Rational adversary with flexible utility in secure two‑party computation﻿	

1 3

1.	 The utility is common knowledge for TTP and parties.
2.	 Each party chooses his input x0 ( x1 ), which are sampled

according to a joint probability distribution D over input
pairs.

3.	 Each party sends x′
0
 ( x′

1
 ), where x′

0
 and x′

1
 denote the

value parties send to the TTP.
4.	 TTP returns ⟂ to both parties and the protocol terminates

if x�
0
=⟂ or x�

1
=⟂.

5.	 Otherwise, TTP computers f (x�
0
, x�

1
) and returns it to

both parties.
6.	 Honest parties output what they received by TTP. While

corrupted parties output what the rational adversary out-
put. Note that rational adversary also learns his utility
according to the correctness of its output.

Recall that the rational adversary deposit 2g to the ledger.
If he corrupts k ∈ {0, 1, 2} parties, then he will get back
(2 − k)g bit coins and each corrupted party will get g. The

utility whether he gets correct output is obtained according
to Table 1. The utility considering the cost of rational adver-
sary is shown in Figs. 2, 3, 4 respectively under different
cases. Intuitively, the properties of correctness, privacy and
fairness can be all achieved in the ideal world. Then we give
our protocol in the real world.

4.2 � Real world

The framework of our real world still follows a hybrid pro-
tocol (Moran et al. 2009; Katz 2007; Gordon et al. 2008;
Gordon and Katz 2012; Groce and Katz 2012), where the
first stage is a “pre-processing” step utilizing any proto-
col for secure two-party computation and the second stage
includes r = (n) rounds. In each round, there are two steps
(ref. Sect. 2.1).

For completeness, we rehearsal the first stage in Groce
and Katz (2012).

P0P0

P1
PP1

P0P0

P0P0

PP1 PP1

P0P0

(a) No party is corrupted. (c) Only P1 is corrupted.

(d) Only P0 is corrupted. (e) P1 is first corrupted and then P0 .

follow abort

abort

abort

abort

follow follow

follow

follow

follow

follow

follow

(0, a1, a0)

(a1-g, g, a0)

(a1-g, g, a0)

(a0-g, a1, g)
(a1-2g, g, g)

Adv Adv
P1

Adv
P0

Adv
P1

Adv
P0

(a0-g, a1, g)

(a1-g, g, a0)

(a1-2g, g, g)

P

PP1
follow

(a1-2g, g, g)

AdvP1 0P,

follow

(b) P1 and P0 are corrupted currently.

Fig. 4   The utility definition for the case i ∈ [i∗ + 1, r]

2922	 Y. Wang et al.

1 3

1.	 Select i∗ according to a geometric distribution p such
that parties get incorrect output before round i∗ and learn
correct output after this round.

2.	 Assign values r0
i
 and r1

i
 ( i = 1, 2,… , r ) to P0 and P1

respectively. These values are chosen according to the
following rules.

(a)	 r0
i
 and r1

i
 are randomly selected in the domain of f

when i < i∗.
(b)	 r0

i
 and r1

i
 are set to be f (x0, x1) when i ≥ i∗.

3.	 Randomly choose s0
i
 ( s1

i
 ) and t0

i
 ( t1

i
 ) such that s0

i
⊕ t0

i
= r0

i

( s1
i
⊕ t1

i
= r1

i
).

We consider the cost and utility in the second stage, which
includes r rounds and in each round, there are two steps.

1.	 At the beginning of the second stage, rational adver-
sary deposit kg bit coins for k corrupted parties. Note
that, rational adversary will returned (2 − k)g bit coins
if he corrupts k parties and the corrupted party will get
g as a compensation. Once the parties are corrupted,
he will quit the protocol by getting g. Then the rational
adversary and the other party agree on an session ID to
exchange the shares.

2.	 At each round,

(a)	 Both parties verify the session ID. If it is verified
to be correct, then the start to exchange the shares.
Otherwise, they abort. The main task of this step
is to prevent reuse of shares. For example, the
corrupted parties may reuse the shares after he
receives g.

(b)	 In the first step, P1 first sends t0
i
 to P0.1 P0 com-

putes r0
i
= t0

i
⊕ s0

i
 and the protocol enters into the

second step. Otherwise the protocol ends, P1 does
not send t0

i
 to P0 . P0 and P1 return r0

i−1
 and r1

i−1
.

