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Abstract
Secure two-party computation evaluates a function among two distributed parties without revealing the parties’ inputs except 
for the function’s outputs. Secure two-party computation can be applied into various fields like cloud computing, which is a 
composition of distribute computing, parallel computing and utility computing etc. Rational secure two-party computation 
may achieve some desirable properties under two assumptions deriving from STOC 2004. However, the emergence of new 
computing paradigms like pay-as-you-go model restricts the application of rational protocols. Previous adversaries does 
not consider payment in secure two-party protocols. Therefore, new type of adversaries should be propose for these new 
paradigms. In this paper, we address this problem by proposing a new kind of rational adversary, who consider payment 
in his relaxed utilities. The utilities are based on economic incentives instead of standard assumptions. Furthermore, the 
new rational adversary is assumed to negotiate with rational parties in protocols. It’s similar to “cost corruption” but more 
flexible. Our new adversary can dynamically negotiate with each rational party in different phases in order to maximize his 
utilities. To verify the validity of the new adversary, we model a rational secure two-party protocol, which inherits the hybrid 
framework of STOC 2007. We also prove the security in the presence of the new rational adversary under ideal/real paradigm.

Keywords  Rational adversary · Flexible utility · Secure two-party computation

1  Introduction

Rational secure two-party computation allows two rational 
parties to learn the output of a function without leaking any 
information. Meanwhile rational parties maximize their util-
ities. Utility function is a common notion in game theory, 
which assigns a number for each possible outcome. Utility 
presents the motivation for rational parties since a higher 
utility implies preference on the corresponding outcome. 
Generally, rational parties (Halpern and Teague 2004) (1) 
prefer the outcome of learning the computation result and 
(2) others not learning the result. That is, rational parties 
hope to have an advantage over others. Rational computa-
tion in the presence of rational parties may handle difficult 
tasks in cryptography like fairly information exchanging 
(Kol and Naor 2008; Gupta et  al. 2016) and Byzantine 
agreement (Groce et al. 2012). Therefore, it’s meaningful 
to delve into the utility functions of rational secure two-
party computation. It’s similar to deep learning enforcing 
a specific behaviors, which optimizes algorithms according 
to the accumulation of experiential data. It is well known 
that deep learning is a hot topic in machine learning, which 
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can be applied into various fields (Yu et al. 2017; Ibtihal 
and Hassan 2017), like biomedical data analysis (Jararweh 
et al. 2017; Atawneh et al. 2017), neural network (Liang 
et al. 2015; Leung et al. 2014; Gu et al. 2017) and image 
processing etc. (Chan et al. 2015; Zhu et al. 2016; Ruijin 
et al. 2016). Furthermore, it can reinforce learning a specific 
behaviour (e.g. cooperation) to solve specific problems (Wen 
et al. 2015; Bin et al. 2015a; Chang et al. 2017b; Gu et al. 
2015b; Chang et al. 2017a). In this paper, we try to facili-
tate rational adversary with relaxed utility definition. Most 
utility functions inherit from the basic structure of Halpern 
and Teague (2004), which limit the application scenarios 
of rational computation. The utility functions are fixed and 
lack of extensibility to new computation paradigms. So new 
flexible utility functions should be proposed to fit in with 
these new requirements. Note that, the non-adversary par-
ties in rational protocols are rational as well. Therefore, it’s 
possible for the adversary to “corrupt” them.

For example, rational adversary is fit for new computation 
paradigm like pay-as-you-go model (Al-Roomi et al. 2013) 
to complete computation in cloud (Ren et al. 2015; Li et al. 
2014a, b, 2017a, b). Therefore in cloud computing, the pref-
erences on each outcome and utility functions should include 
payment or cost. Unfortunately, utility functions in existing 
works only rely on the achievement of security properties 
like privacy and correctness without considering payment or 
cost. It’s reasonable for an external adversary in cloud to pay 
for the corruption if he “corrupts” rational parties. It’s simi-
lar to the work of Garay et al. (2013). The distinction is that 
rational parties are conditional corrupted after they negoti-
ate with the adversary. That is, corrupted parties at least get 
payment from the adversary. Note that corrupted parties get 
nothing when they are corrupted in previous works. Another 
problem is about the dynamic performance in could comput-
ing, where the adversary may corrupt different parties dur-
ing the computation. Consequently, the utilities for different 
corruption may be also different, which may incur flexible 
utility definition for the rational adversary. Therefore, there 
are three practical problems when we define the rational 
adversary: (1) preferences on outcome and flexible utility 
functions including payment; (2) cost corruption when the 
adversary negotiate; (3) dynamical corruption. To the best 
of our knowledge, previous definitions on rational adver-
saries do not cover all three problems. Consequently, new 
preferences and utilities should be redefined based on these 
changes.

In this paper we propose a new rational adversary under 
flexible utilities to address the above three problems in 
cloud computing. The new rational adversary has flexible 
utilities when they corrupt different subset of parties. There-
fore, the security discussion of two-party computation in 
the presence of the new adversary is more practical since 
the assumption on adversaries’ ability is more close to the 

actual behavioural characters. The main contributions of this 
paper are as follows.

1.	 We propose a new rational adversary under flexible 
utilities, who consider corruption cost and dynamically 
negotiate with parties during the computation.

2.	 We redefine the views for parties considering history 
and utilities with respect to the new rational adversary. 
More specifically, we combine the definition in Groce 
and Katz (2012) and the bit coin cost (Ruffing et al. 
2015; Bentov and Kumaresan 2014; Andrychowicz et al. 
2014a; Kumaresan and Bentov 2014; Andrychowicz 
et al. 2014b).

3.	 We follow the hybrid framework of Moran et al. (2009), 
Katz (2007), Gordon et al. (2008), Gordon and Katz 
(2012), Groce and Katz (2012) prove security under 
ideal/real paradigm in the new rational adversary. To 
the best of our knowledge, this is the first time to prove 
security under such a practical scenario.