(c)	 In the second step, P0 sends s1
i
 to P1 . P1 computes

r1
i
= t1

i
⊕ s1

i
 . The protocol enters into the next

round. Otherwise the protocol ends, P0 does not
send s1

i
 to P1 . P0 returns r0

i
 and P1 returns r1

i−1
.

3.	 Both parties leans the latest output if the protocol ends
at the last round or end at the ith round.

We present the first and the second stage in Figs. 5 and 6.

Fig. 5   The first stage of our protocol

Fig. 6   The second stage of our protocol

1  There are two cases for P1 sending t0
i
 to P0 . The first case: P1 is not

corrupted. The second case: P1 is corrupted by rational adversary but
the adversary decides not to deviate from the protocol according to
his utility.

2923Rational adversary with flexible utility in secure two‑party computation﻿	

1 3

5 � Security and utility in the presence
of rational adversary

5.1 � The security analysis

In this section, we will prove the security of our hybrid pro-
tocol. We use the traditional ideal/real paradigm except for
our new view definition. Furthermore, the rational adversary
corrupted honest parties in a dynamical way. In addition, we
should consider the history and utility when constructing
the simulator. Note that in Gordon and Katz (2012), they
consider how to construct simulator in the presence of static
adversary. In Garay et al. (2013), although dynamic cor-
ruption is considered, history and utility do not appear in
the simulation construction. In this paper, rational adversary
decides to corrupt which parties during the execution of the
protocol according to their history and utility. Therefore,
utility should be considered in the simulator construction.

Theorem 1  Let ΠSG be the hybrid model, where ShareGen
is an functionality. For every non-uniform, polynomial-time
rational adversary ral who adaptively corrupts honest par-
ties, there exist a non-uniform, polynomial-time adversary
 ral in the ideal world computing f such that the following
equations establish. Note that  ral corrupts the same parties
as the rational adversary.

Proof  As previous works of simulator construction, we pre-
sent the simulator  ral with black-box accessing to ral . Also
similar to Gordon and Katz (2012), we omit the MAC-tags
and keys. The simulator is much complex since the rational
adversary corrupt parties in a dynamic way. Fortunately, we
only discuss two-party computation in this paper. Therefore,
there are altogether five cases with respect to the corruption
sequence.

1.	 Corrupt both P0 and P1 at the same time. It is trivial to
construct a simulator since he learns all the inputs at the
beginning of the simulation. Note that rational adversary
will not get back his 2g deposit.

2.	 No one is corrupted. No simulator will be constructed
in this case.

3.	 Only P1 is corrupted.
4.	 Only P0 is corrupted.
5.	 First corrupt P1 and then P0.

Consequently, we will stress on the last three cases, which
have the same initial process. That is, once the rational
adversary ral decides to corrupt parties, the simulator  ral

{IDEALf ,ral(aux)(x0, x1, n)}x0,x1←D,aux∈{0,1}∗,H,U

c
≡ {HYBRIDΠSG,ral(aux)(x0, x1, n)}x0,x1←D,aux∈{0,1}∗,H,U

invokes rational adversary the auxiliary input, and the secu-
rity parameter n, initial history � and utility definition U in
Figs. 2, 3, 4. However, the simulator cannot learn the input
of the corrupted parties since the rational adversary do not
know which parties to corrupt. We inherit the basic idea of
Gordon et al. (2008) to construct a simulator.

Only P1 is corrupted

1.	  ral invokes ral on the cost of g bit coins.
2.	  ral invokes ral on the input x1 once ral corrupts P1 .

The simulator choose x′
1
 according to distribution D.

Here D is defined the same as that of Groce and Katz
(2012).

3.	  ral sends x1 to the functionality ShareGen as if the cor-
rupted party does in the real world.

4.	  ral sets r = p ⋅ O(n) and uniformly chooses shares t0
i
 and

t1
i
 , where i ∈ [1, 2… , r] .  ral returns the random shares

to ral as if its output from the computation of Shar-
eGen.

5.	 If the rational adversary sets x1 =⟂ according to utility,
then  ral sends x′

1
 to the functionality ShareGen comput-

ing f.  ral outputs whatever ral outputs and the protocol
ends. Otherwise, the protocol proceeds as follows.

6.	 Choose i∗ according to geometrical distribution with
parameter p.

7.	 For i = 1 to i∗ − 1

(a)	 If  ral chooses x′
0
 uniformly from it domain, com-

putes r1
i
= f (x�

0
, x1) and sets s1

i
= t1

i
⊕ r1

i
 . It gives

s1
i
 to ral . ral computes his utility according to

the history and his output.
(b)	 If ral decides to take the action abort, then  ral

outputs whatever ral outputs and the protocol
ends.

8.	 For i = i∗ to r

(a)	 If i = i∗ then  ral sends x1 to f and gets z = f (x0, x1) .
Then  ral sets s1

i
= t1

i
⊕ z . It gives s1

i
 to ral . ral

computes his utility according to the history and
his output.

(b)	 If ral decides to take the action abort, then  ral
outputs whatever ral outputs and the protocol
proceed into next round.

	  item If ral never aborted (and all r iterations are
done),  ral outputs what ral outputs and halts.

2924	 Y. Wang et al.

1 3

The construction of the case where only P0 is corrupted is
similar to the case where only P1 is corrupted. We omit the
description here due to limit of space.

First corrupt P1 and then P0

In this case, the simulator can wait until ral corrupt P0
and P1 . Note that, if ral first corrupt P1 and ral decides to
adopt abort in the first step. Then the protocol ends, thus this
case is similar to the case where only P1 is corrupted since
ral has no chance to corrupt P0 . In this case we discuss the
case, where ral first corrupts P1 and ral decides not to adopt
abort. Consequently, ral corrupts P0 . Note in this case, ral
cost 2g bit coins.

1.	  ral first invokes ral on the cost of g bit coins. Then  ral
invokes ral if he has the chance to corrupt P0 later. This
will affect the cost and utility for the rational adversary
and simulator.

2.	  ral invokes ral on the input x0 and x1 until ral cor-
rupts P0 and P1 . The simulator choose x′

1
 according to

distribution D since ral may adopt abort in the second
step. Here D is defined the same as that of Groce and
Katz (2012).

3.	  ral sends x0 and X1 to the functionality ShareGen as if
the parties do in the real world.

4.	  ral sets r = p ⋅ O(n) and uniformly chooses shares s0
i
 , s1

i

and t0
i
 , t1

i
 , where i ∈ [1, 2… , r] .  ral returns the random

shares to ral as if its output from the computation of
ShareGen.

5.	 Choose i∗ according to geometrical distribution with
parameter p.

6.	 For i = 1 to i∗ − 1

(a)	  ral chooses x′
0
and x′

1
 uniformly from it domain,

computes r1
i
= f (x�

0
, x1) , r0i = f (x0, x

�
1
) and sets

t0
i
= s0

i
⊕ r0

i
 , s1

i
= t1

i
⊕ r1

i
 . It gives t0

i
 and s1

i
 to ral

. ral computes his utility according to the history
and his output.

(b)	 If ral decides to take the action abort, then  ral
outputs whatever ral outputs and the protocol
ends.

7.	 For i = i∗ to r

(a)	 If i = i∗ then  ral sends x0 to f and gets z = f (x0, x1) .
Then  ral sets t0

i
= s0

i
⊕ z and s1

i
= t1

i
⊕ z . It gives

t0
i
 and s1

i
 to ral . ral computes his utility accord-

ing to the history and his output.
(b)	 If ral decides to take the action abort, then  ral

outputs whatever ral outputs and the protocol
proceed into next round.

	  item If ral never aborted (and all r iterations are
done),  ral outputs what ral outputs and halts.

From the construction of simulator, we can see that it suffices
that,

▪

5.2 � The utility analysis

To achieve the property of fairness, we must analysis
the utility of the rational adversary such that ral has no
incentives to take abort. That is, ral is willing to take
�Pb

.
Then we analyze the utility under different corruption

cases.

1.	 When no one is corrupted, then rational adversary will
get 0 since he costs 0 and learn nothing. The honest par-
ties will get a0 and a1.

2.	 When two parties all corrupted, then the rational adver-
sary will get a0 − 2g . In this case, the rational adversary
learns the output. However, he may pay 2g to learn the
output. Whilst the honest parties get g.