1.1 � Related works

Halpern and Teague (2004) propose rational secret sharing, 
which is a specific example of multi-party computation. 
However, their protocol is non-deterministic and does not fit 
for two parties. Gordon and Katz (2006) revisit the problem 
of rational secret sharing in the presence of two rational par-
ties, which is simpler than the work of Halpern and Teague 
(2004). Maleka et al. (2008a, b) introduce repeated games 
in rational secret sharing to propose a deterministic proto-
col. The utility definitions of these works follow the same 
assumptions of Halpern and Teague (2004). That is, rational 
parties are assumed to be rational and their utility are fixed. 
These assumptions on utilities limit the applications of 
rational protocols.

Asharov and Lindell (2011) relax the standard assump-
tions on utility functions, which achieves utility inde-
pendence. While they do not consider corruption cost and 
dynamical corruption. Micali and Shelat (2009) consider 
the possibility of learning the wrong secret, which provides 
a more comprehensive set of utilities. He regards rational 
secret sharing as a specific kind of mechanism design. In 
this paper, rational parties participate in the protocol by 
themselves without considering corruption. Izmalkov et al. 
(2005) extend rational secure computation to ideal mecha-
nism design, where utilities have more general forms. How-
ever, the implementation heavily relies on ballot-box, which 
is much impractical. Mechanism design theory provides 
good motivation for flexible utility functions for rational par-
ties. Garay et al. (2013) design a rational protocol between 
protocol designer and an incentive-driven attacker. Suppose 
the utility when the attacker achieves privacy and correct-
ness is positive. They also present a natural assumption that 
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corruption of each party brings the attacker negative utility. 
Note that the adversary can adaptively corrupt parties such 
that he may control the negative utilities. The attacker’s net 
utility is the sum of the positive and negative one. It obvi-
ous that the attacker has incentives to corrupt other parties 
when the net utility is positive. It reasonably explains the 
rationality of the attacker. The a fly in the ointment is the 
neglect of fairness in Garay et al. (2013). The consequently 
work should focus on finding incentives for rational par-
ties to participate in the protocol. Komatsubara and Manabe 
(2016) prove the game-theoretic security of bit commitment 
protocols considering a practical cost model by following the 
work of Higo et al. (2013). However, their works are specific 
for commitment protocols and Lack of universality.

Cleve (1986) prove that complete fairness is impossible 
in secure two-party computation. Generally, fairness can be 
achieved either by relaxing the notion of fairness like partial 
fairness (Gordon and Katz 2012) or relax the ability of par-
ties (Ong et al. 2009). Rational protocol belongs to the lat-
ter and can achieve fairness in the presence of rational par-
ties. William et al. (2011) achieve fairness in rational secret 
sharing mixed by rational parties and honest majorities, and 
later they add malicious parties in their protocol. Their util-
ity definition inherit from Asharov and Lindell (2011) and 
do not consider corruption cost. Asharov et al. (2011) first 
give formal definitions of privacy and correctness toward 
the view of game theory and prove that these two proper-
ties can be achieved in rational protocols. Then they give 
the definition of fairness and prove that the gradual release 
properties are equal to fair computation. However there is a 
negative result about fairness. Groce and Katz (2012) revisit 
this problem and proposed a rational fair protocol for any 
function. They design new utility definition for rational par-
ties and prove that fairness can be achieved given proper 
conditions. Their works do not involve corruption cost and 
dynamical corruption.

The crux of achieving fairness goes back to assigning 
incentives for rational parties to participate in the proto-
col. Recently, bit-coins are utilized as a practical incentive 
for parties to achieve fairness (Andrychowicz et al. 2014a; 
Bentov and Kumaresan 2014; Kumaresan and Bentov 2014; 
Andrychowicz et  al. 2014b; Jethro 2016; Kiayias et  al. 
2016). The basic idea is to compensate those who did not 
learn the output by electronic money like bit-coins (Naka-
moto 2009). That is, the adversary corrupts honest parties 
with cost. He can either learn the result by paying for the 
honest parties or learn nothing by paying nothing. The cost 
corruption is similar to the work of Garay et al. (2013).

1.2 � Outlines

This paper is organized as follows. Section 2 presents some 
basic notions such as adaptive security, which will be used in 

following sections. Furthermore, we give our utility defini-
tion considering the cost of rational adversary, new defini-
tion of view with respect to history and utility. Section 3 
presents our two-party computation protocol in ideal world 
and hybrid world respectively. In Sect. 4, we use ideal/real 
paradigm to prove the adaptive security of our hybrid pro-
tocol in the presence of rational adversary by constructing 
an ideal simulator.

2 � Background

2.1 � Rational two‑party protocol and utility 
definition

Rational protocols can be regarded as games just as men-
tioned in Alwen et al. (2012). In this paper, we follow the 
basic notions of transitions between protocols and games 
(Alwen et al. 2012). Recall that most definitions of utility 
follow those in game theory such as Prisoner’s dilemma 
game or Stackberg game (Osborne and Rubinstein 1994; 
Halpern and Teague 2004). These utilities are static once 
they are defined in the protocols. In fact, utilities maybe 
change during the protocols. In Groce protocol Groce and 
Katz (2012), the utilities are defined in the form of matrix 
(ref. Table  1), where d0 > c0 ≥ a0 ≥ b0 . Note this is com-
mon used in game theory when presenting utility for two 
rational parties.

2.2 � Basic framework of a rational two‑party 
protocol

Normally, the security of two-party computation is proved 
under ideal/real paradigm. There exists a trusted third party 
in the ideal world protocol, which fulfils all the security 
properties. However there does not exist such a trusted party 
in the real world protocol. If the views and outputs of the 
real world are computationally indistinguishable from the 
ideal one, the protocol in the real world is secure as that 
of the ideal one. In this paper, we follow the basic hybrid 
framework of Moran et al. (2009), Katz (2007), Gordon et al. 
(2008), Gordon and Katz (2012), Groce and Katz (2012), 
where the protocol consists of two stages. The first stage 
is a “pre-processing” step in the presence of a third trusted 
party and the second stage includes several rounds, where 
two parties alternatively exchange their messages such that 
they can finally get the correct output. For example, the first 
party (say P1 ) sends his message to the second party (say P0 ) 
and then P0 sends his information to P1 . Figure 1 presents 
the basic idea of the second stage. The hollow circle denotes 
that it’s turn for P1 to send his message and the solid circle 
denotes that it’s turn for P0 to send his message. The hollow 
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square denotes that the protocol ends and the bigger square 
with dashed line denotes one round of the second stage.