3.	 When only P1 is corrupted.

(a)	 In round 1 to i∗ , the rational adversary will not
learn the output and the honest party P0 will not
learn the output. Therefore, the rational adversary
gets utility d1 − g and P0 gets utility d0.

(b)	 In round i∗ + 1 to r, the rational adversary will
learn the output and the honest party P0 will also
learn the output. Therefore, the rational adversary
gets utility a1 − g and P0 gets utility a0.

4.	 When only P0 is corrupted.

(a)	 In round 1 to i∗ − 1 , the rational adversary will not
learn the output and the honest party P1 will not
learn the output. Therefore, the rational adversary
gets utility d0 − g and P1 gets utility d1.

(b)	 In round i∗ , as rational adversary, he may adopt
abort. In this case, the rational adversary will
learn the output and the honest party P1 will not
learn the output. Therefore, the rational adversary
gets utility b0 − g and P1 gets the utility c1.

(c)	 In round i∗ + 1 to r, the rational adversary will
learn the output and the honest party P1 will also

{IDEALf ,ral(aux)(x0, x1, n)}x0,x1←D,aux∈{0,1}∗,H,U

c
≡ {HYBRIDΠSG,ral(aux)(x0, x1, n)}x0,x1←D,aux∈{0,1}∗,H,U

2925Rational adversary with flexible utility in secure two‑party computation﻿	

1 3

learn the output. Therefore, the rational adversary
gets utility a0 − g and P1 gets utility a1.

5.	 When P1 is first corrupted and then P0 is corrupted.

(a)	 In round 1 to i∗ − 1 , the rational adversary will not
learn the output and the honest party P1 will not
learn the output. Therefore, the rational adversary
gets utility d0 − g and P1 gets utility d1.

	 i.	 In round i∗ , if the rational adversary P1
will adopt abort, then rational adversary
has no chance to corrupt P0 . Consequent-
ly, the protocol ends. In this case, the ra-
tional adversary will not learn the output
since he does not learn the value in round
i∗ . Note that the rational adversary learns
the value in round i∗ − 1 . Then the utility
of rational adversary is d0 − g.

	 ii.	 In round i∗ , if the rational adversary P1
will not adopt abort, then the protocol
enters into the second step. In this case,
the rational adversary corrupts P0 , then
the rational adversary will learn the out-
put. Therefore, the rational adversary gets
utility a0 − 2g.

(b)	 In round i∗ + 1 to r, the rational adversary will
learn the output and the honest party P1 will also
learn the output. Therefore, the rational adversary
gets utility a0 − g and P1 gets utility a1 (Table 2).

If all utilities are lower than 0, then rational adversary has
no incentives to corrupt any parties. That is:

f (x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

g < d0; g < d1; g <
a0

2
.

g < b0; g < d1; g <
b0

2
; g <

a0

2
.

g < a0; g < a1; g <
a0

2
.

Recall that b0 > a0 ≥ d0 ≥ c0 . So given d ≤
a0

2
 and

g ≤ min{d0, d1} , the rational adversary has no incentives to
adopt abort. Therefore, fairness is achieved.

6 � Conclusions and future works

Cloud computing is a hot topic in information technology
field, where security issues bear the brunt in most settings.
It combines distributed resources to improve computational
efficiency, which becomes the bottleneck for its further
development. Rational secure two-party computation, which
solves security computation between two parties, provides
an effective way to solve these security issues. However, gen-
eral assumptions on rational adversaries cannot be directly
applied in cloud computing settings. We should design new
paradigms for rational secure two-party computation since
there are new characters in cloud computing due to the intro-
duction of utilities. One task of the paradigms is to design
more practical and efficient protocols in cloud computing.
In this paper, we consider a two-party computation in the
presence of rational adversary. The distinct from previous
works lies that we consider the adversary as rational, who
has dynamical utilities during the computation. We redefine
the utilities for rational adversary by game tree. Then, we
redefine the views for rational adversary and try to reflect it
in the simulator construction. Finally we prove the security
of this protocol in the presence of rational adversary.

The new adversary proposed in this paper only adapts to
two-party settings and only simple equilibrium is consid-
ered in this paper. The future works include considering the
multi-party computation in the presence of rational adver-
saries. Under this case, there are lots of problems should be
solved. For example, a set of parties may collude to maxi-
mize their utility. The second problem is to consider adap-
tive corruption with erase. That is, parties may get partial
information of the protocol. The last problem is to consider
stronger equilibriums in the new setting.

Acknowledgements  This work is partially supported by National
Natural Science Foundation of China (Nos. 61502218, 61771231),
Shandong Province Higher Educational Science and Technology Pro-
gram (J14LN20), Natural Science Foundation of Shandong Province
(ZR2017MF010, ZR2014FM005), Shandong Province Science and
Technology Plan Projects (2015GSF116001), Ph.D. Programs Founda-
tion of Ludong University (Nos. LY2014033, LY2015033), Fujian Pro-
vincial Key Laboratory of Network Security and Cryptology Research
Fund (Fujian Normal University) (No. 15004). Priority Academic Pro-
gram Development of Jiangsu Higher Education Institutions (PAPD)
and Jiangsu Collaborative Innovation Center on Atmospheric Environ-
ment and Equipment Technology (CICAEET). Yi Tang is supported
by Guangzhou scholars project (No. 1201561613).

Table 2   The utility of rational adversary under different corruptions

Case 1 to i∗ − 1 i∗ i∗ to r

P0 is corrupted d0 − g b0 − g a0 − g

P1 is corrupted d1 − g d1 − g a1 − g

P1 is corrupted then P0 d0 − g b0 − 2g a0 − g

All is corrupted a0 − 2g a0 − 2g a0 − 2g

No one is corrupted 0 0 0

2926	 Y. Wang et al.

1 3

References

Al-Roomi M, Al-Ebrahim S, Buqrais S, Ahmad I (2013) Cloud
computing pricing models: a survey. Int J Grid Distrib Comput
6(5):93–106

Alwen J, Jonathan K, Ueli M, Vassilis Z (2012) Collusion-preserv-
ing computation. In: Advances in Cryptology–CRYPTO 2012,
Springer, New York, pp 124–143

Andrychowicz M, Dziembowski S, Malinowski D, Mazurek Ł (2014a)
Fair two-party computations via bitcoin deposits. In: Financial
cryptography and data security. Springer, New York, pp 105–121

Andrychowicz M, Dziembowski S, Malinowski D, Mazurek L (2014b)
Secure multiparty computations on bitcoin. In: 2014 IEEE sym-
posium on security and privacy. IEEE, pp 443–458

Asharov G, Lindell Y (2011) Utility dependence in correct and fair
rational secret sharing. J Cryptol 24(1):157–202

Asharov G, Canetti R, Hazay C (2011) Towards a game theoretic view
of secure computation. Advances in cryptology-EUROCRYPT
2011. Springer, New York, pp 426–445

Atawneh S, Almomani A, Hussein AB, Putra S, Brij G (2017) Secure
and imperceptible digital image steganographic algorithm based
on diamond encoding in dwt domain. Multimed Tools Appl
76(18):18451–18472

Beekman JG (2016) A denial of service attack against fair computa-
tions using bitcoin deposits. Inf Process Lett 116(2):144–146

Bentov I, Kumaresan R (2014) How to use bitcoin to design fair proto-
cols. In: Advances in cryptology-CRYPTO 2014. Springer, New
York, pp 421–439

Chan T-H, Jia K, Gao S, Lu J, Zeng Z, Ma YP (2015) A simple deep
learning baseline for image classification? IEEE Trans Image Pro-
cess 24(12):5017–5032

Chang X, Ma Z, Lin M, Yang Y, Hauptmann A (2017a) Feature interac-
tion augmented sparse learning for fast kinect motion detection.
IEEE Trans Image Process 26(8):3911–3920

Chang X, Yu Y-L, Yang Y, Xing EP (2017b) Semantic pooling for
complex event analysis in untrimmed videos. IEEE Trans Pattern
Anal Mach Intell 39(8):1617–1632

Cleve R(1986) Limits on the security of coin flips when half the proces-
sors are faulty. In: Proceedings of the 18th annual ACM sympo-
sium on theory of computing, ACM, pp 364–369