To prove the security of the protocol, we only need to 
construct an ideal simulator which can simulate the behav-
iours of real adversary.

2.3 � Views and computational indistinguishability

The basic notions about views are as follows Goldreich 
(2001, 2009).

•	 Let x0, x1 be inputs for P0 and P1 respectively. Let 
f (x0, x1) = (f1(x0, x1), f2(x0, x1)) be probabilistic polyno-
mial-time functionality and let � be a two-party protocol 
to compute functionality f (⋅) . Here we only consider a 
simple case where f (x0, x1) = f1(x0, x1) = f2(x0, x1).

•	 The view of one party (say x0 ) includes the input x0 , 
random strings ri

0
 and received messages mi

0
 in the ith 

round. Therefore, we can denote the view of x0 as view 0
�
 

(x0, x1, n) = (x0, r
i
0
,mi

0
) , where n is the security parameter. 

Since the rational adversary adaptively corrupts honest 
parties, the view of rational adversary is denoted as fol-
lows: view adv

�
 (x0, x1, n) = (xadv, r

i
adv

,mi
adv

) . Here xadv is 
the input of the adversary. In fact it’s the input of the 
corrupted party.

•	 Denote output0
�
 (x, y, n) (output1

�
 (x, y, n)) as the output 

of honest parties. Denote outputadv
�

 (x, y, n) as the output 
of rational adversary.

A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈ℕ is 
an infinite sequence of random variables indexed by 

a ∈ {0, 1}∗ and n ∈ ℕ , where n is the security parameter. 
Two distribution ensembles X = {X(a, n)}a∈{0,1}∗;n∈ℕ and 
Y = {Y(a, n)}a∈{0,1}∗;n∈ℕ are called computationally indis-
tinguishable, which is denoted as X

c
≡ Y  . It means that for 

every non-uniform polynomial-time algorithm D, there 
exists a negligible function �(⋅) such that for a ∈ {0, 1}∗ 
and n ∈ ℕ,

Definition 1  Let f (x0, x1) be a functionality. � securely com-
puters f in the presence of adaptive rational adversaries if 
there exist probabilistic polynomial-time algorithms  such 
that:

3 � Some new definitions for rational 
adversary

3.1 � Corruption sequence for rational adversary

In real-world attack, it’s hard to fix the subset of corrupted 
parties beforehand. It is practical to allow rational adversary 
to dynamically corrupt parties during the protocol. In the 
second stage of hybrid protocol, two parties alternatively 
send their messages. The rational adversary may corrupt 
P0 or P1 during the protocol. There are altogether five cases 
according to the sequence of corruption.

1.	 Only P0 is corrupted.
2.	 Only P1 is corrupted.
3.	 First corrupt P1 and then P0.
4.	 Corrupt both P0 and P1 at the same time.
5.	 No one is corrupted.

In the first two cases, only one party is corrupted. The simu-
lator can learn the input of the corrupted party. In the third 
and fourth cases, two parties are corrupted. Note that the 
corruption has an order in adaptive corruption setting. In the 
fourth case, the simulator can learn the inputs and outputs 
of corrupted parties at the beginning of the simulation. In 
the third case, the simulator cannot, which makes it much 
complex to analyze. Note that we do not include the case 
where P0 is first corrupted and then P1 is corrupted since it 
is identical with the fourth case.

3.2 � New utility for rational adversary

As mentioned above, cloud computing is a model to share 
computing resources like servers, storage and services 
etc (Li et al. 2018). All these resources need minimal 

|Pr[D(X(a, n)) = 1] − Pr[D(Y(a, n)) = 1]| ≤ �(n).

(1n, xadv, f (x0, x1))x0,x1,n

= {����adv
�

(x0, x1, n), ������
adv
�

(x, y, n)}x0,x1,n.

P0P0

PP1

P0P0

PP1

PP1

Round 1

Round 2

Fig. 1   The flow of the second stage

Table 1   Utility definition of the 
Groce protocol

Correct Incorrect

Correct (a0, a1) (b0, c1)

Incorrect (c0, b1) (d0, d1)
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management effort or service provider interaction. Users 
must pay for it if they want to utilize these resources. 
Meanwhile the cloud should provide corresponding 
resources when they are paid. Therefore, it is not free for 
rational adversary to corrupt parties since they consider 
their utility at each step. In this paper, the rational adver-
sary pays g bit coins for corrupting each party. Here cor-
rupting means the rational adversary buys the copyright 
of shares from the corrupted parties. That is, the corrupted 
parties can not use his shares even if he still holds the 
shares. We add a session ID in each round of the second 
stage in the protocol such that one share can be used only 
once. Therefore, the corrupted parties gets g instead of 
the result of the protocol. On the other hand, the adver-
sary loses g but gets the result of the protocol. Note that 
the result of the protocol is either reconstruct the output 
or not. The original utilities are defined in Table 1 when 
we did not consider the cost for corrupting. In order to 
present the utilities when considering corruption cost, we 
must present new utility definition. It’s obvious improper 
by simply minus cost g in Table 1 since we cannot present 
utility definition in matrix. Therefore, we present the util-
ity in a tree just like that in the game theory.

Before presenting the utility tree, we first briefly intro-
duce the action set for rational adversary and the flow of 
the second stage. Let A = {𝛷Pb

, 𝛷̄, follow, abort} is the 
action set for rational adversary and honest parties. �Pb

 
denotes the action of corrupting party Pb ( b ∈ {0, 1} ) and 
𝛷̄ denotes the action of corrupting no one. When rational 
adversary adopts �Pb

 , the corrupted party adopts either 
abort or follow. In the former case, the corrupted party 
quits and the protocol ends. In the latter case, the cor-
rupted party follows the protocol. Obviously, the honest 
parties always adopt follow.

Recall that the second stage includes several rounds r, 
where exists a key round i∗ . Parties reconstruct random out-
put before i∗ round and correct output after i∗ round. In each 
round i ( 1 ≤ i ≤ r ), there are two steps.

1.	 Step 1: P1 first sends his message to P0 . P1 may decide 
whether to send his message.

(a)	 Case 1: P1 is corrupted by the rational adversary. 
In this case, P1 will not send message to P0 . Con-
sequently, both parties reconstruct the output by 
messages received before the ith round. Note that 
if i = 1 , then both parties return a random value.

(b)	 Case 2: P1 is not corrupted. In this case, P1 will 
send message to P0 . Consequently, the protocol 
enters into Step 2.

2.	 Step 2: P0 sends his message to P1 . It is similar with Step 
1.

(a)	 Case 1: P0 is corrupted by the rational adversary. 
P0 decides not to send message to P1 . Then P0 
reconstructs the output by using the messages 
before the ith round. On the other hand, P1 recon-
structs the output by using the messages before the 
(i − 1) th round. Note that if i = 1 , then both parties 
return a random value.

(b)	 Step 2: P0 is not corrupted. Both parties recon-
structs the output by using the messages before the 
ith round. When we say the messages before the 
ith round, it includes the message in the ith round.

Note that rational adversary and the honest party may get 
different utilities in different rounds. Here, we consider the 
effect of fairness in utility definitions since it’s an important 
property in secure two-party computation. Therefore, we 
give their utilities in the follow three cases.

The first case  i ∈ [1, i∗ − 1].
Under this case, both rational adversary and honest par-

ties reconstructs random values no matter whom rational 
adversary corrupts. Note that the probability 1

|f (x0,x1)|
 that par-

ties guess the correct output is negligible suppose the output 
range |f (x0, x1)| is large enough. Therefore, fairness can be 
trivially achieved since both adversary and honest parties do 
not get correct output. Note that rational adversary should 
pay kg for corrupting parties, where k is the number of cor-
rupted parties and g is the cost for each corruption.

We present the utility definition under this case in Fig. 2, 
where Adv denotes the rational adversary. The shadowed 
circle denotes that Adv decides whether to adopt 𝛷̄ . The 
dashed hollow circle denotes that the protocol will enter 
to the next round. The triple denotes the utility of parties, 
where the first element denotes the utility of Adv, the sec-
ond element denotes the utility of P1 and the third element 
denotes the utility of P0 . In this case, all parties cannot get 
correct output. Therefore, all of them get d0 = d1 according 
to the utility matrix in Table 1. If the rational adversary 
corrupts one party, then the corrupted party will get g as a 
compensation for sending values to Adv.

As mentioned above, there are altogether five cases. We 
will present the utility definition for each of them.

1.	 Figure 2a. Adv adopts 𝛷̄ and corrupts no one. Therefore, 
two honest parties adopt follow in each round. Conse-
quently, 0 is the utility for the rational adversary and d0 , 
d1 for P0 and P1 respectively. Note that at the beginning 
of the protocol, the rational adversary deposits kg bit 
coins. Here k is the maximize number of corrupted par-
ties. Each corrupted party will get g after he agrees to 
be corrupted and sends back proper information to the 
adversary. Note that we do not use simply bribing the 
party to prevent the following scenario. One party may 
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pretend agree to be corrupted but he may go back on his 
word after he receives the bribery money. Therefore, we 
utilize deposits in this paper.

2.	 Figure 2b. Adv adopts �P0,P1
 and corrupts P0 , P1 at the 

beginning of the protocol. Then two corrupted parties 
adopt follow in each round. Consequently, they will not 
get any utility since they are corrupted and the utility 
goes to the rational adversary. Adv learns the incorrect 
output and get utility d1 − 2g or d0 − 2g . While each 
honest party gets g. Recall that 2g is the corruption cost 
for two parties. Note that the optimal strategy for them 
is to “follow” the protocol since “follow” leads to higher 
utility. Therefore, both parties will coordinate to “fol-
low” when they are corrupted at the same time.

3.	 Figure 2c. Adv adopts �P1
 and only corrupts P1 . Then 

Adv has two choices.

(a)	 If he adopts abort, then the protocol ends in Step 
1 and both parties (the corrupted P1 and P0 ) learn 
the incorrect output. Adv gets utility d1 − g , P1 
gets g, and P0 gets utility d0.

(b)	 If he adopts follow, then the protocol enters into 
Step 2. The honest P0 adopts follow in the second 
step. Consequently, both parties (the corrupted P1 
and P0 ) learn the incorrect output. Adv gets utility 
d1 − g , P1 gets g, and P0 gets utility d0 . Note that 
in round 1 ≤ i ≤ i∗ − 1 , parties always learn incor-
rect outputs.

4.	 Figure 2d. The honest P1 first adopts follow and then the 
rational adversary adopts �P0

 . As in Fig. 2c. Adv has two 
choices.

P0P0

P1
PP1

P0P0

P0P0

PP1 PP1

P0P0

(a) No party is corrupted. (c) Only P1 is corrupted.

(d) Only P0 is corrupted. (e) P1 is first corrupted and then  P0 .

follow abort

abort

abort

abort

follow follow

follow

follow

follow

follow

follow

(0, d1, d0)

(d1-g, g, d0)

(d1-g, g, d0)

(d0-g, d1, g)
(d1-2g, g, g)

Adv Adv
P1

Adv
P0

Adv
P1

Adv
P0

(d0-g, d1, g)

(d1-g, g, d0)

(d1-2g, g, g)

P

PP1
follow

(d1-2g, g, g)

AdvP1 0P,

follow

(b) P1 and P0 are corrupted currently.

Fig. 2   The utility definition for the case i ∈ [1, i∗ − 1]
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(a)	 If he adopts abort, then the protocol ends Step 2 
and both parties ( P1 and the corrupted P0 ) learn 
the incorrect output. Adv gets utility d0 − g , P1 
gets d1 , and P0 gets g.

(b)	 If he adopts follow, then the protocol enters into 
the next round. Consequently, both parties learn 
the incorrect output. Adv gets utility d0 − g , P1 
gets d1 , and P0 gets g.

5.	 Figure  2e. Adv first adopts �P1
 . Then Adv has two 

choices.

(a)	 If he adopts abort, then the protocol ends in the 
first step and both parties (the corrupted P1 and 
P0 ) learn the incorrect output. Adv gets utility 
d1 − g , P1 gets g, and P0 gets utility d0.