Garay J, Katz J, Maurer U, Tackmann B, Zikas V (2013) Rational pro-
tocol design: cryptography against incentive-driven adversaries.
In: Foundations of computer science (FOCS), 2013 IEEE 54th
annual symposium on, IEEE, pp 648–657

Goldreich O (2001) Foundations of cryptography: volume 1, basic
tools. Cambridge University Press, Cambridge

Goldreich O (2009) Foundations of cryptography: volume 2, basic
applications. Cambridge University Press, Cambridge

Gordon DS, Carmit H, Katz J, Lindell Y (2008) Complete fairness in
secure two-party computation. In: Proceedings of the 40th annual
ACM symposium on theory of computing, ACM, pp 413–422

Gordon SD, Katz J (2006) Rational secret sharing, revisited. In: Secu-
rity and cryptography for networks. Springer, New York, pp
229–241

Gordon DS, Katz J (2012) Partial fairness in secure two-party computa-
tion. J Cryptol 25(1):14–40

Groce A, Katz J (2012) Fair computation with rational players. In:
Annual international conference on the theory and applications
of cryptographic techniques. Springer, pp 81–98

Groce A, Katz J, Thiruvengadam A, Zikas V (2012) Byzantine agree-
ment with a rational adversary. Automata, languages, and pro-
gramming. Springer, New York, pp 561–572

Gu B, Sheng VS, Tay KY, Romano W, Li S (2015a) Incremental sup-
port vector learning for ordinal regression. IEEE Trans Neural
Netw Learn Syst 26(7):1403–1416

Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015b) Incremental
learning for �-support vector regression. Neural Netw 67:140–150

Gu B, Sun X, Sheng VS (2017) Structural minimax probability
machine. IEEE Trans Neural Netw Learn Syst 28(7):1646

Gupta B, Agrawal DP, Yamaguchi S (2016) Handbook of research on
modern cryptographic solutions for computer and cyber security.
IGI Glob

Halpern J, Teague V (2004) Rational secret sharing and multiparty
computation: extended abstract. In STOC 2004: Proceedings of
the 36th annum ACM symposium on theory of computing, New
York, ACM, pp 623–632

Higo H, Tanaka K, Yasunaga K (2013) Game-theoretic security for bit
commitment. International workshop on security. Springer, New
York, pp 303–318

Ibtihal M, Hassan N (2017) Homomorphic encryption as a service for
outsourced images in mobile cloud computing environment. Int J
Cloud Appl Comput (IJCAC) 7(2):27–40

Izmalkov S, Micali S, Lepinski M (2005) Rational secure computa-
tion and ideal mechanism design. In: Foundations of computer
science, 2005. FOCS 2005. 46th Annual IEEE symposium on,
IEEE, pp 585–594

Jararweh Y, Al-Ayyoub M, Fakirah M, Alawneh L, Gupta BB (2017)
Improving the performance of the Needleman–Wunsch algorithm
using parallelization and vectorization techniques. Multimed Tool
Appl (3):1–17

Katz J (2007) On achieving the best of both worlds in secure multiparty
computation. In Proceedings of the 39th annual ACM symposium
on theory of computing, ACM, pp 11–20

Kiayias A, Zhou H-S, Zikas V (2016) Fair and robust multi-party com-
putation using a global transaction ledger. In: Annual international
conference on the theory and applications of cryptographic tech-
niques, Springer, pp 705–734

Kol G, Naor M (2008) Cryptography and game theory: designing pro-
tocols for exchanging information. In: Fifth theory of cryptogra-
phy. Springer, New York, pp 320–339

Komatsubara Tsuyoshi, Manabe Yoshifumi (2016) Game-theoretic
security of commitment protocols under a realistic cost model.
In Advanced Information Networking and Applications (AINA),
2016 IEEE 30th International Conference on, pages 776–783.
IEEE

Kumaresan R, Bentov I (2014) How to use bitcoin to incentivize cor-
rect computations. In: Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security, ACM, pp
30–41

Leung MKK, Xiong YH, Lee LJ, Frey BJ (2014) Deep learning of the
tissue-regulated splicing code. Bioinformatics 30(12):i121–i129

Li J, Chen X, Li M, Lee PPC, Li J, Lou W (2014a) Secure dedupli-
cation with efficient and reliable convergent key management.
Parallel Distrib Syst IEEE Trans 25(6):1615–1625