(b)	 If he adopts follow, then the protocol enters into 
the second step. The honest P0 will adopt follow 

in the second step. However, things are different 
from Fig. 2c. Here Adv then corrupts P0 at this 
point. As a rational adversary, the secondly cor-
rupted party P0 still may adopt abort or follow.

	 i.	 If he adopts abort, the protocol ends in 
Step 2 and Adv learns the incorrect out-
put. Adv gets utility d1 − 2g , P1 and P0 
gets g respectively since they are cor-
rupted.

	 ii.	 If he adopts follow, the protocol enters 
into the next round. Consequently, Adv 
learns the incorrect output gets utility 
d1 − 2g . At the same time P1 and P0 gets 
g respectively.

The second case i = i∗.
This case is much complex. Fairness may be broken if P0 

is corrupted by the rational adversary, who does not send his 

P0P0

P1
PP1

P0P0

P0P0

PP1 PP1

P0P0

(a) No party is corrupted. (c) Only P1 is corrupted.

(d) Only P0 is corrupted. (e) P1 is first corrupted and then  P0 .
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abort

abort

abort

follow follow

follow

follow

follow

follow

follow

(0, a1, a0)

(d1-g, g, d0)

(a1-g, g, a0)

(c0-g, b1, g)
(a1-2g, g, g)

Adv Adv
P1

Adv
P0

Adv
P1

Adv
P0

(a0-g, a1, g)

(d1-g, g, d0)

(a1-2g, g, g)

P

PP1
follow

(a1-2g, g, g)

AdvP1 0P,

follow

(b) P1 and P0 are corrupted currently.

Fig. 3   The utility definition for the case i = i
∗
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message to P1 in Step 2. The utility of this case is complex 
as shown in Fig. 3.

1.	 Figure 3a. Adv adopts 𝛷̄ and corrupts no one. Therefore, 
two honest parties adopt follow in each round. Conse-
quently, 0 is the utility for the rational adversary and a0 , 
a1 for P0 and P1 respectively.

2.	 Figure 3b. Adv adopts �P0,P1
 and corrupts P0 , P1 cur-

rently at the beginning of the protocol. Then two cor-
rupted parties adopt follow in each round. Consequently, 
Adv learns the correct output and gets utility a1 − 2g 
or a0 − 2g . While the honest parties get g respectively. 
Recall that 2g is the corruption cost for two parties.

3.	 Figure 3c. Adv adopts �P1
 and only corrupts P1 . Then 

Adv has two choices.

(a)	 If he adopts abort, then the protocol ends in Step 1 
and both parties (the corrupted P1 and P0 ) cannot 
learn the correct output. Adv gets utility d1 − g , 
P1 gets g, and P0 gets utility d0 . In this case, both 
P1 and P0 reconstruct the output of round i∗ − 1 . 
Recall the output is correct after round i∗.

(b)	 If he adopts follow, then the protocol enters into 
Step 2. The honest P0 adopts follow in Step 2. In 
this case, both parties reconstruct the output of 
round i∗ . Consequently, both parties (the Adv and 
P0 ) learn the incorrect output. Adv gets utility 
a1 − g , P1 gets g, and P0 gets utility a0.

4.	 Figure 3d. The honest P1 first adopt follow and then the 
rational adversary adopts �P0

 . Adv has two choices.

(a)	 If he adopts abort, then fairness will be broken. 
Adv (the corrupted P0 ) reconstructs the output of 
round i∗ since in Step 1, the honest P1 sends his 
message to him. However, in Step 2, Adv adopts 
Abort and does not send message to honest P1 . 
Consequently, P1 can only reconstruct the output 
of round i∗ − 1 . Therefore, Adv gets utility c0 − g , 
P1 gets b1 , and P0 gets g.

(b)	 If he adopts follow, then the protocol enters into 
the next round. Both parties will reconstruct the 
message of round i∗ . Consequently, both parties 
learn the correct output. Adv gets utility a0 − g , 
P1 gets a1 , and P0 gets g.

4.	 Figure  3e. Adv first adopts �P1
 . Then Adv has two 

choices.

(a)	 If he adopts abort, then the protocol ends in Step 1 
and both parties (the corrupted P1 and P0 ) recon-
struct the incorrect output of round i∗ − 1 . Adv 
gets utility d1 − g , P1 gets g, and P0 gets utility d0.

(b)	 If he adopts follow, then the protocol enters into 
Step 2. Adv corrupts P0 at this point. As a rational 
adversary, the secondly corrupted party P0 adopts 
abort or follow. However, it does not affect Adv 
to reconstruct the correct output in round i∗ . Adv 
learns the messages of P0 once he corrupts P0 . 
Therefore Adv gets a1 − 2g and the corrupted par-
ties get g respectively.

The third case i ∈ [i∗ + 1, r].
Under this case, both rational adversary and honest par-

ties get correct values no matter whom rational adversary 
corrupts. Therefore, fairness can be trivially achieved since 
both adversary and honest parties get correct output.

We present the utility definition under this case in Fig. 4. 
As mentioned above, there are altogether five cases. The 
definitions are similar to Fig. 2. We only replace d0 and d1 
with a0 and a1 Fig. 4.

3.3 � New view definition for rational adversary

Previous works about rational parties/adversaries use tradi-
tional view notions. In this paper, we add history and utility 
into the definition of view. Recall A = {𝛷Pb

, 𝛷̄, follow, abort} 
is the action set for rational adversary and honest parties. 
Denote ai

0
∈ A , ai

1
∈ A, ai

adv
∈ A as the actions in the ith 

round for P0,P1 and rational adversary respectively. Denote 
hi = (ai

0
, ai

1
, ai

adv
) as the action tuple in the ith round and 

h0 = � as the initial action tuple. Let H = (h0, h1,… .) denote 
the history of the protocol. Let ui = (ui

0
, ui

1
, ui

adv
) denote the 

utility tuple in the ith round. Let U = (u1, u2,… .) denote the 
utility of the protocol as described in Figs. 2, 3, 4.

Definition 2  The view of one party (say x0 ) includes the 
input x0 , random strings ri

0
 , received messages mi

0
 , the his-

tory tuple hi and the utility tuple ui in the ith round. There-
fore, we can denote the view of x0 as view 0

�
 (x0, x1, n) 

= (x0, r
i
0
,mi

0
, hi, ui) , where n is the security parameter. The 

view of rational adversary is denoted as follows: view adv
�

 
(x0, x1, n) = (xadv, r

i
adv

,mi
adv

, hi, ui).

4 � Ideal and real paradigm

4.1 � Ideal world

Just as the model in Moran et al. (2009), Katz (2007), Gor-
don et al. (2008), Gordon and Katz (2012), Groce and Katz 
(2012), our ideal model consists of a third trusted party 
(TTP) and trust ledger for adversary to deposit (Ruffing et al. 
2015; Bentov and Kumaresan 2014; Andrychowicz et al. 
2014a; Kumaresan and Bentov 2014; Andrychowicz et al. 
2014b). The protocol in the ideal world is defined as follows.
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1.	 The utility is common knowledge for TTP and parties.
2.	 Each party chooses his input x0 ( x1 ), which are sampled 

according to a joint probability distribution D over input 
pairs.

3.	 Each party sends x′
0
 ( x′

1
 ), where x′

0
 and x′

1
 denote the 

value parties send to the TTP.
4.	 TTP returns ⟂ to both parties and the protocol terminates 

if x�
0
=⟂ or x�

1
=⟂.

5.	 Otherwise, TTP computers f (x�
0
, x�

1
) and returns it to 

both parties.
6.	 Honest parties output what they received by TTP. While 

corrupted parties output what the rational adversary out-
put. Note that rational adversary also learns his utility 
according to the correctness of its output.

Recall that the rational adversary deposit 2g to the ledger. 
If he corrupts k ∈ {0, 1, 2} parties, then he will get back 
(2 − k)g bit coins and each corrupted party will get g. The 

utility whether he gets correct output is obtained according 
to Table 1. The utility considering the cost of rational adver-
sary is shown in Figs. 2, 3, 4 respectively under different 
cases. Intuitively, the properties of correctness, privacy and 
fairness can be all achieved in the ideal world. Then we give 
our protocol in the real world.

4.2 � Real world

The framework of our real world still follows a hybrid pro-
tocol (Moran et al. 2009; Katz 2007; Gordon et al. 2008; 
Gordon and Katz 2012; Groce and Katz 2012), where the 
first stage is a “pre-processing” step utilizing any proto-
col for secure two-party computation and the second stage 
includes r = (n) rounds. In each round, there are two steps 
(ref. Sect. 2.1).

For completeness, we rehearsal the first stage in Groce 
and Katz (2012).

P0P0

P1
PP1

P0P0

P0P0

PP1 PP1

P0P0

(a) No party is corrupted. (c) Only P1 is corrupted.

(d) Only P0 is corrupted. (e) P1 is first corrupted and then  P0 .

follow abort

abort

abort

abort

follow follow

follow

follow

follow

follow

follow

(0, a1, a0)

(a1-g, g, a0)

(a1-g, g, a0)

(a0-g, a1, g)
(a1-2g, g, g)

Adv Adv
P1

Adv
P0

Adv
P1

Adv
P0

(a0-g, a1, g)

(a1-g, g, a0)

(a1-2g, g, g)

P

PP1
follow

(a1-2g, g, g)

AdvP1 0P,

follow

(b) P1 and P0 are corrupted currently.

Fig. 4   The utility definition for the case i ∈ [i∗ + 1, r]
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1.	 Select i∗ according to a geometric distribution p such 
that parties get incorrect output before round i∗ and learn 
correct output after this round.

2.	 Assign values r0
i
 and r1

i
 ( i = 1, 2,… , r ) to P0 and P1 

respectively. These values are chosen according to the 
following rules.

(a)	 r0
i
 and r1

i
 are randomly selected in the domain of f 

when i < i∗.
(b)	 r0

i
 and r1

i
 are set to be f (x0, x1) when i ≥ i∗.

3.	 Randomly choose s0
i
 ( s1

i
 ) and t0

i
 ( t1

i
 ) such that s0

i
⊕ t0

i
= r0

i
 

( s1
i
⊕ t1

i
= r1

i
).

We consider the cost and utility in the second stage, which 
includes r rounds and in each round, there are two steps.

1.	 At the beginning of the second stage, rational adver-
sary deposit kg bit coins for k corrupted parties. Note 
that, rational adversary will returned (2 − k)g bit coins 
if he corrupts k parties and the corrupted party will get 
g as a compensation. Once the parties are corrupted, 
he will quit the protocol by getting g. Then the rational 
adversary and the other party agree on an session ID to 
exchange the shares.

2.	 At each round,

(a)	 Both parties verify the session ID. If it is verified 
to be correct, then the start to exchange the shares. 
Otherwise, they abort. The main task of this step 
is to prevent reuse of shares. For example, the 
corrupted parties may reuse the shares after he 
receives g.

(b)	 In the first step, P1 first sends t0
i
 to P0.1 P0 com-

putes r0
i
= t0

i
⊕ s0

i
 and the protocol enters into the 

second step. Otherwise the protocol ends, P1 does 
not send t0

i
 to P0 . P0 and P1 return r0

i−1
 and r1

i−1
.

(c)	 In the second step, P0 sends s1
i
 to P1 . P1 computes 

r1
i
= t1

i
⊕ s1

i
 . The protocol enters into the next 

round. Otherwise the protocol ends, P0 does not 
send s1

i
 to P1 . P0 returns r0

i
 and P1 returns r1

i−1
.

3.	 Both parties leans the latest output if the protocol ends 
at the last round or end at the ith round.

We present the first and the second stage in Figs. 5 and 6.

Fig. 5   The first stage of our protocol

Fig. 6   The second stage of our protocol

1  There are two cases for P1 sending t0
i
 to P0 . The first case: P1 is not 

corrupted. The second case: P1 is corrupted by rational adversary but 
the adversary decides not to deviate from the protocol according to 
his utility.
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5 � Security and utility in the presence 
of rational adversary

5.1 � The security analysis

In this section, we will prove the security of our hybrid pro-
tocol. We use the traditional ideal/real paradigm except for 
our new view definition. Furthermore, the rational adversary 
corrupted honest parties in a dynamical way. In addition, we 
should consider the history and utility when constructing 
the simulator. Note that in Gordon and Katz (2012), they 
consider how to construct simulator in the presence of static 
adversary. In Garay et al. (2013), although dynamic cor-
ruption is considered, history and utility do not appear in 
the simulation construction. In this paper, rational adversary 
decides to corrupt which parties during the execution of the 
protocol according to their history and utility. Therefore, 
utility should be considered in the simulator construction.