Li J, Huang X, Li J, Chen X, Xiang Y (2014b) Securely outsourcing
attribute-based encryption with checkability. Parallel Distrib Syst
IEEE Trans 25(8):2201–2210

Li J, Zhang Y, Chen X, Xiang Y (2018) Secure attribute-based data
sharing for resource-limited users in cloud computing. Comput
Secur 72:1–12

Li P, Li J, Huang Z, Gao C-Z, Chen W-B, Chen K (2017a) Privacy-
preserving outsourced classification in cloud computing. Cluster
Comput pp 1–10

Li P, Li J, Huang Z, Li T, Gao C-Z, Yiu S-M, Chen K (2017b) Multi-
key privacy-preserving deep learning in cloud computing. Future
Gen Comput Syst 74(C):76–85

2927Rational adversary with flexible utility in secure two‑party computation﻿	

1 3

Liang M, Li Z, Chen T, Zeng J (2015) Integrative data analysis of
multi-platform cancer data with a multimodal deep learn-
ing approach. IEEE/ACM Trans Comput Biol Bioinf (TCBB)
12(4):928–937

Maleka S, Shareef A, Rangan CP (2008a) The deterministic protocol
for rational secret sharing. Parallel and distributed processing. In:
IEEE international symposium on parallel and distributed process-
ing, pp 1–7

Maleka S, Shareef A, Rangan CP (2008b) Rational secret sharing with
repeated games. Information security practice and experience.
Springer, New York, pp 334–346

Micali S, Shelat A (2009) Purely rational secret sharing. Theory of
cryptography. Springer, New York, pp 54–71

Moran T, Naor M, Segev G (2009) An optimally fair coin toss. In:
Theory of cryptography. Springer, New York, pp 1–18

Moses Jr WK, Rangan CP (2011) Rational secret sharing over an asyn-
chronous broadcast channel with information theoretic security.
arXiv preprint arXiv:1112.4033

Nakamoto S (2009) Bitcoin: a peer-to-peer electronic cash system.
Counsulted

Ong SJ, Parkes DC, Rosen A, Vadhan SP (2009) Fairness with an hon-
est minority and a rational majority. In: Theory of cryptography.
Springer, pp 36–53

Osborne MJ, Rubinstein A (1994) A course in game theory. MIT Press,
Cambridge

Ren Y, Shen J, Wang J, Han J, Lee S (2015) Mutual verifiable provable
data auditing in public cloud storage. J Int Technol 16(2):317–323

Ruffing T, Kate A, Schröder D (2015) Liar, liar, coins on fire!: penal-
izing equivocation by loss of bitcoins. In: Proceedings of the 22nd
ACM SIGSAC conference on computer and communications
security, ACM, pp 219–230

Ruijin Z, Tan Y, Zhang Q, Fei W, Zheng J, Yuan XUE (2016) Deter-
mining image base of firmware files for arm devices. IEICE Trans
Inf Syst 99(2):351–359

Xuezhi W, Ling S, Yu X, Wei F (2015) A rapid learning algorithm for
vehicle classification. Inf Sci 295:395–406

Yu C, Li J, Li X, Ren X, Gupta BB (2017) Four-image encryption
scheme based on quaternion fresnel transform, chaos and com-
puter generated hologram. Multimed Tool Appl pp 1–24

Zhu R, Tan Y, Zhang Q, Li Y, Zheng J (2016) Determining image base
of firmware for arm devices by matching literal pools. Digital
Invest 16:19–28

http://arxiv.org/abs/1112.4033

	Rational adversary with flexible utility in secure two-party computation
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Outlines

	2 Background
	2.1 Rational two-party protocol and utility definition
	2.2 Basic framework of a rational two-party protocol
	2.3 Views and computational indistinguishability

	3 Some new definitions for rational adversary
	3.1 Corruption sequence for rational adversary
	3.2 New utility for rational adversary
	3.3 New view definition for rational adversary

	4 Ideal and real paradigm
	4.1 Ideal world
	4.2 Real world

	5 Security and utility in the presence of rational adversary
	5.1 The security analysis
	5.2 The utility analysis

	6 Conclusions and future works
	Acknowledgements
	References