Theorem 1  Let ΠSG be the hybrid model, where ShareGen 
is an functionality. For every non-uniform, polynomial-time 
rational adversary ral who adaptively corrupts honest par-
ties, there exist a non-uniform, polynomial-time adversary 
 ral in the ideal world computing f such that the following 
equations establish. Note that  ral corrupts the same parties 
as the rational adversary.

Proof  As previous works of simulator construction, we pre-
sent the simulator  ral with black-box accessing to ral . Also 
similar to Gordon and Katz (2012), we omit the MAC-tags 
and keys. The simulator is much complex since the rational 
adversary corrupt parties in a dynamic way. Fortunately, we 
only discuss two-party computation in this paper. Therefore, 
there are altogether five cases with respect to the corruption 
sequence.

1.	 Corrupt both P0 and P1 at the same time. It is trivial to 
construct a simulator since he learns all the inputs at the 
beginning of the simulation. Note that rational adversary 
will not get back his 2g deposit.

2.	 No one is corrupted. No simulator will be constructed 
in this case.

3.	 Only P1 is corrupted.
4.	 Only P0 is corrupted.
5.	 First corrupt P1 and then P0.

Consequently, we will stress on the last three cases, which 
have the same initial process. That is, once the rational 
adversary ral decides to corrupt parties, the simulator  ral 

{IDEALf ,ral(aux)(x0, x1, n)}x0,x1←D,aux∈{0,1}∗,H,U

c
≡ {HYBRIDΠSG,ral(aux)(x0, x1, n)}x0,x1←D,aux∈{0,1}∗,H,U

invokes rational adversary the auxiliary input, and the secu-
rity parameter n, initial history � and utility definition U in 
Figs. 2, 3, 4. However, the simulator cannot learn the input 
of the corrupted parties since the rational adversary do not 
know which parties to corrupt. We inherit the basic idea of 
Gordon et al. (2008) to construct a simulator.

Only P1 is corrupted 

1.	  ral invokes ral on the cost of g bit coins.
2.	  ral invokes ral on the input x1 once ral corrupts P1 . 

The simulator choose x′
1
 according to distribution D. 

Here D is defined the same as that of Groce and Katz 
(2012).

3.	  ral sends x1 to the functionality ShareGen as if the cor-
rupted party does in the real world.

4.	  ral sets r = p ⋅ O(n) and uniformly chooses shares t0
i
 and 

t1
i
 , where i ∈ [1, 2… , r] .  ral returns the random shares 

to ral as if its output from the computation of Shar-
eGen.

5.	 If the rational adversary sets x1 =⟂ according to utility, 
then  ral sends x′

1
 to the functionality ShareGen comput-

ing f.  ral outputs whatever ral outputs and the protocol 
ends. Otherwise, the protocol proceeds as follows.

6.	 Choose i∗ according to geometrical distribution with 
parameter p.

7.	 For i = 1 to i∗ − 1

(a)	 If  ral chooses x′
0
 uniformly from it domain, com-

putes r1
i
= f (x�

0
, x1) and sets s1

i
= t1

i
⊕ r1

i
 . It gives 

s1
i
 to ral . ral computes his utility according to 

the history and his output.
(b)	 If ral decides to take the action abort, then  ral 

outputs whatever ral outputs and the protocol 
ends.

8.	 For i = i∗ to r

(a)	 If i = i∗ then  ral sends x1 to f and gets z = f (x0, x1) . 
Then  ral sets s1

i
= t1

i
⊕ z . It gives s1

i
 to ral . ral 

computes his utility according to the history and 
his output.

(b)	 If ral decides to take the action abort, then  ral 
outputs whatever ral outputs and the protocol 
proceed into next round.

	    item If ral never aborted (and all r iterations are 
done),  ral outputs what ral outputs and halts.
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The construction of the case where only P0 is corrupted is 
similar to the case where only P1 is corrupted. We omit the 
description here due to limit of space.

First corrupt P1 and then P0

In this case, the simulator can wait until ral corrupt P0 
and P1 . Note that, if ral first corrupt P1 and ral decides to 
adopt abort in the first step. Then the protocol ends, thus this 
case is similar to the case where only P1 is corrupted since 
ral has no chance to corrupt P0 . In this case we discuss the 
case, where ral first corrupts P1 and ral decides not to adopt 
abort. Consequently, ral corrupts P0 . Note in this case, ral 
cost 2g bit coins.

1.	  ral first invokes ral on the cost of g bit coins. Then  ral 
invokes ral if he has the chance to corrupt P0 later. This 
will affect the cost and utility for the rational adversary 
and simulator.

2.	  ral invokes ral on the input x0 and x1 until ral cor-
rupts P0 and P1 . The simulator choose x′

1
 according to 

distribution D since ral may adopt abort in the second 
step. Here D is defined the same as that of Groce and 
Katz (2012).

3.	  ral sends x0 and X1 to the functionality ShareGen as if 
the parties do in the real world.

4.	  ral sets r = p ⋅ O(n) and uniformly chooses shares s0
i
 , s1

i
 

and t0
i
 , t1

i
 , where i ∈ [1, 2… , r] .  ral returns the random 

shares to ral as if its output from the computation of 
ShareGen.

5.	 Choose i∗ according to geometrical distribution with 
parameter p.

6.	 For i = 1 to i∗ − 1

(a)	  ral chooses x′
0
and x′

1
 uniformly from it domain, 

computes r1
i
= f (x�

0
, x1) , r0i = f (x0, x

�
1
) and sets 

t0
i
= s0

i
⊕ r0

i
 , s1

i
= t1

i
⊕ r1

i
 . It gives t0

i
 and s1

i
 to ral 

. ral computes his utility according to the history 
and his output.

(b)	 If ral decides to take the action abort, then  ral 
outputs whatever ral outputs and the protocol 
ends.

7.	 For i = i∗ to r

(a)	 If i = i∗ then  ral sends x0 to f and gets z = f (x0, x1) . 
Then  ral sets t0

i
= s0

i
⊕ z and s1

i
= t1

i
⊕ z . It gives 

t0
i
 and s1

i
 to ral . ral computes his utility accord-

ing to the history and his output.
(b)	 If ral decides to take the action abort, then  ral 

outputs whatever ral outputs and the protocol 
proceed into next round.

	    item If ral never aborted (and all r iterations are 
done),  ral outputs what ral outputs and halts.

From the construction of simulator, we can see that it suffices 
that,

▪

5.2 � The utility analysis

To achieve the property of fairness, we must analysis 
the utility of the rational adversary such that ral has no 
incentives to take abort. That is, ral is willing to take 
�Pb

.
Then we analyze the utility under different corruption 

cases.

1.	 When no one is corrupted, then rational adversary will 
get 0 since he costs 0 and learn nothing. The honest par-
ties will get a0 and a1.

2.	 When two parties all corrupted, then the rational adver-
sary will get a0 − 2g . In this case, the rational adversary 
learns the output. However, he may pay 2g to learn the 
output. Whilst the honest parties get g.

3.	 When only P1 is corrupted.

(a)	 In round 1 to i∗ , the rational adversary will not 
learn the output and the honest party P0 will not 
learn the output. Therefore, the rational adversary 
gets utility d1 − g and P0 gets utility d0.

(b)	 In round i∗ + 1 to r, the rational adversary will 
learn the output and the honest party P0 will also 
learn the output. Therefore, the rational adversary 
gets utility a1 − g and P0 gets utility a0.

4.	 When only P0 is corrupted.

(a)	 In round 1 to i∗ − 1 , the rational adversary will not 
learn the output and the honest party P1 will not 
learn the output. Therefore, the rational adversary 
gets utility d0 − g and P1 gets utility d1.

(b)	 In round i∗ , as rational adversary, he may adopt 
abort. In this case, the rational adversary will 
learn the output and the honest party P1 will not 
learn the output. Therefore, the rational adversary 
gets utility b0 − g and P1 gets the utility c1.

(c)	 In round i∗ + 1 to r, the rational adversary will 
learn the output and the honest party P1 will also 

{IDEALf ,ral(aux)(x0, x1, n)}x0,x1←D,aux∈{0,1}∗,H,U

c
≡ {HYBRIDΠSG,ral(aux)(x0, x1, n)}x0,x1←D,aux∈{0,1}∗,H,U
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learn the output. Therefore, the rational adversary 
gets utility a0 − g and P1 gets utility a1.

5.	 When P1 is first corrupted and then P0 is corrupted.

(a)	 In round 1 to i∗ − 1 , the rational adversary will not 
learn the output and the honest party P1 will not 
learn the output. Therefore, the rational adversary 
gets utility d0 − g and P1 gets utility d1.

	 i.	 In round i∗ , if the rational adversary P1 
will adopt abort, then rational adversary 
has no chance to corrupt P0 . Consequent-
ly, the protocol ends. In this case, the ra-
tional adversary will not learn the output 
since he does not learn the value in round 
i∗ . Note that the rational adversary learns 
the value in round i∗ − 1 . Then the utility 
of rational adversary is d0 − g.

	 ii.	 In round i∗ , if the rational adversary P1 
will not adopt abort, then the protocol 
enters into the second step. In this case, 
the rational adversary corrupts P0 , then 
the rational adversary will learn the out-
put. Therefore, the rational adversary gets 
utility a0 − 2g.

(b)	 In round i∗ + 1 to r, the rational adversary will 
learn the output and the honest party P1 will also 
learn the output. Therefore, the rational adversary 
gets utility a0 − g and P1 gets utility a1 (Table 2).

If all utilities are lower than 0, then rational adversary has 
no incentives to corrupt any parties. That is:

f (x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

g < d0; g < d1; g <
a0

2
.

g < b0; g < d1; g <
b0

2
; g <

a0

2
.

g < a0; g < a1; g <
a0

2
.

Recall that b0 > a0 ≥ d0 ≥ c0 . So given d ≤
a0

2
 and 

g ≤ min{d0, d1} , the rational adversary has no incentives to 
adopt abort. Therefore, fairness is achieved.

6 � Conclusions and future works

Cloud computing is a hot topic in information technology 
field, where security issues bear the brunt in most settings. 
It combines distributed resources to improve computational 
efficiency, which becomes the bottleneck for its further 
development. Rational secure two-party computation, which 
solves security computation between two parties, provides 
an effective way to solve these security issues. However, gen-
eral assumptions on rational adversaries cannot be directly 
applied in cloud computing settings. We should design new 
paradigms for rational secure two-party computation since 
there are new characters in cloud computing due to the intro-
duction of utilities. One task of the paradigms is to design 
more practical and efficient protocols in cloud computing. 
In this paper, we consider a two-party computation in the 
presence of rational adversary. The distinct from previous 
works lies that we consider the adversary as rational, who 
has dynamical utilities during the computation. We redefine 
the utilities for rational adversary by game tree. Then, we 
redefine the views for rational adversary and try to reflect it 
in the simulator construction. Finally we prove the security 
of this protocol in the presence of rational adversary.

The new adversary proposed in this paper only adapts to 
two-party settings and only simple equilibrium is consid-
ered in this paper. The future works include considering the 
multi-party computation in the presence of rational adver-
saries. Under this case, there are lots of problems should be 
solved. For example, a set of parties may collude to maxi-
mize their utility. The second problem is to consider adap-
tive corruption with erase. That is, parties may get partial 
information of the protocol. The last problem is to consider 
stronger equilibriums in the new setting.
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Table 2   The utility of rational adversary under different corruptions

Case 1 to i∗ − 1 i∗ i∗ to r

P0 is corrupted d0 − g b0 − g a0 − g

P1 is corrupted d1 − g d1 − g a1 − g

P1 is corrupted then P0 d0 − g b0 − 2g a0 − g

All is corrupted a0 − 2g a0 − 2g a0 − 2g

No one is corrupted 0 0 0
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